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Abstract
Using numerical and analytic methods, we study quantum tunneling from a Minkowski false vac-

uum to an anti-de Sitter true vacuum. Scanning the parameter space of theories with quartic and

non-polynomial potentials, we find that for any given potential tunneling is completely quenched

if gravitational effects are made sufficiently strong. For potentials where ǫ, the energy density

difference between the vacua, is small compared to the barrier height, this occurs in the thin-wall

regime studied by Coleman and De Luccia. However, we find that other potentials, possibly with

ǫ much greater than the barrier height, produce a new type of thin-wall bounce when gravitational

effects become strong. We show that the critical curve that bounds the region in parameter space

where the false vacuum is stable can be found by a computationally simple overshoot/undershoot

argument. We discuss the treatment of boundary terms in the bounce calculation and show that,

with proper regularization, one obtains an identical finite result for the tunneling exponent regard-

less of whether or not these are included. Finally, we briefly discuss the extension of our results to

transitions between anti-de Sitter vacua.
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I. INTRODUCTION

The possibility of transitions between field theory vacua in curved spacetime has been
a subject of considerable interest ever since the seminal paper of Coleman and De Luccia
(CDL) [1] incorporated gravitational effects into the bounce formalism [2–4]. More recently
the possibility of a string theory landscape has brought renewed interest in the subject.

Considerable attention has been focused on transitions between de Sitter vacua. These
could well have occurred in our past. They could also be part of an eternal future, thanks in
part to the fact that the thermal nature of de Sitter space allows one to tunnel upward [5]
as well as downward. Somewhat less attention has been paid to transitions that end in an
anti-de Sitter (AdS) vacuum. Because one cannot tunnel upward from an AdS vacuum, such
transitions cannot be part of our past, but could be part of our future. If they are, it will
be a grim future, because a bubble of AdS space soon develops a singularity [1, 6].

However, even if there are AdS vacua, we may be protected against this fate. Working
in the context of the thin-wall approximation, CDL found that gravitational effects reduce
the rate for tunneling from a Minkowski vacuum to an AdS vacuum; if the difference in
vacuum energy densities is sufficiently small, the decay is completely forbidden [1, 7, 8].
This result can be extended to transitions between AdS vacua [9]. If the initial vacuum
is de Sitter, tunneling is suppressed, although complete suppression is only possible in the
flat-space limit of vanishing vacuum energy density [10, 11].

Decays to AdS vacua beyond the thin-wall limit were studied by Samuel and Hiscock [12]
and others [13–19]. In this paper we go beyond these works by considering a wider range
of potentials and parameters. By doing so we uncover some apparently universal properties
of these transitions that were not previously recognized. Perhaps most notably, we find a
strong gravity regime in which a new type of thin-wall bounce emerges.

We focus on transitions from a Minkowski false vacuum with vanishing cosmological
constant to an AdS vacuum with negative energy density −ǫ. The case where ǫ is small
compared to the height Utop of the potential barrier between the false vacuum and the
AdS true vacuum is amenable to the thin-wall approximation, and it was this case that
was studied in detail by CDL. We will be concerned with the more general case, including
theories where, at least in the absence of gravity, the transition is mediated by Euclidean
solutions that are very definitely thick-wall bounces.

Although we restrict ourselves to theories with a single scalar field, we expect our results
to generalize to more complex theories, including those where suppression of vacuum decay
is due to supersymmetry, either exact or nearly so [22–25].

In the usual, small ǫ, thin-wall approximation the bounce consists of a thin spherical
shell that separates an interior true vacuum region from a false vacuum exterior. If the
potential is modified so that ǫ is decreased, the thickness of the shell is unchanged, while
the bounce radius grows. The thin wall bounces that we find arise when the gravitational
constant κ = 8πG is increased while the potential U(φ) is held fixed (or, equivalently, if
all mass scales in the potential are increased by a uniform factor with κ kept constant).
They consist of a spherical region of pure AdS true vacuum that is enclosed by a transition
region that is composed of an inner part with a spatially varying negative energy density and
an outer part where the matter field traverses the potential barrier. When κ is increased,
the field profile in the transition region and the thickness of this region (measured in an
appropriate coordinate) vary only weakly, while the radius of the true vacuum region grows
and becomes infinite at a potential-dependent critical value κcr. The bounce action diverges
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FIG. 1: A quartic potential with two minima.

as this critical value is approached, so that tunneling is completely quenched for κ ≥ κcr.
The remainder of the article is arranged as follows. In Sec. II we review the bounce

formalism for vacuum decay, including the usual thin-wall approximation. We also review
some energy considerations that play a role in the suppression of vacuum decay at large κ.
In Sec. III we present numerical results for bounces in both quartic polynomial and non-
polynomial potentials, with a range of both the parameters in the potentials and of values
of κ. In Sec. IV we analyze these numerical results and present analytic arguments that
explain some of the properties that we have uncovered. Section V contains some concluding
remarks. There are three appendices. Appendix A discusses possible boundary terms in
bounce calculations, and shows that their inclusion or omission, if done properly, has no
effect on the decay rate. Appendix B gives details of our numerical methods. Appendix C
discusses the extension of our results to decays from one AdS vacuum to another.

II. SET UP AND SUMMARY OF PREVIOUS RESULTS

A. Basic formalism

In this paper we will be concerned with vacuum transitions in a theory with the dynamics
of a scalar field φ governed by a potential such as that shown in Fig. 1. Without loss of
generality we have set the true vacuum at φtv = 0 and put the false vacuum to its right,
at φfv ≡ v > 0. The peak of the potential barrier separating the two vacua is at φtop. The
values of the potential at these points are Utv = −ǫ, Ufv = 0, and Utop, respectively. It
is important to note that ǫ is not necessarily small; indeed, we will consider some cases in
which it is rather large.

An initial false vacuum state can decay by the nucleation of bubbles of true vacuum, with
a nucleation rate per unit volume that can be written in the form

Γ

V = Ae−B . (2.1)

In the absence of gravity, this nucleation rate can be calculated with the aid of a bounce
solution φb(x) of the Euclidean field equations that begins with a configuration of spatially
homogeneous false vacuum at Euclidean time x4 = −∞, evolves to a configuration containing

3



a true vacuum bubble at x4 = 0, and then returns in an x4-reversed fashion to a false vacuum
configuration at x4 = ∞ [2, 3]. The tunneling exponent

B = S(φb)− S(φfv) (2.2)

is the difference between the Euclidean action of the bounce and that of the pure false
vacuum1. The Lorentzian configuration at nucleation is given by a spacelike slice through
the bounce at x4 = 0; at nucleation the Lorentzian-time field is instantaneously at rest.

Coleman and De Luccia argued that the effects of gravity on bubble nucleation could be
incorporated by adding a gravitational contribution to the action, which for a theory with
a single scalar field then reads

S =

∫

d4x
√
g

[

1

2
gab∂aφ ∂bφ+ U(φ)− 1

2κ
R

]

+ Sbdy . (2.3)

Here the last term in the integral is the Einstein-Hilbert action, with κ = 8πGN , while Sbdy

is the Euclidean version of the Gibbons-Hawking boundary action [20].
This boundary term, which does not appear explicitly in Ref. [1], requires some comment.

Decays from a de Sitter vacuum are governed by compact bounces, so there is no boundary
term. On the other hand, the bounces for decays from Minkowski or anti-de Sitter vacua
are infinite in extent, so their actions are potentially divergent, as are the Gibbons-Hawking
terms, and must be regularized. The physically significant quantity is the difference B
between the actions of the bounce and of the pure false vacuum. We show in Appendix A
that with proper regularization B is finite and independent of whether or not the Gibbons-
Hawking term is included.

For a single scalar field, it is known that in flat spacetime the bounce has O(4) symme-
try [21]. Although no comparable result has been proven for curved spacetime, in this work
we will assume the same symmetry. With this symmetry the metric takes the form:

ds2 = dξ2 + ρ(ξ)2dΩ2
3 . (2.4)

The action can then be written as

S = 2π2

∫ ξmax

ξmin

dξ

{

ρ3
[

1

2
φ′2 + U(φ)

]

+
3

κ
(ρ2ρ′′ + ρρ′2 − ρ)

}

− 6π2

κ
ρ2ρ′

∣

∣

∣

∣

ξ=ξmax

ξ=ξmin

(2.5)

with primes indicating differentiation with respect to ξ. An integration by parts, with the
boundary term exactly canceled by the Gibbons-Hawking term, gives

S = 2π2

∫ ξmax

ξmin

dξ

{

ρ3
[

1

2
φ′2 + U(φ)

]

− 3

κ
(ρρ′2 + ρ)

}

. (2.6)

The equations of motion that follow from this action are

φ′′ + 3
ρ′

ρ
φ′ =

dU

dφ
, (2.7)

ρ′2 = 1 +
κ

3
ρ2
[

1

2
φ′2 − U(φ)

]

. (2.8)

1 Because all actions in this paper will be Euclidean, we will simplify notation by omitting a subscript E.
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A further useful equation, obtained by differentiating Eq. (2.8) and then using Eq. (2.7),
is

ρ′′ = −κ

3

[

φ′2 + U(φ)
]

ρ . (2.9)

The boundary conditions for these equations depend on the topology of the solution. To
avoid a singularity, φ′ must vanish at any zero of ρ. In all bounce solutions there is at least
one such zero, which can be taken to lie at ξ = 0. Bounces describing decays from a de
Sitter vacuum have a second zero (and thus an S4 topology), but for decays from an anti-de
Sitter or Minkowski vacuum, such as we are concerned with in this work, any acceptable
bounce must have an R4 topology and thus only a single zero of ρ. We thus have ξmin = 0
and ξmax = ∞ and the boundary conditions

φ′(0) = 0, φ(∞) = φfv, ρ(0) = 0 . (2.10)

The field equations can be used to obtain simpler expressions for the action of the bounce
solution. First, as pointed out by CDL, substitution of Eq. (2.8) into Eq. (2.6) gives

S = 4π2

∫ ∞

0

dξ

[

ρ3U(φ)− 3

κ
ρ

]

. (2.11)

Note that this integral will be divergent for both the bounce and for the initial false vacuum.
An alternative expression is obtained by substituting Eqs. (2.8) and (2.9) for ρ′2 and ρ′′ into
Eq. (2.5). This gives

S = −2π2

∫ ∞

0

dξ ρ3U(φ) + boundary terms . (2.12)

For decay from a Minkowski vacuum the boundary terms of the bounce and of the false
vacuum cancel in the calculation of B. Since U(φ) is identically zero in the false vacuum,
we then have

B = −2π2

∫ ∞

0

dξ ρ3U(φ) . (2.13)

B. Thin-Wall Approximation

Coleman and De Luccia computed the bounce action in the thin-wall approximation. In
this limit we can easily distinguish three regions in the profile of the field φ: a region of pure
true vacuum (inside the bounce), a region of pure false vacuum (outside the bounce) and
a well defined thin wall at ρ = ρ̄ separating the two regions. This approximation requires
that the energy difference between the two vacua,

ǫ = U(φfv)− U(φtv) , (2.14)

be small compared to the other mass scales in the potential.
The existence of these distinct regions suggests splitting the integration region in the

actions into three parts, whose contributions to the tunneling exponent are

Boutside = 0 , (2.15)

Bwall = 2π2ρ̄3σ ≡ 4π2ρ̄3
∫

dξ [U(φ)− U(φfv)] , (2.16)

Binside =
12π2

κ2

{

1

U(φtv)

[

(

1− κ

3
ρ̄2U(φtv)

)3/2

− 1

]

− (φtv → φfv)

}

. (2.17)
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These expressions only depend on the location ρ̄ of the wall, the values of the potential at
the vacua, and the surface tension σ of the wall. The location of the wall is determined by
requiring that it be a stationary point of the action.

For transitions from Minkowski to anti-de Sitter the wall is located at

ρ̄ =
ρ̄0

1− (ρ̄0/2ℓ)2
, (2.18)

where ρ̄0 = 3σ/ǫ is the location of the wall in the absence of gravity, and

ℓ = (κǫ/3)−1/2 (2.19)

is the anti-de Sitter radius. The tunneling exponent is

B =
B0

[1− (ρ̄0/2ℓ)2]2
, (2.20)

where the subscript zero indicates the value of the action in the absence of gravitational
effects. If we define a critical value

κcr =
4ǫ

3σ2
, (2.21)

the above results can written as

ρ̄ =
ρ̄0

(1− κ/κcr)
, (2.22)

and

B =
B0

(1− κ/κcr)
2 . (2.23)

Gravity quenches vacuum decay when ρ̄0 ≥ 2ℓ or, equivalently, when κ ≥ κcr.
For comparison with later results, we note that the thin-wall approximation for a theory

with a quartic potential with almost degenerate vacua at φ = 0 and φ = v predicts that the
field profile in the wall is

φ =
v

2

{

tanh
[µ

2
(ξ − ξ̄)

]

+ 1
}

, (2.24)

where µ2 = U ′′(φfv).

C. Energy considerations

Quantum tunneling in Minkowski space must conserve energy. With gravitational effects
ignored, this implies that the energy of the spherically symmetric and instantaneously static
configuration at the time of bubble nucleation must vanish; i.e.,

0 = 4π

∫

dr r2
(

1

2
φ′2 + U

)

. (2.25)

This constraint is modified a bit when gravity is taken into account. Recall that a static
spherically symmetric metric can be written in the form

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2
2 . (2.26)
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Einstein’s equations lead to

A(r) =

[

1− 2GNM(r)

r

]−1

, (2.27)

where

M(r) = 4π

∫ r

0

ds s2ρ̃(s) (2.28)

with ρ̃ the energy density. Conservation of energy becomes the requirement that the ADM
mass M = M(∞) vanish. For our scalar field theory,

ρ̃ =
1

2A

(

dφ

dr

)2

+ U

=
1

2

(

dφ

dξ

)2

+ U . (2.29)

If we identify ρ with r on the x4 = 0 spacelike surface, our requirement becomes

0 = 4π

∫ ∞

0

dρ ρ2
(

1

2
φ′2 + U

)

= 4π

∫ ∞

0

dξ ρ2ρ′
(

1

2
φ′2 + U

)

. (2.30)

Now note that

d

dξ

[

−ρ3
(

1

2
φ′2 − U

)]

= ρ3
(

−φ′φ′′ + φ′dU

dφ

)

− 3ρ2ρ′
(

1

2
φ′2 − U

)

= 3ρ2ρ′
(

1

2
φ′2 + U

)

, (2.31)

where the second equality is obtained by using Eq. (2.7) to eliminate φ′′. The quantity in
brackets clearly vanishes at ξ = 0. It also vanishes as ξ → ∞, provided that φ′2 and U fall
faster than 1/ρ3, which they do for a bounce describing decay from a Minkowski vacuum.

Hence, any solution of the Minkowski to AdS bounce equations is guaranteed to conserve
energy. If energy cannot be conserved, then tunneling is impossible. Indeed, both CDL and
S. Weinberg [22] explain the absence of tunneling when κ ≥ κcr by showing that in this
regime it is impossible to construct a thin-wall bounce that conserves energy. We will see
presently how this line of argument can be applied beyond the usual thin-wall approximation.

III. THICK-WALL BOUNCES — NUMERICAL RESULTS

The thin-wall approximation has the attractive feature of producing analytic expressions
for the bounce action and for the field profile of the bounce. Unfortunately, its validity is
restricted to a rather special class of potentials, those for which ǫ, the difference in energy
densities between the true and false vacua, is small compared to the scale set by the potential
barrier separating the two vacua. It is well known that in the absence of gravity a generic
potential that does not satisfy this criterion can yield a “thick-wall” bounce solution in which
the scalar field, even at the center of the bounce, is never close to its true vacuum value.
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FIG. 2: Quartic potentials with fixed Utop and ǫ/Utop = 0.1, 1, 2, and 5 (on left) and fixed ǫ and

Utop/ǫ = 0.1, 1, 2, and 3 (on right).

We have explored a number of such potentials, following the evolution of the bounce as the
strength of gravity is increased. In this section we will use several examples to illustrate the
generic features that we have found.

First, we consider a number of quartic potentials. An arbitrary quartic potential can be
written in the form

U(φ) = λ
(

C0 + C1φ+ C2φ
2 + C3φ

3 + φ4
)

. (3.1)

We will assume that λ is positive and that the other coefficients are such that U has two
minima.

Variation of the constants gives five degrees of freedom. Two, corresponding to transla-
tions in the U -φ plane, are fixed by our convention that the true vacuum be at φtv = 0 and
the requirement that Ufv = 0; the former implies that C1 = 0, while the latter imposes a
constraint relating ǫ = −λC0, C2, and C3.

Two more degrees of freedom correspond to rescalings of the height and width of the
potential. The first of these is implemented by varying λ. At the classical level, the effects
of this can be absorbed by a rescaling of the length scale. Simple scaling arguments show that
the bounce action is proportional to 1/λ, while the width of the field profile is proportional

to 1/
√
λ. In our investigation of the bounce solutions, we find it convenient to work with

λ = 1, keeping in mind the possibility of restoring λ by a rescaling. In particular, we will
be led to consider solutions with fields comparable to or greater than the Planck mass. By
choosing a suitably small value of λ, the energies associated with these solutions can always
be made sub-Planckian.

Rescaling the width of the potential is implemented by varying the position of the false
vacuum, which we denote by φfv = v. This leaves one remaining degree of freedom. Al-
though this could be implemented by varying a single coefficient in the potential, we find it
more instructive to parameterize it by the value of Utop, a quantity that can be naturally
generalized to other, non-polynomial, potentials. In Fig. 2, we show the effects of separate
variations of the dimensionless quantities Utop/v

4 and ǫ/v4.
We will investigate the effects of gravity by following the evolution of the bounce solutions

as the mass scales in the potential are increased. In order to separate the effects of a stronger
gravitational interaction from those due to a variation of the field dynamics, we will keep
the shape of the potential unchanged. Thus, we will vary v but hold ǫ/v4 and Utop/v

4 fixed.
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The quantity

β =
√
κv2 =

√
8π v

MPl

(3.2)

can then be viewed as a measure of the relative strength of the gravitational interactions.
Thus β and Utop/ǫ can be taken as the dimensionless quantities spanning the parameter
space of our potentials.

It may be helpful to relate our parameterization of the quartic potential with that used in
Refs. [10] and [11]. For the case of a Minkowski false vacuum, that potential can be written
as

U(φ̃) =
( µ

M

)4
(

−1

2
M2φ̃2 − b

3
Mφ̃3 +

1

4
φ̃4

)

+ C (3.3)

where the constant C is chosen so that Ufv = 0, and tildes have been inserted because their
field is shifted relative to ours, with the top of the barrier lying at φ̃ = 0. The strength of
gravity is measured by the quantity

ǫ̃ =

√

8π

3

M

MPl

(3.4)

where we have inserted a tilde on their ǫ to avoid confusion with our notation for the true
vacuum energy density.

Variation of their b corresponds to a variation of both ǫ/v4 and Utop/v
4 in our potential.

When |b| is small, the true and false vacuum are almost degenerate, and Utop/ǫ is small; a
large value of |b| corresponds to a large Utop/ǫ. Although simple closed form expressions
converting between the two sets of conventions cannot be obtained in general, matters
simplify for the case b = 1 that was used for the numerical analysis in Refs. [10] and [11].

With b = 1, the true and false vacua and the top of the potential barrier occur at

φ̃tv =
1 +

√
5

2
M

φ̃fv =
1−

√
5

2
M

φ̃top = 0 . (3.5)

From this we find that the ratio of the barrier height to the true vacuum energy density is
given by

Utop

ǫ
=

−25 + 13
√
5

50
= 0.08138 . (3.6)

The distance between the minima, v in our notation, is then

v = |φfv − φtv| =
√
5M (3.7)

so that our measure of the strength of gravity is related to theirs by

β =

√
3 v

M
ǫ̃ =

√
15 ǫ̃ . (3.8)

Figures 3–5 show the evolution of the field profile with β for several different choices of
ǫ and Utop. Fig. 3 shows bounces for a potential with ǫ/Utop = 100. In the weak gravity

9



FIG. 3: Profiles of φ for the quartic potential with Utop/v
4 = 0.01 and ǫ/v4 = 1. The solid curves

indicate the best fit of a hyperbolic tangent to the data. Reading from left to right, the curves

correspond to β = 0, 5.747, and 5.763.

FIG. 4: Similar to Fig. 3, but for Utop/v
4 = 0.01 and ǫ/v4 = 0.2. Reading from left to right, the

curves correspond to β = 0, 2.70, 3.33, and 3.38.

limit, β = 0, the bounce is clearly a thick-wall solution, with the initial value of the field
not even close to φtv. The corresponding bounce for a potential with ǫ/Utop = 20, shown
in Fig. 4 begins closer to the true vacuum, but immediately evolves rapidly toward φfv;
although there is a suggestion of a bubble wall, there is no clearly defined true vacuum
interior. The bounces in Fig. 5 are closer to one’s conception of a thin-wall bounce, but
with this moderately small ratio ǫ/Utop = 0.4, the quantitative predictions of the thin-wall
analysis are not borne out.

However, in all three cases, with larger β the transition from φtv to φfv occurs at larger
values of ξ and there is a more clearly defined transition region centered about a value
ξ = ξ0. As β is increased, this transition region moves further outward, but with its shape
remaining roughly constant. There is a critical value βcr beyond which there is no bounce.
As this value is approached, ξ0 rapidly increases and, we will argue, tends to infinity in the
critical limit.

In fact, the field profile in the transition region can be approximated by a hyperbolic
tangent, with

φ(ξ) ≈ v

2
{tanh[b(ξ − ξ0)] + 1} . (3.9)
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FIG. 5: Similar to Fig. 3, but for Utop/v
4 = 0.25 and ǫ/v4 = 0.1. Reading from left to right, the

curves correspond to β = 0, 0.588, 0.714, and 0.739.

As can be seen in the figures, the fit is surprisingly good, although there is a slight mismatch
where the exponential tails of the hyperbolic tangent overlap with those of the true and false
vacuum regions. We do not have an analytic explanation for this behavior, which we have
found in all of the examples that we have examined. As we saw in Sec. II, one also finds a
hyperbolic tangent in the thin-wall approximation for a quartic potential. However, in that
case the parameter b could be directly read off from the potential and did not depend on
β. In our more general case b varies with β (even in the quasi-thin-wall solutions of Fig. 5),
decreasing as gravitational effects become stronger, and cannot be read off directly from the
parameters in the potential. In the next section we will discuss the computation of b in the
critical limit.

There is another, quite significant difference from the thin-wall approximation. In that
case, the transition region of the hyperbolic tangent clearly maps onto the potential barrier
between the true and false vacua; there is no ambiguity in referring to it as the bounce
wall. Matters are not so clear in the more general case. When ǫ is large compared to
the height of the potential barrier, only the very last part of the transition region of the
hyperbolic tangent maps onto the region where the potential is higher than in the false
vacuum; i.e., onto the true barrier. The rest corresponds to an AdS-like region with a
negative cosmological “constant” that decreases in magnitude as one moves outward. To
emphasize this distinction, we will refer to the entire transition region as a “step”, and use
of the term “wall” to only refer to the region with positive potential. More specifically, we
will define the wall to be the region lying between φleft, the point on the true-vacuum side
where U(φ) = Ufv = 0, and φright, the point on the false vacuum side where φ has gone 90%
of the way from the top of the barrier to the false vacuum.

The details of the bounces for these three potentials are summarized in Tables I–III. In
each table the mass scale, indicated by β, increases as one moves down the table, while the
shape of the potential is held fixed. All dimensionful quantities are quoted in appropriate
units of v; (e.g., the AdS length ℓ is given as a multiple of v−1). The deviation from the true
vacuum of the field at the center of the bounce is measured by the parameter

η ≡ φ(0)− φtv

φfv − φtv
=

φ(0)

v
. (3.10)

The position of the bubble wall, denoted by ξwall and ρwall, is taken to be the point where
φ = φtop, its value at the top of the barrier. The wall thickness, denoted by ∆ξwall and
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TABLE I: Data for bounces with the quartic potential, used in Fig. 3, with Utop/v
4 = 0.01 and

ǫ/v4 = 1 and several values of β, which is a measure of the strength of gravity. For this potential

the critical value of β, at which the tunneling exponent B diverges and tunneling is quenched, is

βcr = 5.7633. The radius of the bounce wall, in coordinate and geometric units, is given by ξwall
and ρwall, while ∆ξwall and ρ∆wall give its thickness. These should be compared with the AdS

length ℓAdS. The last three columns show η, a measure of how much the value of the field at

the center of the bounce departs from the true vacuum value; the wall action σwall; and b, which

parameterizes the field profile in the wall. These quantities are defined more precisely in the text.

All dimensionful entries are to be understood to be in units of appropriate powers of v.

β B ξwall ρwall ℓAdS ∆ξwall ∆ρwall η σwall b

0 4.37 1.92 1.92 ∞ 1.35 1.350 0.2181 0.0120 1.33

1.00 4.752 1.95 2.04 1.732 1.38 1.391 0.2247 0.01193 1.30

1.67 5.523 1.99 2.25 1.039 1.42 1.462 0.2349 0.01236 1.26

2.50 7.509 2.06 2.73 0.693 1.50 1.615 0.2499 0.01314 1.18

3.33 12.1 2.18 3.61 0.520 1.60 1.883 0.2622 0.01416 1.08

5.00 104.9 2.61 11.5 0.346 1.87 4.042 0.2442 0.01685 0.87

5.56 1364. 3.05 42.6 0.312 1.98 12.13 0.1814 0.01796 0.77

5.71 25060. 3.50 180 0.303 2.01 47.85 0.1171 0.01830 0.71

5.75 2.2×105 3.84 545 0.301 2.02 142.2 0.08054 0.01837 0.67

5.76 6.3×106 4.35 2918. 0.301 2.03 756.7 0.04402 0.01840 0.65

∆ρwall, is the distance between the points corresponding to φleft and φright, as defined above.
The quantity b is the parameter that appears in the argument of the hyperbolic tangent in
Eq. (3.9). Finally, we have defined a surface tension σwall by

σwall =

∫ ξright

ξleft

dξ 2[U(φ)− U(φfv)] . (3.11)

Notice that B is less than 5 for the first two entries in β in Table I. With such small
values for the tunneling exponent one should worry about the validity of the dilute gas
approximation that underlies the bounce formalism. However, it should be kept in mind
that the values in the table correspond to λ = 1; for weaker coupling B would be increased
by a factor of 1/λ.

We have also considered a family of non-polynomial potentials of the form

U = λv4
[

− cos

(

αφ

v

)

− p cos

(

3αφ

v

)

+ q

]

(3.12)

where α and q are determined by the requirement that there be a Minkowskian false vacuum
at φ = v. As with the quartic potentials, the effects of λ at the classical level can be absorbed
by a rescaling, and so for convenience we set it equal to unity. As an example, in Fig. 6
we show several bounces for a potential with p = 0.5, corresponding to ǫ/v4 = 1.404 and
Utop/v

4 = 0.1925, and give related data in Table IV.
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TABLE II: The same as for Table I, but for the potential used in Fig. 4, with Utop/v
4 = 0.01 and

ǫ/v4 = 0.2. For this potential βcr = 3.38058.

β B ξwall ρwall ℓAdS ∆ξwall ∆ρwall η σwall b

0 54.2 4.32 4.318 ∞ 2.39 2.39 0.05013 0.0216 0.70

0.100 54.36 4.31 4.323 38.7 2.397 2.398 0.05014 0.0216 0.70

1.000 67.02 4.42 4.03 3.87 2.472 2.563 0.05053 0.0224 0.68

2.500 309.7 5.17 11.5 1.549 2.857 4.269 0.04094 0.0264 0.56

2.564 355.2 5.24 12.36 1.51 2.881 4.483 0.03955 0.0266 0.56

2.703 500.0 5.41 14.81 1.43 2.934 5.082 0.03598 0.0272 0.54

3.226 8678. 6.88 63.9 1.201 3.165 16.77 0.01193 0.0295 0.48

3.367 1.1 ×106 9.54 725.2 1.15 3.236 173.1 9.9×10−4 0.0302 0.46

3.378 4.1 ×107 11.6 4427. 1.146 3.242 1048. 1.3×10−4 0.0303 0.46

3.380 1.7 ×108 12.4 9084. 1.146 3.243 2148. 6.0×10−5 0.0303 0.46

TABLE III: The same as for Table I, but for the potential, used in Fig. 4, with Utop/v
4 = 0.25 and

ǫ/v4 = 0.1. For this potential βcr = 0.73986.

β B ξwall ρwall ℓAdS ∆ξwall ∆ρwall η σwall b

0 9294 15.5 15.5 ∞ 1.5 1.5 2.2 × 10−19 0.36 1.54

0.200 10820 15.83 16.7 27.39 1.503 1.591 7.3×10−20 0.37 1.54

0.333 14640 16.6 19.48 16.43 1.51 1.797 8.0×10−21 0.37 1.53

0.500 3.2×103 18.64 28.73 10.95 1.525 2.482 2.1×10−23 0.37 1.51

0.556 4.9×104 19.87 35.87 9.859 1.531 3.008 5.9×10−25 0.38 1.51

0.588 6.8×104 20.85 42.58 9.311 1.535 3.503 3.3×10−26 0.38 1.50

0.625 1.1×105 22.33 54.77 8.764 1.54 4.402 4.3×10−28 0.38 1.50

0.667 2.6×105 24.92 83.49 8.216 1.546 6.518 2.1×10−31 0.38 1.49

0.714 2.0×106 31.59 230.7 7.668 1.553 17.35 5.7×10−40 0.38 1.48

0.735 6.4×107 43.67 1279. 7.449 1.557 94.58 1.4×10−55 0.38 1.48

0.739 1.0×1010 58.85 10120. 7.416 1.557 746.3 2.9×10−75 0.38 1.48

We have observed a number of regularities that persist in all of the examples we have
considered:

1) Equations (2.22) and (2.23) show that in the thin-wall limit both the bounce radius
ρ̄ and the tunneling exponent B diverge as κ approaches a critical value, with their values
being proportional to (κcr − κ)−1 and (κcr − κ)−2, respectively. Figures 7 and 8 illustrate
similar behavior for the potentials that we have examined.

There are, however, some differences. In the thin-wall case the inverse power dependence
on (κcr − κ)−1 held for the entire range of κ. Here we see a deviation from this at small
values of κ; i.e., in the parameter range where the field profile is the least “thin-wall-like”.

13



FIG. 6: Similar to Fig. 3, but for the potential of Eq. (3.12), with p = 0.5 and ǫ/Utop = 7.30.

Reading from left to right, the curves correspond to β = 0, 2.0, 2.2 and 2.5.

TABLE IV: The same as for Table I, but for the potential used in Fig. 6. For this potential

βcr = 2.5077.

β B ξwall ρwall ℓAdS ∆ξwall ∆ρwall η σwall b

0 14.0 1.71 1.72 ∞ 1.46 1.5 0.0257 0.13 2.17

1.00 20.3 1.80 2.12 1.5 1.42 1.5 0.0234 0.14 2.07

2.00 116 2.18 5.37 0.73 1.57 2.3 0.01215 0.16 1.81

2.25 412 2.49 10.3 0.65 1.62 3.4 6.4×10−3 0.16 1.72

2.40 2249 2.93 24.4 0.61 1.66 6.4 2.4×10−3 0.17 1.66

2.45 7712 3.26 45.4 0.60 1.68 10.9 1.1×10−3 0.17 1.65

2.48 3.3×104 3.67 94.2 0.59 1.68 21.4 4.1×10−4 0.17 1.63

2.49 8.1×104 3.92 147 0.59 1.69 32.7 2.2 ×10−4 0.17 1.63

2.50 4.2×105 4.39 337 0.58 1.69 73.3 6.8×10−5 0.17 1.63

2.50628 1.2×107 5.35 1780 0.58 1.69 382 6.2×10−6 0.17 1.63

We can quantify this by comparing the the actual values of ρ̄0 and B0 obtained from our
numerical solutions with κ = β2 = 0 with the values ρ̄fit and Bfit that would follow from
extrapolating the linear behavior all the way to κ = 0. For the potentials corresponding to
Tables I, II, and III, we find B0/Bfit =0.55, 0.77, and 0.96 and ρ̄0/ρ̄fit =0.59, 0.76, and 0.97.

There is another difference from the thin-wall case. In that limit, κcr corresponded to an
AdS length that was exactly half the bounce radius in the absence of gravity. By contrast,
the limiting value of ℓ for our solutions is less than half of the non-gravitational bounce
radius. This is consistent with the fact that the average potential in the region contained
within the bounce wall is less than ǫ in magnitude, implying an effective AdS length that is
larger than that of the pure true vacuum.

2) The wall thickness as measured in ξ initially increases somewhat with β, but appears
to tend to a finite value in the critical limit. By contrast, the thickness as measured in ρ
diverges, with ∆ρwall/ρwall being roughly constant.

3) The surface tension σwall increases slightly with β, but tends to a finite value in the
critical limit.
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FIG. 7: The behavior of ρwall (measured in units of v−1) near the critical value of β. Reading from

bottom to top, the green, red, and black circles represent the potentials for Tables I, II, and III,

respectively. The best fit lines on this log-log plot have slopes -1.00, -0.99, and -0.97, respectively.

Note that in each case the last three points to the right have been omitted from the fit.

FIG. 8: Similar to Fig. 7, but for B. The slopes of the best fit lines are -2.00, -1.97, and -1.94.

4) Although η may initially increase with β, as gravitational effects continue to grow
stronger η decreases, eventually vanishing in the critical limit.

IV. ANALYTIC RESULTS

In this section we will describe how some understanding of the numerical results of the
previous section can be obtained.

The plots in Figs. 3–5 show three distinct regions: Region I, 0 < ξ < ξ1, where the field
is exponentially close to φtv, Region III, ξ3 < ξ < ∞, where it is exponentially close to φfv,
and the step, Region II, ξ1 < ξ < ξ3, that connects the other two.

2 (As we have seen, Region
I is absent for some weak gravity solutions, but it always appears once gravity is strong
enough.)

In Region I φ is close to its true vacuum value, so to a good approximation Eq. (2.8) is

2 There is some freedom in defining ξ1 and ξ3. One could, e.g., arbitrarily choose them to be the values of

ξ at which φ is equal to 0.01v and 0.99v.
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solved by
ρ(ξ) = ℓ sinh(ξ/ℓ) . (4.1)

In the linearized approximation Eq. (2.7) then reduces to

φ′′ +
3 cosh(ξ/ℓ)

ℓ sinh(ξ/ℓ)
φ′ = U ′′(φtv)(φ− φtv) ≡ µ2

t (φ− φtv) . (4.2)

Changing variables to y = cosh(ξ/ℓ) and setting φtv = 0 gives

(y2 − 1)
d2φ

dy2
+ 4y

dφ

dy
= ℓ2µ2

tφ . (4.3)

This has the solution

φ(ξ) = φ(0)
C

(3/2)
α [cosh(ξ/ℓ)]

C
(3/2)
α (1)

= φ(0)
2C

(3/2)
α [cosh(ξ/ℓ)]

(α + 2)(α+ 1)
, (4.4)

where C
(3/2)
α (y) is a Gegenbauer function of the first kind, with α(α + 3) = µ2

t ℓ
2. The fact

that C
(3/2)
α (1) is finite for all real positive α guarantees that dφ/dξ vanishes at ξ = 0, as

required; it is this boundary condition that eliminates the Gegenbauer function of the second

kind, D
(3/2)
α (y). If ξ/ℓ is moderately large, we can use the large argument approximation for

the Gegenbauer function to obtain
φ ∼ eaξ/ℓ (4.5)

with

a = −3

2
+

√

9

4
+ µ2

t ℓ
2 . (4.6)

In Region III φ is close to its false vacuum value, so ρ is almost linear in ξ, with

ρ(ξ) ≈ ρ(ξ3) + (ξ − ξ3) . (4.7)

The linearized equation for φ then becomes

φ′′ +
3

ρ
φ′ = U ′′(φfv)(φ− φfv) ≡ µ2

f(φ− φfv) . (4.8)

As we approach the critical solution ρ(ξ3) becomes exponentially large, so the second term
in this equation can be ignored and we have

φfv − φ(ξ) ∼ e−µf ξ . (4.9)

To understand Region II, which connects these two regions, it is helpful to follow Cole-
man’s insight [2] and view the problem in terms of a particle moving in an upside-down
potential −U(φ) while subject to a frictional force given by the φ′ term in Eq. (2.7). This
suggests defining a pseudo-energy

E =
1

2
φ′2 − U(φ) . (4.10)
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FIG. 9: The metric function ρ (dashed red line) and field φ (solid blue line) in three examples with,

from left to right, weak, medium, and strong gravity. The metric has been rescaled (by factors of

0.1, 0.005, and 0.00005, respectively) in order to fit it on the same graph as φ. In all three cases

the actual asymptotic slope of ρ is unity. Note how the transition from Region IIa to Region IIb

occurs later as the strength of gravity increases.

This is not conserved; instead, the friction term in Eq. (2.7) causes it to decrease with ξ,
with3

E ′ = −3
ρ′

ρ
φ′2 . (4.11)

Now note that Eq. (2.8) can be recast as

ρ′2

ρ2
=

1

ρ2
+

κ

3
E . (4.12)

For all but the very beginning of Region I, the second term dominates the right-hand side,
and we can make the approximation

ρ′

ρ
=

√

κ

3

√
E . (4.13)

This continues to hold in Region II until we reach a point ξ2, where E has decreased enough
that (κ/3)E ≈ 1/ρ2. We will refer to this interval, ξ1 < ξ < ξ2, as Region IIa. In Region
IIb, ξ2 < ξ < ξ3, the first term dominates the right hand side of Eq. (4.12). (See Fig. 9.)

In Region IIa, Eq.(4.13) leads to

E ′ = −
√
3κφ′2

√
E . (4.14)

Integrating this and noting that E(ξ1) ≈ ǫ leads to

√

E(ξ) =
√
ǫ−

√

3κ

4

∫ ξ

ξ1

dξ φ′2 , (4.15)

from which we obtain

ρ(ξ) = ρ(ξ1) exp

[
∫ ξ

ξ1

dξ

√

κ

3

√
E

]

. (4.16)

3 The CDL formalism allows anti-friction, with E′ > 0; this is always encountered in decays from a de Sitter

false vacuum, and might seem to be possible here when crossing the potential barrier where U is positive.

However, a bounce that has a period of anti-friction is necessarily compact, and therefore cannot describe

decay from a Minkowski (or anti-de Sitter) vacuum.

17



In Region IIb (and indeed also in Region III)

ρ(ξ) ≈ ρ(ξ2) + (ξ − ξ2) (4.17)

with the linear behavior indicating that the space is approximately Minkowskian. The
pseudo-energy is

E(ξ) = E(ξ2)− 3

∫ ξ

ξ2

dξ
1

ρ(ξ2) + (ξ − ξ2)
φ′2 . (4.18)

As the gravitational interactions grow stronger, the transition from Region II to Region
III takes place at ever larger values of ξ3. In the critical limit ξ3 → ∞, the Minkowskian
false vacuum is never reached and the bounce solution disappears. This limit is signaled by
the vanishing of E while Eq. (4.15) is still valid. This implies that

∫ ∞

ξ1

dξ φ′2 =

√

4ǫ

3κ
(critical solution) . (4.19)

We can now understand why the field profile in Region II remains relatively constant for
large values of β and κ, even as the step itself moves to larger and larger ξ. As the critical
value of β is approached, the initial value of φ moves closer to the true vacuum, with the
result that the transition from Region I to Region II occurs at a larger value of ξ1. Because ρ
grows exponentially with ξ in region I [see Eq. (4.1)], its value at the transition to Region II,
ρ(ξ1), increases exponentially with increasing β.

We next note that Eq. (4.14), which governs the field profile in Region IIa, can be
rewritten as

φ′′ +
√
3κ

√

1

2
φ′2 − U(φ) φ′ =

∂U

∂φ
. (4.20)

Because ρ does not appear in this equation, the profile for φ as a function of ξ does not
depend on the value of ρ in Region IIa. Further, Eq. (4.16) tells us that the growth factor
ρ(ξ)/ρ(ξ1) is also independent of ρ in this region.

Now consider Region IIb. The transition from Region IIa occurs at ξ2, the point where
(κ/2)E = 1/ρ2. As ρ(ξ1), (and therefore ρ throughout Region IIa) increases, this transition
occurs at an ever larger value of ξ. This has several consequences. First, Region IIb accounts
for a smaller and smaller fraction of Region II. Second, with ρ(ξ2) exponentially large in the
near-critical regime, the friction term is negligible in Region IIb, implying a field profile that
is independent of ρ. Finally, we see from Eq. (4.17) that the variation of ρ in this region is
negligible.

The net result is that in the near-critical regime we can write

ρ(ξ) = ρ(ξ1)F (ξ − ξ1) , (4.21)

where

F (ξ − ξ1) = exp

[
√

κ

3

∫ ξ

ξ1

dξ θ(ξ2 − ξ)
√
E

]

. (4.22)

In the thin-wall approximation, the absence of tunneling at large κ could be explained
by the impossibility of finding a wall radius ρ̄ large enough that the negative contribution
from the true vacuum interior exactly canceled the positive wall contribution to give zero
net energy. We can now see how this generalizes to the thick wall case. Energy conservation
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requires that the energy integral in Eq. (2.30) vanish. The contribution to this integral from
Region I is

∫ ξ1

0

dξ ρ2ρ′U = − ǫ

3
ρ(ξ1)

3 , (4.23)

up to exponentially small corrections. The contribution from Region II can be written, with
the aid of Eqs. (4.13) and (4.16), as

∫ ξ2

ξ1

dξ ρ3
ρ′

ρ

(

1

2
φ′2 + U

)

= ρ(ξ1)
3

√

κ

3

∫ ξ2

ξ1

dξ F (ξ − ξ1)
3
√
E

(

1

2
φ′2 + U

)

. (4.24)

In the strong gravity, near critical regime, Region IIa is almost all of Region II, and so the
total energy is well approximated by the sum of Eqs. (4.23) and (4.24). (The contribution
from Region III is exponentially small and can be neglected.)

The crucial point to note is that ξ1 only enters through the factors of ρ(ξ1)
3 that appear

in both contributions. Because these factors are common to the contributions of Regions I
and II, the flat space or weak gravity strategy of arranging a cancellation between these two
by adjusting the size of the true vacuum region fails, energy cannot be conserved, and the
bounce solution disappears.

We now address the determination of βcr. The most obvious method for doing this is to
obtain bounce equations for many values of β, look for the rapid growth in B and ρwall that
is seen in Tables I-IV, and then extrapolate to find the value of β where these diverge.

A second, computationally simpler, approach utilizes Eq. (4.20). A bounce solution
will satisfy this equation throughout Region IIa, where the pseudo-energy term dominates
Eq. (2.8), but using this equation in Region IIb would understate the friction there. A
moment’s thought suffices to show that if a bounce exists, then using Eq. (4.20) throughout
Region II would give solutions that start at rest on the true vacuum side of the barrier and
either reach or overshoot the false vacuum. In the limit of weak gravity, with κ infinitesimal,
the friction term is negligible, and conservation of pseudo-energy implies that overshooting
solutions of this type will exist. On the other hand, if κ is sufficiently large, the friction
term will be strong enough to prevent φ from ever reaching the false vacuum. The critical
value of β corresponds to the boundary between these two regimes.

An even simpler method utilizes our finding that the bounce is well approximated by the
hyperbolic tangent form of Eq. (3.9). Doing so and, with little error, setting the lower limit
of the integral in Eq. (4.19) equal to −∞, we obtain

1

3
bv2 =

√

4ǫ

3κcr

(4.25)

or

βcr =

√
12ǫ

bv
. (4.26)

The data in Table V show that the three methods of determining the critical value of β
are in good agreement.

V. CONCLUDING REMARKS

In this work we have revisited quantum tunneling from a Minkowski false vacuum to an
anti-de Sitter true vacuum. We have examined polynomial and non-polynomial potentials
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TABLE V: The values of βcr for the potentials considered in Tables I-IV obtained by three different

methods: (i) extrapolating from the data in the tables; (ii) shooting, using Eq. (4.20); and (iii)

inserting the measured value of b into Eq. (4.26).

Extrapolation Shooting Using b

Table I 5.76 5.75 5.75

Table II 3.38 3.38 3.37

Table III 0.739 0.737 0.735

Table IV 2.50 2.50 2.52

FIG. 10: Boundary of the stability region. Decay from the Minkowski false vacuum is completely

quenched in the region of parameters space above and to the right of the curves. The black curve

corresponds to the quartic potential, the red curve just barely above it to the non-polynomial

potentials of Eq. (3.12), and the blue to a family of potentials such as that in Fig. 11.

and scanned their parameter spaces. We have found, through a combination of analytical
and numerical methods, that there is always a region of parameter space in which tunneling
is quenched by gravity; i.e., for any given potential, increasing the effects of gravity by
uniformly raising the mass scales in that potential will eventually render the false vacuum
stable. This confirms and extends previous work [10–12].

As discussed in Sec. III, the relevant parameter space for our potentials can be spanned
by two dimensionless couplings, β and Utop/ǫ. The former is the distance in field space
between the true and false vacua divided by the Planck mass, while the latter is the ratio
of the barrier height to the depth of the true vacuum. Figure 10 shows the critical line that
separates the region where the false vacuum is stable against decay by bubble nucleation
from the region where nucleation is possible. To determine this line it is not necessary to
solve the coupled equations for φ and ρ. Instead, βcr can be obtained by the computationally
simpler overshoot/undershoot analysis of Eq. (4.20) described in Sec. IV.

As an aside, we recall from Eq. (3.6) that that the numerical analysis of Ref. [11] corre-
sponded to a value Utop/ǫ = 0.8138. Our shooting method then gives βcr = 2.846, and hence
ǫ̃ = 0.7346, consistent with their result ǫ̃ ≈ 0.74.

Figure 10 shows the critical curves for several different families of potentials. The black
curve, corresponding to our quartic potentials, and the red curve, for the non-polynomial
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FIG. 11: One of the family of potentials, with two Gaussian potential wells, that corresponds to

the blue line in Fig. 10.

potentials of Eq. (3.12), differ very slightly in the transition region, but have the same
asymptotic behaviors. The blue curve corresponds to a family of potentials of the form
shown in Fig. 11. For all three cases the portion of the critical line extending to the right, at
large values of Utop/ǫ, agrees well with the thin-wall approximation of CDL which predicts
a power law behavior βcr ∼ (Utop/ǫ)

−1/2. However, at smaller values of Utop/ǫ the curves
bend upward, revealing a region where tunneling is possible. The continuations of the curves
upwards to large values of β can also be fit by power laws. For the black and red curves the
power is −0.33, while for the blue curve the power is −0.17, a value that varies as the width
of the two wells is changed.

We expect the behavior displayed by these curves to emerge for all classes of potentials.
The portion of the curve to the lower right, where ǫ is small compared to the potential
barrier, corresponds to the familiar thin-wall bounces of CDL. The portion on the upper
left, where the barrier becomes small, corresponds to a new type of thin-wall bounce. These
evolve from thick-wall bounces as βcr is approached. They are identical to the CDL-type
inside and outside, but differ in the structure of the shell that separates these two regions.
For the new bounces, the spherical region of AdS vacuum is enclosed by a transition region
composed of an inner shell with a spatially varying negative energy density and an outer
shell where the matter field transverses the energy barrier. As β is increased the field profile
and the thickness of this region (measured in the appropriate coordinate) change little while
the radius of the true vacuum region increases and becomes infinite at βcr. These results
can be generalized to the case of transitions where the initial false vacuum is AdS.

The explanation of quenching in this new class of thin-wall bounces is similar to that
for the more familiar CDL class. Tunneling is only possible if an energy-conserving bubble
configuration can be constructed. In flat spacetime this can always be done by making the
bubble radius large enough that the negative volume energy compensates for the positive
tension in the bubble wall. Because of the peculiar geometry of anti-de Sitter spacetime, this
strategy begins to fail as the bubble radius approaches the AdS length λ. This can occur if
a small ǫ makes the bubble large even in the absence of gravity, but it can also happen if
strong gravitational effects reduce λ relative to the length scales in the potential.

The results displayed in Fig. 10 imply that for a given potential there is a set of parameters
for which there are stable Minkowski vacua and, by continuation, very long-lived de Sitter
vacua [10, 11]. We could be living in such a vacuum, but our universe could instead be in a
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vacuum lying below the critical line if that its bubble nucleation rate were sufficiently small;
i.e., if the tunneling exponent were sufficiently large. The minimum acceptable value of B
depends on the value of the dimensionful prefactor A in Eq. (2.1). If A ∼ M4

Pl, then our
universe could have survived ∼ 1010 years if B & 600; smaller values of A would give smaller
bounds on B. When comparing these bounds to the data in our tables, it should be kept in
mind that the overall coupling λ multiplies the tabulated value of B by 1/λ.

In the literature one finds forms for the bounce action that differ in the boundary terms.
This is not an issue for transitions from a de Sitter vacuum, because these are governed by
compact bounces. However, this is not the case for decays from a Minkowski or anti-de Sitter
vacuum, where the corresponding bounces are non-compact. It is shown in Appendix A that
with proper regularization the tunneling exponent B is finite and independent of whether
or not the Gibbons-Hawking boundary term is included.

Lastly, while supersymmetry, either exact or nearly so, is known to suppress tunneling [22,
25], the quenching phenomenon occurs more generally; indeed, the specific potentials we have
considered are not supersymmetric. It would be instructive to apply the approach of this
work to the special case of almost supersymmetric theories in order to examine more closely
the approach to exact supersymmetry, and thus stability, and to understand how our results
generalize to theories with more fields and non-canonical kinetic terms.
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Appendix A: Boundary terms in the bounce action

In many discussions of vacuum decay, including the original CDL paper, the Gibbons-
Hawking boundary term is omitted from the action. In this appendix we show that while
the inclusion or omission of this boundary term changes the actions of the bounce and of the
initial false vacuum, the tunneling exponent B, given by the difference between these two
actions, is unchanged. We also show that, although the individual actions may be divergent,
proper regularization gives a finite result for B in both cases. We will assume O(4) symmetry
from the start.

We define two actions by

S(1) = 2π2

∫

dξ

[

ρ3
(

1

2
φ′2 + U

)

+
3

κ

(

ρ2ρ′′ + ρρ′
2 − ρ

)

]

= −2π2

∫

dξ ρ3U (A1)
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and

S(2) = 2π2

∫

dξ

[

ρ3
(

1

2
φ′2 + U

)

− 3

κ

(

ρρ′
2
+ ρ
)

]

= 4π2

∫

dξ

(

ρ3U − 3

κ
ρ

)

. (A2)

In each case, the second equality holds for solutions of the field equations, but not in general.
The difference between the two is

S(2) − S(1) = −6π2

κ

∫

dξ
d

dξ

(

ρ2ρ′
)

. (A3)

This is in fact equal to the Gibbons-Hawking boundary term, so S(2) corresponds to the
action as written in Eq. (2.3).

For decay from a de Sitter vacuum, the bounce and the pure original vacuum solutions are
both compact and have no boundary term, so S(1) −S(2) clearly vanishes. We can therefore
restrict our discussion to decay from a Minkowski or AdS false vacuum. In both of these
cases the integrations extend out to ξ = ∞, and so may be infinite. To regulate these, we
define S(a)(ρ̄) to be result of integrating only from ξ = 0 to ξ = ξ̄, where the latter is defined
by ρ(ξ̄) = ρ̄. We then define the tunneling exponent by

B(a) = lim
ρ̄→∞

B(a)(ρ̄) ≡ lim
ρ̄→∞

[

S
(a)
bounce(ρ̄)− S

(a)
fv (ρ̄)

]

. (A4)

We will show that this is finite for both values of a. Furthermore, we will show that that
B(1) and B(2) are in fact equal or, equivalently, that

lim
ρ̄→∞

ρ̄2
[

ρ′bounce(ξ̄)− ρ′fv(ξ̄)
]

= 0 . (A5)

1. Minkowski false vacuum

The pure false vacuum has U = 0 and ρ = ξ. It follows that S
(1)
fv (ρ̄) = 0 and

S
(2)
fv (ρ̄) = −6π2

κ
ρ̄2 . (A6)

In the bounce solution at large ξ, φ approaches its false vacuum value exponentially
rapidly, so U and φ′ are both exponentially small. It then follows that ρ′ differs from unity
by an exponentially small amount. Hence, if ξ1 is well outside the bounce, then for ξ̄ > ξ1
we have

ρ̄ = ρ(ξ̄) = ρ(ξ1) + ξ̄ − ξ1 + . . . , (A7)

where the ellipsis represents exponentially small terms. It is then straightforward to show
both that B(1)(∞) is finite and that Eq. (A5) is satisfied.

23



2. AdS false vacuum

For the AdS case, let us define Λ = −Ufv and an AdS length

L =

√

3

κ |Ufv|
=

√

3

Λκ
. (A8)

The pure false vacuum solution is given by φ = φfv and

ρ(ξ) = L sinh(ξ/L) . (A9)

It follows that

S
(1)
fv (ρ̄) = 2π2Λ

∫ ξ̄

0

dξ ρ3

= 2π2ΛL4

[

1

3
cosh3(ξ̄/L)− cosh(ξ̄/L) +

2

3

]

. (A10)

At large distances the bounce solution can be written as

φ(ξ) = φfv + δφ(ξ) ,
ρ(ξ) = L sinh(ξ/L+∆) + δρ(ξ) . (A11)

It is convenient to define η = ξ/L+∆. Then, to first order in δφ, Eq. (2.7) becomes

d2δφ

dη2
+ 3 coth η

dδφ

dη
= Cδφ , (A12)

where
C = L2U ′′(φfv) . (A13)

For ξ ≫ L we have
d2δφ

dη2
+ 3

dδφ

dη
= Cδφ . (A14)

The solution with δφ tending to zero as ξ → ∞ is

δφ = Qe−aη , (A15)

where

a =
3

2

(

1 +

√

1 +
4C

9

)

. (A16)

We can now investigate the convergence of the actions. With ξ1 ≫ L well outside the
bounce, and ρ̄ > ρ1, we have

B(1)(ρ̄) = B(1)(ρ1)− 2π2

∫ ξ̄

ξ1

dξ ρ3 [U(φ)− Ufv]

= B(1)(ρ1)− 2π2

∫ ρ̄

ρ1

dρ
ρ3

ρ′
[U(φ)− Ufv]
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≈ B(1)(ρ1)− π2CL−1

∫ ρ̄

ρ1

dρ ρ2δφ2 . (A17)

For ξ sufficiently large, ρ ∼ eη, so, using Eq. (A15), we see that δφ ∼ ρ−a and the integrand
behaves as

ρ2−2a = ρ−1−3
√

1+4C/9 . (A18)

This falloff is fast enough to make the integral converge as ρ̄ → ∞.
To verify that both actions lead to the same tunneling exponent, we first note that

Eq. (2.8) gives

ρ′ =

[

1 +
κ

3
ρ2
(

1

2
φ′2 − U

)]1/2

. (A19)

For ρ̄ ≫ L and in the asymptotic region,

ρ′bounce ≈ ρ

L

{

1 +
1

2

[

δφ′2 − U ′′(φfv)δφ
2
]

Ufv

}1/2

≈ ρ′fv +
ρ

4LUfv

[

δφ′2 − U ′′(φfv)δφ
2
]

. (A20)

It follows that the surface term from Eq. (A5) behaves as

ρ̄2
[

ρ′bounce(ξ̄)− ρ′fv(ξ̄)
]

∼ ρ̄3−2a . (A21)

Because a > 3
2
, this vanishes in the limit ρ̄ → ∞, as required.

Appendix B: Numerical methods

In this appendix we describe the numerical techniques that we used for the calculation of
the bounce and its action. The presence of very small numbers causes some complications
which we address here.

Our task was to solve Eqs. (2.7) and (2.8), subject to the boundary conditions of
Eq. (2.10). This can be done by a shooting code in Mathematica. Given the initial values
φ′(0) = 0 and ρ(0), we choose a value for φ(0) and integrate forward until one of the following
conditions is met:

1. φ passes the false vacuum. This is an overshoot trajectory.

2. φ′ vanishes before φfv has been reached. This is an undershoot trajectory.

3. ρ′ vanishes. If this occurs, ρ will start to decrease and eventually reach a second zero,
giving a compact solution. This is unacceptable because decay from Minkowski space
requires a bounce with infinite R4 topology. Because ρ′ can only vanish when U(φ) is
positive (i.e., in the potential barrier before φfv), this should be viewed as a undershoot
trajectory.

The desired bounce solution lies at the boundary between the overshoot and undershoot
regions, and can be found by bracketing this point with successive trial values of φ(0)

However, subtleties can arise. In principle, the procedure described above should work
for finding all CDL solutions. However, it is not uncommon for φ0 to be exponentially close
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to the true vacuum. If the wall is at ξwall, the value of φ0−φtv is typically of order of e−mξwall ,
where m is a characteristic mass scale of the problem, and mξwall can be large. Therefore, we
cannot represent these numbers in a machine with enough precision. However, this smallness
paves the way for an analytic approximation.

We saw in Sec. IV that linearizing about the true vacuum led to the approximate solution

φ(ξ) =
2φ0C

(3/2)
α (cosh ξ/ℓ)

(α+ 2)(α + 1)
. (B1)

Differentiating with respect to ξ gives

φ′(ξ) =
3 sinh(ξ/ℓ)C

(5/2)
α−1 [cosh(ξ/ℓ)]

ℓ C
(5/2)
α [cosh(ξ/ℓ)]

φ(ξ) . (B2)

If the value of φ(0) is too small, we do not integrate from ξ = 0. Instead we choose a
value ξ̄ such that the corresponding field φ(ξ̄) from (B1) is small enough that the linearized
approximation is still valid but not too small for the machine precision. We then take φ′(ξ̄)
and ρ(ξ̄) from equations Eq. (B2) and Eq. (4.1) and numerically integrate the equations of
motion with these initial conditions.

Appendix C: Decays from AdS vacua

Our analysis can be easily extended to the case where both the true and the false vacua
are AdS spaces. As a result, the pseudo-energy is everywhere positive definite and, except
in the extremely weak gravity limit, ρ is an exponentially growing function of ξ throughout
the transition region connecting the vacua. The second term dominates the right-hand side
of Eq. (4.12) throughout Region II. We can then make the approximation

ρ′

ρ
=

√

κ

3

(

1

2
φ′2 − U

)

. (C1)

This again yields Eq. (4.20) for the scalar field, and our shooting method for finding the
critical value of gravity remains valid.

Data for an AdS to AdS decay are shown in Table VI. We again find complete agreement
between our simulation and the critical value of β obtained by shooting.

The behavior of the action and the wall radius as β and κ approach their critical values
is shown in Figs. 12 and 13. Near the critical values these are fit well by

ρ̄ ∼ (κcr − κ)−1/2 , B ∼ (κcr − κ)−1/2 . (C2)

This is in stark contrast with the decays from the Minkowski vacuum, where B ∼ (κcr−κ)−2

and ρ̄ ∼ (κcr − κ)−1. This can be understood by examining Parke’s thin-wall results for an
arbitrary false vacuum [9]. If the false vacuum is Minkowski, the thin-wall analysis gives an
exact power law, with exponents −2 and −1, for all values of ǫ. If the false vacuum is AdS,
there is approximate power law behavior, with exponents −1/2 for both quantities, that is
valid near the critical point. The region where this approximation is valid shrinks to zero
as the false vacuum energy density approaches zero.
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TABLE VI: Similar to Table I, but for an AdS to AdS decay with Ufv/v
4 = −0.01, Utv/v

4 = −0.1,

and Utop/v = −0.005. For this potential βcr = 1.7502.

β S ξwall ρwall ℓAdS ∆ξwall ∆ρwall η σwall b

0 129 6.47 6.47 ∞ 3.51 3.51 0.0432 0.0159 0.478

1.0000 194 6.93 8.07 5.48 3.57 4.22 0.0320 0.0163 0.462

1.5000 457 8.09 13.2 3.65 3.63 6.61 0.0133 0.0167 0.441

1.7000 1511 10.2 28.9 3.22 3.67 14.2 2.19×10−3 0.0169 0.431

1.7300 2758 11.6 45.5 3.17 3.67 22.3 6.84×10−4 0.0169 0.429

1.7450 6269 13.7 90.2 3.14 3.67 44.1 1.10×10−4 0.0169 0.429

1.7490 1.46×104 16.0 194 3.13 3.67 94.6 1.36×10−5 0.0169 0.428

1.7496 2.20×104 17.3 286 3.13 3.67 139 4.65×10−6 0.0169 0.428

1.7498 2.86×104 18.1 368 3.13 3.67 179 2.33×10−6 0.0169 0.428

1.7500 4.92×104 19.7 623 3.13 3.67 304 5.44×10−7 0.0169 0.428

1.7501 1.96×105 24.0 2439 3.13 3.67 1191. 1.26×10−8 0.0169 0.428

FIG. 12: Behavior of ρwall (measured in units of v−1) for the potential corresponding to the data

in Table VI.

FIG. 13: Behavior of B for the potential corresponding to the data in Table VI.
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