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Neutrino Quantum Kinetic Equations: The Collision Term

Daniel N. Blaschke∗ and Vincenzo Cirigliano†
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

We derive the collision term relevant for neutrino quantum kinetic equations in the early universe
and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees
of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation
with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density
limit). After presenting the general structure of the collision terms, we take two instructive limiting
cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward
interpretation of the off-diagonal entries in terms of the product of scattering amplitudes of the two
helicity states. The isotropic limit is relevant for studies of the early universe: in this case the terms
involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional
integrals, suitable for computational implementation.

PACS numbers: 14.60.Pq, 97.60.Bw, 26.50.+x, 13.15.+g

I. INTRODUCTION

The evolution of an ensemble of neutrinos in hot and
dense media is described by an appropriate set of quan-
tum kinetic equations (QKEs), accounting for kinetic,
flavor, and spin degrees of freedom [1–14]. QKEs are cen-
tral to obtain a complete description of neutrino trans-
port in the early universe, core collapse supernovae, and
compact object mergers, valid before, during, and after
the neutrino decoupling epoch (region). A self-consistent
treatment of neutrino transport is highly relevant be-
cause in such environments neutrinos carry a significant
fraction of the energy and entropy, and through their
flavor- and energy-dependent weak interactions play a
key role in setting the neutron-to-proton ratio, a critical
input for the nucleosynthesis process.

In Ref. [9] the QKEs describing the evolution of Ma-
jorana neutrinos were derived using field-theoretic meth-
ods (see [15–19] for an introduction to non-equilibrium
QFT). These QKEs include spin degrees of freedom
and encompass effects up to second order in small ra-
tios of scales characterizing the neutrino environments
we are interested in. Specifically, we treat neutrino
masses, mass-splitting, and matter potentials induced
by forward scattering, as well as external gradients as
much smaller than the typical neutrino energy scale E,
set by the temperature or chemical potential: namely
mν/E ∼ ∆mν/E ∼ Σforward/E ∼ ∂X/E ∼ O(ε) [20].
The inelastic scattering can also be characterized by a
potential Σinelastic ∼ Σforward × GFE

2 which we there-
fore power-count as Σinelastic/E ∼ O(ε2). This power-
counting is tantamount to the statement that physical
quantities vary slowly on the scale of the neutrino de
Broglie wavelength.

In this paper we elaborate on the terms of the QKEs
describing inelastic collisions or production and absorp-
tion in the medium. These terms are essential for
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a correct description of neutrinos in the decoupling
epoch (region), in which the neutrino spectra and fla-
vor composition are determined [21–25]. While Ref. [9]
only included a discussion of neutrino-neutrino scatter-
ing in isotropic environment, here we compute the colli-
sion terms induced by neutrino-(anti)neutrino processes,
neutrino scattering and annihilation with electrons and
positrons, and neutrino scattering off nucleons. Our ex-
pressions for processes involving nucleons are valid in
the low-density limit, i.e. do not take into account nu-
cleon interactions. However, the effects of strong inter-
actions in dense matter — relevant for supernovae envi-
ronments — can be included by appropriately modifying
the medium response functions (see for example [26–28]).
The paper is organized as follows: in Sect. II we review

the Quantum Kinetic Equations (QKEs) in the field-
theoretic approach, for both Dirac and Majorana neutri-
nos. In Sect. III we provide a derivation of the generalized
collision term for Majorana neutrinos, and present gen-
eral expressions involving coherence terms both in flavor
and spin space, valid for any geometry, relegating some
lengthy results to Appendix C. The collision terms for
Dirac neutrinos are discussed in Section IV. After pre-
senting general results, we discuss two limiting cases. In
Sect. V we take the one-flavor limit and illustrate the
structure of the collision term for the two spin degrees
of freedom of a Majorana neutrino (i.e neutrino and an-
tineutrino). In Sect. VI we consider the isotropic limit
relevant for the description of neutrinos in the early uni-
verse, with some details reported in Appendix D. Finally,
we present our concluding remarks in Sect. VII. To keep
the paper self-contained, we include a number of appen-
dices with technical details and lengthy results.

II. REVIEW OF QUANTUM KINETIC
EQUATIONS (QKES)

In this section we review the field-theoretic approach to
neutrino QKEs, following Refs. [9, 11], with the dual pur-
pose of having a self-contained presentation and setting
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the notation for the following sections. After a brief dis-
cussion of neutrino interactions in the Standard Model
(SM) at energy scales much smaller than the W and
Z boson masses, we present the Green’s function ap-
proach to neutrino propagation in hot and dense media,
we describe the structure of the QKEs, and we finally re-
view the content of the “coherent” (collisionless) QKEs.
Throughout, we use four-component spinors to describe
both Dirac and Majorana neutrinos, providing an alter-
native description to the one of Ref. [9], that employs
two-dimensional Weyl spinors. In this section we present
results for both Majorana and Dirac neutrinos.

A. Neutrino interactions

In this work we describe neutrino fields (Dirac or Ma-
jorana) in terms of 4-component spinors να, where α is
a flavor or family index. In the Majorana case the fields
satisfy the Majorana condition νc = ν, with νc ≡ Cν̄T ,
where C = iγ0γ2 is the charge-conjugation matrix. In the
Majorana case, the kinetic Lagrangian can be written as

LKin = i

2 ν̄
/∂ν − 1

2 ν̄ m ν , ν =

 νe
νµ
ντ

 ,

(1)
where m = mT is the Majorana mass matrix (a complex
symmetric matrix). [29]

In situations of physical interest, such as neutrino de-
coupling in the early universe and neutrino propagation
in compact astrophysical objects, the typical neutrino en-
ergy is well below the electroweak scale (∼ 100 GeV).
Therefore, in computing the collision integrals it is safe
to use the contact-interaction limit of the full Standard
Model, and to replace the quark degrees of freedom with
nucleon degrees of freedom.

After integrating out W and Z bosons, the part of
the Standard Model effective Lagrangian controlling neu-
trino interactions can be written in the following current-
current form (in terms of 4-dimensional spinors):

Lνν = −GF√
2
ν̄γµPLν ν̄γµPLν , (2a)

Lνe = −2
√

2GF
(
ν̄γµPLYLν ēγµPLe

+ ν̄γµPLYRν ēγµPRe
)
, (2b)

LνN = −
√

2GF
∑
N=p,n

ν̄γµPLν N̄γµ

×
(
C

(N)
V − C(N)

A γ5

)
N , (2c)

LCC = −
√

2GF ēγµPLνe p̄ γ
µ (1− gAγ5)n

+ h.c. , (2d)

where GF is the Fermi constant, PL,R = (1∓ γ5)/2, and

YL =

 1
2 + sin2 θW 0 0

0 − 1
2 + sin2 θW 0

0 0 − 1
2 + sin2 θW

,
YR = sin2 θW × 1 . (3)

The nucleon couplings are given in terms of gA ' 1.27 by

C
(p)
V = 1

2 − 2 sin2 θW , C
(n)
V = −1

2 ,

C
(p)
A = gA

2 , C
(n)
A = −gA2 . (4)

B. Neutrinos in hot and dense media

QKEs are the evolution equations for suitably defined
dynamical quantities that characterize a neutrino ensem-
ble, which we will refer to as neutrino density matrices.
In the most general terms a neutrino ensemble is de-
scribed by the set of all 2n-field Green’s functions, encod-
ing n-particle correlations. These obey coupled integro-
differential equations, equivalent to the BBGKY equa-
tions [18]. As discussed in Refs. [1, 9], for weakly in-
teracting neutrinos (Σ/E ∼ O(ε, ε2)) the set of coupled
equations can be truncated by using perturbation theory
to express all higher order Green’s functions in terms of
the two-point functions. In this case the neutrino ensem-
ble is characterized by one-particle correlations.[30]
One-particle states of massive neutrinos and an-

tineutrinos are specified by the three-momentum ~p,
the helicity h ∈ {L,R}, and the family label i
(for eigenstates of mass mi), with corresponding an-
nihilation operators ai,~p,h and bj,~p,h satisfying the
canonical anti-commutation relations {ai,~p,h, a†j,~p′,h′} =
(2π)3 2ωi(~p) δhh′ δij δ(3)(~p − ~p′), etc., where ωi(~p) =√
~p2 +m2

i . Then, the neutrino state is specified by the
matrices f ijhh′(~p) and f̄ ijhh′(~p) (which we call density ma-
trices, with slight abuse of language)

〈a†j,~p′,h′ ai,~p,h〉 = (2π)3 2n(~p) δ(3)(~p− ~p′) f ijhh′(~p) ,
(5a)

〈b†i,~p′,h′ bj,~p,h〉 = (2π)3 2n(~p) δ(3)(~p− ~p′) f̄ ijhh′(~p) , (5b)

where 〈. . . 〉 denotes the ensemble average and n(~p) is
a normalization factor. [31] For inhomogeneous back-
grounds, the density matrices depend also on the space-
time label, denoted by x in what follows.
The physical meaning of the generalized density ma-

trices f ijhh′(~p) and f̄ ijhh′(~p) is dictated by simple quantum
mechanical considerations: the diagonal entries f iihh(~p)
represent the occupation numbers of neutrinos of mass
mi, momentum ~p, and helicity h; the off diagonal ele-
ments f ijhh(~p) represent quantum coherence of states of
same helicity and different mass (familiar in the context
of neutrino oscillations); f iihh′(~p) represent coherence of
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states of different helicity and same mass, and finally
f ijhh′(~p) represent coherence between states of different
helicity and mass.

In summary, the basic dynamical objects describing
ensembles of neutrinos and antineutrinos are the 2nf ×
2nf matrices,

F (~p, x) =
(
fLL fLR
fRL fRR

)
,

F̄ (~p, x) =
(
f̄RR f̄RL
f̄LR f̄LL

)
, (6)

where we have suppressed the generation indices (each
block fhh′ is a square nf × nf matrix). QKEs are the
evolution equations for F and F̄ . Before sketching their
derivation in the following subsections, we discuss how
this formalism allows one to describe both Dirac and Ma-
jorana neutrinos:

• For Dirac neutrinos, one needs both F and F̄ , with
fLL and f̄RR denoting the occupation numbers
of active states, left-handed neutrinos and right-
handed antineutrinos, respectively. Similarly, fRR
and f̄LL describe the occupation number of wrong-
helicity sterile states.

• For Majorana neutrinos, one can choose the phases
so that ai(~p, h) = bi(~p, h) and therefore fhh′ = f̄Thh′
(transposition acts on flavor indices). Therefore the
ensemble is described by just the matrix F (~p, x).
With the definitions f ≡ fLL, f̄ ≡ f̄RR = fTRR, and
φ ≡ fLR, one needs evolution equations only for
the matrix F introduced in Ref. [9]:

F → F =
(
f φ
φ† f̄T

)
. (7)

Here f and f̄ are nf × nf matrices describing the
occupation and flavor coherence of neutrinos and
antineutrinos, respectively. The nf × nf “spin co-
herence” matrix φ describes the degree to which the
ensemble contains coherent superpositions of neu-
trinos and antineutrinos of any flavor.

The above discussion in terms of creation and annihila-
tion operators has been presented in the mass eigenstate
basis [32]. One can define “flavor basis” density matrices
fαβ in terms of the mass-basis fij as fαβ = UαifijU

∗
βj ,

where U is the unitary transformation να = Uαiνi that
puts the inverse neutrino propagator in diagonal form.
While the QKEs can be written in any basis, we give our
results below in the “flavor” basis.

C. Green’s function approach to the QKEs

1. Generalities

The description in terms of creation and annihilation
operators presented so far has a simple counterpart in the

QFT approach of Ref. [9]. In that approach, the basic
dynamical objects are the neutrino two-point functions
(a and b denote flavor indices, and we suppress spinor
indices) (

G
(ν)
ab

)+
(x, y) ≡ 〈νa(x)ν̄b(y)〉 , (8a)(

G
(ν)
ab

)−
(x, y) ≡ 〈ν̄b(y)νa(x)〉 , (8b)

from which one can construct the statistical (F ) and
spectral (ρ) functions,

F
(ν)
ab (x, y) ≡ 1

2 〈 [νa(x), ν̄b(y)] 〉

= 1
2

((
G

(ν)
ab

)+
(x, y)−

(
G

(ν)
ab

)−
(x, y)

)
,

(9a)

ρ
(ν)
ab (x, y) ≡ i 〈{νa(x), ν̄b(y)}〉

= i

((
G

(ν)
ab

)+
(x, y) +

(
G

(ν)
ab

)−
(x, y)

)
,

(9b)

and the time-ordered propagator

G
(ν)
ab (x, y) ≡ 〈T (νa(x)ν̄b(y))〉

= θ(x0 − y0)
(
G

(ν)
ab

)+
(x, y)

− θ(y0 − x0)
(
G

(ν)
ab

)−
(x, y) . (10)

The statistical and spectral function have a simple phys-
ical interpretation (see for example [19]): roughly speak-
ing the spectral function encodes information on the
spectrum of the theory, i.e. the states that are available,
while the statistical function gives information about
the occupation numbers and quantum coherence for the
available states. As we will show below, the Wigner
Transform (i.e. Fourier transform with respect to the
relative coordinate) of the statistical function

F
(ν)
ab (k, x) =

∫
d4r eik·r F

(ν)
ab (x+ r/2, x− r/2) (11)

contains all the information about the density matrices
introduced in Eqs (5) and (6). Below we sketch the var-
ious steps leading to the QKEs.

2. Equations of motion

Starting point is the equation of motion for the
two point function G

(ν)
ab (x, y), equivalent to the Dyson-

Schwinger equation[
G(ν)(x, y)

]−1
=
[
G

(ν)
0 (x, y)

]−1
− Σ̃(x, y) , (12)

where we have suppressed for simplicity the flavor indices.
G

(ν)
0 (x, y) is the tree-level two point function and Σ̃(x, y)
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is the neutrino self-energy, i.e. the sum of all amputated
one-particle-irreducible (1PI) diagrams with two external
neutrino lines. Σ̃(x, y) is itself a functional of the two
point function G(ν) and admits the decomposition into a
local term, and ± components:

Σ̃(x, y) = −iΣ(x)δ(4)(x− y) + θ(x0 − y0)Π̃+(x, y)
− θ(y0 − x0)Π̃−(x, y) . (13)

With the interactions given in Sect. IIA, one can show
that Σ(x) receives contributions starting at one loop
(Fig. 1), i.e. first order in GF , while Π±(x, y) receive
contributions starting at two loops (Fig. 2), and are thus
of second order in GF .
Wigner-transforming the equation of motion for the

two-point function and keeping terms up to O(ε2) in the
small ratios discussed in Sect. I, namely,

∂x,m,Σ
Eν

= O(ε) , Π̃±

E
= O(ε2) , (14)

one arrives at [9]

Ω̂F (ν)(k, x) = − i2

(
Π̃+(k, x)G(ν)−(k, x)

− Π̃−(k, x)G(ν)+(k, x)
)
, (15a)

Ω̂ = /k + i

2
/∂ − Σ(x)−m+ i

2
∂Σ
∂xµ

∂

∂kµ
.

(15b)

FIG. 1. Feynman graphs contributing to Σ(x). External lines
represent neutrinos. Internal lines represent ν, e, n, p propa-
gators. We represent each 4-fermion interaction vertex from
Eqs. (2) in terms of two displaced fermionic current vertices.

3. Decomposition in spinor components

The Wigner transform of the statistical function
F

(ν)
ab (k, x) (and any other two-point function) has sixteen

spinor components (scalar, pseudoscalar, vector, axial-
vector, tensor),

F (ν) =
[
FS +

(
FRV
)µ
γµ −

i

4
(
FLT
)µν

σµν

]
PL

+
[
F †S +

(
FLV
)µ
γµ + i

4
(
FRT
)µν

σµν

]
PR , (16)

where PL,R ≡ (1∓γ5)/2 and σµν ≡ i
2 [γµ, γν ]. The various

components satisfy the hermiticity conditions FL†V = FLV ,
FR†V = FRV , and FL†T = FRT . The forward scattering
potential Σ(x) and the inelastic collision self-energies
Π̃±(k, x) admit a similar decomposition in spinor com-
ponents (we give here only the decomposition for Π̃, a
completely analogous one exists for Σ):

Π̃ =
[
ΠS + Πµ

Rγµ −
i

4
(
ΠL
T

)µν
σµν

]
PL

+
[
Π†S + Πµ

Lγµ + i

4
(
ΠR
T

)µν
σµν

]
PR , (17)

where we suppress the ± superscripts.
For ultra-relativistic neutrinos of three-momentum ~k

(characterized by polar angle θ and azimuthal angle ϕ),
it is convenient to express all Lorentz tensors and com-
ponents of the two-point functions (such as the (FL,RV )µ
and (FL,RT )µν) in terms of a basis formed by two light-
like four-vectors κ̂µ(k) = (sgn(k0), k̂) and κ̂′µ(k) =
(sgn(k0),−k̂) (κ̂ · κ̂ = κ̂′ · κ̂′ = 0, κ̂ · κ̂′ = 2) and two trans-
verse four vectors x̂1,2(k) such that κ̂ · x̂i = κ̂′ · x̂i = 0
and x̂i · x̂j = −δij , or equivalently x̂± ≡ x̂1 ± ix̂2, with
x̂+ · x̂− = −2 (see Appendix A for additional details).
The components of the self-energy entering the QKEs

are obtained by the projections (see Appendix A)

Πκ
L,R(k, x) = 1

2 κ̂µTr
[
Π̃(k, x) γµPL,R

]
, (18a)

PT (k, x) = ieiϕ

16 (κ̂ ∧ x̂+)µν Tr
[
Π̃(k, x)σµνPR

]
,

(a ∧ b)µν = aµbν − aνbµ , (18b)

ΣµL,R(x) = 1
2Tr

[
Σ(x)γµPL,R

]
, (18c)

which can be arranged in the 2nf × 2nf structures:

Σµ(x) =
(

ΣµR 0
0 ΣµL

)
,

Π̂±(k, x) =
(

Πκ±
R 2P±T

2P±†T Πκ±
L

)
. (19)

4. Leading order analysis

The equations of motion (15) impose relations between
the sixteen components of F (ν)

ab (k, x). Solving (15) to
O(ε0), only four components survive (L- and R- vector
components and two tensor components), parameterized
by the real functions FL,R(k, x) and the complex function



5

Φ(k, x):(
FL,RV

)µ
(k, x) = κ̂µ(k)FL,R(k, x) , (20a)(

FLT
)
µν

(k, x) = e−iϕ(k)(κ̂(k) ∧ x̂−(k))µν Φ(k, x) ,
(20b)(

FRT
)
µν

(k, x) = eiϕ(k)(κ̂(k) ∧ x̂+(k))µν Φ†(k, x) ,
(20c)

with all other spinor components vanishing.
Beyond O(ε0), the four independent spinor compo-

nents of F (ν)
ab (k, x) can be conveniently chosen to coincide

with the ones non-vanishing to O(ε0) [9, 11]. They can
be isolated by the following projections:

FL,R(k, x) ≡ 1
4Tr

(
γµPL,R F (ν)(k, x)

)
κ̂′µ(k) , (21a)

Φ(†)(k, x) ≡ ∓ i

16Tr
(
σµνPL/R F (ν)(k, x)

)
× (κ̂′(k) ∧ x̂±(k))µνe±iϕ(k) , (21b)

where the upper (lower) signs and indices refer to Φ (Φ†)
[33]. These components can be collected in a 2nf × 2nf
matrix [34]

F̂ =
(
FL Φ
Φ† FR

)
. (22)

In the free theory, the positive and negative frequency
integrals of F̂ give (up to a constant) the particle and
antiparticle density matrices of Eq. (6) defined in terms of
ensemble averages of creation and annihilation operators
(see Eqs (5)):

−2
∫ ∞

0

dk0

2π F̂ (k, x) = F (~k, x)− 1
21 , (23a)

−2
∫ 0

−∞

dk0

2π F̂ (k, x) = F̄ (−~k, x)− 1
21 . (23b)

In the interacting theory, we take the above equations as
definitions of neutrino and antineutrino number densities
(generalized to include the off-diagonal coherence terms).
These correspond to spectrally-dressed densities in the
language adopted in Refs. [35, 36], with quasi-particle
spectra dictated by Eq. (24b) below.

5. Kinetic equations and shell conditions beyond leading
order

Beyond O(ε0), the dynamics of F̂ (k, x) is still con-
trolled by Eq. (15). Projecting out all the spinor compo-
nents of (15) one finds [9]: (i) constraint relations that
express “small components” of F (ν) in terms of FL,R and
Φ; (ii) evolution equations (i.e. first order in space-time
derivatives) for F̂ (k, x); (iii) constraint relations on the
components F̂ (k, x), which determine the shell structure

of the solutions. Defining ∂κ ≡ κ̂(k) · ∂, ∂i ≡ x̂i(k) · ∂,
the kinetic and constraint equations (items (ii) and (iii)
above) for the matrix F̂ (k, x) are

∂κF̂ + 1
2|~k|

{
Σi, ∂iF̂

}
+ 1

2

{
∂Σκ

∂xµ
,
∂F̂

∂kµ

}
= −i

[
H, F̂

]
+ Ĉ, (24a){

κ̂(k) · k − Σκ , F̂
}

= 0 . (24b)

Using kµ = |~k| κ̂µ(k) + O(ε2) the constraint equation
(24b) can be written in the more familiar form of a shell-
condition: {

k2 − |~k|Σκ(x) , F̂ (k, x)
}

= 0 . (25)

The 2nf × 2nf potential Σ(x) is defined in (19) and its
projections are Σκ = κ̂(k) · Σ and Σi = x̂i · Σ.
The Hamiltonian-like operator controlling the coherent

evolution in Eq. (24a) is given by

H =
(

HR HLR

H†LR HL

)
(26)

with

HR = ΣκR + 1
2|~k|

(
m†m− εij∂iΣjR + 4Σ+

RΣ−R
)
, (27a)

HL = ΣκL + 1
2|~k|

(
mm† + εij∂iΣjL + 4Σ−LΣ+

L

)
, (27b)

HLR = − 1
|~k|
(
Σ+
Rm

† −m† Σ+
L

)
, (27c)

where Σ±L,R ≡ (1/2) e±iϕ (x1 ± ix2)µ ΣµL,R and εij is the
two-dimensional Levi-Civita symbol (ε12 = 1).
Finally, the collision term in Eq. (24a) reads

Ĉ = −1
2

{
Π̂+, Ĝ−

}
+ 1

2

{
Π̂−, Ĝ+

}
, (28)

where the 2nf × 2nf gain and loss potentials Π̂±(k) are
given in Eq. (19) in terms of spinor components of the
self-energy, extracted from a calculation of the two-loop
diagrams of Fig. 2, and

Ĝ± = − i2 ρ̂1± F̂ . (29)

In order to obtain the collision terms to O(ε2) we
will need only the O(ε0) expression for the vector
component of the spectral function, namely ρ̂(k) =
2iπ|~k|δ(k2)sgn(k0) (see Appendix B).

6. Integration over frequencies: QKEs for Dirac and
Majorana neutrinos

The final step to obtain the QKEs requires integrating
(24a) over positive and negative frequencies, taking into
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account the O(ε) shell corrections from (24b), whenever
required in order to keep terms up to O(ε2) in power-
counting. Recalling the definitions (23a), the integrations
over positive and negative frequency lead to:

∂κF + 1
2|~k|

{
Σi, ∂iF

}
− 1

2

{
∂Σκ

∂~x
,
∂F

∂~k

}
= −i[H,F ] + C , (30a)

∂κF̄ − 1
2|~k|

{
Σi, ∂iF̄

}
+ 1

2

{
∂Σκ

∂~x
,
∂F̄

∂~k

}
= −i[H̄, F̄ ] + C̄ . (30b)

The differential operator on the left-hand side general-
izes the “Vlasov” term. The first term on the right-hand
side controls coherent evolution due to mass and for-
ward scattering and generalizes the standard Mikheyev-
Smirnov-Wolfenstein (MSW) effect [37–39]. Finally, the
second term on the right hand side encodes inelastic col-
lisions and generalizes the standard Boltzmann collision
term [40–48]. Let us now discuss in greater detail each
term.

The physical meaning of the differential operators on
the LHS of (30) becomes more transparent by noting that
they can be re-written as

∂t + 1
2{∂~kω±, ∂~x } −

1
2{∂~xω±, ∂~k }, (31)

with ω+ = |~k| + Σκ for neutrinos and ω− = |~k| − Σκ
for antineutrinos. Recalling that ω±(~k) = |~k| ± Σκ are
the O(ε) neutrino (+) and antineutrino (−) Hamiltonian
operators, one sees that the differential operators on the
LHS of (30) generalize the total time-derivative operator
dt = ∂t+ ~̇x ∂~x+ ~̇k ∂~k, with ~̇k = −∂~x ω and ~̇x = ∂~k ω, thus
encoding the familiar drift and force terms.

In terms of the mass matrixm and the potentials ΣµL,R,
the Hamiltonian-like operators controlling the coherent
evolution are given by

H =
(

HR HLR

H†LR HL

)
, H̄ =

(
H̄R HLR

H†LR H̄L

)
, (32)

with HL, HR, HLR given in Eqs. (27). The antineutrino
operators H̄L,R can be obtained from HL,R by flipping
the sign of the entire term multiplying 1/(2|~k|). The first
two terms in HL,R are included in all analyses of neutrino
oscillations in medium. ΣκL,R include the usual forward
scattering off matter and neutrinos, and are functions of
F, F̄ thereby introducing non-linear effects in the coher-
ent evolution. The m†m/|~k| term encodes vacuum oscil-
lations. The additional terms in HL,R and the spin-flip
term HLR, discussed in detail in Refs. [11, 49], complete
the set of contributions to O(ε2).
Finally, the collision terms on the RHS of Eqs. (30) are

C = 1
2
{

Π+, F
}
− 1

2
{

Π−,1− F
}
, (33a)

C̄ = 1
2
{

Π̄+, F̄
}
− 1

2
{

Π̄−,1− F̄
}
, (33b)

where [50]

Π±(~k) =
∫ ∞

0
dk0 Π̂±(k0,~k) δ(k0 − |~k|) ,

Π̄±(~k) = −
∫ 0

−∞
dk0 Π̂∓(k0,−~k) δ(k0 + |~k|) . (34)

and the 2nf×2nf gain and loss potentials Π̂± are given in
Eq. (19) in terms of spinor components of the self-energy.

The above discussion directly applies to Dirac neu-
trinos, with Eqs. (30) representing QKEs for neutrino
(F (k, x)) and antineutrino (F̄ (k, x)) density matrices.
In the Majorana case F̄ (k, x) contains no additional in-
formation compared to F (k, x). So one can get QKEs
for Majorana neutrino exclusively from the positive fre-
quency integral of (24a). To avoid confusion, in the Ma-
jorana case we denote the positive frequency integral of
F̂ (k, x) by F(k, x) (see Eq. (7) for a discussion of its phys-
ical content). The Majorana QKE is formally identical
to the first one of (30):

∂κF + 1
2|~k|

{
Σi, ∂iF

}
− 1

2

{
∂Σκ

∂~x
,
∂F
∂~k

}
= −i[H,F ] + CM , (35)

with

CM = 1
2
{

Π+,F
}
− 1

2
{

Π−,1−F
}
, (36)

and Π± formally given in (34). The analogy, however, is
only superficial because the potentials Σµ and Π± have a
very different structure in the Dirac and Majorana cases.
Anticipating results to be described later, we note that:

• Concerning the potentials induced by forward scat-
tering, ΣR,L, for Dirac neutrinos ΣR 6= 0 while
ΣL ∝ GFm

2 ∼ O(ε3) (massless right-handed neu-
trinos do not interact). On the other hand, in the
Majorana case one has ΣL = −ΣTR, with transposi-
tion acting on flavor indices: right-handed antineu-
trinos do interact even in the massless limit.

• Concerning the inelastic potentials Π̂± given in
(19), in the Majorana case all four nf × nf blocks
are non-vanishing, i.e. Πκ±

R,L 6= 0 and P±T 6= 0. In
the Dirac case, on the other hand, in the mass-
less limit only the upper diagonal block is non-
vanishing, i.e. Πκ±

R 6= 0 and Πκ±
L = P±T = 0.

This again corresponds to the fact that massless
right-handed neutrinos and left-handed antineutri-
nos have no interactions in the Standard Model.

D. Refractive effects

Before discussing in detail the collision terms in the
next section, for completeness we briefly describe refrac-
tive effects in the coherent evolution, controlled by the



7

potential Σ. ΣR and ΣL (see Eq. 19) are the 4-vector po-
tentials induced by forward scattering for left-handed and
right-handed neutrinos, respectively. For Dirac neutrinos
ΣR 6= 0 and ΣL ∝ GFm

2 ∼ O(ε3) while for Majorana
neutrinos ΣL = −ΣTR.
The potential induced by a background of electrons

and positrons is given for any geometry by the following
expressions:[

ΣµR
∣∣∣
e

]
ab

= 2
√

2GF

×
[(

δeaδeb + δab

(
sin2 θW −

1
2

))
Jµ(eL)

+ δab sin2 θW Jµ(eR)

]
, (37a)

Jµ(eL)(x) =
∫

d3q

(2π)3 vµ(e)(q)
(
feL

(~q, x)− f̄eR
(~q, x)

)
,

(37b)

Jµ(eR)(x) =
∫

d3q

(2π)3 vµ(e)(q)
(
feR

(~q, x)− f̄eL
(~q, x)

)
,

(37c)

where a, b are flavor indices, vµ(e) = (1, ~q/
√
m2
e + q2 ), and

we use the notation feL
(~q, x) (f̄eL

(~q, x)) for the distribu-
tion function of L-handed electrons (positrons), etc.

The nucleon-induced potentials have similar expres-
sions, with appropriate replacements of the L- and R-
handed couplings to the Z and the distribution functions
feL
→ fNL

, etc. For unpolarized electron and nucleon
backgrounds of course one has feL

= feR
, etc., and the

nucleon contribution to the potential is:[
ΣµR

∣∣∣
N

]
ab

=
√

2GF C(N)
V Jµ(N) δab , (38)

with C(n,p)
V given in Eq. (4).

Finally, the neutrino-induced potentials are given by[
ΣµR

∣∣∣
ν

]
ab

=
√

2GF
([
Jµ(ν)

]
ab

+ δab TrJµ(ν)

)
, (39a)

Jµ(ν)(x) =
∫

d3q

(2π)3n
µ(q)

(
fLL(~q, x)− f̄RR(~q, x)

)
,

(39b)

with nµ(q) = (1, q̂). For a test-neutrino of three-
momentum ~k, these potentials can be further projected
along the basis vectors: with light-like component Σκ ≡
n(k) · Σ along the neutrino trajectory (in the massless
limit); and space-like component Σi ≡ xi(k) · Σ, trans-
verse to the neutrino trajectory. In particular, for the

neutrino-induced contribution we find Σκ(x) ∝
∫
d3q (1−

cos θkq) · (fLL(~q, x)− f̄RR(~q, x)), consistently with the fa-
miliar results in the literature (see [51] and references
therein).
Having summarized the structure of the neutrino

QKEs, we next discuss the main new results of this pa-
per, namely the calculation of the collision terms.

FIG. 2. Feynman graphs contributing to Π(k, x). We repre-
sent each 4-fermion interaction vertex from Eqs. (2) in terms
of two displaced fermionic current vertices. External lines rep-
resent neutrinos. Internal lines represent ν, e, n, p propagators
(left diagram) and ν propagators (right diagram).

III. MAJORANA COLLISION TERM:
DERIVATION AND GENERAL RESULTS

Direction-changing scattering and inelastic processes
such as neutrino emission, absorption, pair production,
or pair annihilation are encoded in CM on the RHS of
(35). In this section we derive the structure and detailed
expressions for CM , providing, for the sake of complete-
ness, several intermediate steps in the derivation. All the
results presented in this section pertain to Majorana neu-
trinos. The collision term for Dirac neutrinos is discussed
in Section IV.
We recall that the Majorana collision term is given by

CM = 1
2
{

Π+,F
}
− 1

2
{

Π−,1−F
}
, (40a)

Π±(~k) =
∫ ∞

0
dk0 Π̂±(k0,~k) δ(k0 − |~k|) , (40b)

with the 2nf × 2nf gain and loss potentials Π± given in
Eq. (19) in terms of spinor components of the self-energy,
extracted from a calculation of the two-loop self-energies
of Fig. 2. The 2nf × 2nf collision term matrix is thus
given by

CM =
(
C Cφ
C†φ C̄T

)
(41)

with
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C(~k) = 1
2
(
{(Πκ

R)+, f} − {(Πκ
R)−, (1−f)}

)
+ (P+

T + P−T )φ† + φ(P+
T + P−T )† ,

C̄T (~k) = 1
2
(
{(Πκ

L)+, f̄T } − {(Πκ
L)−, (1−f̄T )}

)
+ (P+

T + P−T )†φ+ φ†(P+
T + P−T ) ,

Cφ(~k) = 1
2
((

(Πκ
R)+ + (Πκ

R)−
)
φ+ φ

(
(Πκ

L)+ + (Πκ
L)−

))
+ f (P+

T + P−T ) + (P+
T + P−T ) f̄T − 2P−T . (42)

Note that the collision term has a non-diagonal matrix
structure in both flavor [1, 2] and spin space [9]. The
matrix components of Π± can be expressed in terms of
neutrino density matrices and distribution functions of
the medium particles (electrons, etc.). To the order we
are working, we need only the O(ε0) expressions for the
neutrino and matter Green’s functions in the collision
term. These expressions are collected in Appendix B.

The contribution to ν − ν scattering neglecting spin
coherence is given in Ref. [9]. We present below the full
analysis including scattering off neutrinos, electrons, and
low-density nucleons. Deriving the collision term requires
the following steps:

• Calculation of the self-energy diagrams in Fig. 2.

• Identification of the components of Π̂± (see (19)) by
projecting the self-energy diagrams on appropriate
spinor and Lorentz components via Eq.(18).

• Integration over positive frequencies according to
Eq. (40b) to obtain Π±(~k).

• Matrix multiplications to obtain the various com-
ponents of CM in (42).

In the following subsections we present results on each of
the above items.

A. Self-energies to two loops

The Standard Model interactions allow for neutrino-
neutrino processes and neutrino interactions with
charged leptons and nucleons, cf. Eqn. (2). We report
below the various contributions.

• Neutrino-neutrino processes receive contributions
from both topologies in Fig. 2.
Left diagram:

Π̃±ab(k) = −G2
F

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k − q3 − q1 + q2)

× γµ(PL − PR)G(ν)±
ab (q3) γν(PL − PR)

× Tr
[
γν(PL − PR)G(ν)∓

cd (q2)

× γµ(PL − PR) G(ν)±
dc (q1)

]
(43)

Right diagram:

Π̃±ab(k) = 2G2
F

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k − q3 − q1 + q2)

× γµ(PL − PR)G(ν)±
aa′ (q1) γν(PL − PR)

× G
(ν)∓
a′b′ (q2) γµ(PL − PR)

×G(ν)±
b′b (q3) γν(PL − PR) (44)

where a, b, c, d are flavor indices.

• Neutrino-electron processes receive contributions
only from the first topology in Fig. 2:

Π̃±ab(k) = −8G2
F

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k−q3−q1+q2)

×
∑

A,B=L,R

{
γµ(PL − PR)

×
[
YAG

(ν)±(q3)YB
]
ab
γν(PL − PR)

× Tr
[
γνPB G

(e)∓(q2) γµPA G(e)±(q1)
]}

(45)

• Neutrino-nucleon processes receive contributions
only from the first topology in Fig. 2. There are
two contributions, scattering and absorption.
Scattering:

Π̃±ab(k) = −2G2
F

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k−q3−q1+q2)

×
∑
N=n,p

{
γµ(PL−PR)G(ν)±

ab (q3)γν(PL−PR)

× Tr
[
ΓνN G(N)∓(q2) ΓµN G(N)±(q1)

]}
,

ΓµN = γµ
(
C

(N)
V − C(N)

A γ5

)
. (46)
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Neutrino absorption and emission:

Π̃±ab(k) = −2G2
F

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k−q3−q1+q2)

× γµPL [Ie]ab G
(e)±(q3) γνPL

× Tr
[
ΓµG(p)±(q1) Γν G(n)∓(q2)

]
− 2G2

F

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k+q3−q1+q2)

× γµPR [Ie]abG
(e)∓(q3) γνPR

× Tr
[
ΓµG(n)±(q1) Γν G(p)∓(q2)

]
,

Γµ = γµ (1− gAγ5) . (47)

In the above expression we have introduced the pro-
jector on the electron flavor,

[Ie]ab ≡ δaeδbe (48)

and we are neglecting contributions from µ± and
τ±, which are kinematically suppressed at the en-
ergies and temperatures of interest. Their contri-
butions are formally identical to the electron one,
with the replacements Ie → Iµ, Iτ and G(e) →
G(µ), G(τ).

B. Projections on Lorentz structures

Using the identities collected in Appendix A 2 and A3,
one can perform all the needed projections in a straight-
forward way (at most four gamma matrices and a γ5 ap-
pear in the traces). In the following, we will suppress
flavor indices. The vector and tensor components of the
self-energies (defined in Eqn. (18)) for all processes con-
sidered in this work are:

Neutrino-nucleon scattering processes

(Πκ
R)±(k) = − 1

|~k|

∫
d4q3

(2π)4

(
R±N (k, q3)

)µν
×
[
ḠLV (q3)

]± (TR)µν(k, q3) , (49a)

(Πκ
L)±(k) = − 1

|~k|

∫
d4q3

(2π)4

(
R±N (k, q3)

)µν
×
[
ḠRV (q3)

]± (TL)µν(k, q3) , (49b)

P±T (k) = ∓1
2

∫
d4q3

(2π)4

(
R±N (k, q3)

)µν
×
[
Φ(q3)

]
(TT )µν(k, q3) . (49c)

The various tensors are given by:

(TR,L)µν(k, k′) = kµk
′
ν + kνk

′
µ − k · k′ηµν

∓ iεµναβkαk′β , (50a)
(TT )µν(k, k′) = [κ̂(k′) ∧ x̂−(k′)]µα [κ̂(k) ∧ x̂+(k)] αν

× ei(ϕ(k)−ϕ(k′)) . (50b)

In the last expression we have explicitly indicated the
dependence of the basis vectors κ̂, κ̂′, x̂± on the four-
momenta k and k′. Finally, the nucleon response function
is given by:

(
R±N (k, q3)

)µν = 2G2
F

∫
d4q1d

4q2

(2π)8 δ(4)(k−q3−q1+q2)

× (2π)4Tr
[
ΓµN G

(N)±(q1)ΓνNG(N)∓(q2)
]
. (51)

We give the explicit expressions for the neutrino and nu-
cleon Green’s functions ḠL,RV , Φ, and G(N) to O(ε0) in
Appendix B.

Neutrino-electron processes

(Πκ
R)±(k) = −

∑
A,B=L,R

1
|~k|

∫
d4q3

(2π)4

(
R±BA(k, q3)

)µν
×
[
YA
(
ḠLV (q3)

)±
YB
]

(TR)µν(k, q3) ,
(52a)

(Πκ
L)±(k) = −

∑
A,B=L,R

1
|~k|

∫
d4q3

(2π)4

(
R±BA(k, q3)

)µν
×
[
YA
(
ḠRV (q3)

)±
YB
]

(TL)µν(k, q3) ,
(52b)

P±T (k) = ∓1
2

∑
A,B=L,R

∫
d4q3

(2π)4

(
R±BA(k, q3)

)µν
×
[
YAΦ(q3)YB

]
(TT )µν(k, q3) . (52c)

The electron response functions are given by (recall
A,B ∈ {L,R} and PA,B = PL,R):

(
R±BA(k, q3)

)µν = 8G2
F

∫
d4q1d

4q2

(2π)4 δ(4)(k−q3−q1+q2)

× Tr
[
γµPAG

(e)±(q1)γνPBG(e)∓(q2)
]
.

(53)

Expressions for the electron Green’s functions G(e) to
O(ε0) are given in Appendix B.
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Charged-current processes

(Πκ
R)±ab(k) = − 1

|~k|

∫
d4q3

(2π)4

(
R±CC(k, q3)

)µν
×
[
[Ie]ab Ḡ

(e)±(q3)
]

(TR)µν(k, q3) , (54a)

(Πκ
L)±ab(k) = − 1

|~k|

∫
d4q3

(2π)4

(
R̃±CC(k, q3)

)µν
×
[
[Ie]ab Ḡ

(e)∓(q3)
]

(TL)µν(k, q3) . (54b)

There is no tensor projection from these processes. The
charged-current response is given by:

(
R±CC(k, q3)

)µν = 2G2
F

∫
d4q1d

4q2

(2π)4 δ(4)(k−q3−q1+q2)

× Tr
[
ΓµG(p)±(q1)ΓνG(n)∓(q2)

]
, (55a)(

R̃±CC(k, q3)
)µν = 2G2

F

∫
d4q1d

4q2

(2π)4 δ(4)(k+q3−q1+q2)

× Tr
[
ΓµG(n)±(q1)ΓνG(p)∓(q2)

]
. (55b)

Neutrino-neutrino processes

The diagram in the left panel of Fig. 2 induces:

(Πκ
R)±(k) = − 1

|~k|

∫
d4q3

(2π)4

(
R±(ν)(k, q3)

)µν
×
[
ḠLV (q3)

]± (TR)µν(k, q3) , (56a)

(Πκ
L)±(k) = − 1

|~k|

∫
d4q3

(2π)4

(
R±(ν)(k, q3)

)µν
×
[
ḠRV (q3)

]± (TL)µν(k, q3) , (56b)

P±T (k) = ∓1
2

∫
d4q3

(2π)4

(
R±(ν)(k, q3)

)µν
×
[
Φ(q3)

]
(TT )µν(k, q3) . (56c)

(
R±(ν)(k, q3)

)
µν

= 2G2
F

∫
d4q1d

4q2

(2π)4 δ(4)(k − q3 − q1 + q2)

× Tr
[ [
ḠLV (q2)

]∓ [
ḠLV (q1)

]± (TR)µν(q2, q1) +
[
ḠRV (q2)

]∓ [(ḠRV (q1)
]± (TL)µν(q2, q1)

− Φ†(q2)Φ(q1)(TT )µν(q2, q1)− Φ(q2)Φ†(q1)(TT )∗µν(q2, q1)
]
. (56d)
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The diagram in the right panel of Fig. 2 induces

(Πκ
R)±(k) = −8G2

F

|~k|

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k − q3 − q1 + q2)

×
{
kαqβ2 (TT )αβ(q3, q1) Φ(q1)

[
ḠRV (q2)

]∓ Φ†(q3)

− kαqβ3 (TT )αβ(q2, q1) Φ(q1) Φ†(q2)
[
ḠLV (q3)

]±
− kαqβ1 (TT )βα(q3, q2)

[
ḠLV (q1)

]± Φ(q2) Φ†(q3)

+ 2(kq2)(q1q3)
[
ḠL(q1)

]± [
ḠL(q2)

]∓ [
ḠL(q3)

]±}
, (57a)

(Πκ
L)±(k) = −8G2

F

|~k|

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k − q3 − q1 + q2)

×
{
kαqβ2 (TT )∗αβ(q3, q1) Φ†(q1)

[
ḠLV (q2)

]∓ Φ(q3)

− kαqβ3 (TT )∗αβ(q2, q1) Φ†(q1) Φ(q2)
[
ḠRV (q3)

]±
− kαqβ1 (TT )∗βα(q3, q2)

[
ḠRV (q1)

]± Φ†(q2) Φ(q3)

+ 2(kq2)(q1q3)
[
ḠRV (q1)

]± [
ḠRV (q2)

]∓ [
ḠRV (q3)

]±}
, (57b)

and

P±T (k) = −4G2
F

∫
d4q1d

4q2d
4q3

(2π)8 δ(4)(k − q3 − q1 + q2)

×
{
± 1

2Φ(q1)Φ†(q2)Φ(q3) (TT )µν(q2, q1) (TT )µν(k, q3)

± Φ(q1)
[
ḠRV (q2)

]∓ [
ḠRV (q3)

]±
qα2 q

β
3 (TT )αβ(k, q1)

∓
[
ḠLV (q1)

]±Φ(q2)
[
ḠRV (q3)

]±
qα1 q

β
3 (TT )αβ(k, q2)

±
[
ḠLV (q1)

]± [
ḠLV (q2)

]∓ Φ(q3) qα1 q
β
2 (TT )βα(k, q3)

}
. (57c)

C. Frequency projections: general results for loss
and gain potentials

To obtain the Majorana collision term CM , we need
the positive-frequency (k0 > 0) integrals of Π̂±(k0,~k)
defined in Eq. (40). Furthermore, we also integrate over
q0
1,2,3 using the δ-functions present in all Green functions,
see (B4) and (B6).

In the following, we will use abbreviations for the
various density matrices, i.e. fi ≡ f(~qi), f̄i ≡ f̄(~qi),
f̄Ti ≡ f̄T (~qi), fTi ≡ fT (~qi), and φi ≡ φ(~qi), φTi ≡ φT (~qi),
φ†i ≡ φ†(~qi), φ∗i ≡ φ∗(~qi). We will, however, omit sub-
scripts k: f ≡ f(~k), φ ≡ φ(~k). Note that all density ma-
trices and distribution functions appear with argument
“+~qi”. i.e. f(~qi) and not f(−~qi), something we achieve
via variable substitution under the integrals. Further-
more, f, f̄ with subscripts (N),(e) indicate them being nu-
cleon and electron (anti)particle distributions (and thus
scalars in flavor space) rather than neutrino distributions.

Finally, we write ∫
d̃qi ≡

∫
d3~qi

2Ei(2π)3 , (58)

where the energy is Ei ≈
√

(~qi)2 for neutrinos (since their
masses would give O(ε3) contributions in the collision
term), and Ei =

√
(~qi)2 +M2 for electrons and nucleons

with M = Me and M = MN , respectively.
Below, we give the expressions for the loss potentials

Πκ+
R (~k), P+

T (~k) corresponding to each class of processes
in the medium. From these, the gain potentials (Πκ

R)−(~k)
and P−T (~k) can be obtained as follows,

(Πκ
R)−(~k) = (Πκ

R)+(~k)
∣∣
fi→1−fi, φj→−φj

,

P−T (~k) = P+
T (~k)

∣∣
fi→1−fi, φj→−φj

(59)

for all fi (all particle species, including barred ones) and
φj . For each class of processes, we also give below the



12

recipe to obtain the antineutrino potentials Πκ±
L (~k) from

the neutrino potentials Πκ±
R (~k).

Neutrino-nucleon scattering processes

Neutrino-nucleon scattering ν(k)N(q2) → ν(q3)N(q1)
induces the following contributions to the loss potentials
Πκ+
R (~k) and P+

T (~k):

Πκ+
R (~k) = −4G2

F

|~k|

∫
d̃q1d̃q2d̃q3 (2π)4MR(q1, q2, q3, k)(1−f(N),1)f(N),2 (1−f3) , (60a)

P+
T (~k) = 8G2

F

|~k|

∫
d̃q1d̃q2d̃q3 (2π)4(C2

V + C2
A)MT (q1, q2, q3, k)f(N),2(1−f(N),1)φ3 , (60b)

with

MR,L(q1, q2, q3, k) = δ(4)(k−q3−q1+q2) 4
((
C2
V + C2

A

)
((q1q3)(kq2) + (q1k)(q2q3))

−
(
C2
V − C2

A

)
M2
N (q3k)± 2CV CA

(
(q1q3)(kq2)− (q2q3)(kq1)

))
,

MT (q1, q2, q3, k) = δ(4)(k−q3−q1+q2) |~k||~q3| qµ1 qν2 (TT )µν(k, q3) , (61)

where (TT )µν(k, k′) is defined in (50), we suppressed
the superscripts (N) on the couplings CV,A and all four-
momenta are on-shell, i.e. q0

i = Ei and thus δ(4)(k−q3−
q1 +q2) = δ(Ek−E3−E1 +E2)δ(3)(~k−~q3−~q1 +~q2). The
antineutrino potentials are obtained by the relation

(Πκ
L)±(~k) = (Πκ

R)±(~k)
∣∣
fi→f̄T

i
, MR→ML

, (62)

where MR → ML amounts to a change of sign in the
axial coupling CA.

Charged-current processes

The loss potential term from charged-current neutrino
absorption ν(k)n(q2)→ e−(q3)p(q1) is

Πκ+
R (~k) = −4G2

F

|~k|

∫
d̃q1d̃q2d̃q3MCC

R (q1, q2, q3, k)

× (2π)4(1−f(p),1)f(n),2(1−f(e),3)Ie , (63)

where the flavor projector Ie is defined in Eq. (48) and

MCC
R,L(q1, q2, q3, k) = 4

(
(1 + g2

A)
(
(q3q1)(kq2) + (q3q2)(kq1)

)
−MpMn(1− g2

A)(kq3)

± 2gA
(
(q3q1)(kq2)− (kq1)(q3q2)

))
δ(4)(k−q3−q1+q2) . (64)

Neutrino absorption and emission does not induce P±T (~k).
The antineutrino potentials are obtained by the relation

(Πκ
L)±(~k) = (Πκ

R)±(~k)
∣∣
fn↔fp, f(e)→f̄(e), MCC

R
→MCC

L

,

(65)

where againMCC
R →MCC

L amounts to a change of sign
in the axial coupling gA.
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Neutrino-electron processes

Neutrino electron processes contribute to the loss po-
tentials as follows,

Πκ+
R (~k) = −32G2

F

|~k|

∫
d̃q1d̃q2d̃q3 (2π)4 (66a)

×
∑
I=L,R

[
(1−f(e),1)f(e),2YI(1−f3)

(
2YIMR

I (q1, q2, q3, k)− YJ 6=IMm(q1, q2, q3, k)
)

+ f̄(e),1(1−f̄(e),2)YI(1−f3)
(

2YIMR
I (−q1,−q2, q3, k)− YJ 6=IMm(−q1,−q2, q3, k)

)
+ (1−f(e),1)(1−f̄(e),2)YI f̄3

(
2YIMR

I (q1,−q2,−q3, k)− YJ 6=IMm(q1,−q2,−q3, k)
)]

,

P+
T (~k) = −32G2

F

|~k|

∫
d̃q1d̃q2d̃q3 (2π)4

×
∑
I=L,R

[
(1−f(e),1)f(e),2YI(−φ3)YIMT (q1, q2, q3, k)

+ f̄(e),1(1−f̄(e),2)YI(−φ3)YIMT (−q1,−q2, q3, k)

+ (1−f(e),1)(1−f̄(e),2)YI φT3 YIMT (q1,−q2,−q3, k)
]
, (66b)

where

ML
I (q1, q2, q3, k) =

(
δRI (q3q1)(kq2) + δLI (q3q2)(kq1)

)
δ(4)(k−q3−q1+q2) ,

MR
I (q1, q2, q3, k) =

(
δLI (q3q1)(kq2) + δRI (q3q2)(kq1)

)
δ(4)(k−q3−q1+q2) ,

Mm(q1, q2, q3, k) = m2
e (kq3) δ(4)(k−q3−q1+q2) (67)

and MT (q1, q2, q3, k) is defined in (61). The first term
of the sum in Eq. (66a) stems from neutrino scatter-
ing off electrons (ν(k)e−(q2) → ν(q3)e−(q1)), the sec-
ond from neutrino scattering off positrons (ν(k)e+(q1)→
ν(q3)e+(q2)) , and the third ones from neutrino-
antineutrino annihilation into electron-positron pairs
(ν(k)ν̄(q3) → e+(q2)e−(q1)). The antineutrino poten-

tials are obtained by the relation

(Πκ
L)±(~k) = (Πκ

R)±(~k)
∣∣
fi→f̄T

i
, f̄i→fT

i
, YR↔YL

, (68)

where YL ↔ YR is equivalent to the replacementMR
I →

ML
I .

Neutrino-neutrino processes

Neutrino-neutrino scattering νν → νν and neutrino-
antineutrino scattering νν̄ → νν̄ contribute to the neu-
trino loss potentials as follows,
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(Πκ
R)+(~k) = −4G

2
F

|~k|

∫
d̃q1d̃q2d̃q3(2π)4

((
(1− f1)f2 + tr ((1− f1)f2)

)
(1− f3)M(q1, q2, q3, k)

−
(

2φ1φ
†
2 + tr

(
φ1φ

†
2
))

(1− f3)MT (q3, k, q1, q2)

− (1− f1)
(

2φ2φ
†
3 + tr

(
φ2φ

†
3
))
MT (q1, k, q2, q3)

+ 2φ1f̄
T
2 φ
†
3MT (q2, k, q1, q3)

+
{
q2,3 → −q2,3, f2,3 → (1−f̄2,3), f̄T2,3 → (1−fT2,3), φ2,3 → −φT2,3, φ†2,3 → −φ∗2,3

}
+
{
q1,2 → −q1,2, f1,2 → (1−f̄1,2), f̄T1,2 → (1−fT1,2), φ1,2 → −φT1,2, φ†1,2 → −φ∗1,2

}
, (69)

withMT (q1, q2, q3, k) defined in (61) and

M(q1, q2, q3, k) = 4(q1q3)(q2k)δ(4)(k−q3−q1+q2) .
(70)

In absence of spin-coherence (φi → 0) the first term in
(69) encodes loss terms due to νkν2 → ν1ν3, while the
terms in the last two lines in (69) encode the effects of
νν̄ → νν̄ processes. All the remaining terms, involv-

ing φi, arise due to the fact that target neutrinos in the
thermal bath can be in coherent linear superpositions of
the two helicity states (see Section V for a discussion of
this point). The corresponding antineutrino potentials
are obtained by the relation

(Πκ
L)±(~k) = (Πκ

R)±(~k)
∣∣
fi→f̄T

i
, f̄i→fT

i
, φj↔φ†j ,MT→M∗T

.

(71)
and the contributions of neutrino-neutrino processes to
the helicity off-diagonal loss potentials read

P+
T (~k) = 4G

2
F

|~k|

∫
d̃q1d̃q2d̃q3(2π)4

×
((
φ1φ

†
2 − 1

2 tr
(
φ1φ

†
2
))
φ3MTT (q1, q2, q3, k)− 1

2 tr
(
φ†1φ2

)
φ3M̃TT (q1, q2, q3, k)

+
(

(1− f1)f2 + 1
2 tr ((1− f1)f2)

)
φ3MT (q1, q2, q3, k)

+ φ1

(
f̄T2 (1− f̄T3 ) + 1

2 tr
(
f̄T2 (1− f̄T3 )

) )
MT (q3, q2, q1, k)

− (1− f1)φ2(1− f̄T3 )MT (q1, q3, q2, k)

+
{
q2,3 → −q2,3, f2,3 → (1−f̄2,3), f̄T2,3 → (1−fT2,3), φ2,3 → −φT2,3, φ†2,3 → −φ∗2,3

}
+
{
q1,2 → −q1,2, f1,2 → (1−f̄1,2), f̄T1,2 → (1−fT1,2), φ1,2 → −φT1,2, φ†1,2 → −φ∗1,2

}
, (72)

withMT (q1, q2, q3, k) defined in (61) and

MTT (q1, q2, q3, k) = 1
2 |~q1||~q2||~q3||~k| (TT )µν(k, q1) (TT )µν(q2, q3) δ(4)(k−q3−q1+q2) ,

M̃TT (q1, q2, q3, k) = 1
2 |~q1||~q2||~q3||~k| (TT )µν(k, q2) (TT )µν(q1, q3) δ(4)(k−q3−q1+q2) . (73)

With the gain and loss potentials at hand, the colli-
sion terms C and Cφ are then assembled according to
Eqn. (42). We present the lengthy results for (some of)
the assembled collision terms in Appendix C.

IV. DIRAC COLLISION TERM

In this section we discuss the structure of the collision
terms C and C̄ (33) appearing in the QKEs (30) for Dirac
neutrinos and antineutrinos. We do not repeat all the
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steps reported in Section III, but simply outline how to
map the Majorana expressions into the ones relevant for
Dirac neutrinos.

First, note that the self-energy diagrams in Fig. 2 for
Dirac neutrinos are obtained from the ones in Sect. III A,
that refer to the Majorana case, with the following simple
changes:

(i) in the weak vertices one should make the replace-
ment γµ(PL − PR)→ γµPL;

(ii) in Eq. (43) the trace should be multiplied by a fac-
tor of 2;

(iii) in Eq. (47) the second term (with γµPR in the ver-
tices) should be dropped.

As a consequence of the different structure of the ver-
tices, the projections over various spinor and Lorentz
components of Π̂± (see (19)) simplify greatly. Using
Eq.(18) one sees that in the Dirac case ΠL and PT van-
ish. Moreover, in the expressions of ΠR only the terms
proportional to ḠLV survive. The above simplifications
simply reflect the sterile nature of R-handed neutrinos
and L-handed antineutrinos.

Results for the neutrino (Πκ±
R ) and antineutrino (Π̄κ±

R )
gain and loss potentials are obtained integrating over pos-
itive and negative frequencies according to Eq. (34). The
positive frequency integral is fairly similar to the Majo-
rana one. The negative frequency integral can be cast
in a simpler form by performing the change of variables
k0 → −k0, leading to

Πκ±
R (~k) =

∫ ∞
0

dk0 Πκ±
R (k0,~k) δ(k0 − |~k|) , (74a)

Π̄κ±
R (~k) = −

∫ ∞
0

dk0 Πκ∓
R (−k0,−~k) δ(k0 − |~k|) . (74b)

Finally, performing the matrix multiplications to ob-
tain the various components of C and C̄ we obtain the
following form in terms of nf × nf blocks:

C =
(
CLL CLR
C†LR CRR

)
, C̄ =

(
C̄RR C̄RL
C̄†RL C̄LL

)
, (75)

with

CLL = 1
2{Π

κ+
R , fLL} −

1
2{Π

κ−
R , 1−fLL} , (76a)

CRR = 0 , (76b)

CLR = 1
2
(
Πκ+
R + Πκ−

R

)
fLR , (76c)

and

C̄RR = 1
2{Π̄

κ+
R , f̄RR} −

1
2{Π̄

κ−
R , 1−f̄RR} , (77a)

C̄LL = 0 , (77b)

C̄RL = 1
2
(
Π̄κ+
R + Π̄κ−

R

)
f̄LR . (77c)

The collision terms CRR and C̄LL vanish because R-
handed neutrinos and L-handed antineutrinos do not in-
teract in the massless limit that we adopt here (mass ef-
fects in the collision term are higher order in the ε count-
ing). The gain and loss potentials Πκ±

R and Π̄κ±
R can

be expressed in terms of neutrino density matrices and
distribution functions of the medium particles (electrons,
etc.), as in the Majorana case. In fact, the expressions for
the Dirac case can be obtained from the ones in the Ma-
jorana case with the following mapping, which we have
checked with explicit calculations:

• The Dirac neutrino potentials Πκ±
R are obtained

from the Majorana ones by replacing f → fLL and
f̄ → f̄RR everywhere.

• The Dirac antineutrino potentials Π̄κ±
R are in one-

to-one correspondence to the Majorana potentials
(Πκ±

L )T . Their expressions are simply obtained
from the Dirac neutrino potentials Πκ±

R with the
following simple changes: (i) in the νN , νe, and νν
processes replace fLL → f̄RR and f̄RR → fLL ev-
erywhere, and flip the signs of the axial couplings
(CA → −CA in νN terms and MR → ML in νe
terms). (ii) In the CC processes, make the replace-
ments fe → f̄e, fn ↔ fp, and flip the sign of the
axial coupling (gA → −gA).

V. ONE-FLAVOR LIMIT AND
INTERPRETATION OF OFF-DIAGONAL

ENTRIES

We now specialize to the one-flavor limit and illustrate
the structure of the collision term for the two spin de-
grees of freedom corresponding to Majorana neutrino and
antineutrino. We will discuss explicitly only the simplest
process, namely neutrino-nucleon scattering. We provide
a simple form for the various components of the gain and
loss potentials Π± in terms of scattering amplitudes of
the two spin states (neutrino and antineutrino) off nu-
cleons. We also provide a heuristic interpretation of the
results for Π± in terms of changes in occupation num-
bers and quantum coherence due to scattering processes
in the medium. Finally, in the limiting case of nearly-
forward scattering we are able to recover earlier results
by Stodolsky and collaborators [2, 52, 53]. Note that
while we work with spin degrees of freedom, the discus-
sion applies to the case of any internal degree of freedom.

A. Scattering amplitudes

In the collision terms calculated in the previous sec-
tions we have set the neutrino mass to zero, as terms
proportional to the neutrino mass in the collision term
would be O(ε3) in our counting. Therefore, when com-
puting neutrino-nucleon scattering from the interaction
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Lagrangian LνN of (2), we need to use the massless Ma-
jorana neutrino fields, νL, which can be expressed as fol-
lows (with d̃k defined in (58))

νL(x) = PL ν(x) =
∫
d̃k
(
u(k,−)a(k,−)e−ikx

+ v(k,+)a†(k,+)eikx
)
, (78)

in terms of spinors v(k,±) = u(k,∓) and creation /
annihilation operators a†(k,∓) and a(k,∓). The ∓ la-
bel refers to helicity: negative (L-handed) helicity corre-
sponds to the neutrino (ν−), while positive helicity (R-
handed) to the antineutrino (ν+). The spinors satisfy the
following relations,

u(k,±)ū(k,±) = /kPL/R ,

u(k,±)ū(k,∓) = ±|~k| i4e
±iϕ(κ̂ ∧ x̂±)µνσµν PR/L , (79)

in terms of the basis vectors κ̂(k) and x̂±(k) (see Ap-
pendix A).

The gain and loss terms can be expressed in terms of
the following neutrino and antineutrino scattering ampli-
tudes (and their conjugates):

A∓(k) ≡ A
(
ν∓(k)N(p)→ ν∓(k′)N(p′)

)
, (80a)

Ā∓(k) ≡ A
(
ν∓(k′)N(p′)→ ν∓(k)N(p)

)
= A∓(k)∗ .

(80b)

The amplitudes A∓(k) depend also on k′, p, p′, but to
avoid notational clutter we do not write this down ex-
plicitly. From the interaction Lagrangian LνN of (2),
recalling ΓµN = γµ(C(N)

V − C(N)
A γ5), one finds:

A−(k) = −
√

2GF ū(k′,−)γµu(k,−) ūN (p′)ΓµNuN (p) ,
(81a)

A+(k) =
√

2GF ū(k,−)γµu(k′,−) ūN (p′)ΓµNuN (p) .
(81b)

Note that the scattering processes do not flip the neutrino
spin (this effect enters to O(mν/Eν)). In other words,
we consider the case in which collisions do not change
the internal quantum number. In the Standard Model
this applies to both spin (neglecting neutrino mass) and
flavor.

Taking the average over the initial and sum over final
nucleon polarizations, i.e.

〈A∗αAβ〉 = 1
2
∑
N pol

A∗αAβ ∀ α, β , (82)

using ū(p,−)γµu(q,−) = ū(q,+)γµu(p,+), the relations
(79), and the trace identities for gamma matrices, one
can show that:

〈|A∓(k)|2〉 ∝MR/L(p′, p, k′, k), (83a)
〈A∗−(k)A+(k)〉 ∝MT (p′, p, k′, k), (83b)

where MR,L,T are given in (61) (note the proportionality
holds modulo the 4-momentum conservation δ-function
in (61)). These results imply that Πκ

R,L and PT can be
expressed in terms of 〈A∗−A−〉, 〈A∗+A+〉, and 〈A∗−A+〉,
respectively.

B. Gain and loss potentials in terms of ν and ν̄
scattering amplitudes

Keeping track of all factors, we find that the gain and
loss potentials Π̂± (as per (19)) in the one flavor limit
can be written in terms of 〈A∗αAβ〉 as follows. The gain
term is given by:

Π̂−(~k) = − 1
|~k|

∫
d̃k′d̃pd̃p′ (2π)4δ(4)(k + p− k′ − p′)

(
1− fN (p)

)
fN (p′)

×

 〈|Ā−(k)|2〉 f(~k′) 〈Ā−(k)Ā∗+(k)〉φ(~k′)

〈Ā∗−(k)Ā+(k)〉φ∗(~k′) 〈|Ā+(k)|2〉 f̄(~k′)

 , (84)

while the loss term reads:

Π̂+(~k) = − 1
|~k|

∫
d̃k′d̃pd̃p′ (2π)4δ(4)(k + p− k′ − p′) fN (p)

(
1− fN (p′)

)

×

 〈|A−(k)|2〉
(

1− f(~k′)
)

〈A∗−(k)A+(k)〉
(
−φ(~k′)

)
〈A−(k)A∗+(k)〉

(
−φ∗(~k′)

)
〈|A+(k)|2〉

(
1− f̄(~k′)

)
 . (85)
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Using (19) one can easily identify Πκ±
R/L(k) and P±T (k)

as the diagonal and off-diagonal entries in the above
equations. Moreover, one can check that the positive-
frequency integrals of (49) in the one-flavor case reduce
to the matrix entries in (84) and (85).

The diagonal entries in the above expressions corre-
spond to the familiar gain and loss terms for neutrino
and antineutrinos (ν∓(k)), that one could have guessed
without the field-theoretic derivation: they are propor-
tional to the square moduli of the scattering amplitudes
of each state (|A∓(k)|2). The off-diagonal entries, how-
ever, are proportional to the products A∗−(k)A+(k)φ(~k′)
and thus are related to interference effects that arise when
initial and final states in a scattering process are given by
coherent linear combinations of ν+(k), ν−(k) and ν+(k′),
ν−(k′) (φ(~k′) 6= 0).
While so far we have phrased our discussion in terms

of neutrinos and antineutrinos of the same flavor, the re-
sults generalize to a system with any internal degree of
freedom, such as flavor, denoted by labels a, b. Assuming
that scattering processes do not change the internal de-
gree of freedom, i.e. A(νaN → νbN) ∝ δabAa, one gets
the general structures:

Π−ab(k) = − 1
|~k|

∫
d̃k′d̃pd̃p′ (2π)4δ(4)(k+p−k′−p′)

×
(

1− fN (p)
)
fN (p′) Āa(k)fab(k′)Ab(k) ,

(86a)

Π+
ab(k) = − 1

|~k|

∫
d̃k′d̃pd̃p′ (2π)4δ(4)(k+p−k′−p′)

× fN (p)
(

1− fN (p′)
)
Āa(k)

× (1− f(k′))abAb(k) , (86b)

in agreement with earlier work on collisional terms for
particles with internal degrees of freedom, such as color,
flavor, and/or spin [35, 54, 55].

The above results for Π̂±(k) are derived in the field the-
oretic context with a well defined set of truncations, dic-
tated by our power-counting in ε’s. In addition, heuristic
arguments can help explaining the structure of the gain
and loss potentials. Let us discuss Π−ab(k), i.e. the “gain
term”. As we already mentioned, the off-diagonal terms
must be related to interference effects in the scattering,
arising when the thermal bath contains states that are
coherent superpositions of |~k, a〉 and |~k, b〉, i.e. states
with same momentum but different internal quantum
number. So let us consider the evolution of an initial
state |i〉 = ca(k′)|~k′, a〉 + cb(k′)|~k′, b〉, where ~k′ repre-
sents a generic momentum other than the momentum
~k of our “test” neutrino. Modulo normalizations, the
density matrix associated with this (pure) state reads

fab(k′) ∝ ca(k′)c∗b(k′). Under S-matrix evolution the
state |i〉 evolves into |f〉 = S|i〉 ∝ ca(k′)Āa(k)|~k, a〉 +
cb(k′)Āb(k)|~k, b〉 + . . . , where we used 〈~k, a|S|~k′, a〉 ∝
Āa(k) (see (80)) and the dots represent states with ~p 6= ~k
onto which the final state S|i〉 can project. So as a
net result of evolving the state |i〉, a linear superposi-
tion of internal states with momentum ~k is generated.
The change in the density matrix for momentum ~k reads
∆fab(k) ∝ fab(k′)Āa(k)Ā∗b(k), which has the same struc-
ture of (86a). So we see that Π−ab(k) ∝ ∆fab(k), i.e.
the gain potential is related to the change in occupation
number (a = b) or coherence (a 6= b) in the momentum
state ~k resulting from scattering from all bins ~k′ into the
bin ~k.

C. Coherence damping

The coherence damping rate has been estimated in
Refs. [2, 52, 53] in the special case of nearly forward
scattering, namely k′ ∼ k, and our expression can repro-
duce their result. In fact, for k′ ∼ k one has fN (p)(1 −
fN (p′)) ∼ fN (p′)(1 − fN (p)). Using this result in (84)
and (85) one obtains P−T (k) = −P+

T (k) (the latter rela-
tion holds under the weaker condition |~k| ∼ |~k′|). Inspec-
tion of the collision terms C, C̄, and Cφ of Eqs. (41) and
(42) shows that in this limit C(k) = C̄(k) ' 0. On the
other hand, using φ(k′) ∼ φ(k), one finds Cφ(k) in (42) to
be proportional to |A−(k)|2 + |A+(k)|2 − 2A∗−(k)A+(k).
Recalling that for k′ ∼ k then A∗−A+ becomes real, one
arrives at the result

Cφ(~k) = −Γφ(~k)φ(~k) ,

Γφ(~k) = − 1
|~k|

∫
d̃k′d̃pd̃p′ (2π)4δ(4)(k+p−k′−p′)

× fN (p)
(

1− fN (p′)
) 1

2 〈|A−(k)−A+(k)|2〉 ,
(87)

which agrees qualitatively with [2, 52, 53, 56]: the damp-
ing rate for the coherence φ(~k) is proportional to a sta-
tistical average of the square of the difference of the
scattering amplitudes of the two states. In the case of
neutrinos and antineutrinos, since weak interactions are
spin-dependent, A−−A+ 6= 0 and we expect damping of
spin coherence with a typical weak-interaction time scale.
On the other hand, neutrino-nucleon scattering is flavor
blind and therefore does not contribute to damping of fla-
vor coherence in the case of nearly forward scattering.
“Flavor blind” scattering (i.e. A+ = A− ) can still

cause coherence damping, as long as the collisions involve
energy transfer. Assuming for simplicity thermal equilib-
rium for the “scatterers” (the nucleons in our example,
so that fN (p) = 1/(eEp/T + 1)), we find
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Cφ(~k) = − 1
|~k|

∫
d̃k′d̃pd̃p′ (2π)4δ(4)(k+p−k′−p′) |A−(k)|2 fN (p)

(
1− fN (p′)

)
(88)

×

{
φ(~k)− e(Ep−Ep′ )/Tφ(~k′) + 1

2

(
e(Ep−Ep′ )/T − 1

)[
φ(~k)

(
f(~k′) + f̄(~k′)

)
+ φ(~k′)

(
f(~k) + f̄(~k)

)]}
.

The vanishing of
∫
d3kCφ(~k) = 0 (in agreement with

Ref. [2]) signals that coherence at the level of the “inte-
grated” density matrix is not damped for flavor blind in-
teractions. On the other hand, the fact that the individ-
ual Cφ(~k) 6= 0 signals that flavor-blind collisions “shuffle”
or transfer coherence between momentum modes.

For the “flavor diagonal” collision term C(~k), in the
same limit we obtain

C(~k) = − 1
|~k|

∫
d̃k′d̃pd̃p′(2π)4δ(4)(k+p−k′−p′)

× |A−(k)|2 fN (p) (1− fN (p′))

×
{
f(~k)(1− f(~k′))− e(Ep−Ep′ )/T f(~k′)(1− f(~k))

+
(
e(Ep−Ep′ )/T − 1

)
Re
(
φ(~k)φ∗(~k′)

)}
.

VI. ISOTROPIC LIMIT AND THE EARLY
UNIVERSE

In this section we revert to the full three-flavor analy-
sis and consider the limiting case of our expressions cor-
responding to isotropic space, that allows us to further
evaluate analytically the expressions derived earlier in
this work. The isotropic limit is of considerable physi-
cal interest, as it applies to the description of the early
universe (see earlier works [21–25]). In this setup we
may assume that all f ’s depend only on the absolute
values of the momenta (not the angles) and addition-
ally all φ (for Majorana neutrinos) and fLR (for Dirac
neutrinos) vanish, thus greatly simplifying our collision
terms. In particular, all collision terms relating to spin-
coherence vanish, i.e. Cφ = 0 in the Majorana case and
CLR = C̄RL = 0 in the Dirac case.

In the Majorana QKEs, the non-vanishing nf × nf
blocks of CM in Eq. (41) are given by:

C = 1
2
(
{Π+,κ

R , f} − {Π−,κR , (1−f)}
)
, (89a)

C̄T = 1
2
(
{(Πκ

L)+, f̄T } − {(Πκ
L)−, (1−f̄T )}

)
. (89b)

In the Dirac QKEs, the non-vanishing nf × nf blocks
of C and C̄ in Eq. (75) are obtained from the Majorana
results as follows:

CLL = C
∣∣∣
f→fLL,f̄→f̄RR

,

C̄RR = C̄
∣∣∣
f→fLL,f̄→f̄RR

. (90)

The key trick [22, 57] leading to closed expressions for
the collision integrals is to write the momentum conserv-
ing δ-function in terms of its Fourier representation

δ(3)(~k − ~q3 − ~q1 + ~q2) =
∫

d3λ

(2π)3 e
i~λ(~k−~q3−~q1+~q2)

=
∫
r2
λdrλd(cos θλ)dϕλ

(2π)3 ei
~λ(~k−~q3−~q1+~q2) . (91)

With this result, one can integrate out all angles ulti-
mately arriving at an expression with only two integrals
left [22, 57]. The types of integrals appearing for the
x = cos θi are∫ 1

−1
dxeiAx = 2

A
sinA ,∫ 1

−1
dxxeiAx = −2i

A

(
cosA− sinA

A

)
. (92)

The integrals over the ϕi are trivial when aligning the
ẑ-axis with ~λ.
Below, we report our results for the collision term in

isotropic environments. Each contribution to the colli-
sion term has a factorized structure, in terms of weak
matrix elements and distribution functions of the “scat-
terers”, multiplied by a matrix structure involving the
neutrino and antineutrino density matrices f, f1,2,3 and
f̄ , f̄1,2,3.

Neutrino-nucleon scattering processes

Neglecting contributions from antinucleons (irrelevant
in the early universe in the interesting decoupling re-
gion, T < 20 MeV) the scattering processes ν(k)N(q2)↔
ν(q3)N(q1) lead to
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C = −2G
2
F

E2
k

∫
dE1dE2dE3

(2π)3 δ(Ek−E3−E1+E2)

×
(

(1−f(N),1)f(N),2

{
1−f3, f

}
− f(N),1(1−f(N),2)

{
f3, 1−f

})
×
(

(CV + CA)2
(
E1E2E3EkD1(q1, q2, q3, k) + E2EkD2(q2, k; q1, q3)

+ E1E3D2(q1, q3; q2, k) +D3(q1, q2, q3, k)
)

+ (CV − CA)2
(
E1E2E3EkD1(q1, q2, q3, k)− E1EkD2(q1, k; q2, q3)

− E2E3D2(q2, q3; q1, k) +D3(q1, q2, q3, k)
)

−M2
N (C2

V − C2
A)
(
E3EkD1(q1, q2, q3, k)−D2(q1, q2; q3, k)

))
, (93)

where q1,2 =
√
E2

1,2 −M2
N , q3, k =

√
E2

3,k, andD1,2,3 are
expressions previously discussed by Dolgov, Hansen and
Semikoz in [22] (see also [57]), and we list them explicitly
in Appendix D. In the above expressions one recognizes
the usual loss and gain terms. In the one-flavor limit
the anti-commutators become trivial and we recover the
standard Boltzmann collision term for neutrino-nucleon

scattering. The antineutrino collision term C̄T can be
obtained from C in (93) with the replacements fi ↔ f̄Ti
and CA → −CA.

Neutrino-electron processes

The neutrino collision term induced by ν-e± processes
is given by

C = −G
2
F

E2
k

∫
dE1dE2dE3

π3 δ(Ek−E3−E1+E2) (1−f(e),1)f(e),2 ×

×
((

E1E2E3EkD1(q1, q2, q3, k) + E2EkD2(q2, k; q1, q3) + E1E3D2(q1, q3; q2, k)

+D3(q1, q2, q3, k)
){
YL(1−f3)YL, f

}
+
(
E1E2E3EkD1(q1, q2, q3, k)− E1EkD2(q1, k; q2, q3)− E2E3D2(q2, q3; q1, k)

+D3(q1, q2, q3, k)
){
YR(1−f3)YR, f

}
− m2

e

2

(
E3EkD1(q1, q2, q3, k)−D2(q1, q2; q3, k)

) ∑
I=L,R

{
YI(1−f3)YJ 6=I , f

})
+
{
E2,3 → −E2,3, f2,3 → (1− f̄2,3)

}
+
{
E1,2 → −E1,2, f1,2 → (1− f̄1,2)

}
+ gain, (94)

where q1,2 =
√
E2

1,2 −m2
e, q3, k =

√
E2

3,k, “gain” denotes
the corresponding gain terms for which the overall sign is
flipped and all f ↔ (1−f) (including barred occurrences
of fi), and the polynomial functions D1,2,3 are given in
Appendix D. The explicit loss terms in (94) correspond
to ν(k)e−(q2) → ν(q3)e−(q1) scattering. The additional
loss term expressions indicated implicitly in next-to-last
and second-to-last lines in (94) represent ν(k)e+(q1) →

ν(q3)e+(q2) scattering and ν(k)ν̄(q3) → e+(q2)e−(q1)
pair processes, respectively. Note that in these terms, the
sign flips of energies affect the energy-conserving delta
functions as well as the overall sign of some of the terms
proportional to D2. The antineutrino collision term C̄T

is obtained from (94) by the replacements fi ↔ f̄Ti
and YL ↔ YR. If we neglect the off-diagonal densities
(fa6=b = 0, f̄a 6=b = 0), the anti-commutators become triv-
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ial and we reproduce the results of Refs. [21, 22] for the
diagonal entries Caa of the collision term.

Charged-current processes

The processes ν(k)n(q2) ↔ e−(q3)p(q1) lead to the
neutrino collision term

C = −2G
2
F

E2
k

∫
dE1dE2dE3

(2π)3 δ(Ek−E3−E1+E2)

×
(

(1−f(p),1)f(n),2(1−f(e),3) {Ie, f} − f(p),1(1−f(n),2)f(e),3 {Ie, 1−f}
)

×
(

(1 + gA)2
(
E1E2E3EkD1(q1, q2, q3, k) + E2EkD2(q2, k; q1, q3)

+ E1E3D2(q1, q3; q2, k) +D3(q1, q2, q3, k)
)

+ (1− gA)2
(
E1E2E3EkD1(q1, q2, q3, k)− E1EkD2(q1, k; q2, q3)

− E2E3D2(q2, q3; q1, k) +D3(q1, q2, q3, k)
)

+MpMn(g2
A − 1)

(
E3EkD1(q1, q2, q3, k)−D2(q1, q2; q3, k)

))
, (95)

where q1 =
√
E2

1 −M2
p , q2 =

√
E2

2 −M2
n, q3 =√

E2
3 −M2

e , k =
√
E2
k, D1,2,3 are given in Appendix D,

and the flavor projector Ie is defined in Eq. (48).

The antineutrino collision term C̄T induced by the pro-
cesses ν̄(k)p(q2) ↔ e+(q3)n(q1) can be obtained from C
in (95) with the replacements f ↔ f̄T , fe → f̄e, fn ↔ fp,
and gA → −gA. Moreover, C̄T receives a contribution in-

duced by neutron decay, which can be obtained from C
in (95) with the replacements f ↔ f̄T , fe → 1 − fe,
fn ↔ fp, and gA → −gA, and E3 → −E3.

Neutrino-neutrino processes

Neutrino scattering off neutrinos and antineutrinos in-
duces the collision term

C = −2G
2
F

E2
k

∫
dE1dE2dE3

(2π)3 δ(Ek−E3−E1+E2)

×

((
E1E2E3EkD1(q1, q2, q3, k) + E2EkD2(q2, k; q1, q3) + E1E3D2(q1, q3; q2, k) +D3(q1, q2, q3, k)

)
×
{(

tr((1−f1)f2) + (1−f1)f2

)
(1−f3) , f

}
+
(
E1E2E3EkD1(q1, q2, q3, k)− E1EkD2(q1, k; q2, q3)− E2E3D2(q2, q3; q1, k) +D3(q1, q2, q3, k)

)
×
{(

tr
(
f̄2(1−f̄1)

)
+ f̄2(1− f̄1)

)
(1−f3) +

(
tr
(
(1−f3)(1−f̄1)

)
+ (1−f3)(1−f̄1)

)
f̄2 , f

})
+ gain , (96)

where all qi =
√
E2
i and “gain” denotes the corre-

sponding gain terms for which the overall sign is flipped
and all f ↔ (1 − f) (including barred occurrences of
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fi). The second and third lines in (96) correspond to
ν(k)ν(q2) → ν(q3)ν(q1) scattering. The fourth and fifth
lines in (96) represent ν(k)ν̄(q2) → ν(q3)ν̄(q1). The an-
tineutrino collision term C̄T induced by the processes
ν̄ν̄ → ν̄ν̄ and ν̄ν → ν̄ν can be obtained from C in
(96) with the replacements f ↔ f̄T (including all oc-
currences of fi). If we neglect the off-diagonal densities
(fa 6=b = 0, f̄a6=b = 0), the anti-commutators become triv-
ial and we reproduce the results of Refs. [21, 22] for the
diagonal entries Caa of the collision term. [58]

VII. DISCUSSION AND CONCLUSIONS

In this work we have derived the collision terms en-
tering the quantum kinetic equations that describe the
evolution of Dirac or Majorana neutrinos in a thermal
bath. We include electroweak processes involving neu-
trino scattering off other neutrinos, electrons, and nucle-
ons, as well as νν̄ ↔ e+e− pair processes.

Throughout our analysis we have kept track of both
flavor and spin neutrino degrees of freedom. We have
first provided general, rather formal, expressions for the
collision terms, valid in principle for any geometry, in-
cluding anisotropic environments such as supernovae and
accretion disks in neutron-star mergers. Our results gen-
eralize earlier work by Sigl and Raffelt [1], in which spin
coherence effects were neglected. When including spin
degrees of freedom, the gain and loss potentials Π± be-
come 2nf × 2nf matrices, whose diagonal nf ×nf blocks
describe the collisions of each spin state, and whose off-
diagonal nf × nf blocks describe interference effects in
the scattering involving coherent superpositions of the
two spin states. Since for Dirac neutrinos the “wrong he-
licity” states (R-handed neutrinos and L-handed antineu-
trinos) do not interact in the massless limit, in this case
the gain and loss potentials greatly simplify, as only the
upper nf×nf block survives (see Section IV). Our results
are in qualitative agreement with the ones in Ref. [35],
where collision terms involving flavor and helicity coher-
ence have been studied in the context of kinetic equations
for leptogenesis.

The main results of this paper are:

• Within the field-theoretic framework, we have de-
rived general expressions for the neutrino colli-
sion terms, valid in anisotropic environments. The
lengthy results for the gain/loss potentials are given
in Sect. III, while the collision terms are presented
in Appendix C. Compared to previous literature,
new terms involving spin coherence appear. After
using the constraints from the energy-momentum
conservation, all the terms (including the “stan-
dard” ones that do not involve spin) can be ex-
pressed as five-dimensional integrals. These are in-
tractable at the moment in codes describing astro-
physical objects, but will be required for a detailed
study of neutrino transport in the future, especially

to assess the impact of the so-called “halo” on col-
lective neutrino oscillations in supernovae [48].

• After presenting general results, we have focused on
two limiting cases of great physical interest. First,
in Sect. V we have taken the one-flavor limit and
illustrated the structure of the collision term for
the two spin degrees of freedom (neutrino and an-
tineutrino in the Majorana case). Here we have
provided simple expressions for the diagonal and
off-diagonal entries of the gain and loss potential.
As expected, the diagonal terms are proportional
to the square moduli of the amplitudes describing
neutrino and antineutrino scattering off the tar-
get particles in the medium (|A∓|2). On the other
hand, the off-diagonal terms are proportional to the
product A∗−A+ of scattering amplitudes for neu-
trino and antineutrino. In this section we have also
estimated the damping rate for spin coherence due
to neutrinos (antineutrinos) scattering off nucleons,
under the assumption that collisions involve small
energy transfer compared to typical energies of the
system. Finally, we have shown that coherence
“transfer” among momentum modes is enforced by
the collision term even in the case of “flavor-blind”
interactions, as long as the collisions involve energy
transfer.

• Next, in Sect. VI we have considered the isotropic
limit relevant for the description of neutrinos in the
early universe. In this case, following Ref. [22],
we were able to analytically evaluate most of the
collision terms, leaving just two-dimensional in-
tegrals for computational implementation. These
latter expressions generalize earlier results found
in Refs. [21, 22]. In fact, our results encode the
same scattering kernels as in Ref. [22], but multi-
plied by the appropriate products of density matri-
ces that realize the “non-Abelian” Pauli-blocking
first described in Ref. [2]. Our flavor-diagonal
collision terms reproduce the results of Ref. [22].
The resulting collision terms in the isotropic limit
are amenable for computational implementation in
studies of neutrino transport in the early universe,
and its impact on primordial lepton number asym-
metries and Big Bang nucleosynthesis.

In summary, this work completes the derivation of neu-
trino QKEs from field theory in general anisotropic en-
vironments, started in Ref. [9], by including the colli-
sion terms. While the computational implementation of
these collision terms will be challenging, here we have
provided the needed theoretical background. We have
also gained insight on the structure of the collision term
by discussing in some detail the one-flavor limit, relevant
for neutrino-antineutrino conversion in compact objects,
and the isotropic limit, relevant for the physics of the
early universe.
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Appendix A: Kinematics of ultra-relativistic
neutrinos

1. Basis vectors

For ultra-relativistic neutrinos of momentum ~k, it is
useful to express all Lorentz tensors in terms of a basis
formed by two light-like four-vectors κ̂µ(k) = (sgn(k0), k̂)
and κ̂′µ(k) = (sgn(k0),−k̂) (κ̂ · κ̂ = κ̂′ · κ̂′ = 0, κ̂ · κ̂′ = 2)
and two transverse four vectors x̂1,2(k) such that κ̂ · x̂i =
κ̂′ · x̂i = 0 and x̂i · x̂j = −δij . It also useful to define
x̂± ≡ x̂1 ± ix̂2 so that x̂+ · x̂− = −2. Note, that kµ →
−kµ means (with our choice of basis) that κ̂ → −κ̂ and
x̂± → x̂∓, i.e. (κ̂∧ x̂±)→ −(κ̂∧ x̂∓), where (κ̂∧ x̂±)µν ≡
(κ̂µx̂±ν − κ̂ν x̂

±
µ ). This can be seen directly in terms of

spherical coordinates:

~̂κ =

sin θ cosϕ
sin θ sinϕ

cos θ

 , ~̂x1 =

cos θ cosϕ
cos θ sinϕ
− sin θ

 ,

~̂x2 =

− sinϕ
cosϕ

0

 , ~̂x± =

cos θ cosϕ∓ i sinϕ
cos θ sinϕ± i cosϕ

− sin θ

 .

(A1)

Under parity, the angles change as θ → π − θ and ϕ →
π + ϕ. Therefore, cos θ → − cos θ, sin θ → + sin θ and
cosϕ → − cosϕ, sinϕ → − sinϕ, leading to ~̂κ → −~̂κ,
~̂x1 → +~̂x1, ~̂x2 → −~̂x2 and ~̂x± → ~̂x∓.

Any Lorentz vector V µ has light-like and space-like
components defined as V κ ≡ κ̂ · V and V i ≡ x̂i · V , re-
spectively. For the components of the derivative operator
we adopt the notation ∂κ ≡ κ̂ · ∂, ∂i ≡ x̂i · ∂.

2. Vector and tensor components of two-point
functions and self-energies

The decomposition of the neutrino Green function
G(ν)(k) into independent spinor and Lorentz structures

is discussed in Ref. [9]. It takes the form

G(ν) =
(

1
2 iG

L,µν
T SLµν GLV · σ
GRV · σ̄ 1

2 iG
R,µν
T SRµν

)

=
[(
GRV
)µ
γµ −

i

4
(
GLT
)µν

σµν

]
PL

+
[(
GLV
)µ
γµ + i

4
(
GRT
)µν

σµν

]
PR , (A2)

where σµ = (1, ~σ), σ̄µ = (1,−~σ) and σi are the usual
Pauli matrices. Additionally,

SLµν = − i4 (σµσ̄ν − σν σ̄µ) ,

SRµν = i

4 (σ̄µσν − σ̄νσµ) ,

−1
2σµνPL =

(
SLµν 0
0 0

)
,

1
2σµνPR =

(
0 0
0 SRµν

)
. (A3)

The first line in Eq. (A2) corresponds to the notation of
Ref. [9], while the second line makes explicit use of the
four-dimensional Dirac matrices. For additional relations
between the four and two component representations, see
e.g. [59].
Similarly, any self-energy diagram carries spinor in-

dices. It can be written as follows,

Π̂ =
(

ΠS + 1
2 iΠ

L,µν
T SLµν ΠL · σ

ΠR · σ̄ Π†S + 1
2 iΠ

R,µν
T SRµν

)

=
[
ΠS + Πµ

Rγµ −
i

4
(
ΠL
T

)µν
σµν

]
PL

+
[
Π†S + Πµ

Lγµ + i

4
(
ΠR
T

)µν
σµν

]
PR , (A4)

where the first line corresponds to the notation of Ref. [9],
while the second line makes explicit use of the four-
dimensional Dirac matrices. The vector and tensor spinor
components of Π can be isolated with the following pro-
jections:

Πα
L,R = 1

2 Tr
[
Π̂ γαPL,R

]
,(

ΠL
T

)
µν

= i

2 Tr
[
Π̂σµνPL

]
,(

ΠR
T

)
µν

= − i2 Tr
[
Π̂σµνPR

]
. (A5)

Furthermore, the Lorentz vector and tensor objects
Πα
L,R, (ΠL,R

T )µν can be decomposed in terms of the ba-
sis vectors κ̂, κ̂′, x̂1,2. The quantities Πκ

L,R and PT that
appear in the collision term correspond to specific com-
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ponents Πα
L,R and (ΠL,R

T )µν ,(
ΠR
T

)
µν

= e−iϕ(κ̂′ ∧ x̂−)µν PT + . . . ,(
ΠL
T

)
µν

= eiϕ(κ̂′ ∧ x̂+)µν P †T + . . . ,

Πµ
L,R = 1

2Πκ
L,R κ̂

′µ + . . . (A6)

The components relevant for the collision term are ob-
tained by the contractions

Πκ
L,R = κ̂µ Πµ

L,R , κ̂µ '
kµ

|~k|
,

PT = −e
iϕ

8 (κ̂ ∧ x̂+)µν
(
ΠR
T

)
µν

,

P †T = −e
−iϕ

8 (κ̂ ∧ x̂−)µν
(
ΠL
T

)
µν

. (A7)

So in summary, to obtain the quantities relevant for the
collision term we need the following projections (traces
are only on spinor indices; Πκ

L,R and PT are matrices in
flavor space):

Πκ
L,R = 1

2 κ̂µ Tr
[
Π̂ γµPL,R

]
, (A8a)

PT = ieiϕ

16 (κ̂ ∧ x̂+)µν Tr
[
Π̂σµνPR

]
, (A8b)

P †T = − ie
−iϕ

16 (κ̂ ∧ x̂−)µν Tr
[
Π̂σµνPL

]
. (A8c)

3. Tensor components and duality properties

The projections and traces are greatly simplified by
noting the following identities. Denote by Tαβ± any self-
dual (+) or anti self-dual (−) antisymmetric tensor, with
dual tensor T ? defined by

T ?µν = i

2εµναβT
αβ . (A9)

Then one has:

γµσαβT
αβ
± = 4i Tµµ

′

± γµ′ PR/L ,

σαβT
αβ
± γµ = −4i Tµµ

′

± γµ′ PL/R . (A10)

Using the above identities one can perform all the
needed projections in a straightforward way (at most four
gamma matrices and a γ5 appear in the traces).
Furthermore, notice also that SµνL/R (introduced in

(A3)) are (anti)self-dual, i.e.

SµνL = −(SµνL )? = − i2ε
µνρσSL,ρσ ,

SµνR = (SµνR )? = i

2ε
µνρσSR,ρσ , (A11)

which may be checked by explicit computation using the
Lie algebra of the Pauli matrices. Similarly, the wedge
products satisfy the following duality relations

(κ̂ ∧ x̂±)µν = ±
(
(κ̂ ∧ x̂±)µν

)?
= ± i2ε

µνρσ(κ̂ ∧ x̂±)ρσ ,

(κ̂′ ∧ x̂±)µν = ∓
(
(κ̂′ ∧ x̂±)µν

)?
= ∓ i2ε

µνρσ(κ̂′ ∧ x̂±)ρσ , (A12)

and from these relations it directly follows that

εαβγµ(κ̂ ∧ x̂±)µν = ±i
(
δναδ

ρ
βδ
σ
γ + δνγδ

ρ
αδ
σ
β

+ δνβδ
ρ
γδ
σ
α

)
(κ̂ ∧ x̂±)ρσ , (A13a)

(κ̂i ∧ x̂−i )µν(κ̂j ∧ x̂+
j )µν = 0 , (A13b)

where we used the notation κ̂i ≡ κ̂(qµi ), x̂±j ≡ x̂±(qµj ),
etc.

Appendix B: Green’s functions to O(ε0) in power
counting

In this appendix we summarize the form of the two-
point functions for neutrino and matter fields (e, n, p) to
leading order in our power counting, i.e. to O(ε0). We
use these expression to evaluate the collision potentials
Π± to O(ε2).
The collision term involves the ± components of the

Green’s functions, defined in terms of the statistical (F )
and spectral (ρ) functions as:

G± = − i2 ρ ± F . (B1)

Using the fact that to leading order the neutrino spectral
function has only vector components,

ρ
(ν)
ab (k, x) = 2iπδ(k2) sgn(k0) /k δab , (B2)

we can write (see (A2))

(
GL,RV

)±
µ

(k) = kµ

(
ḠL,RV

)±
(k) ,(

GL,RT

)±
µν

= ±
(
FL,RT

)
µν

,(
FLT
)
µν

= e−iϕ(κ̂ ∧ x̂−)µν Φ ,(
FRT
)
µν

= eiϕ(κ̂ ∧ x̂+)µν Φ† . (B3)

The explicit form of
(
ḠL,RV

)±
(k) and Φ(k) for Majorana
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neutrinos is [60]

(
ḠLV
)+(k) = 2πδ(k2)

[
θ(k0)(1− f(~k))

− θ(−k0)f̄(−~k)
]
, (B4a)(

ḠLV
)−(k) = 2πδ(k2)

[
θ(k0)f(~k)

− θ(−k0)(1− f̄(−~k))
]
, (B4b)(

ḠRV
)+(k) = 2πδ(k2)

[
θ(k0)(1− f̄T (~k))

− θ(−k0)fT (−~k)
]
, (B4c)(

ḠRV
)−(k) = 2πδ(k2)

[
θ(k0)f̄T (~k)

− θ(−k0)(1− fT (−~k))
]
, (B4d)

Φ(k) = −2π|~k|δ(k2)
[
θ(k0)φ(~k) + θ(−k0)φT (−~k)

]
.

(B4e)

In the above equations the transposition operation acts
on flavor indices.

In summary, the neutrino Green’s functions to O(ε0)
can be written as:(
G(ν))±=

[(
ḠRV
)±
kµγµ ∓

i

4Φe−iϕ(κ̂ ∧ x̂−)µνσµν
]
PL

+
[(
ḠLV
)±
kµγµ ±

i

4Φ†eiϕ(κ̂ ∧ x̂+)µνσµν
]
PR . (B5)

Finally, for unpolarized target particles of massm, and
spin 1/2 (denoted generically by ψ, where ψ = e, n, p) the

Wigner transformed two-point functions read [9, 16]:

G(ψ)+(p) = 2πδ(p2 −m2
ψ)(/p+mψ)

×
[
θ(p0)(1− fψ(~p))− θ(−p0)f̄ψ(−~p)

]
,

G(ψ)−(p) = 2πδ(p2 −m2
ψ)(/p+mψ)

×
[
θ(p0)fψ(~p)− θ(−p0)(1− f̄ψ(−~p))

]
,

(B6)

where fψ(~p) and f̄ψ(~p) are the “target” particle and an-
tiparticle distributions. In order to isolate the spinor
structure, we use the notation G(ψ)±(p) = (/p +
mψ) Ḡ(ψ)±(p).

Appendix C: Collision term for ν-N , ν-e, and
charged current processes

In this appendix we present the results for the “as-
sembled” collision terms C and Cφ induced by neutrino-
nucleon, neutrino-electron, and charged-current pro-
cesses, assembling the gain and loss potentials of Sec-
tion III C according to Eq. (42). We refrain from dis-
playing the expressions for the collision terms induced
by neutrino-neutrino processes: these are quite lengthy
but can be obtained straightforwardly in the same way
as for the other processes.

Neutrino-nucleon scattering processes

Neutrino-nucleon scattering ν(k)N(q2) → ν(q3)N(q1)
induces the following contributions to C and Cφ in (42):

C = −2G2
F

|~k|

∫
d̃q1d̃q2d̃q3 (2π)4

×

(
MR(q1, q2, q3, k)

(
(1−f(N),1)f(N),2 {1−f3, f} − f(N),1(1−f(N),2) {f3, 1−f}

)

− 4(C2
V + C2

A)
(
f(N),2−f(N),1

) (
MT (q1, q2, q3, k)φ3φ

† +M∗T (q1, q2, q3, k)φφ†3
))

, (C1)

Cφ = −2G2
F

|~k|

∫
d̃q1d̃q2d̃q3 (2π)4

×

(
MR(q1, q2, q3, k )

(
(1−f(N),1)f(N),2 + (f(N),1−f(N),2)f3

)
φ

+ML(q1, q2, q3, k)φ
(

(1−f(N),1)f(N),2 + (f(N),1−f(N),2)f̄T3
)

− 4(C2
V + C2

A)MT (q1, q2, q3, k)
(

(f(N),2−f(N),1)(f φ3 + φ3 f̄
T ) + 2f(N),1(1−f(N),2)φ3

))
, (C2)

whereMR,L,T (q1, q2, q3, k) given in (61) andM∗T denotes
the complex conjugate ofMT , whose only differences are

x̂± ↔ x̂∓ and the sign of the phase.
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The contribution to C̄T in (42) can be obtained from
C in Eq. (C1) with the following substitutions: fi ↔ f̄Ti ,
φj ↔ φ†j ,MR ↔ML, andMT ↔M∗T .

Neutrino-electron processes

In terms of the matrix elements ML
I (q1, q2, q3, k),

MR
I (q1, q2, q3, k), Mm(q1, q2, q3, k) defined in (67) and

MT (q1, q2, q3, k) defined in (61), the collision terms C
and Cφ read

C = −16G2
F

|~k|

∫
d̃q1d̃q2d̃q3(2π)4

×
∑
I=L,R

(
(1−f(e),1)f(e),2

{
YI(1−f3)

(
2YIMR

I (q1, q2, q3, k)− YJ 6=IMm(q1, q2, q3, k)
)
, f
}

− f(e),1(1−f(e),2)
{
YIf3

(
2YIMR

I (q1, q2, q3, k)− YJ 6=IMm(q1, q2, q3, k)
)
, 1−f

}
−
(

(f(e),2−f(e),1)YIφ3YIMT (q1, q2, q3, k)
)
φ† − φ

(
(f(e),2−f(e),1)YIφ3YIMT (q1, q2, q3, k)

)†)
+
{
q2,3 → −q2,3, f2,3 → (1− f̄2,3), φ3 → −φT3

}
+
{
q1,2 → −q1,2, f1,2 → (1− f̄1,2)

}
(C3)

and

Cφ = −16G2
F

|~k|

∫
d̃q1d̃q2d̃q3(2π)4

∑
I=L,R

((
(1−f(e),1)f(e),2YI + (f(e),1−f(e),2)YIf3

)
×
(
2YIMR

I (q1, q2, q3, k)− YJ 6=IMm(q1, q2, q3, k)
)
φ

+ φ
(
(1−f(e),1)f(e),2YI + (f(e),1−f(e),2)YI f̄T3

)(
2YIML

I (q1, q2, q3, k)− YJ 6=IMm(q1, q2, q3, k)
)

−
((
f(f(e),2−f(e),1) + 2f(e),1(1−f(e),2)

)
YIφ3YI + (f(e),2−f(e),1)YIφ3YI f̄

T
)
MT (q1, q2, q3, k)

)
+
{
q2,3 → −q2,3, f2,3 → (1− f̄2,3), φ3 → −φT3 , f̄T3 → (1− fT3 )

}
+
{
q1,2 → −q1,2, f1,2 → (1− f̄1,2)

}
. (C4)

Note that these expressions display explicitly the effect of
the process ν(k)e−(q2) → ν(q3)e−(q1), while the impact
of neutrino scattering off positrons and pair processes is
obtained by simple substitutions, as indicated above.

The antineutrino collision term C̄T in (42) can be ob-
tained from C in Eq. (C3) with the following substitu-
tions: fi ↔ f̄Ti , φj ↔ φ†j , YR ↔ YL, andMT ↔M∗T .

Charged-current processes

The contributions to the collision term from charged-
current neutrino absorption and emission ν(k)n(q2) ↔
e−(q3)p(q1) are

C = −2G2
F

|~k|

∫
d̃q1d̃q2d̃q3(2π)4MCC

R (q1, q2, q3, k)

×
(

(1−f(p),1)f(n),2(1−f(e),3) {Ie, f} − f(p),1(1−f(n),2)f(e),3 {Ie, 1−f}
)

(C5)
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and

Cφ = −2G2
F

|~k|

∫
d̃q1d̃q2d̃q3(2π)4

(
MCC

R (q1, q2, q3, k)
(

(1−f(p),1)f(n),2 + (f(p),1−f(n),2)f(e),3

)
[Ie φ]

+MCC
L (q1, q2, q3, k) [φ Ie]

(
(1−f(n),1)f(p),2 + (f(n),1−f(p),2)f̄(e),3

))
(C6)

where the flavor projector Ie is defined in Eq. (48) and
the matrix elementsMCC

R,L(q1, q2, q3, k) are given in (64).
The antineutrino collision term C̄T induced by the pro-

cesses ν̄(k)p(q2) ↔ e+(q3)n(q1) can be obtained from C
in (C5) with the replacements f → f̄T , fe → f̄e, fn ↔ fp,
andMCC

R →MCC
L (gA → −gA).

Appendix D: The DHS integrals

Using Mathematica we find (for all qi > 0)

D1(q1, q2, q3, q4) = 4
π

∞∫
0

dλ

λ2 sin(λq1) sin(λq2) sin(λq3) sin(λq4)

= 1
4

(
|q1 + q2 + q3 − q4|+ |q1 + q2 − q3 + q4|+ |q1 − q2 + q3 + q4|+ |q2 + q3 + q4 − q1|

− |q1 + q2 − q3 − q4| − |q1 − q2 + q3 − q4| − |q1 − q2 − q3 + q4| − (q1 + q2 + q3 + q4)
)
, (D1)

D2(q1, q2; q3, q4) = 4q3q4

π

∞∫
0

dλ

λ2 sin(λq1) sin(λq2)
[
cos(λq3)− sin(λq3)

λq3

] [
cos(λq4)− sin(λq4)

λq4

]

= 1
24

(
|q1 + q2 − q3 − q4|3 + |q1 − q2 + q3 − q4|3 − |q1 + q2 + q3 − q4|3 + |q1 − q2 − q3 + q4|3

− |q1 + q2 − q3 + q4|3 − |q1 − q2 + q3 + q4|3 − |−q1 + q2 + q3 + q4|3 + (q1 + q2 + q3 + q4)3
)

+ q3q4

4

(
|q1 + q2 − q3 − q4| − |q1 − q2 + q3 − q4|+ |q1 + q2 + q3 − q4| − |q1 − q2 − q3 + q4|

+ |q1 + q2 − q3 + q4| − |q1 − q2 + q3 + q4| − |−q1 + q2 + q3 + q4|+ q1 + q2 + q3 + q4

)
+ q3−q4

8

(
sgn(q1 + q2 + q3 − q4) (q1 + q2 + q3 − q4)2 + sgn(q1 − q2 − q3 + q4) (q1 − q2 − q3 + q4)2

−sgn(q1 + q2 − q3 + q4) (q1 + q2 − q3 + q4)2 − sgn(q1 − q2 + q3 − q4) (q1 − q2 + q3 − q4)2
)

+ q3+q4

8

(
sgn(q1 + q2 − q3 − q4) (q1 + q2 − q3 − q4)2 + sgn(q1 − q2 + q3 + q4) (q1 − q2 + q3 + q4)2

−sgn(q1 − q2 − q3 − q4) (−q1 + q2 + q3 + q4)2 − (q1 + q2 + q3 + q4)2
)
, (D2)

D3(q1, q2, q3, q4) = 4q1q2q3q4

π

∞∫
0

dλ

λ2

[
cos(λq1)− sin(λq1)

λq1

] [
cos(λq2)− sin(λq2)

λq2

]
×

×
[
cos(λq3)− sin(λq3)

λq3

] [
cos(λq4)− sin(λq4)

λq4

]
= 1

120

(
q5
1 + q5

2 − 5
(
q2
2 + q2

3 + q2
4
)
q3
1 − 5

(
q3
2 + q3

3 + q3
4
)
q2
1 − 5q3

2
(
q2
3 + q2

4
)
− 5q2

2
(
q3
3 + q3

4
)

+ (q3 + q4)3 (
q2
3 − 3q4q3 + q2

4
) )



27

+ 1
480

(
|q1 − q2 − q3 − q4|5 − |q1 + q2 − q3 − q4|5 − |q1 − q2 + q3 − q4|5 + |q1 + q2 + q3 − q4|5

− |q1 − q2 − q3 + q4|5 + |q1 + q2 − q3 + q4|5 + |q1 − q2 + q3 + q4|5
)

+ 1
24

(
(q3q4 + q2 (q3 + q4)− q1 (q2 + q3 + q4)) |q1 − q2 − q3 − q4|3 − 6q1q2q3q4 |q1 − q2 − q3 − q4|

+ (q1 (q2 + q3 − q4)− q2q3 + (q2 + q3) q4) |q1 − q2 − q3 + q4|3 − 6q1q2q3q4 |q1 − q2 − q3 + q4|
+ (q1q2 + q3q2 + q1q3 − (q1 + q2 + q3) q4) |q1 + q2 + q3 − q4|3 − 6q1q2q3q4 |q1 + q2 + q3 − q4|
+ (q2 (q3 − q4) + q3q4 + q1 (q2 − q3 + q4)) |q1 − q2 + q3 − q4|3 − 6q1q2q3q4 |q1 − q2 + q3 − q4|
+ (q2 (q4 − q3)− q3q4 + q1 (q2 − q3 + q4)) |q1 + q2 − q3 + q4|3 − 6q1q2q3q4 |q1 + q2 − q3 + q4|
+ (q3q4 − q2 (q3 + q4) + q1 (−q2 + q3 + q4)) |q1 − q2 + q3 + q4|3 − 6q1q2q3q4 |q1 − q2 + q3 + q4|

+ (q2 (q3 + q4)− q3q4 + q1 (−q2 + q3 + q4)) |q1 + q2 − q3 − q4|3 − 6q1q2q3q4 |q1 + q2 − q3 − q4|
)

+ 1
96

(
sgn(q1 + q2 − q3 − q4) (q1 + q2 − q3 − q4)2

(
q3
1 + 3q1

(
q2
2 − 6 (q3 + q4) q2 + q2

3 + q2
4 + 6q3q4

)
+ q3

2 + 3 (q2 − q3 − q4) q2
1 − (q3 + q4)3 − 3q2

2 (q3 + q4) + 3q2
(
q2
3 + 6q4q3 + q2

4
) )

+ sgn(q1 + q2 − q3 + q4) (q1 + q2 − q3 + q4)2
(
q3 (q1 + q2 − q3 + q4)2 − q1 (q1 + q2 − q3 + q4)2

− q2 (q1 + q2 − q3 + q4)2 − q4 (q1 + q2 − q3 + q4)2 + 12q1q2(q3 − q4) + 12(q1 + q2)q3q4

)
+ sgn(q1 − q2 + q3 + q4) (q1 − q2 + q3 + q4)2

(
q2 (q1 − q2 + q3 + q4)2 − q1 (q1 − q2 + q3 + q4)2

− q3 (q1 − q2 + q3 + q4)2 − q4 (q1 − q2 + q3 + q4)2 + 12q1q2(q3 + q4) + 12(q2 − q1)q3q4

)
+ sgn(q1 + q2 + q3 − q4) (q1 + q2 + q3 − q4)2

(
3
(
q2
2 + 6q3q2 + q2

3
)
q4 − q3

1 − 3 (q2 + q3 − q4) q2
1

− 3
(
q2
2 + 6q3q2 + q2

3 + q2
4 − 6 (q2 + q3) q4

)
q1 − (q2 + q3)3 + q3

4 − 3 (q2 + q3) q2
4

)
+ sgn(q1 − q2 − q3 + q4) (q1 − q2 − q3 + q4)2

(
q3
1 + 3

(
q2
2 + 6q3q2 + q2

3
)
q4 − 3 (q2 + q3 − q4) q2

1

+ 3
(
q2
2 + 6q3q2 + q2

3 + q2
4 − 6 (q2 + q3) q4

)
q1 − (q2 + q3)3 + q3

4 − 3 (q2 + q3) q2
4

)
+ sgn(q1 − q2 + q3 − q4) (q1 − q2 + q3 − q4)2

(
q3
1 − 3q2

(
q2
3 − 6q4q3 + q2

4
)
− 3 (q2 − q3 + q4) q2

1

+ 3
(
q2
2 + 6 (q4 − q3) q2 + q2

3 + q2
4 − 6q3q4

)
q1 − q3

2 + (q3 − q4)3 + 3q2
2 (q3 − q4)

)
+ sgn(q1 − q2 − q3 − q4) (−q1 + q2 + q3 + q4)2

(
3q2
(
q2
3 + 6q4q3 + q2

4
)
− q3

1 + 3 (q2 + q3 + q4) q2
1

− 3
(
q2
2 + 6 (q3 + q4) q2 + q2

3 + q2
4 + 6q3q4

)
q1 + q3

2 + (q3 + q4)3 + 3q2
2 (q3 + q4)

))
. (D3)

As discussed in [22], there are four different cases of phys-
ical interest for which these expressions simplify consid-
erably. They are listed in (A.15)-(A.25) of that paper
and can be checked explicitly using e.g. Mathematica.
For completeness, let us repeat those expressions here:

Assuming for all cases (without loss of generality) that
q1 > q2 and q3 > q4, we have [22]:

Case 1: : q1 + q2 > q3 + q4 , q1 + q4 > q2 + q3 and

q1 ≤ q2 + q3 + q4

D1 = 1
2 (q2 + q3 + q4 − q1) , (D4a)

D2 = 1
12
(
(q1 − q2)3 + 2(q3

3 + q3
4)

−3(q1 − q2)(q2
3 + q2

4)
)
, (D4b)

D3 = 1
60

(
q5
1 − 5q3

1q
2
2 + 5q2

1q
3
2 − q5

2 − 5q3
1q

2
3 + 5q3

2q
2
3

+ 5q2
1q

3
3 + 5q2

2q
3
3 − q5

3 − 5q3
1q

2
4 + 5q3

2q
2
4

+ 5q3
3q

2
4 + 5q2

1q
3
4 + 5q2

2q
3
4 + 5q2

3q
3
4 − q5

4

)
.

(D4c)
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The unphysical case q1 > q2 + q3 + q4 yields D1 =
D2 = D3 = 0 here.

Case 2: : q1 + q2 > q3 + q4 and q1 + q4 < q2 + q3

D1 = q4 , (D5a)

D2 = q3
4
3 , (D5b)

D3 = q3
4

30
(
5q2

1 + 5q2
2 + 5q2

3 − q2
4
)
. (D5c)

Case 3: : q1 + q2 < q3 + q4 , q1 + q4 < q2 + q3 and
q3 ≤ q1 + q2 + q4

D1 = 1
2 (q1 + q2 + q4 − q3) , (D6a)

D2 = 1
12
(
−(q1 + q2)3 − 2q3

3 + 2q3
4

+3(q1 + q2)(q2
3 + q2

4)
)
, (D6b)

and D3 equals Eqn. (D4c) with variables q1 ↔ q3,
q2 ↔ q4 exchanged. The unphysical case q3 > q1 +
q2 + q4 yields D1 = D2 = D3 = 0 here.

Case 4: : q1 + q2 < q3 + q4 and q1 + q4 > q2 + q3

D1 = q2 , (D7a)

D2 = q2

6
(
3q2

3 + 3q2
4 − 3q2

1 − q2
2
)
, (D7b)

D3 = q3
2

30
(
5q2

1 + 5q2
3 + 5q2

4 − q2
2
)
. (D7c)
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