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A resonance-like structure, the Pc(4450), has recently been observed in the J/ψ p spectrum by the
LHCb collaboration. We discuss the feasibility of detecting this structure in J/ψ photoproduction
in the CLAS12 experiment at JLab. We present a first estimate of the upper limit for the branching
ratio of the Pc(4450) to J/ψ p. Our estimates, which take into account the experimental resolution
effects, predict that it will be possible to observe a sizable cross section close to the J/ψ production
threshold and shed light on the Pc(4450) resonance in the future photoproduction measurements.

PACS numbers: 13.30.Eg, 14.20.Pt, 25.20.Lj

I. INTRODUCTION

Exotic hadron spectroscopy opens a new window into
quark-gluon dynamics that could shift the paradigm that
mesons and baryons consist of qq̄ and qqq constituent
quarks, respectively. Recent lattice QCD studies of the
nucleon spectrum indicate that the excited nucleon states
may exist with a substantial admixture of glue [1]. These
recent predictions initiated the efforts aimed at a search
for hybrid baryons in the future experiments at Jeffer-
son Lab with the CLAS12 detector [2, 3]. In this paper
we discuss the feasibility of using the CLAS12 detector
in search for exotic baryons with the quark core con-
sisting of five constituent quarks including charm. This
is motivated by Refs. [4–6], where the authors propose
to use photons to produce hidden-charm pentaquarks of
the type that were reported by the LHCb collaboration
in the Λ0

b → K−(J/ψ p) channel [7]. In the LHCb data,
two structures were observed, the broader has a width
of 205 ± 18 ± 86 MeV and mass 4380 ± 8 ± 29 MeV,
and the narrower has width 39 ± 5 ± 19 MeV and mass
4449.8±1.7±2.5 MeV. The preferred spin-parity assign-
ment of these structures is that of Jr = 3/2 or Jr = 5/2
and opposite parities. Here we focus on the narrower
structure, referred to as Pc(4450), since we expect the
broad one to be more susceptible to variations in the
analysis model used to describe the coherent background.
Various interpretations of these structures have been pro-
posed. The possibility of a loosely-bound molecular state
of charmed baryons and mesons was investigated in [8–
13], while a resonance interpretation in terms of quark
degrees of freedom was proposed in [14–17]. The possi-
bility that these structures are nonresonant, for example
due to the presence of nearby singularities in cross chan-
nels was discussed in [18–21] (for recent reviews on the
exotic charmonium-like sector, see [22]). If the resonant

nature holds, it would be the first time that a signature
of a hidden-charm baryon state is found. It is therefore
important to look for other ways to produce the J/ψ p
system near threshold [4–6]. For example, if a peak in
the J/ψ p mass spectrum appears in photoproduction,
the nonresonant interpretation of the LHCb result would
be less likely.

In this paper we make a prediction for the J/ψ pho-
toproduction cross section measurement for the CLAS12
experiment at JLab. We closely follow the arguments of
Ref. [5], in particular for the application of vector-meson
dominance (VMD) and the description of the resonance
with a Breit-Wigner amplitude. To improve their analy-
sis, we describe the non-resonant background via an effec-
tive Pomeron exchange, using existing high-energy data
to constrain the parameters. No assumption is made for
the Pc(4450)→ J/ψ p branching ratio, instead we let the
fits indicate the most likely range. Moreover, we look at
the possibility of the resonance having spin 5/2, in addi-
tion to studying the spin-3/2 case.

To describe the baryon-resonance photoproduction we
use the model of [23] that was successfully applied in the
past to the analysis of N∗ photo- and electroproduction
in the exclusive π+π−p channel. Compared to hadronic
production, the exclusive J/ψ photoproduction off pro-
tons is expected to have a large Pc(4450) resonant contri-
bution relative to the background. Furthermore, unlike
the LHCb case, there is no “third” particle in the final
state that the J/ψ p system could rescatter from. The
existing photoproduction data [24–26] mainly cover the
range of photon energies above 100 GeV, i.e. well above
the possible resonance signal, and it can be well under-
stood as diffractive production. The few data points in
the energy range of interest [27] have a mass resolution
which is too low to identify a potential resonance sig-
nal. The LHCb peak in photoproduction is expected in
a photon energy range where the diffractive cross sec-
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FIG. 1. Dominant contributions to the J/ψ photoproduc-
tion. The nonresonant background is modeled by an effective
Pomeron exchange (a) while the resonant contribution of the
Pc(4450) in the direct channel (b) is modeled by a Breit-
Wigner amplitude.

tion is rather low and one can expect a clearly visible
resonance peak.

The CLAS12 detector is replacing the CLAS appara-
tus in Hall B at JLab and was optimized for measure-
ments of nucleon resonances in electro- and photoproduc-
tion via decays to several exclusive meson-nucleon final
states [28]. The excitation of the possible hidden charm
resonance in the J/ψ p system requires photons with en-
ergies up to 11 GeV, and the identification of the reso-
nance involves partial wave analysis. Therefore the mea-
surement of the differential cross section and spin-density
matrix elements would be desired. The cross section mea-
surement will be possible with the data from the forward
tagger built into the new CLAS12 detector. Ultimately,
if the resonance signal is found, it would be of interest to
extend the present study to J/ψ p electroproduction, to
investigate its internal structure. The J/ψ-polarization
information is currently not feasible with CLAS12 with-
out muon detection capability, but if the signal is found
it would be a good candidate for a detector upgrade.

II. REACTION MODEL

A. Resonant contribution

The processes contributing to γ p → J/ψ p are shown
in Fig. 1. The nonresonant background is expected to be
dominated by the t-channel Pomeron exchange, and we
saturate the s-channel by the Pc(4450) resonance. In the
following we consider only the most favored JPr = 3/2−

and 5/2+ spin-parity assignments for the resonance. We
adopt the usual normalization conventions [29], and ex-
press the differential cross section in terms of the helicity
amplitudes 〈λψλp′ |Tr |λγλp〉,

dσ

d cos θ
=

4πα

32πs

pf
pi

1

4

∑
λγ ,λp,λψ,λp′

|〈λψλp′ |T |λγλp〉|2 . (1)

Here, pi and pf are the incoming and outgoing center-
of-mass frame momenta, respectively, θ is the center-of-
mass scattering angle, and W =

√
s is the invariant mass.

Note that the electric charge
√

4πα is explicitly fac-
tored out from the matrix element. The contribution of
the Pc(4450) resonance is parametrized using the Breit-
Wigner ansatz [23],

〈λψλp′ |Tr |λγλp〉 =
〈λψλp′ |Tdec |λr〉 〈λr|T †em |λγλp〉

M2
r −W 2 − iΓrMr

.

(2)

The numerator is given by the product of photo-
excitation and hadronic decay helicity amplitudes. The
measured width is narrow enough to be approximated
with a constant, Γr = (39 ± 24) MeV. The angular mo-
mentum conservation restricts the sum over λr, the spin
projection along the beam direction in the center of mass
frame, to λR = λγ−λp. The hadronic helicity amplitude
Tdec, which represents the decay of the resonance of spin
J to the J/ψ p state, is given by

〈λψλp′ |Tdec |λr〉 = gλψλp′d
J
λr,λψ−λp′ (cos θ), (3)

where gλψλp′ are the helicity couplings between the res-
onance and the final state. There are three independent
couplings with λp′ = 1

2 , λψ = ±1, 0, being the other
three related by parity. For simplicity, we assume all
these couplings to be equal, i.e. gλψλ′

p
≡ g. The helicity

amplitudes and the partial decay width Γψp are related
by

Γψp = Bψp Γr =
p̄f

32π2M2
r

1

2Jr + 1

∑
λR

∫
dΩ |〈λψλp′ |Tdec|λR〉|2 =

p̄f
8πM2

r

6g2

2Jr + 1
, (4)

with Bψp being the branching ratio of Pc → J/ψ p and
p̄f the momentum pf evaluated at the resonance peak.

We assume that the Pc(4450) decay is dominated by the
lowest partial wave, with angular momentum ` = 0 for
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JPr = 3/2− and ` = 1 for JPr = 5/2+. We recall that
the following near-threshold behavior of the helicity am-
plitudes holds: g ∝ p`f .

The helicity matrix elements of Tem are usually
parametrized in terms of two independent coupling con-
stants, A1/2 and A3/2, which are related to the matrix
elements with λr = 1/2, 3/2, respectively. The other two
helicities −1/2 and −3/2 are constrained by parity. Us-
ing the standard normalization convention, in which the

helicity couplings AλR have units of GeV−1/2 and are
proportional to the unit electromagnetic charge,

〈λγλp |Tem|λR〉 =
W

Mr

√
8MNMrp̄i

4πα

√
p̄i
pi
AλR , (5)

with p̄i the momentum pi evaluated at the resonance
peak. The electromagnetic decay width Γγ is given by

Γγ =
p̄2i
π

2MN

(2Jr + 1)Mr

[∣∣A1/2

∣∣2 +
∣∣A3/2

∣∣2] . (6)

B. Vector meson dominance

The photon helicity amplitudes for a pentaquark are
not known. To rely on data as much as possible, we start
by following Ref. [5] and assume a VMD relation for the
transverse vector-meson helicity amplitudes

〈λγλp|Tem |λr〉 =

√
4παfψ
Mψ

〈λψ = λγ , λp|Tdec |λr〉 , (7)

with fψ being the J/ψ decay constant which is propor-
tional to the electromagnetic current matrix elements,
〈0| Jµem(0) |J/ψ(p, λ)〉 =

√
4παfψMψε

µ(p, λ). The decay
constant is related to the J/ψ wave function via the
Van Royen-Weisskopf relation, and can be estimated
from the leptonic decay width of the J/ψ → l+l−, yield-
ing fψ = 280 MeV.

Finally, the VMD leads to

Γγ = 4παΓψp

(
fψ
Mψ

)2(
p̄i
p̄f

)2`+1

× 4

6
, (8)

with the factor 4/6 due to the fact that in Eq. (7) only the
transverse polarizations of the J/ψ contribute. Again, we
use ` = 0 for JPr = 3/2− and ` = 1 for JPr = 5/2+.

With the help of Eqs. (6) and (8), one can constrain
the size of the photocouplings.

C. Nonresonant contribution

The background in the resonance region is assumed
to be dominated by diffractive production, which we
parametrize by an effective, helicity-conserving, Pomeron

exchange model [30],

〈λψλp′ |TP |λγλp〉 =

iA

(
s− st
s0

)α(t)
eb0(t−tmin)δλpλp′ δλψλγ . (9)

Here s0 = 1 GeV2 is fixed. Frequently s0 is chosen to
match the average s of an experiment and that leads to
different values for the slope parameter. This is unphys-
ical. The physical value of s0 is determined by the range
of interactions in the s-channel, which should be of the
order of the hadronic scale. The Pomeron trajectory is
given by α(t) = α0+α′ t, where α0 and α′ are parameters
to be determined, as well as the normalization A, the ef-
fective threshold parameter st, and the t-slope parameter
b0.

There seems to be a rapid decrease of the cross sec-
tion in the threshold region and the shift parameter st
is introduced to enable a smooth connection between the
high energy, W ∼ O(100 GeV), and the threshold.

III. RESULTS

To the best of our knowledge, there is no estimate for
the upper limit of the branching ratio of the Pc → J/ψ p
decay. To do so, we aim to fit available data on differ-
ential cross sections dσ(γp → J/ψ p)/dt with our model
given by the coherent sum of the two amplitudes: TP
for the nonresonant Pomeron background and Tr for the
resonance.

The most recent and accurate data for this reaction
come from the ZEUS [25] and H1 [26] experiments, with
a photon energy in the laboratory frame Eγ & 200 GeV.

We use the data points with |t| ≤ 1.5 GeV2 to constrain
the Pomeron parameters. For the low-energy region, we
use data from Camerini et al. [24], collected at SLAC,
that cover the Eγ ∼ 13−22 GeV energy range. To further
constrain the fit, we consider the two lowest-energy data
points shown in SLAC preprints [27], right across the

TABLE I. Parameters of the fits with Pc(4450) incorporated
as a spin-3/2 resonance. Uncertainties in the parameters are
provided at a 1σ (68%) CL except for the branching ratio
Bψp, whose upper limits are provided at a 95% CL. The first
line provides the smearing applied to the three lowest-energy
experimental data points in Fig. 2.

σs (MeV) 0 60 120

A 0.156+0.029
−0.020 0.157+0.039

−0.021 0.157+0.037
−0.022

α0 1.151+0.018
−0.020 1.150+0.018

−0.026 1.150+0.015
−0.023

α′ (GeV−2) 0.112+0.033
−0.054 0.111+0.037

−0.064 0.111+0.038
−0.054

st (GeV2) 16.8+1.7
−0.9 16.9+2.0

−1.6 16.9+2.0
−1.1

b0 (GeV−2) 1.01+0.47
−0.29 1.02+0.61

−0.32 1.03+0.49
−0.31

Bψp (95% CL) ≤ 29 % ≤ 30 % ≤ 23 %
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FIG. 2. Comparing data (solid circles) with the fit results at a 1σ (68%) CL, as discussed in the text, for near-threshold
differential cross section data [24, 27] in the forward direction. For the cases shown in this figure, no smearing due to experimental
resolution is performed.
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FIG. 3. Comparing data (circles) with the fit results at a 1σ (68%) CL, as discussed in the text, for near-threshold differential
cross section data [24, 27] in the forward direction. Note that the vertical axes have different scales.

pentaquark peak. In total, we consider 137 γp → J/ψ p
data points for the dσ(γp → J/ψ p)/dt differential cross
sections, with |t| ≤ 1.5 GeV2, covering energy ranges
from threshold to W ∼ 260 GeV.

To compare with the data it is necessary to consider
effects of experimental resolution, mainly due to the un-
certainty in photon energy. We introduce a smearing
in the calculation of the observables, by convoluting the
theoretical cross section with a Gaussian distribution

G(x) =
exp

(
−x2/2σ2

s

)
√

2πσs
, (10)

where σs is the smearing. The convolution is then given

by introducing this function into

dσ

dΩ
→
(

dσ

dΩ
∗G
)

(Eγ) =

∫ ∞
−∞

dσ

dΩ
(y)G(Eγ − y)dy,

(11)

where Eγ is the photon energy in the laboratory frame.
All the parameters of the model are treated as free pa-
rameters in our fits, i.e., the Pc(4450)→ J/ψ p branching
ratio Bψp and the Pomeron parameters: A, α0, α′, st and
b0. Only the three lowest-energy data with t = tmin (see
Fig. 2) have been smeared with the experimental resolu-
tion.

The mean value of the parameters and the uncertain-
ties have been computed employing the bootstrap tech-
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nique [32]. The bootstrap technique allows to take into
account the correlations among parameters and to prop-
erly propagate their uncertainties to the observables [33].
The procedure is as follows. First we explored the pa-
rameter space with 105 fits using minuit [34] in order
to identify the region where the absolute minimum lies.
The starting values of the parameters were randomly se-
lected in a very wide range. Once the parameter-space
region where the absolute minimum lies has been identi-
fied, we use this information to randomly seed the start-
ing values of the parameters for our fits. We generate 104

data sets for each one of the two JPr options (3/2− and
5/2+) and three smearings (σs = 0, 60, and 120 MeV)
by randomly sampling the experimental points and the
pentaquark mass and width according to their uncertain-
ties. The mass of the Pc(4450) (Mr = 4449.8±3.2 MeV)
is sampled according to a Gaussian distribution, while
the width, in order to avoid negative values, is sampled
according to a Gamma distribution

H(x | Γr, σr) =

(
x Γr
σ2
r

)Γ2
r
σ2
r exp

(
−x Γr/σ

2
r

)
x Γ(Γ2

r/σ
2
r)

, (12)

where Γr = 39 MeV is the pentaquark width and σr = 24
MeV its uncertainty. The experimental data point with
the lowest photon energy and t = tmin (see Figs. 2 and
3) is also sampled according to a Gamma distribution
to avoid a negative value of the differential cross sec-
tion, while the rest of the experimental data points are
sampled according to Gaussian distributions. For each
data set, an independent Maximum Likelihood Fit is per-
formed using minuit [34]. For each smearing option, once
the 104 data sets have been fitted, we can extract the best
68% fits, whose mean value for each parameter provides
the best values reported in Tables I and II and the upper
and lower values for each parameter provide the uncer-
tainties. With this set of parameters that correspond to
1σ confidence level (CL) we can compute each observ-
able and its uncertainty [32]. Computing quantities at a
any other CL (e.g. 2σ) can be achieved in the same way,
given that enough fits are computed. Figure 3 shows the

TABLE II. Parameters of the fits with Pc(4450) incorporated
as a spin-5/2 resonance. Uncertainties in the parameters are
provided at a 1σ (68%) CL except for the branching ratio
Bψp, whose upper limits are provided at a 95% CL. The first
line provides the smearing applied to the three lowest-energy
experimental data points in Fig. 2.

σs (MeV) 0 60 120

A 0.152+0.032
−0.024 0.150+0.043

−0.034 0.150+0.044
−0.041

α0 1.154+0.020
−0.020 1.156+0.027

−0.028 1.156+0.033
−0.028

α′ (GeV−2) 0.120+0.064
−0.052 0.125+0.076

−0.089 0.126+0.077
−0.105

st (GeV2) 16.6+1.6
−1.1 16.6+2.2

−1.5 16.6+2.1
−2.0

b0 (GeV−2) 0.95+0.51
−0.51 0.90+0.85

−0.65 0.90+1.00
−0.69

Bψp (95% CL) ≤ 17 % ≤ 12 % ≤ 8 %

results of the fits for the different smearing parameters
We also show the high-energy data compared to our fit
result for the case of no smearing in Fig. 4.

Since there are no data for the resonance peak and
there is no known lower limit for the branching fraction,
the mean values of the parameters are naturally consis-
tent with the non existence of the Pc(4450). We find
that the upper limit for the branching ratio Bψp at a
95% CL ranges from 23% to 30% for Jr = 3/2, depend-
ing on the experimental resolution, and from 8% to 17%
for Jr = 5/2. The resulting hadronic couplings, as well
as the photocouplings, are summarized in Table III. It
is worth noting that A is highly correlated with α0, α′

and b0 are also highly correlated, and that st is corre-
lated with A and b0. Bψp is equally correlated with all
the parameters. This is in good agreement with the 29%
branching obtained for a spin 3/2 pentaquark in [35].

It is possible that a structure at 10 GeV had indeed
not been seen in the past, because of the finite resolution
as the peak strength decreases and becomes broader and
flatter. Its detection requires finer energy binning. The
peak is expected to be narrow, falling in between two
bins where data is available. Therefore, it is important
to perform an energy scan in this region to confirm the
existence of the resonance.

While there are no data on the angular dependence
near threshold yet, we can make a few predictions based
on the model presented above. In order to be able to do a
deeper study of this dependence, we now relax the VMD
condition and let the relative sizes of the photocouplings
vary. As expected, the results depend on the relative size
of the helicity amplitudes, as shown in Fig. 5 for three dif-
ferent cases A1/2 = A3/2, A3/2 = 0, and A1/2 = 0, while

maintaining the sum of the squares |A1/2|2 + |A3/2|2 con-
stant. Pronounced differences in the predicted angular
distributions under different assignments for the Pc(4450)
photocouplings and spins demonstrate the prospect of de-
termining these quantities from the future experimental
data on J/ψ photoproduction cross sections measured
with CLAS12 in the near-threshold region.

Finally, we discuss the results for the total cross sec-
tion, shown in Fig. 6 for the two possible spin assignments
3/2 and 5/2, and the different experimental resolutions
shown in Tabs. I to III. The resonant piece of the re-
sulting cross section is consistent with the one predicted
by Ref. [5] when taking the same spin and branching-
ratio assumptions: Jr = 3/2 and Bψp = 10%. For
cross sections above those shown in the figure (in agree-
ment with those tabulated in Table III), the available
data [27] would have already revealed the presence of
this new Pc(4450) state. There will be measurements
with the CLAS12 detector of the exclusive J/ψ (quasi-
)photoproduction off protons, at photon energies from
threshold up to 11 GeV. If they show the presence of the
Pc(4450), this will allow us to achieve an unambiguous
conclusion on its existence, as expected based on LHCb
results. On the other hand, we would like to stress that if
this state will not be visible in this reaction, this is only
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TABLE III. Upper limits at the 2σ (95%) CL for the resonance parameters obtained for the two JPr assignments. We consider
three possible values for the experimental resolution σs. The resulting values for g follow from Eq. (4) and the photocouplings
A1/2 and A3/2 are determined using VMD and assuming the couplings to be of equal size for the different helicity combinations.

JPr 3/2− 5/2+

σs (MeV) 0 60 120 0 60 120

Bψp ≤ 29% ≤ 30% ≤ 23% ≤ 17% ≤ 12% ≤ 8%

g (GeV) ≤ 2.1 ≤ 2.2 ≤ 1.9 ≤ 2.0 ≤ 1.5 ≤ 1.4

Γγ (keV) ≤ 14.4 ≤ 14.9 ≤ 11.0 ≤ 56.9 ≤ 33.5 ≤ 26.8

A1/2,3/2 (GeV−1/2) ≤ 0.007 ≤ 0.007 ≤ 0.006 ≤ 0.017 ≤ 0.013 ≤ 0.012
dσ
dt
|Eγ=Er,t=tmin (nb GeV−2) ≤ 21.8 ≤ 7.2 ≤ 3.1 ≤ 95.8 ≤ 11.3 ≤ 3.9

σtot|Eγ=Er (nb) ≤ 120 ≤ 38 ≤ 14 ≤ 396 ≤ 44 ≤ 14
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FIG. 4. Comparing data (circles) with the fit-results’ mean values, for JPr = 3/2−, and σs = 0 MeV, and different values of
incoming photon energy in the center-of-mass frame. The error bands are not shown here to ease the plot reading.

a statement about the small size of the photocouplings,
which does not strictly imply its nonexistence.

IV. SUMMARY

We studied the possibility of observing the Pc(4450)
resonance in J/ψ photoproduction at CLAS12. The data
available in this energy range are scarce and there is

no measurement of the differential cross section. We
tested the compatibility of the data and a simple two-
component model containing the directly produced res-
onance and a diffractive background. We conclude that,
the resonance peak being narrow enough, it could have
escaped detection due to poor energy resolution.

From the fits to the available J/ψ photoproduction
data, we show that the magnitude of the peak for the
Pc(4450) resonance can range from very strong to barely
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visible. Our results demonstrate the possibility to ob-
serve the Pc(4450) resonance and to determine its spin
and photocouplings. Therefore, the future data on J/ψ
photoproduction off protons measured in the near thresh-
old region with a quasi-real photon beam at JLab will

allow us to explore photoexcitation of the Pc(4450) state
suggested by LHCb data.

We made a prediction for the angular distribution
which can be used to disentangle the spin of the resonance
and helicity dependence of the resonance production. If
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the resonance signal is found, photon-virtuality depen-
dence can be used to investigate the resonance structure.

The code for the evaluation of the exclusive J/ψ pho-
toproduction cross sections off protons based on the ap-
proach presented in this paper will soon be available on
the JPAC webpage [36].
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