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We investigate the potential of the long-baseline Deep Underground Neutrino Experiment

(DUNE) to study large-extra-dimension (LED) models originally proposed to explain the

smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard

model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of

the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence

affect their propagation. We show that, as far as DUNE is concerned, the LED model is

indistinguishable from a (3 + 3N)-neutrino framework for modest values of N ; N = 1 is

usually a very good approximation. Nonetheless, there are no new sources of CP -invariance

violation other than one CP -odd phase that can be easily mapped onto the CP -odd phase

in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED

framework, and explore the capability of DUNE to differentiate the LED model from the

three-neutrino scenario and from a generic (3 + 1)-neutrino model.

PACS numbers: 14.60.Pq, 14.60.St

I. INTRODUCTION

Neutrino oscillation experiments have revolutionized our understanding of the neutrino sector of

the standard model (SM). It is now established that at least two of the three known neutrinos are

massive, and that the mass and flavor eigenstates are distinct. There are still several unanswered

questions in neutrino physics, including the neutrino mass hierarchy, the potential existence of new

neutrino states, and the status of CP invariance in the lepton sector. To address these questions

and further investigate the neutrino oscillation phenomenon, we need a new generation of neutrino

oscillation experiments. The long-baseline Deep Underground Neutrino Experiment (DUNE) in

the U.S. [1, 2] and the Hyper-Kamiokande (HyperK) experiment in Japan [3] are proposed to
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answer these and several other questions, and are poised to provide qualitatively better and more

precise tests of the current three-massive-neutrinos paradigm.

Although the absolute neutrino masses are not yet determined, we can indirectly infer from

cosmic surveys that the known neutrino masses are below the eV-scale [4]. Similar bounds, albeit

weaker but more direct, come from kinematical probes of nonzero neutrino masses [5, 6]. The

fact that neutrino masses are much smaller than all known fermion masses in the SM is widely

interpreted as evidence that the mechanism behind neutrino masses is different from that of all

other known particles. The hypothesis that there are more, compactified dimensions of space,

and that these are large (i.e., much larger than the inverse of the Planck mass) was introduced

in order to address the infamous SM hierarchy problem [7–9], and also provides a mechanism for

understanding why neutrino masses are parametrically smaller than charged-fermion masses. In

these large-extra-dimension (LED) models, it is natural to assume that singlets of the SM gauge

group, such as the graviton or the right-handed neutrino states, can propagate unconstrained in

all dimensions, while the SM-charged objects are confined to a four-dimensional spacetime. If

there are right-handed neutrino fields that propagate in the bulk (or a subset of the bulk), the

equivalent four-dimensional neutrino Yukawa couplings are suppressed relative to charged-fermion

Yukawa couplings by a factor proportional to the volume of the extra dimensions [10, 11]. In these

scenarios, neutrinos are very light for the same reason gravity appears to be very weakly coupled.

The Kaluza-Klein (KK) modes of the higher-dimensional right-handed neutrino fields behave

as an infinite tower of sterile neutrinos. If these are light enough, one expects deviations from

the three-massive-neutrinos paradigm in neutrino oscillation experiments. The neutrino oscillation

phenomenology of LED models has been extensively studied in the literature (see, for example,

Refs. [12–18]). It has also been proposed [19] that the reactor anomaly can be explained within the

LED framework. More generically, the equivalence between the LED model and a framework with

several sterile neutrinos was discussed in [20]. Other phenomenological aspects of LED models and

their application to nonzero neutrino masses have also been explored in depth in the literature (see

for example, Refs. [21, 22]).

We study the potential of the Deep Underground Neutrino Experiment (DUNE) to exclude or

observe the effects of the LED model, and investigate how well DUNE can constrain the LED

parameters. Highlights include the discussion of CP -invariance violation phenomena in the LED

model using the DUNE experiment. Several other new physics scenarios can be studied using

the precise measurements of the DUNE experiment. The capability of DUNE to test the one-

sterile-neutrino hypothesis was recently explored in detail in Ref. [23, 24] while the effects of non-
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standard interactions (NSI) of neutrinos were investigated in [25–28]. Here, we also explore the

ability of DUNE to differentiate the LED hypothesis from the three-neutrino and the four-neutrino

hypotheses.

The paper is organized as follows: We discuss the LED formalism and the related neutrino

oscillation probabilities in Section II. The sensitivity of DUNE to the LED hypothesis is studied

in Section III, and we demonstrate the capability of DUNE to measure non-zero LED parameters

in Section IV. Section V is devoted to studying the ability of DUNE to differentiate qualitatively

distinct scenarios. We summarize our results and offer some conclusions in Section VI.

II. FORMALISM AND OSCILLATION PROBABILITIES

In this section we discuss the neutrino oscillation probabilities in LED models, and restrict our

discussion to models with one relevant extra-dimension. We extend the SM with three massless

five-dimensional gauge singlet fermions Ψα ≡ (ψαL, ψ
α
R) associated to the three active neutrinos

ναL. The indices α correspond to e, µ, τ , in spite of the fact that there are no charged leptons

associated to Ψα. The fifth dimension is compactified with periodic boundary conditions in such

a way that, from a four-dimensional point of view, Ψα can be decomposed into a tower of Kaluza-

Klein (KK) states ψ
(n)
L,R (n = 0,±1, · · · ,±∞). Redefining the new fields as ν

α(0)
R ≡ ψ

α(0)
R and

ν
α(n)
L,R ≡

(
ψ
α(n)
L,R +ψ

α(−n)
L,R

)
/
√

2, (n = 1, ...,∞), the mass terms of the Lagrangian, after electroweak

symmetry breaking, are [10, 11, 29]:

Lmass = mD
αβ(ν̄

α(0)
R νβL +

√
2

∞∑
n=1

ν̄
α(n)
R νβL) +

∞∑
n=1

n

RED
ν̄
α(n)
R ν

α(n)
L + h.c.,

≡
3∑
i=1

N̄ i
RM

iN i
L + h.c., (II.1)

where mD is the Dirac mass matrix proportional to the neutrino Yukawa couplings and RED is

the radius of compactification. Note that all massive fermions are Dirac fermions. It is convenient

to define pseudo mass eigenstates N i
L(R) by rotating the neutrino states to a basis in which mD is

diagonal:

N i
L(R) =

(
νi(0), νi(1), νi(2), · · ·

)T
L(R)

, and M i =


mD
i 0 0 0 . . .

√
2mD

i 1/RED 0 0 . . .
√

2mD
i 0 2/RED 0 . . .

...
...

...
...

. . .

 , (II.2)
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where mD
i are the elements of the diagonalized Dirac mass matrix (mD)d = diag(mD

1 ,m
D
2 ,m

D
3 ).

The relation between the active neutrinos in the SM and the corresponding pseudo mass eigenstates

is given by

ναL =
3∑
i=1

Uαiν
i(0)
L , (α = e, µ, τ), (II.3)

where the 3 × 3 unitary matrix U describes the mismatch between the flavor and pseudo mass

eigenstates of neutrinos. This matrix is parametrized by three mixing angles (θ12, θ13, θ23) and one

Dirac CP -violating phase δ13. In the limit where mD × RED → 0, the KK modes and the active

neutrinos decouple, and U is the standard neutrino mixing matrix for Dirac neutrinos. We are

interested in values of RED such that R−1ED is larger than mD
i , but small enough that nontrivial

effects might be observed in long-baseline oscillation experiments.

The true neutrino masses are found by diagonalizing the n×nmatrixM †iMi with an n×n unitary

matrix S as: S†iM
†
iMiSi. Therefore, the true mass eigenstates are N ′i L =

(
ν
′(0)
i , ν

′(1)
i , ν

′(2)
i , · · ·

)T
L

=

S†iNiL. Using Eq. (II.3) we can obtain a relation between the active neutrinos of the SM and the

mass eigenstates of the KK neutrinos,

ναL =

3∑
i=1

Uαiν
(0)
iL =

3∑
i=1

Uαi

∞∑
n=0

S0n
i ν
′(n)
iL , (α = e, µ, τ), (II.4)

where

(
S0n
i

)2
=

2

1 + π2
(
mD
i RED

)2
+
(
λ
(n)
i

)2
/
(
mD
i RED

)2 . (II.5)

Above, (λ
(n)
i )2 are the eigenvalues of the matrices R2

EDM
†
iMi, and are obtained by solving the

following transcendental equation [10, 12, 29]:

λ
(n)
i − π

(
mD
i RED

)2
cot
(
πλ

(n)
i

)
= 0. (II.6)

The roots of this transcendental equation satisfy the relation n ≤ λ
(n)
i ≤ (n+ 1/2), so the masses

of the neutrino states in the LED model are

m
(n)
i =

λ
(n)
i

RED
' n

RED
, (n = 0, 1, · · · ), (II.7)

where n = 0 and n ≥ 1 correspond to the mostly active and mostly sterile neutrinos, respectively.

As mentioned earlier, we are interested in R−1ED � mD.

The Dirac masses (mD
1 ,m

D
2 ,m

D
3 ) which appear in the Hamiltonian are not the masses of the

mostly active neutrinos. They are, however, related to the mostly active neutrino masses and
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are hence constrained by neutrino oscillation data, along with RED. The solar and atmospheric

mass-squared differences are

∆m2
sol ≡ ∆m2

21 =

(
λ
(0)
2

)2
−
(
λ
(0)
1

)2
R2

ED

, and ∆m2
atm ≡ |∆m2

31| =
∣∣∣
(
λ
(0)
3

)2
−
(
λ
(0)
1

)2
R2

ED

∣∣∣. (II.8)

We can solve the equations above and replace two among (mD
1 ,m

D
2 ,m

D
3 , RED) with ∆m2

21 and

∆m2
31, which are constrained by experiment.∗ Hence, the LED framework can be characterized

by the standard oscillation parameters – θ12, θ13, θ23, δ13, ∆m2
21, and ∆m2

31 – and two new free

parameters, which we choose to be m0 ≡ mD
1(3) and RED, for the NH (IH) case.

Neutrino flavor evolution in the LED model is governed by the following equation [20]:

i
d

dr
NiL =

[
1

2Eν
M †iMiNiL +

3∑
j=1

 Vij 01×n

0n×1 0n×n

NjL
]
n→∞

, Vij =
∑

α=e,µ,τ

U∗αiUαj

(
δαeVCC + VNC

)
,

(II.9)

where VCC =
√

2GFNe and VNC = −
√

2/2GFNn are the charged- and neutral-current matter

potentials, GF is the Fermi constant and Ne(n) is the electron (neutron) number density along

the trajectory of the neutrinos. For the purposes of this manuscript, we assume the electron and

neutron number densities to be the same and constant. As usual, Uαi ↔ U∗αi and the sign of the

matter potentials are reversed when one considers the flavor evolution of antineutrinos.

The equivalence between the LED model and a (3 + 3N) sterile framework with N KK modes

was explored in detail in Ref. [20]. The flavor and mass eigenstates in a (3 + 3N) framework are

related by a (3 + 3N)× (3 + 3N) unitary matrix W ,

NαL =

3+3N∑
l=1

WαlN ′l L, (II.10)

where NαL =
(
νe, νµ, ντ , νs1 , νs2 , νs3 , · · ·

)T
L

, in which νsi are the sterile eigenstates. Comparing

Eqs. (II.4) and (II.10),

ναL =

3∑
i=1

Uαi

N∑
n=0

S0n
i ν
′(n)
iL =

3∑
i=1

N∑
n=0

Wα(i+3n)ν
′(n)
iL , (α = e, µ, τ), (II.11)

∗ We follow the discussion in [16]. Explicitly, for the normal hierarchy (NH) case (λ
(0)
1 < λ

(0)
2 < λ

(0)
3 ), we use Eq. (II.6)

to find λ
(0)
1 as a function of (mD

1 , RED) while Eq. (II.8) is used to express λ
(0)

2(3) as a function of λ
(0)
1 . Eq. (II.6)

then provides a relation between mD
2(3) and (mD

1 , RED). For the inverted hierarchy (IH) case (λ
(0)
3 < λ

(0)
2 < λ

(0)
1 )

we follow the same procedure to express mD
1(2) as a function of (mD

3 , RED). Note that the equations above only

have solutions for 0 ≤ λ(0)
i ≤ 0.5.
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so

Wα(i+3n) = UαiS
0n
i , (i = 1, 2, 3), (α = e, µ, τ), (n = 0, 1, · · · , N). (II.12)

For R−1ED � mD we have |S0n
i |2 ∝ n−2, so KK modes slowly decouple as they get heavier. This

implies that there is a finite value of N above which the 3 + 3N model is indistinguishable from

the LED model. In practice, we have considered 2 KK modes in our calculations and have verified

that the inclusion of more KK modes does not change our results. In fact, we have verified that,

for the simulations performed here, 1 KK mode is sufficient. We further justify this approximation

below.

When matter effects can be ignored, the oscillation probabilities are

P (να → νβ) = δαβ − 4
∑
l>m

<
[
WαlW

∗
βlW

∗
αmWβm

]
sin2

(∆m2
lmL

4Eν

)
+ 2

∑
l>m

=
[
WαlW

∗
βlW

∗
αmWβm

]
sin
(∆m2

lmL

2Eν

)
, (l,m = 1, · · · , 3 + 3N),

(II.13)

where L is the oscillation baseline, Eν is the neutrino energy, and ∆m2
lm ≡ m2

l −m2
m with ml=i+3n ≡

m
(n)
i =

λ
(n)
i

RED
. Matter effects will modify the oscillation probabilities in a well-known way.†

CP -invariance violation in the neutrino sector manifests itself as an asymmetry between the

oscillation probabilities of neutrinos and antineutrinos. In the three-neutrino scenario, the only

source of CP violation (if the neutrinos are Dirac particles, which is the case here) is the phase

δ13 in the leptonic mixing matrix U . In a generic 3 + 3N massive Dirac neutrinos framework there

are (3N + 2)(3N + 1)/2 − 1 CP -odd phases beyond δ13 associated to the (3 + 3N) × (3 + 3N)

unitary mixing matrix. In the LED model, however, the (3 + 3N)× (3 + 3N) unitary matrix W is

not generic. As we can see from Eq. (II.12), all the elements of W are proportional to Uαi so all

the new CP phases are functions of δ13. Hence, while many of the elements of W have nonzero

CP -odd phases, no new CP -violating parameters are introduced within the LED framework. In

other words, CP -violating phenomena are governed by the higher-dimensional neutrino Yukawa

† Matter effects can lead to resonant flavor-conversion. For the effective two-neutrino system ν
′(n)
i −ν′(0)i in the LED

model, the resonance condition occurs for very high neutrino energies [20, 30]:

Eres
ν =

(
λ
(n)
i

)2

−
(
λ
(0)
i

)2

2VNCR2
ED

' n2

2VNC

R−1
ED

2 eV
' n2 TeV. (II.14)

We are interested in the DUNE experiment, where neutrino energies are of order 1 GeV, and hence do not need
to worry about the the resonant conversion of the active states into sterile KK modes.
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couplings, which define a 3×3 matrix. This is identical to the familiar four-dimensional case when

the neutrinos are Dirac fermions.

For illustrative purposes, we evaluate the S matrix numerically for RED = 5 × 10−5 cm =

(0.38 eV)−1 and m0 = 5× 10−2 eV. The corresponding neutrino mixing matrix W is, for the NH

and IH, respectively,

W
(NH)
αi =


0.97Ue1 0.97Ue2 0.94Ue3 0.18Ue1 0.19Ue2 0.27Ue3 0.09Ue1 0.09Ue2 0.14Ue3 . . .

0.97Uµ1 0.97Uµ2 0.94Uµ3 0.18Uµ1 0.19Uµ2 0.27Uµ3 0.09Uµ1 0.09Uµ2 0.14Uµ3 . . .

0.97Uτ1 0.97Uτ2 0.94Uτ3 0.18Uτ1 0.19Uτ2 0.27Uτ3 0.09Uτ1 0.09Uτ2 0.14Uτ3 . . .
...

...
...

...
...

...
...

...
...

. . .

 ,

W
(IH)
αi =


0.95Ue1 0.94Ue2 0.97Ue3 0.26Ue1 0.27Ue2 0.18Ue3 0.13Ue1 0.14Ue2 0.09Ue3 . . .

0.95Uµ1 0.94Uµ2 0.97Uµ3 0.26Uµ1 0.27Uµ2 0.18Uµ3 0.13Uµ1 0.14Uµ2 0.09Uµ3 . . .

0.95Uτ1 0.94Uτ2 0.97Uτ3 0.26Uτ1 0.27Uτ2 0.18Uτ3 0.13Uτ1 0.14Uτ2 0.09Uτ3 . . .
...

...
...

...
...

...
...

...
...

. . .

 ,

(II.15)

where Uαi are parameterized by θij , i, j = 1, 2, 3, i < j, in the usual way [31]. From Eq. (II.15), it

is easy to see that Wαi ∼ Uαi for the mostly active states (i = 1, 2, 3), while the top-left (3 × 3)-

submatrix of W is not quite unitary. The slow decrease of S as the KK-number increases can be

readily observed. It is also easy to see that the effects of the mass eigenstates 7, 8, 9, proportional

to |U |2 are suppressed relative to those of states 4, 5, 6 by a factor of four. One can quickly check

that all are significantly smaller than |Ue3|2 (|0.14Ue1|2 ∼ 0.01 is the largest |Uαi| for i = 7, 8, 9 in

Eq. (II.15)). Furthermore, the oscillation frequencies associated to these states are also four times

larger than those from the first KK mode and, for the RED values of interest, their effects always

average out at long-baseline experiments like DUNE. For all these reasons, one set of KK modes is,

for DUNE neutrino energies and LED parameters of interest, a good proxy for the LED scenario.

As mentioned earlier, all results discussed henceforth were computed including the effects of two

KK modes (hence a 3+6 model).

When simulating data consistent with the LED hypothesis, we have to include input values for

the θij parameters. When doing that, we try to emulate as well as possible the current best-fit

values, which we take to represent the existing neutrino data. In order to do that, we assume that

the information that the current data provide for the three-neutrino mixing matrix elements Uαi

applies to Wαi for i = 1, 2, 3. Hence, the best-fit value for the LED parameter sin2 θ13, for example,

is not identical to that of the three-neutrino parameter sin2 θ13 = 0.0219 [31]. They are, however,
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similar and related. For R−1ED = 0.38 eV, m0 = 5 × 10−2 eV, and the NH, the best fit value for

(sin2 θ13)LED = 0.0219/0.942 = 0.025 (see Eq. (II.15)). This recipe cannot be followed exactly, so we

decide on the best-fit, input values for the LED θij parameters by equating the |We2|, |We3|, |Wµ3|

to the best-fit values of |Ue2|, |Ue3|, |Uµ3| obtained in the three-neutrino framework.

To understand the effect of the LED parameters on the oscillation of neutrinos, we show in Fig. 1

the probabilities of νµ → νe (top-left) and ν̄µ → ν̄e (top-right) as well as the survival probabilities

of νµ (bottom-left) and ν̄µ (bottom-right) in the energy range of DUNE for the three-neutrino

scheme and the LED formalism with dashed and solid curves, respectively. In all the panels we

have fixed the parameter ∆m2
j1, j = 2, 3 and θij , i, j = 1, 2, 3, i < j, to the best fit values reported

in Ref. [31] (see also Table I), for 3 different values of δ13. For the LED hypothesis, we further

choose m0 = 5 × 10−2 eV and R−1ED = (5 × 10−5 cm)−1 = 0.38 eV. We see that for fixed values

of θij , the oscillation probabilities in the LED case are suppressed with respect to the three-flavor

scenario, as discussed above. This effect can be partially remedied by increasing the values of the

LED θij parameters. Fig. 1 also clearly depicts the fast oscillations associated to the presence of

the KK modes.

III. EXCLUDING THE LED HYPOTHESIS

In this section we investigate the sensitivity of DUNE to the model described in Sec. II. We

assume, as laid out in [1, 2], that DUNE is comprised of a 34-kiloton liquid argon detector located

1300 km from the neutrino source at Fermilab. The neutrino or antineutrino beam is produced

by directing a 1.2 MW beam of protons onto a fixed target. We use the neutrino fluxes and

reconstruction efficiencies reported in Ref. [32]‡ to calculate event yields, as well as the neutrino-

nucleon cross-sections reported in Ref. [33]. The neutrino energies range from 0.5 GeV to 20.0

GeV with maximum flux at around 3.0 GeV. Events are binned in 0.25 GeV bins from 0.5 GeV

to 8.0 GeV, resulting in 30 independent counting measurements for each of the four data samples

discussed below. Our analysis thus contains 120 degrees of freedom before subtracting the number

of parameters describing any particular hypothesis. We simulate a detector resolution of σ[GeV] =

0.15/
√
E[GeV] for electrons and σ[GeV] = 0.20/

√
E[GeV] for muons, and assume three years of

operation each for the neutrino beam and the antineutrino beam.

‡ These are similar but not identical to the ones discussed in Ref. [2]. Ref. [2] reports updated reconstruction
efficiencies which lead to reduced neutral current backgrounds for the appearance channels. In this light, our
results can be viewed as somewhat conservative.
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FIG. 1: Oscillation probabilities assuming a three-neutrino framework (dashed) and an LED hypothesis

with m0 = 5× 10−2 eV and R−1
ED = 0.38 eV (RED = 5× 10−5 cm), for the normal neutrino mass hierarchy,

∆m2
13 > 0. The values of the other oscillation parameters are tabulated in Table I, see text for details. The

top row displays appearance probabilities P (νµ → νe) (left) and P (ν̄µ → ν̄e) (right), and has curves shown

for δ13 = −π/2 (green), δ13 = 0 (gray), and δ13 = π/2 (purple). The bottom row displays disappearance

probabilities P (νµ → νµ) (left) and P (ν̄µ → ν̄µ) (right).

When generating data assuming the standard three-neutrino framework, we assume the best-fit

values for the oscillation parameters from Ref. [31], summarized in Table I. Since the neutrino

mass hierarchy is unknown, we simulate data using either the normal hierarchy (NH) or inverted

hierarchy (IH). We assume, however, that the hierarchy will be known by the time DUNE collects

data and therefore analyze the simulated data with the correct hierarchy hypothesis.

Fig. 2 displays expected event yields for neutrino appearance (P (νµ → νe), top-left), antineu-

trino appearance (P (ν̄µ → ν̄e), top-right), neutrino disappearance (P (νµ → νµ), bottom-left), and

antineutrino disappearance (P (ν̄µ → ν̄µ), bottom-right). In each panel, the expected event yield at
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Parameter Normal Hierarchy Inverted Hierarchy

sin2 θ12 0.304± 0.014 0.304± 0.014

sin2 θ13 (2.19± 0.12)× 10−2 (2.19± 0.12)× 10−2

sin2 θ23 0.514+0.055
−0.056 0.511± 0.055

∆m2
21 (7.53± 0.18)× 10−5 eV2 (7.53± 0.18)× 10−5 eV2

∆m2
31 (2.51± 0.06)× 10−3 eV2 −(2.41± 0.06)× 10−3 eV2

|Ue2|2 0.297± 0.014 0.297± 0.014

TABLE I: Best-fit values of three-neutrino mixing parameters assuming the normal or inverted mass hier-

archy. Values come from the 2015 update to Ref. [31], and the parameter |Ue2|2, which is used later in our

analysis, is derived from the fits to sin2 θ12 and sin2 θ13. While there exist, currently, weak constraints on

the CP -odd parameter δ13, we work under the assumption that it is unconstrained.

DUNE is displayed for a three-neutrino hypothesis with parameters from Table I for the normal hi-

erarchy, δ13 = 0, and for a non-zero LED hypothesis with all homonymous parameters the same plus

m0 = 5× 10−2 eV and (RED)−1 = 0.38 eV.§ The dominant backgrounds are neutral-current scat-

tering of muon-neutrinos (“νµ NC”); charged-current scattering of tau-neutrinos (“νµ → ντ CC”);

neutral-current scattering of unoscillated muon-type neutrinos (“νµ → νµ NC”); and charged-

current scattering of unoscillated, contaminant electron-type neutrinos (“νe → νe CC”). The rates

of these processes are estimated from Ref. [32], and are not recalculated in our analyses for dif-

ferent hypotheses, as 1% signal and 5% background normalization uncertainties overwhelm any

noticeable effects.

We analyze pseudodata simulated under the standard three-neutrino framework plus δ13 = 0

with the LED hypothesis. The resulting 95% confidence level (CL) limit in the R−1ED–m0 plane

is shown in black in Fig. 3(a) for the NH and in Fig. 3(b) for the IH. In the analysis, following

Refs. [23, 27], we include priors on the solar parameters in order to take constraints from solar

and KamLAND data into account. More concretely, we add Gaussian priors on ∆m2
21 using the

information in Table I, and on |We2|2 using the information for |Ue2|2 tabulated in Table I. In the

analysis, we marginalize over all parameters not made explicit in the figures. We have repeated

the analysis for several nontrivial input values of δ13 and find the corresponding exclusion limits

to be similar to the ones depicted in Fig. 3.

The dashed mauve and blue curves in Fig. 3 show the exclusion limits at 95% CL from IceCube-

§ This is done for illustrative purposes only. The set of LED parameters that best mimics the three-flavor paradigm
will have best-fit values of, for example, θij , i, j = 1, 2, 3, i < j, that are different from the input three-flavor values
for θij , as discussed earlier.
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40 data and IceCube-79 data, respectively, as calculated in Ref. [20]. The dashed gold curves are

the same for a combined analysis of T2K and Daya Bay performed in Ref. [18]. The green regions

are preferred at 95% CL by short-baseline oscillation experiments according to analysis published

in Ref. [19]. All these curves have, to zeroth order, the same shape as the exclusion curve we obtain

for DUNE. This happens because the ratio of m0 and R−1ED, when small, can be mapped into an

effective mixing angle which governs most oscillation phenomena, as discussed in Ref. [20].

The dot-dashed burgundy curves in Fig. 3 show the expected 90% CL exclusion limit of the

β-decay experiment KATRIN, estimated in Ref. [16]. The dependence on m0 and on R−1ED is

more complicated for β-decay experiments than for oscillation experiments as the former rely on

kinematic information from the electrons emitted in the decay.

The gray shaded regions are excluded on the basis of the mass-squared differences ∆m2
21 and

∆m2
31. As discussed in Sec. II, ∆m2

i1, i = 2, 3 characterize the differences between the lowest-lying¶

physical masses-squared differences, [(λ
(0)
i )2−(λ

(0)
1 )2]/R2

ED. The transcendental equation Eq. (II.6)

can only be satisfied if 0 < λ
(0)
i < 0.5. Therefore, a point in the R−1ED–m0 plane is only physical if

all λ
(0)
i implied by ∆m2

21 and ∆m2
31 meet this requirement; the unphysical points define the gray

shaded regions [16].

The dotted gray lines are curves along which the sum of the masses of the three mostly active

eigenstates,
∑

im
(0)
i , is 0.25 eV. This value is roughly the same as the current upper bound on the

sum of the neutrino masses from PLANCK [4]. A proper analysis of the cosmology of the LED

framework is outside the scope of this work. However, we believe the dotted gray lines capture the

spirit of potential cosmological bounds in the R−1ED–m0 plane, especially if one allows for possible

extensions of the LED scenario under consideration here.

IV. MEASURING LED PARAMETERS

In this section we simulate data consistent with the LED hypothesis and investigate how well

DUNE is capable of measuring the new-physics parameters m0 and R−1ED in tandem with the other

oscillation parameters, introduced in Sec. II. As input, we use the values for ∆m2
i1, i = 2, 3

tabulated in Table I, for the normal and inverted hierarchies, and choose δ13 = π/3, m0 = 5×10−2

eV, and R−1ED = 0.38 eV. We choose these values to be in the region excluded by DUNE shown

¶ Observed oscillations cannot be due to mixing among mass states from different KK modes. The mixing with the
other low-lying state(s) would be large enough to produce a deviation from the three-standard-paradigm that is
inconsistent with existing neutrino oscillation data.



12

in Fig. 3. As discussed earlier, we choose θij , i, j = 1, 2, 3, i < j, such that |We2|, |We3|, |Wµ3|

agree with the best-fit values of |Ue2|, |Ue3|, |Uµ3| under the three-flavor hypothesis. As discussed

in Sec. III, we add Gaussian priors for the solar parameters, identified here as ∆m2
21 and |We2|2.

The results of these fits are depicted in Fig. 4. In the analysis, we marginalize over all parameters

not made explicit in the figures.

Fig. 4 reveals that, at least at 99% CL, a lower bound on R−1ED can be obtained in both the

normal and inverted hierarchy scenarios, while a lower bound on m0 can be set at least at 95% CL

for both mass hierarchies. Additionally, if one were to place an independent bound on different

combinations of neutrino masses (from, e.g., precision measurements of beta-decay spectra), a 99%

CL upper bound on R−1ED (or a lower bound on RED) could be obtained.

Finally, we have verified that the presence of the LED parameters m0, R
−1
ED does not significantly

impact the sensitivity with which the standard oscillation parameters are measured (see, e.g.,

Refs. [23, 32] for more details). This includes the CP -odd parameter δ13. We have also checked

that this result does not depend strongly on the input value of δ13.

V. DIFFERENTIATING NEW PHYSICS SCENARIOS

In this section we address the capabilities of DUNE to identify whether there is physics beyond

the three-flavor paradigm and identify the nature of the new physics, assuming new physics is indeed

present. To that effect, in Sec. V A, we first simulate data consistent with the LED hypothesis, as

we did in Sec. IV, and try to fit the data with the three-neutrino hypothesis. We then ask whether

it is possible to differentiate the LED hypothesis from other new physics scenarios. In particular,

we compare the LED hypothesis with that of a fourth neutrino mass eigenstate. In Sec. V B, we

address whether a four-neutrino model can mimic the LED hypothesis, while in Sec. V C we ask

the opposite question: can the LED hypothesis mimic generic four-neutrino models?

A. Three-Neutrino Fit to the LED Scenario

In order to gauge whether DUNE can rule out the standard paradigm, we simulate data assuming

the LED hypothesis is correct, exactly as described in Sec. IV, and attempt to fit the data assuming

the standard, three-neutrino paradigm. The fit is performed for two simulated data sets, consistent

with the normal and inverted hierarchies respectively. In order to gauge the quality of the fit, we

calculate the minimum of the χ2 function, χ2
min, and compare it to the number of degrees of
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freedom, dof. We define an equivalent nσ discrepancy between the data and hypothesis assuming

a χ2 distribution function with dof degrees of freedom. In the fits, we include the Gaussian priors

on |Ue2|2 and ∆m2
21, as discussed in the previous sections (see also [23, 27]).

For the normal hierarchy, the result of the fit is χ2
min/ dof = 210/114, or a 5.3σ discrepancy –

a very poor fit. For the inverted hierarchy, the fit is χ2
min/ dof = 208/114, or a 5.2σ discrepancy

– also a very poor fit. These results are, of course, not surprising. According to Fig. 3, the input

values of R−1ED and m0 are far inside the region of LED parameter space DUNE can exclude at 95%

CL.

B. Four-Neutrino Fit to the LED Scenario

If data are consistent with the LED hypothesis so the standard paradigm is ruled out, it is not

obvious that DUNE can establish that there are extra dimensions. The LED hypothesis is identical

to a 3+3N active-plus-sterile-neutrinos scenario for large enoughN . In fact, we argued in the Sec. II

that, for the values of the parameters of relevance here, N = 1 is already a good approximation to

the LED model. Here, we attempt to fit the simulated LED model to a four-neutrino hypothesis,

using the framework described in Ref. [23].∗ While four neutrinos is less than the six neutrinos

that are known to be a good approximation to the LED hypothesis, there is reason to suspect

that, at DUNE and given the values of m0 and R−1ED of interest, the four-neutrino hypothesis is also

a good approximation to the LED model. The reason is as follows. At the DUNE baseline and

given DUNE neutrino energies, oscillation effects associated to the KK modes average out. The

same effect can be mimicked by a 3+1 scenario in the limit where the new mass-squared difference

is large. The map between the 3+1 and the LED scenario is not completely straightforward, but

there are enough relevant degrees of freedom in the 3+1 model to accommodate all LED effects

assuming there are no new resolvable mass-squared differences.†

For both the NH and IH, we find a good fit (i.e., χ2
min ' dof). The results of these fits,

one for each hierarchy hypothesis, are summarized in Table II. For both hierarchies, the four-

neutrino hypothesis favors ∆m2
41 > 0.1 eV2, the range in which oscillations associated with the

extra neutrino average out for the energies of interest at DUNE. For this reason, we expect little

sensitivity to the new, potentially observable, CP -violating phase ηs ≡ η2 − η3.

∗ We denote the six mixing angles in a four-neutrino hypothesis as φij (i, j = 1, 2, 3, 4, i < j) to emphasize that they
are not equivalent to the θij of a three-neutrino hypothesis. The CP -violating phase η1 is equivalent to δ13, and
the new phases η2 and η3 contribute in the appearance channel in the combination ηs ≡ η2 − η3.
† Seven, φ12, φ13, φ23, φ14, φ24, η1, ηs in the 3+1 case, compared to six, θ12, θ13, θ23, δ1,m0, RED, in the LED case.
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Parameter Normal Hierarchy (NH) Inverted Hierarchy (IH)

sin2 φ12 0.311+0.028
−0.033 0.287+0.051

−0.010

sin2 φ13
(
2.28+0.60

−0.40

)
× 10−2

(
1.95+0.73

−0.31

)
× 10−2

sin2 φ23 0.523+0.030
−0.042 0.532+0.022

−0.056

sin2 φ14
(
6.20+16.13

−6.20

)
× 10−3

(
9.06+13.27

−9.06

)
× 10−3

sin2 φ24
(
5.65+1.15

−1.31

)
× 10−2

(
6.76+0.36

−2.41

)
× 10−2

sin2 φ?34 0 0

∆m2
21

(
7.50+0.45

−0.33

)
× 10−5 eV2

(
7.68+0.27

−0.51

)
× 10−5 eV2

∆m2
31

(
2.69+0.02

−0.03

)
× 10−3 eV2

(
−2.58+0.03

−0.04

)
× 10−3 eV2

∆m2
41

(
0.57+1.42

−0.37

)
eV2

(
0.56+1.44

−0.36

)
eV2

η1
(
0.54+0.04

−0.36

)
π

(
0.38+0.16

−0.1320

)
π

ηs ≡ η2 − η3
(
−0.03+1.03

−0.97

)
π

(
−0.04+1.04

−0.96

)
π

TABLE II: Results of four-neutrino fits to data generated according to the LED Hypotheses discussed in

Sec. IV. Best-fit values are the result of a 10-dimensional minimization, while quoted 95% CL ranges are

from the marginalized one-dimensional resulting χ2 distributions for each parameter. The star on sin2 φ34

is a reminder that we are not including ντ -appearance information and hence have no sensitivity to sin2 φ34.

For this reason, we fix it to zero. See Ref. [23] for more information.

Fig. 5 displays the result of the fit performed assuming the normal hierarchy in the sin2 φ14

- ∆m2
41 and sin2 φ24 - ∆m2

41 planes. We find a qualitatively similar result when performing the

fit assuming the neutrino mass hierarchy is inverted. Note that the data are consistent with

sin2 φ14 = 0 at 68.3% CL, but sin2 φ24 = 0 is excluded at more than 99% CL. On the other hand,

while it is possible to establish that the new oscillation frequency is large (∆m2
41 > 0.1 eV2 at a high

confidence level), it is not possible to place an upper bound on the new mass-squared difference.

C. LED Fit to Four-Neutrino Scenarios

Here, we generate data assuming four neutrinos exist, and attempt to fit this simulated data

under the LED hypothesis. While it is easy to show that the LED hypothesis, under the cir-

cumstances of interest, can be mimicked by a four-neutrino scenario, the converse is by no means

obvious. In the LED hypothesis, the elements of the (infinitely large) neutrino mixing matrix are

all related and can be uniquely determined once a handful of parameters are fixed, as described in

Sec. II. This means that the LED hypothesis can only perfectly mimic a four-neutrino scenario if

the mixing angles and CP -odd parameters are related in nontrivial ways. In summary, at least at

the oscillation probability level, a generic four-neutrino scenario cannot be mimicked by the LED
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hypothesis.

We pursue the issue by perturbing around the best-fit solutions discussed in the previous sub-

section and tabulated in Table II. First, we generate data assuming the four-neutrino parameters

listed in Table II. In this case, for both the normal and inverted hierarchies, we find that the LED

hypothesis generates a good (χ2
min ' dof) fit, with m0/(RED)−1 ' 0.13, which is what we expect

given the original LED hypothesis we assumed in Sec. IV.

Next, we generate data assuming the four-neutrino parameters listed in Table II but with

∆m2
41 = 10−2 eV2, a value studied more in-depth in Ref. [23]. For this value of ∆m2

41, we expect

the new oscillations due to the fourth neutrino to be relevant for the energies of interest at DUNE. In

this case, for the normal hierarchy, we obtain a fit that has χ2
min/ dof = 349/112, which corresponds

to a discrepancy larger than 8σ – a very poor fit. For the inverted hierarchy, the fit has χ2
min/ dof

= 402/112, corresponding to a larger than 8σ discrepancy – also a very poor fit. In either case,

DUNE would be able to rule out both the three-flavor hypothesis and the LED hypothesis, while

the four-neutrino hypothesis would provide an excellent fit to the data.

We repeat the exercise, this time assuming the input values of all the four-neutrino parameters

are those listed in Table II, except for the new mixing angles. If the input values of sin2 φ14 and

sin2 φ24 are 0.1 and 0.01, respectively, the LED hypothesis also fails to fit the 3+1 scenario, for

either mass hierarchy: χ2
min/ dof = 213/112 (6.0σ) for the NH, χ2

min/ dof = 241/112 (6.7σ) for the

IH. In summary, at DUNE, the LED hypothesis can always be mimicked by the 3+1 scenario, but

the converse is, by no means, generically true.

VI. CONCLUSIONS

The long-baseline Deep Underground Neutrino Experiment (DUNE) [32] has been proposed

to address several outstanding issues in neutrino physics, including the search for new sources of

CP -invariance violation and precision tests of the validity of the standard three-massive-neutrinos

paradigm. In this work, we addressed the ability of DUNE to probe large-extra-dimension (LED)

models. These are scenarios where the smallness of neutrino masses is, at least partially, attributed

to the existence of one extra compactified dimension of space which is accessible to the right-handed

neutrino fields but inaccessible to all fields which are charged under the standard model gauge

group. From a four-dimensional point of view, the Kaluza-Klein (KK) expansion of the right-

handed neutrinos translates into towers of massive sterile neutrino states, with masses inversely

proportional to the size RED of the extra dimension.
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We discussed in some detail the phenomenon of neutrino oscillations at long-baseline experi-

ments in a five-dimensional LED model. We argued that the LED model, for all practical purposes,

maps into a 3 + 3N -neutrino scenario, and that modest values of N – N = 1 or N = 2 – capture

the details of the LED effects at long-baseline oscillation experiments. Nonetheless, we emphasized

that the LED model does not map into a generic 3 + 3N model. Instead, the number of new inde-

pendent mixing parameters is small – six, including four that can be interpreted, to leading order,

as the familiar three-neutrino mixing parameters θ12, θ23, θ13, δ13. Furthermore, we highlighted the

fact that in LED models, there are no new CP -invariance violating parameters; the only source is

the CP -odd phase δ13, which, to zeroth order, plays the same role in the three-neutrino scenario.

We investigated the sensitivity of DUNE to the LED framework. Assuming that the future

DUNE data are consistent with the three-neutrino paradigm (assuming three years of operation

each in neutrino and antineutrino modes), the LED paradigm can be excluded at 95% CL if

R−1ED ≤ 0.54 eV (R−1ED ≤ 0.48 eV) assuming a normal (inverted) hierarchy for the mostly active

neutrinos. More stringent limits are obtained if m0, related to the mass of the mostly active states,

turns out to be large (m0 & 0.01 eV). The reach of DUNE is compared to that of existing and

future probes in Fig. 3.

We also investigated whether DUNE can measure the new physics parameters if its data turn

out to be consistent with the LED model. We found that there are values of m0 and R−1ED for which

DUNE can establish, at least at the 68% CL, that m0 is not zero and that the extra dimension has

a finite size. One concrete example is depicted in Fig. 4.

Finally, assuming DUNE data are inconsistent with the three-neutrino paradigm, we explored

whether they can reveal the nature of the new physics. We found that data consistent with LED

models are inconsistent with the three-neutrino model if the new physics effects are strong enough.

Nonetheless, we also found that, as far as DUNE is concerned, there are four-neutrino scenarios

which mimic the LED model very effectively. We showed, however, that the converse is not true.

If DUNE data are consistent with a four-neutrino scenario, it is likely that the data cannot be

explained by an LED scenario. In a nutshell, the LED model, in spite of the fact that it contains

an infinite number of new neutrino states, has fewer relevant free parameters than a generic four-

neutrino model.

The key distinguishing features of LED models are the existence of several sterile neutrinos with

hierarchical masses (the new masses are, roughly, R−1ED, 2R
−1
ED, 3R

−1
ED, . . .) and strongly correlated

elements of the infinite mixing matrix (Uα4 ∝ Uα1, Uα5 ∝ Uα2, etc, for all α = e, µ, τ). Both are very

difficult to establish experimentally in long-baseline experiments because, in those experiments, the
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effects of the new oscillation frequencies average out. On the other hand, once new physics effects

in νµ disappearance and νµ → νe appearance are established, the LED hypothesis translates into

very concrete predictions for all other oscillation channels, including νµ → ντ appearance. This

is not the case for a generic 3 + 1 scenario, where the new-physics effects in the ντ -appearance

channel cannot be constrained by precision measurements of νµ-disappearance and νe-appearance.
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FIG. 2: Expected event yields at DUNE assuming three years of either neutrino-beam mode (left) or

antineutrino-beam mode (right). The top row displays νe and ν̄e appearance yields and the bottom row

displays νµ and ν̄µ disappearance yields. In each panel, we show the expected yield assuming a three-neutrino

hypothesis with parameters from Table I for the normal hierarchy in blue, with error bars representing

statistical uncertainties, and assuming a non-zero LED hypothesis with m0 = 5×10−2 eV and R−1
ED = 0.38 eV

in black. The contribution of events associated to opposite-sign muons and electrons is included in the signal.

Backgrounds are discussed in the text and shown under the expected signals.
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FIG. 3: Exclusion limits in the R−1
ED–m0 plane, assuming either (a) a normal hierarchy or (b) an inverted

hierarchy of neutrino masses. The exclusion regions are to the top-left of the relevant curves. Shown are

the 95% CL lines from DUNE (black), IceCube-40 (mauve) and Ice-Cube79 (blue) [20], and a combined

analysis of T2K and Daya Bay (gold) [18]. We also include the 90% CL line from sensitivity analysis of

KATRIN (burgundy) [16]. The shaded green regions are preferred at 95% CL by the reactor anomaly seen

in reactor and Gallium experiments [19]. The gray shaded regions are excluded by the measurements of

∆m2
i1, as explained in the text. The dotted gray lines are curves along which

∑
im

(0)
i = 0.25 eV. Higher

values of
∑
im

(0)
i correspond to the regions above and to the right of the dotted gray lines.
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FIG. 4: Expected sensitivity to a non-zero set of LED parameters as measured by DUNE, assuming three

years each of neutrino and antineutrino data collection. Fig. 4(a) assumes the normal mass hierarchy (NH)

and Fig. 4(b) assumes the inverted mass hierachy (IH). The LED parameters assumed here are m0 = 5×10−2

eV and R−1
ED = 0.38 eV, while δ13 = π/3. The input values of ∆m2

i1, i = 1, 2 are in Table I. The input

values for the mixing angles are, for the NH, sin2 θ12 = 0.322, sin2 θ13 = 0.0247, sin2 θ23 = 0.581, and, for

the IH, sin2 θ12 = 0.343, sin2 θ13 = 0.0231, sin2 θ23 = 0.541.
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FIG. 5: Results of a four-neutrino fit to data generated assuming an LED hypothesis with m0 = 5 × 10−2

eV and R−1
ED = 0.38 eV assuming the normal hierarchy. Contours shown are 68.3% (blue), 95% (orange),

and 99% (red) CL. All unseen parameters are marginalized over.


