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Abstract

We construct a class of Abelian and non-Abelian local gauge theories that consist only of matter

fields of fermions. The Lagrangian is local and does not contain an auxiliary vector field nor a

subsidiary condition on the matter fields. It does not involve an extra dimension nor supersymme-

try. This Lagrangian can be extended to non-Abelian gauge symmetry only in the case of SU(2)

doublet matter fields. We carry out explicit diagrammatic computation in the leading 1/N order

to show that massless spin-one bound states appear with the correct gauge coupling. Our diagram

calculation exposes the dynamical features that cannot be seen in the formal auxiliary vector-field

method. For instance, it shows that the s-wave fermion-antifermion interaction in the 3S1 channel

(ψγµψ) alone cannot form the bound gauge bosons; the fermion-antifermion pairs must couple to

the d-wave state too. One feature common to our class of Lagrangian is that the Noether current

does not exist. Therefore it evades possible conflict with the no-go theorem of Weinberg and Witten

on formation of the non-Abelian gauge bosons.

PACS numbers: 11.15.-q, 12.38.Cy
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I. INTRODUCTION

The U(1) gauge theory normally consists of a gauge field and matter fields. The La-

grangian is invariant under the simultaneous gauge transformation of the gauge field and

the matter fields. After this was generalized to non-Abelian group[1], we learned that the

non-Abelian extension underlies dynamics of the fundamental particles.

Let us take a side step and ask out of curiosity the following question: Is it possible to

construct a gauge-invariant Lagrangian with matter fields alone? For instance, can we con-

struct a local field theory with the electron-positron field alone such that it is invariant under

the space-time dependent rotation ψ(x) → eiα(x)ψ(x) even in the absence of an auxiliary

gauge field ? If the particles are bosons, the CPN/CPN−1 model[2] would probably be the

best known example of this type. Its supersymmetric extension was also discussed.[4] In the

case that the matter fields are fermions alone, the history actually goes much further back

to the work by Bjorken[5], but the work along this line has not been fruitful.1

The method of the auxiliary vector-fields was often used in the past to proceed in this

kind of argument. It introduces nonpropagating gauge fields at start and their kinetic energy

terms are added later by the loop contribution, ending up with the Lagrangian of matter and

propagating gauge fields. Many argued that the nonpropagating gauge field implanted as an

auxiliary field in Lagrangian should be interpreted as turning into a bound state once it has

acquired its kinetic energy from the loop contributions. But it is an inevitable consequence

of gauge invariance of Lagrangian that such an auxiliary field, elementary or otherwise,

ought to acquire a gauge invariant kinetic energy term −1
4
GµνG

µν after loops are included.

Wouldn’t it be more illuminating if composition of the massless vector-state can be seen

explicitly in terms of the constituent matter fields ? Such a diagrammatic computation was

indeed made by Haber, Hinchliffe and Ravinovici[6] for the CPN−1 model many years ago.

Unfortunately, this demonstration cannot be repeated when the constituents are fermions,

since a simple local gauge-invariant Lagrangian corresponding to that of the CPN model has

not been known in the case of fermion constituents.

More recently, attempt has been made to introduce composite gauge bosons through the

fifth dimension of the Randall-Sundrum model [13]. The gauge bosons live in the branes

1 A review is found for some of early history at the beginning of the Reference [4] including references.
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and can be interpreted as composite wholly or partially. This is a new class or concept of

composite gauge bosons. Models were built and phenomenology was discussed for possible

extensions of the standard model along this line.[14, 15].

In this paper we would like to focus on the dynamics of formation of composite gauge

bosons at an elementary level of particle physics. Many of us have the underlying con-

viction or speculation that when Lagrangian is locally gauge invariant, gauge bosons must

emerge as composite states even if they are not placed as elementary particles. We would

like to see it with our model Lagrangians in an explicit diagrammatic way. In order to

separate the issue from the argument based on the auxiliary vector field trick, we study the

Lagrangians consisting of fermion fields alone. Furthermore, since our Lagrangian consists

only of fermions, supersymmetry is not relevant to our argument, barring the nonlinear

realization[7]. We stay in the space-time of dimension four all the time. We have no need

of an extra dimension explicitly or implicitly. Given our Lagrangian, we can carry through

diagram calculation in the leading 1/N order with no further approximation or assumption.

In this way we can observe how the composite gauge bosons are made of their consituents

dynamically. Our reasoning for construction of the Lagrangian is simple and resorts to no

sophisticated mathematical argument or technique.

The primary purpose of this paper is to give model Lagrangians that advocate inevitabil-

ity of gauge bosons in gauge symmetric theories. Although application of our class of model

Lagrangians to the real world is not our primary concern at this moment, short comments

are made at the end on issues in electroweak phenomena. At the end, looking back the

history of “compositeness” including findings in some supersymmetric theories, we wonder

if it is really a meaningful concept at a fundamental level.

At present, we do not have in mind an immediate application of our model Lagrangian to

particle phenomenology. The gauge bosons have been generally accepted as the “elementary”

particles and, experimentally, there is no compelling reason of compositeness for them.

Therefore we shall not pursue experimental relevance of our models seriously in this paper.

Our emphasis at present is primarily on their theoretical implications in composite gauge

bosons in general. When Yang and Mills introduced the non-Abelian gauge field theory[1], it

had no immediate application. Even the ρ-meson was not known at that time although the

concept of the weak intermediate bosons was entertained by theorists. The Yang-Mills theory

became a subject of intense phenomenological interest only after the Higgs mechanism[9],
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Weinberg’s “A Model of Leptons”[10] and quantum chromodynamics came up at the stage

unexpectedly one after another. If we recall this history, we may have chance to see some

feature of our models develop into a subject of experimental interest as the Large Hadron

Collider upgrades luminosity and energy further.

We organize the paper as follows: In Section II, following the footstep of the CPN model,

we introduce the U(1) gauge model of charged Dirac fields alone. We emphasize that, in

contrast to the CPN model, one cannot write a local Lagrangian of fermion fields alone

with the so-called auxiliary field trick. In Section III we show that the Noether current is

inevitably absent in the gauge theories that consist of matter fields alone. In Section IV,

we show dynamics of the U(1) gauge-boson formation first in the bosonic matter model and

then in the fermionic matter model. We introduce, as usual, the N families of matter fields

and take the large N limit in order to solve the models explicitly in a compact form. We

find that a massless bound state appears in the 3S1 channel of elastic fermion-antifermion

scattering, but that the fermion-antifermion pair must interact in the 3D1 channel as well in

order to form the massless bound state of spin-one. In Section V we extend our models to

the non-Abelian gauge symmetry. Choosing the matter fields in SU(2) doublet, we can build

a non-Abelian model with Dirac fields. Computing the elastic scattering amplitude, we find

the non-Abelian gauge bosons in the SU(2)-triplet channel as bound states with the correct

self-couplings as required by the non-Abelian gauge invariance. In our class of models, the

SU(2)-doublet matter plays a special role; it is impossible to extend the model to matter

fields of general SU(2) multiplets nor to general Lie groups. The special role of the SU(2)

doublet is discussed in the text and also with two examples in one of the Appendices. In

the final Section VI, we discuss on relevance of the missing Noether currents to the no-go

theorem of Weinberg and Witten[11]. We conclude with comments on possible relevance to

the electroweak phenomenology and on historical mutation of the concept of compositeness.

II. U(1) MODELS

We proceed by following an elementary line of argument. The first step is to construct a

local Lagrangian L(ψ, ψ) such that

L(eiα(x)ψ(x), e−iα(x)ψ(x)) = L(ψ(x), ψ(x)), (1)
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where L(ψ(x), ψ(x)) depends on space-time coordinates xµ only through the unconstrained

fields ψ(x)/ψ(x). We cannot construct such a Lagrangian backward from the QED La-

grangian by integrating out the gauge field Aµ(x): We would need a gauge fixing to integrate

over Aµ(x), but fixing a gauge breaks manifest gauge invariance. We make our search here

with the CPN model as a guide.

Quantum electrodynamics cannot be modified or extended in our way if both renormaliz-

ability and locality are required in the space-time of (3+1) dimensions. We do not consider

here genuinely or intrinsically nonlocal field theories in which the fundamental fields and/or

interaction contains nonlocality.2 In contrast to nonlocality, unrenormalizability can be con-

trolled formally by dimensional regularization or by a covariant cutoff in phenomenology.

Therefore, we abandon here renormalizability in (3+1) dimensions for the moment and move

to a world off (3+1) dimensions or consider a covariant cutoff theory in (3+1) dimensions.

A. Boson matter

In order to construct a local Lagrangian with fermion matter fields alone, we first reex-

amine the gauge invariance of the bosonic matter model, namely the CPN model, from a

slightly different viewpoint.

In the CPN model the gauge noninvariance of the free Lagrangian L0 due to ∂µφ under

φ→ eiα(x)φ must be counterbalanced with that of the interaction Lint. Therefore Lint must

have at least the same number of derivatives as L0. Since L0 and Lint have the same space-

time dimension, we must introduce an inverse of (φ∗φ) in Lint to make up for the dimension

due to ∂µ in the numerator of Lint. Keeping the number of ∂µ in Lint the smallest, we reach

almost uniquely the simplest form of the gauge-invariant Lagrangian made of the matter

fields alone as

Ltot = L0 + Lint, (2)

where L0 is the standard free Lagrangian,

L0 =

N
∑

i=1

∂µφ∗i∂µφi −

N
∑

i=1

m2φ∗iφi, (3)

2 For example, the field theories once considered by Yukawa[8] and his followers.
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and the interaction Lagrangian Lint is given by

Lint = λ

∑N
i=1(φ

∗
i

↔

∂
µ

φi)
∑N

j=1(φ
∗
j

↔

∂µ φj)

4
∑N

k=1(φ
∗
kφk)

, (λ→ 1). (4)

The indices (i, j, k) run from 1 to N so that the model be solvable in the leading order of

1/N . They are referred to as the copy indices hereafter. From time to time, however, the

summation over the copy indices will be suppressed unless we need to remind of it.

Under the local U(1) gauge transformation, the fields transform with a space-time de-

pendent phase α(x) common to all the copy index i as

φi → eiα(x)φi, and φ∗i → e−iα(x)φ∗i . (5)

For the total Lagrangian, each of L0 and Lint varies nontrivially under the gauge transfor-

mation Eq.(5), but the variations δL0 and δLint are so made as to be proportional to each

other:

δL0 = −i
(

∑

i

φ∗i
↔

∂µ φi

)

∂µα +
(

∑

i

φ∗iφi

)

∂µα∂µα,

δLint = −λδL0. (6)

These gauge variations cancel each other between L0 and Lint for

λ = 1 (gauge limit). (7)

If we remove the mass term and impose the constraint
∑

i φ
∗
iφi = N/2f in Eq.(4), we

recognize this Lagrangian (with λ = 1) as that of the CPN−1 model [2]. However, we have

introduced N copies solely for the purpose of the computational ease of the leading 1/N

expansion. Our interest is not in the SU(N) symmetry among the different copies while

numerous works were done on the CPN−1 model with rich physical consequences in the

1970’s and 80’s.

As far as U(1) gauge invariance is concerned, we may add to Eq.(2) the terms that are

gauge invariant by themselves. For instance, nonderivative φ4-couplings such as

L′int = −

N
∑

i,j=1

λij(φ
∗
iφi)(φ

∗
jφj), (8)

where λij are arbitrary real constants. However, in the leading 1/N order the interactions

such as L′int do not affect on the bound-state formation.3 Therefore we leave out such

3 Because we compute the bound state of spin-one, not of spin-zero.
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interactions hereafter. It is reassuring to see later that the vector bound state comes out

massless with the correct gauge coupling irrespectively of the additional gauge-invariant

interactions such as L′int.

B. Fermionic model

Following the reasoning outlined above, we can obtain with a little stretch of imagination

a fermionic extension of the bosonic model Lagrangian Eq.(2). Since the free Lagrangian

L0 contains only one first-derivative of ψ, the interaction Lint can counterbalance the gauge

variation of L0 with only one first-derivative of field. Just as in the bosonic case, we need

to introduce the inverse of the scalar density ψψ in Lint in order to match the dimension.

Following this reasoning as in the bosonic model, we reach the Lagrangian L0 + Lint,

L0 =
∑

i

ψi(i 6 ∂ −m)ψi,

Lint = −iλ

∑

i(ψiγµψi)
∑

j(ψj

↔

∂
µ

ψj)

2
∑

k ψkψk

, (λ→ 1), (9)

where the gauge invariance is realized at λ = 1. Under the gauge transformation,

ψ → eiα(x)ψ

ψ → ψe−iα(x), (10)

the Lagrangian of Eq.(9) is invariant by cancellation between the gauge variations of L0 and

Lint at λ = 1:

δL0 = −ψ( 6∂α)ψ,

δLint = λψ( 6∂α)ψ. (11)

We may add to Lint the self-gauge-invariant terms such as

L′int = −
fm

4
(ψγµψ)

1

(ψψ)
(ψγµψ), (12)

where insertion of the fermion mass m is just to make the constant f dimensionless. The

constant f is unconstrained by gauge invariance. After we compute for the massless bound

state with Lint of Eq.(9) alone, we shall examine how the interactions like L′int affect its

mass and coupling. Since they will turn out to be irrelevant to determination of the mass
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and coupling of the massless bound state, we shall not include them in our diagram calcula-

tion. Before diagram calculation, some may suspect that the fermion-antifermion interaction

through ∝ (ψγµψ)(ψγ
µψ) might be responsible for or relevant to binding a gauge boson. It

is wrong. Such an interaction does not exist in our Lint. Even if one includes it in Lint, it

does not participate in formation of the massless gauge boson nor in determination of the

gauge coupling, as we shall see later.

Our fermionic Lagrangian Eq.(9) is obviously unrenormalizable in the space-time dimen-

sion of four just like that of the CPN model. As we know, the only renormalizable U(1) gauge

field theory with a charged fermion is quantum electrodynamics: It needs the propagating

gauge field Aµ explicitly in Lagrangian.

C. Auxiliary vector-field trick

Our bosonic Lagrangian Eq.(2) with λ = 1 takes the same form as what we could obtain

by starting with the gauge-invariant Lagrangian of a nonpropagating auxiliary gauge field

Aµ,

Laux =
∑

i

(∂µ − ieAµ)φ
∗
i (∂

µ + ieAµ)φi −m2φ∗iφi. (13)

Either by integrating Eq.(13) over Aµ or by substituting the equation of motion for Aµ,

eAµ =
i

2
(
∑

i

φ∗i
↔

∂µ φi)/(
∑

j

φ∗jφj), (14)

we obtain for m2 → 0 the CPN Lagrangian (before imposing the constraint and turning it

into CPN−1)[12].

When we compute by the loop correction the dimension-four operator of Aµ for the ef-

fective action, we obtain the “kinetic energy term” −1
4
FµνF

µν . One cannot obtain anything

other than the gauge invariant FF term (“the Maxwell term”) since the Lagrangian Eq.(13)

is gauge invariant by construction. Whether this appearance of the FF term is to be inter-

preted as “generation of a bound state” or not should be subject to debate. If we accepted

such interpretation, a massless spin-one state would emerge irrespectively of strength of the

interaction e2 which is implanted in Eq.(13) at the beginning. After rescaling of the Aµ field,

the physical coupling of Aµ to φ/φ∗ is fixed to some number, which is independent of e in

the one-loop and logarithmically divergent in the world of dimension four. Turning of the
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field Aµ into a massless boson is guaranteed once the field is introduced as an auxiliary field.

In contrast, in our model the strength of interaction Lint must be tuned to the optimum

value (λ = 1) in order to make the bound state massless. In this way we see that massless-

ness of the vector bound-state is a dynamical consequence of gauge invariance rather than

a kinematical outcome.

Substitution of the equation of motion Eq.(14) also needs scrutiny: If one computes ∂µF
µν

with this Aµ, one would obtain ∂µF
µν = 0 instead of ∂µF

µν = Jν . Therefore, the field Aµ of

Eq.(14) is not acceptable as the composite gauge field. One would need contributions from

loops to write a dynamical gauge field that obeys the correct equation of motion. We do

not know how to write such an object in a local composite field.

What would happen if one attempts to introduce the auxiliary field Aµ in the fermionic

model ? For the fermionic matter, the Lagrangian with a nonpropagating auxiliary field is

simply equal to

Laux =
∑

i

ψi(i 6 ∂ + e 6A−m)ψi, (15)

The equation of motion with respect to Aµ is trivially equal to
∑

i ψiγµψi = 0 and provides

us nothing. As for the functional integration over the auxiliary field Aµ, one cannot carry

it out at the tree level since the auxiliary Lagrangian Eq.(15) is not quadratic in Aµ unlike

that of the bosonic model. When the two-point loop-diagrams of AµAν is computed, the

local limit of the two-point functions ought to be proportional to FµνF
µν by the underlying

gauge invariance. But we cannot obtain a compact local Lagrangian of the matter fields

alone such as ours out of the auxiliary Lagrangian of Eq.(15).

The auxiliary vector-field trick bypasses the important part of dynamics of the matter

fields. In contrast, our explicit Lagrangian models provide dynamical details of binding

which are missing in the auxiliary field trick or else very different from it.

III. NOETHER CURRENT

When we attempt to write a conserved current in our models, we encounter one peculiar

problem: We are unable to construct a conserved current with the prescription of the Noether

theorem. In fact, such a current simply does not exist.

According to the general prescription, the Noether current JN
µ is obtained when La-

grangian is invariant under a set of space-time independent phase transformations of fields.
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In the bosonic model, it would be generated by the transformation,

φi → (1 + iα)φi and φ∗i → (1− iα)φ∗i , (16)

where α is infinitesimal and independent of space-time. The variation δLtot of O(α) under

this transformation leads to divergence of the Noether current through the identification,

∂µJN
µ = −δLtot/δα. (17)

Using the equation of motion in the right-hand side, one ought to obtain the Noether current

JN
µ as

JN
µ = −i

∑

i

( ∂Ltot

∂(∂µφi)
φi − φ∗i

∂Ltot

∂(∂µφ∗i )

)

. (18)

When we follow this standard procedure in our models, we find that the right-hand side of

Eq.(18) is identically zero in the gauge symmetry limit by cancellation between the contri-

butions from L0 and Lint:

JN
µ = i(1− λ)

∑

i

(φ∗i
↔

∂µ φi), (19)

where the term proportional to λ comes from Lint and the gauge symmetry holds at λ = 1.

One may be puzzled when one thinks of perturbative calculation: Since φ and φ∗ always

appear pairwise in product in the Lagrangian, one may assign the conserved U(1) charge ±1

to φ and φ∗. Then this charge ought to be conserved in all diagrams of physical processes

such as scattering and decay even in the gauge symmetry limit where the Noether current

disappears.

The same happens in the fermionic model too. Just as in the bosonic model, the conserved

Noether current disappears in the gauge symmetry limit:

JN
µ = (1− λ)

∑

i

ψiγµψi. (20)

The current
∑

ψiγµψi is not the Noether current. It is a general property of the gauge

theories having no gauge field that the Noether current is identically zero; JN
µ ≡ 0. It is

easy to trace the root cause of absence of the Noether current to local gauge invariance

itself. An almost trivial proof is given in the Appendix A. The proof can be easily extended

to the non-Abelian models. It has an important implication in the non-Abelian case: If

the Noether current existed, generation of the massless gauge bosons would face a potential

conflict with the no-go theorem of Weinberg and Witten[11].
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Unlike the Noether current, the conserved energy-momentum tensor exists in the Abelian

and non-Abelian gauge theories of matter fields alone. For the fermionic U(1) model with

the Lagrangian of Eq.(9), the conserved energy-momentum tensor is given by

T µν = i
∑

i

ψiγµ∂νψi −
iλ(

∑

i ψiγ
µψi)(

∑

j ψj

↔

∂
ν

ψj)

2
∑

k(ψkψk)
− gµνLtot. (21)

It is manifestly gauge invariant with the matter fields alone.

IV. COMPOSITE U(1) GAUGE BOSON

It is natural to wonder if our U(1) models contain a gauge boson as a composite state

even though we have not placed it by hand. In order to answer to this question, we carry out

diagram calculation in this section in order to exhibit the dynamical mechanism of forming

the composite gauge boson. We compute our models perturbatively in the 1/N expansion:

We sum an infinite series of the leading 1/N order terms and show explicitly that a massless

vector boson indeed appears as a pole in scattering amplitudes with the properties required

by gauge symmetry both in the bosonic and the fermionic model. In the case of the CPN−1

model in which φ∗φ is subject to a constraint, this diagram computation was done by Haber

et al [6]. Our primary interest is in the fermionic model, which is technically complex since

channel coupling occurs between the 3S1 and 3D1 channels. Unlike the formal argument

based on the auxiliary vector-field trick[16], the diagrammatic computation allows us to see

explicitly how a massless bound state is formed dynamically with the matter particles. For

instance, when we examine elastic fermion-antifermion scattering of JPC = 1−−, we find

that the massless bound state appears in the 3S1 channel, not in the 3D1 channel. That is,

the bound state couples with the fermions through the vertex ψγµψ, not through ψ
↔

∂µ ψ.

Nonetheless, the interactions of both types are needed to form a massless bound state.

A. Gauge boson in bosonic model

We start with our U(1) bosonic model for study of a composite gauge boson before our

study of the fermionic model since the computation is simpler for the bosonic model, yet it

demonstrates essential aspects of the diagram calculation.
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We consider the two-body φ+φ− scattering in p-wave (JPC = 1−−), treating all N copies

of the fields (i = 1, · · ·N) as independent. We show that a pole of a massless bound-state

appears in this channel. Then we proceed to make sure that the pattern and magnitude of

the coupling of this bound state indeed obey what we expect for the U(1) gauge boson.

We study the p-wave amplitude for the two-body scattering,

φ+
i (p1) + φ−i (p2) → φ+

j (p3) + φ−j (p4). (22)

We compute the amplitude in the leading 1/N order since a compact explicit solution can

be obtained only in this order. In the scattering Eq.(22), the copy indices are chosen

to be the same for the initial particles and also for the final particles. In the diagram

calculation, Lint is separated from Ltot in Eq.(4) and treated as the interaction. While this

statement sounds trivial, we point out one subtlety. That is, when we carry out perturbative

calculation by splitting the Lagrangian into L0 and Lint, we have fixed once for all the gauge

ambiguity of our Lagrangian Eq.(2). That is, when we write the propagator of φ/φ∗ in the

momentum space as 1/(p2 −m2), we need no more gauge fixing since there is no Aµ field

in the Lagrangian. With this separation, the fields obey the equation of motion of L0 that

violates gauge symmetry. Consequently the Noether current of L0 is the conserved current

in diagrams. For the purpose of visualizing how the gauge-invariance limit is reached, we

float λ in Lint as a free parameter until we set it to unity at the end of calculation.

In the diagram calculation of the leading 1/N order, we normal-order the operator φ∗φ

in the denominator of Lint and expand it around its vacuum value as

1/
∑

φ∗φ = 1/
(

∑

〈0|φ∗φ|0〉+
∑

: φ∗φ :
)

=
1

∑

〈0|φ∗φ|0〉

∞
∑

n=0

(−1)n
(

∑

: φ∗φ :
∑

〈0|φ∗φ|0〉

)n

, (23)

where the summation
∑

with no index attached means the summation over the copy index

i(= 1, · · ·N). This separation of the vacuum value is important to handle the denominator

of Lint in a systematic 1/N expansion.[6] The vacuum expectation value 〈0|φ∗φ|0〉 is infinite

in the (3+1) space-time, so it is regularized dimensionally as

∑

〈0|φ∗φ|0〉 = lim
x→0

∑

〈0|T (φ∗(x)φ(0))|0〉,

=
NΓ(1 −D/2)

(4π)D/2(m2)1−D/2
, (24)
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where N copies of bosons contribute to the vacuum value of the scalar density. The space-

time dimension D is set to four eventually. We denote this vacuum-expectation-value by Ib0

hereafter,

Ib0 ≡
∑

〈0|φ∗φ|0〉. (25)

Now we are ready to compute for the two-body scattering of Eq.(22). The great simplification

of the leading 1/N order is that for elastic scattering we have only to sum the chain of the

bubble diagrams, as shown in Fig. 1, in which the copy index i runs within a loop of each

bubble.

FIG. 1: The chain of the bubble diagrams for the elastic boson scattering.

Let us define with the S-matrix the two-body scattering amplitude T (p3, p4; p1, p2) as

< p3, p4|S − 1|p1, p2 >= i(2π)4δ4(p3 + p4 − p1 − p2)T (p3, p4; p1, p2). (26)

The amplitude T has the Lorentz structure of the form

T (p4, p3; p1, p2) = (p3 − p4)
µ(p1 − p2)

νT (q)µν , (27)

where q = p1+p2 = p3+p4 and the one-particle states are normalized as 〈pi|pj〉 = 2Eiδ(pi−

pj) so that the amplitude T (p3, p4; p2, p1) is a Lorentz scalar. For the elastic scattering in

the leading 1/N order, it is sufficient to keep only the first term of the expansion Eq.(23)

in the denominator of Lint. The normal-ordered product (
∑

: φ∗φ :) starts contributing to

the next-to-leading order of 1/N in the elastic scattering.

The amplitude T (q)µν starts with a contact interaction term with no bubble, the first

term in the right-hand side of Fig. 1, which is equal to

T 0
µν =

λ

2Ib0
gµν , (28)

where the superscript “zero” of T 0
µν indicates the zero-loop contribution of O(λ). The bubble

summation can be carried out by solving the algebraic equation (Fig. 2),

T (q)µν = T 0
µν +K(q)µκT

κ
ν (q). (29)
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where the kernel K(q)µκ is given by the single bubble diagram in which the copy index flows

around the loop. Eq.(29) will become powerful later when we sum the corresponding series

in the fermionic model in which two eigenchannels contribute and entangle in formation of

a bound state.

Straightforward computation gives us the kernel as

FIG. 2: The iteration equation of bubbles into a chain.

Kµκ(q) =
λNΓ(1−D/2)

(4π)D/2(m2)1−D/2Ib0

(

gµκ +
1−D/2

6m2
(gµκq

2 − qµqκ)
)

+O(q4). (30)

Since we want to extract the pole and residue of a massless bound state at q2 = 0, we need

Kµκ(q) only to the orders no higher than O(q2). The factor outside the large bracket in

Eq.(30) is simply equal to λ when Eq.(24) is substituted for Ib0 so that

Kµκ(q) = λ
(

gµκ +
1−D/2

6m2
(gµκq

2 − qµqκ)
)

+O(q4). (31)

Note here that Kµκ(q) does not satisfy the transversality, qµKµκ 6= 0. This is not violation of

gauge invariance. In the standard Lagrangian where the elementary Aµ field is present, one

would need the AµA
µφ∗φ term to realize transversality of the photon self-energy, qµΠ(q)µκ =

0, namely, gauge invariance. The term needed for transversality does exist in our model,

but it is tucked away elsewhere at this stage. As we shall see in a moment, it is this

nontransversality of Kµκ(q) that makes the composite boson massless.4.

Let us substitute Eq.(31) in the iteration equation Eq.(29) and move the term λgµκ of

the kernel Kµκ(q) to the left-hand side. We may drop the term proportional to qµqµ by use

of q · (p1 − p2) = 0 = q · (p3 − p4) on the external boson lines. Then Eq.(29) turns into

(1− λ)T (q)µν = T 0
µν +

λ(1−D/2)q2

6m2
T (q)µν +O(q4). (32)

Now we go to the gauge limit λ→ 1. Since T 0
µν is independent of q, Eq.(32) tells us that in

this limit there is a pole at q2 = 0 in the amplitude T (q)µν as

T (q)µν = −
6m2

(1−D/2)q2
T 0
µν +O(q2), (λ = 1). (33)

4 This is the case in the CPN−1 model analyzed in [6] too.
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When the parameter λ is off the gauge limit (λ 6= 1), the pole is located away from zero

at q2 = [6(1 − λ)/λ(1−D/2)]m2 so that the bound state would be either a massive vector

boson or a tachyon. We extract the residue of the pole at q2 = 0 for λ = 1 and compare this

residue with what we would obtain from the Feynman diagram of the standard U(1) gauge

Lagrangian of the charged scalar fields,

Ltot = −
1

4
FµνF

µν + (∂µφ∗ − ieAµφ∗)(∂µφ+ ieAµφ)−m2φ∗φ. (34)

By equating our residue with that of Feynman diagram, we obtain the coupling e2 of our

model as

e2 =
3(4π)D/2(m2)2−D/2

NΓ(2−D/2)
. (35)

When we approach the space-time dimension of D = 4, this coupling can be expressed in

terms of the logarithmic cutoff of divergence as

e2 =
48π2

N ln(Λ
2
/m2)

, (36)

where ln Λ2 = (2−D/2)−1 + ln 4π− γE (γE = Euler constant). The sign of e2 comes out to

be correctly positive. It is amusing to observe that the factor (1−D/2) in the denominator

of Eq.(33) is combined with Γ(1 − D/2) in 1/I0b of T 0
µν to turn into Γ(2 − D/2), which is

the logarithmic divergence in the space-time dimension of D = 4. That is, a quadratic

divergence Γ(1−D/2) metamorphoses into a logarithmic divergence as it can happen in the

dimensional regularization.

If we started with the auxiliary Aµ field and generate the −1
4
FµνF

µν to the leading 1/N

order, we would obtain the coupling constant identical with Eq.(36) after rescaling Aµ by

wave-function renormalization.[4] This equality is not unexpected since the one-loop self-

energy diagram of the auxiliary Aµ field leading to Eq.(36) is identical with the bubble

diagram of the p-wave φ†φ scattering in the leading 1/N order. There is no guarantee that

this equality holds beyond the leading 1/N order since noncontact interactions enter the

scattering amplitude while the self-energy diagram remains the two-point function.

In order to claim that the massless bound state discovered above is indeed the U(1) gauge

boson, we must show that other couplings of this state obey the pattern required for the

gauge boson. One may bypass this part by resorting to the gauge invariance that has been

embedded in the Lagrangian of our model. But we show here explicitly how the U(1)-gauge

invariance arises diagrammatically for the coupling of the massless bound state.
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Absence of the coupling eAµ∂
µ(φ∗φ) is obvious since the form of our Lint requires

the bound state to couple with φ∗/φ through (φ∗
↔

∂
µ

φ) not through ∂µ(φ∗φ). This is

also required by C-invariance of our Lagrangian. However, there must exist the coupling

e2φ∗φAµA
µ, where Aµ is the effective gauge field and e2 is to be given by Eq.(35). Aside

from this coupling, there should be no coupling of dimension four such as a nonderivative

quartic coupling of Aµ.

The coupling of φ∗φAµA
µ requires a little computation. Here the first nontrivial term of

the expansion of 1/(φ∗φ) enters the computation,

−
λ

4I20
(φ∗

↔

∂
µ

φ)(φ∗
↔

∂µ φ)(: φ
∗φ :). (37)

In the leading 1/N order, we attach a chain of the bubble diagrams to (φ∗
↔

∂
µ

φ) and another

chain to (φ∗
↔

∂µ φ) to form the composite Aµ and Aµ bosons, respectively. (See Fig. 3.)

Then we equate this diagram at the poles of the Aµ and Aµ bosons to the diagram of Fig. 4

which is obtained with the interaction e2φ∗φAµA
µ of the standard U(1) gauge Lagrangian,

Eq.(34).

s

FIG. 3: The diagram for formation of φ∗φAµA
µ coupling. The φ∗φ pair arises from the six-body

interaction of Eq.(37) at the center. The letter S denotes that the external φ∗φ pair at the center

is in the scalar state φ∗φ, not in the vector state φ∗
↔

∂ µ φ.

16



e e

e2

FIG. 4: The corresponding Feynman diagram for e2φ∗φAµA
µ.

This calculation gives us the relation

e4 =
(3(4π)D/2(m2)2−D/2

NΓ(2−D/2)

)2

. (38)

Two powers e2 out of e4 in Eq.(38) are to be attributed to the couplings of the φ∗φ pairs

with Aµ and with Aν at the outer ends of two bubble chains in Fig. 3. The remaining e2 is

to be assigned to the four-body AµA
µφ∗φ coupling at the center. Therefore, the coupling e4

of Eq.(38) is precisely what we want to see.

Absence of the triple self-coupling of Aµ is a consequence of C-invariance. Diagrammati-

cally, this is assured in the U(1) model by cancellation between a pair of diagrams where the

two chains are interchanged. Since they do not cancel in the non-Abelian models and there

is some subtlety, we add a few comments here in anticipation of the non-Abelian cases. The

relevant diagram is depicted in Fig. 5.

If we indeed compute this coupling with individual diagrams, we must be careful about

the surface-term ambiguity. The triangular loop at the center is linearly divergent in the

space-time dimension of four and therefore its constant term is ambiguous by the surface

term of loop-integral. The value depends on how the loop-momentum is routed just as

in the chiral anomaly or the finite part of the electron self-energy in QED. To fix this

finite ambiguity, one must impose invariance and/or symmetry that must be preserved in

theory. In this case C invariance of Ltot and/or the Bose statistics of the composite Aµ fixes

the ambiguity. With the right choice of the routing momentum, a pair of triangular loop

diagrams cancel each other and turn the net triple self-coupling to zero in the U(1) model.

In comparison, we need explicit computation of diagrams to show vanishing of the net
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FIG. 5: The triple self-coupling of the composite Aµ, which can appear potentially from the center

of the diagrams containing three chains of φ∗/φ bubbles.

quartic self-coupling although there is no subtlety of the surface-term ambiguity. In the

presence of the six-body coupling of Eq.(37), three classes of loop diagrams can potentially

contribute to the quartic self-coupling of the composite gauge boson in the leading 1/N order

(Fig. 6).

S
S

S

(a) (b) (c)

FIG. 6: Three classes of diagrams can contribute to the quartic self-coupling of composite Aµ. The

letter S for the six-body φ∗/φ interaction point in the loop at center denotes that the φ∗φ pair is

in the scalar state.

The square box diagrams (6a) alone do not cancel among themselves. When we add all

three classes of the diagrams, however, they sum up to zero at the zero external momentum

limit where the on-shell quartic coupling constant is defined. Up to an overall constant, the

cancellation occurs among the three types of diagrams in Fig. 6 as

∝
(1

4
−

1

2
+

1

4

) 1

Γ(2−D/2)
, (39)
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where the first, second and third terms in the bracket are from the three types of diagrams,

Figs. 6a, 6b and 6c, respectively. Of course, this cancellation is not an accident. Its origin

is traced back to the U(1) gauge invariance incorporated in the Lagrangian.5

Our fundamental Lagrangian Ltot is invariant under the gauge transformation φ(x) →

eiα(x)φ(x) and the conjugate. Once a massless vector bound-state emerges with the effective

coupling ie(φ∗
↔

∂µ φ)A
µ, the only way to be compatible with the gauge invariance is that the

additional interaction e2φ∗φAµA
µ exists for this effective Aµ field and that Aµ transforms

as eAµ → eAµ + i∂µα under φ(x) → eiα(x)φ(x). As far as the interactions of dimension four

are concerned, there is no other way known to us that satisfies the U(1) gauge invariance

incorporated in Ltot. As for the self-couplings of Aµ, we would have to satisfy U(1) gauge

invariance with the Aµ fields alone without derivatives. That is, there is no room to accom-

modate nonderivative self-interaction of Aµ in dimension four. When we argue in this way,

gauge invariance of the composite Aµ coupling is an inevitable and trivial consequence of

the gauge symmetry of Ltot, once a massless spin-one bound-state emerges with the coupling

ie(φ∗
↔

∂µ φ)A
µ. When we take this viewpoint, the crucial step is whether or not a massless

bound state of spin-one is indeed formed out of the interactions among the matter fields

themselves. The rest may be interpreted as logical inevitability.

Before closing this subsection, we comment on the interactions of dimension higher than

four (in the world of space-time dimension four or 3+1). The interaction (φ∗φ)2AµA
µ has

dimension six. It can arise from the third term (n = 2) of the expansion of the denominator

1/(φ∗φ) in Eq.(4), that is,

Lint =
1

4(Ib0)
3
(: φ∗φ :)2(φ∗

↔

∂µ φ)(φ
∗
↔

∂
µ

φ). (40)

By attaching the chains of the φ bubbles to (φ∗
↔

∂µ φ) and (φ∗
↔

∂
µ

φ), then going to the

gauge-boson mass shells on the chains, we can extract the effective interaction of dimension

six for the composite gauge boson,

Lint =
e2

Ib0
(φ∗φ)2AµA

µ, (41)

5 We freely switch between φ∗φ and :φ∗φ : in this calculation since our computation of the couplings involves

only those diagrams in which a φ/φ∗ particle emitted from one Lint annihilates at a another Lint in the

center of diagram. See Figs. 6b and 6c. The normal ordering makes no difference in Figs. 6b nor 6c for

this reason.
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where the coupling e2 is given by Eq.(35). This coupling is not gauge invariant by itself.

However, there is another effective coupling of dimension six, which contains only a single

Aµ. We can compute it with the interaction of Eq.(40) and put it in the form of effective

interaction,

Lint =
ie

Ib0
(φ∗φ)(φ∗

↔

∂µ φ)A
µ. (42)

When the two interactions Eqs.(41) and (42) of dimension six are combined and added to

the first term of the expansion of 1/(φ∗φ),

1

4Ib0
(φ∗

↔

∂µ φ)(φ
∗
↔

∂
µ

φ), (43)

the sum total is gauge invariant. That is, when all the couplings of O(1/Ib0), Eqs.(41), (42)

and (43) are combined, the interaction of dimension six for the effective field Aµ is gauge

invariant. The combined effective interaction can be cast into the form

Leff
int =

1

4Ib0
(φ∗

↔

D
µ

φ)(φ∗
↔

Dµ φ), (44)

where Dµ = ∂µ + ieAµ and (φ∗
↔

Dµ φ) ≡ φ∗Dµφ − (Dµφ)
∗φ. The interaction of Eq.(44)

illustrates what happens for the effective interactions of higher dimension in general. It is

obvious from the dimensional reason that Leff
int must be inversely proportional to powers

of Ib0. Although Ib0 is formally proportional to m2 in the dimensional regularization, it

is quadratically divergent in the cutoff (∼ NΛ
2
) in the world of D = 4. If we give a

physical meaning to the cutoff, therefore, the interactions of dimension six are suppressed by

O(p2/NΛ
2
) in the region of energy scale O(p2) relative to those of dimension four. Meanwhile

the divergences of O(N ln Λ
2
) are absorbed into the gauge coupling e2 as we have seen in

Eq.(35). Therefore, if our model should turn out to be phenomenologically relevant in one

way or another, its cutoff Λ would place these higher-dimensional interaction under control.

Whether these interactions can generate anything phenomenologically interesting or not is

a separate question.

We can cast the amplitudes of higher-dimension processes in the standard U(1)-gauge

theory with the elementary gauge boson into the form of effective interactions. However,

such effective interactions are generally not identical with the higher dimensional interactions

that have been obtained above from our Lagrangian Eq.(2). The loop-diagram amplitudes

produced by the standard U(1) gauge theory do exist equally in our model since the gauge

20



boson exists as a composite. Our model contains the additional terms that are generated by

matter fields and suppressed by the large cutoff scale of Ib. Physics is generally different in

these orders from the standard gauge theory of elementary gauge boson. If our model were

identical with the standard U(1) gauge theory, it would be perfectly renormalizable in our

world of dimension four. But that is not the case: Our model contains the higher-dimensional

local interactions that are additional to the standard gauge theory and suppressed by powers

of 1/Ib = O(Λ
2
).

B. Gauge boson in fermionic model

Computation of the massless bound state is technically a little complex in the fermionic

model since there exist two channels of JPC = 1−−. We compute the elastic scattering of

fermion-antifermion,

f+(p1, s1) + f−(p2, s2) → f+(p3, s3) + f−(p4, s4) (45)

in the leading 1/N order with the Lagrangian Eq.(9). The copy indices are chosen to

be the same for the initial f+f− and for the final f+f−. We shall suppress spin indices

si(i = 1, · · ·4) in the following since they are obvious in most places. We leave out the

self-gauge invariant interactions such as Eq.(12). Although those interactions certainly

contribute to the fermion-fermion scattering in general, we show later that omission of such

interactions does not affect the properties of the massless bound state.

We follow our path taken for the bosonic model: We separate ψψ in the denominator of

Lint into sum of the vacuum expectation values and the normal-ordered products : ψψ : and

then expand it in the power series of
∑

: ψψ : /
∑

〈0|ψψ|0〉. The vacuum expectation value

〈0|ψψ|0〉 is divergent and dimensionally regularized as

∑

〈0|ψψ|0〉 = − lim
x→0

tr〈0|T (ψ(x)ψ(0)|0〉,

= −
4NmΓ(1−D/2)

(4π)D/2(m2)1−D/2
, (46)

where the trace (tr) in the first line of the right-hand side refers to the spinor indices of ψ

and ψ. We shall denote the right-hand side of Eq.(46) by If0 hereafter as

If0 ≡ 〈0|ψψ|0〉 = −4mIb0. (47)
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If0 is opposite in sign to Ib0 of the boson Eq.(25) and its dimension is three instead of two.

Now we proceed to compute the two-body scattering amplitude of JPC = 1−−. There

exist two eigenchannels in the fermion scattering. The fermion-antifermion pair is in the con-

figuration of v−pγup in one channel and in 2pv−pup in the other in the center-of-momentum

frame. The spins of v−p and up are combined into a triplet in both cases so that they make

the 3S1 and
3D1 states of f

+f−, respectively. With our choice of Lint in Eq.(9), the fermion-

antifermion pair turns from ψγµψ on one side to (ψ
↔

∂
µ

ψ) on the other, or conversely from

(ψ
↔

∂µ ψ) to ψγ
µψ at every interaction point in the chain of bubbles.

Let us define the Lorentz scalar amplitude T (p1, p2; p3, p4) with the S-matrix as

< p3, p4|S − 1|p1, p2 >= i(2π)4δ4(p3 + p4 − p1 − p2)T (p3, p4; p1, p2), (48)

where the one-fermion states are so normalized that the amplitude T (p3, p4; p1, p2) is a

Lorentz scalar and its Lorentz structure is given in the (2× 2) matrix form by

T =
(

up3γµvp4, up3(p3 − p4)µvp4/m
)





T µν
11 (q) T

µν
12 (q)

T µν
21 (q) T

µν
22 (q)









vp2γνup1

vp2(p1 − p2)νup1/m



 , (49)

where q = (p1 + p2) = (p3 + q4). The perturbation series for T (q)µν starts with the tree

diagram, which gives −(λ/2If0 )gµν to the off-diagonal elements of T 0
µν :

T 0
µν = −

1

2If0





0 λ

λ 0



 gµν . (50)

Summation of the bubble chains can be carried out by solving the matrix equation,

T (q)µν = T 0
µν +K(q)µκT

κ
ν (q), (51)

where the kernel K(q)µκ is the 2× 2 matrix of the four single-bubble diagrams that connect

between γµ-type vertex (3S1) and the
↔

∂µ-type vertex (3D1). (See Fig. 7.)

Kµκ(q) =





K(q)11 K(q)12

K(q)21 K(q)22





µκ

. (52)

In order to extract the mass and coupling of the composite boson from T (q)µν , we need

(I−K(q))µκ near q2 = 0 in Eq.(51). To be more specific, the terms of gµκ and (q2gµκ−qµqκ)

for Kij. In fact, for the off-diagonal elements K12 and K21, all we need is the leading terms
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γ
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γ

γ

   0

  0

FIG. 7: Iteration of bubble diagrams for fermion scattering. The letters γ and d denote that the

fermion pair at the interaction point is ψγµψ and ψ
↔

∂ µ ψ, respectively.

that give K12K21 = O(q2). By straightforward diagram computation, we find the relevant

terms of Kµκ(q) near q2 = 0 as

Kµκ(q)11 = λ
(

gµκ +
Γ(2−D/2)

6m2Γ(1−D/2)
(gµκq2 − qµqκ)

)

,

= Kµκ(q)22

Kµκ(q)12 = −λ
( Γ(−D/2)

Γ(1−D/2)
− 2

)

gµκ,

Kµκ(q)21 = −λ
( Γ(2−D/2)

6m2Γ(1−D/2)

)

(gµκq2 − qµqκ). (53)

We have kept Γ-functions above since they are partially canceled with Γ(1 − D/2) coming

from 1/If0 of T 0 when (I −K)−1 is operated on T 0 later. The terms in Eq.(53) that turn

out to determine the pole and residue of the massless bound state are the first term λgµκ of

the diagonal element K(q)µκ11 (= K(q)µκ22 ) and the off-diagonal element K(q)µκ12 6= 0 at q2 = 0.

Let us examine the pole and residue of the matrix amplitude Tµν at q2 = 0 by solving

Eq.(51) as

Tµν =
( 1

I −K

)κ

µ
T 0
κν . (54)

Since the external fermion lines are on mass shell, the terms proportional to qµqκ in Kµκ

has been removed by use of the Dirac equation and the mass shell condition on the external

lines. We then approach the gauge symmetry limit λ = 1 of T = (I−K)−1T 0. The result is

T (q)µν =
(4π)D/2(m2)2−D/2

Γ(2−D/2)





3
4q2

C
m2

C
m2

C
m2



 gµν , (55)
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where

C =
D(D − 2)

32(D + 1)
. (56)

A pole appears only in the (11)-matrix element at the upper left corner in Eq.(55) and the

other entries are regular at q2 = 0.

T

γ γ γ

γ

d

d d d

µν

FIG. 8: The massless bound state appears only in the upper left corner, which is the 3S1 channel.

It means that bound state appears in the channel of ψγµψ → ψγµψ, that is, in the 3S1

channel, not in the 3D1 channel.6 If either end of the chain is ψ
↔

∂µ ψ, no massless pole

appears in such a chain.

By comparing the matrix element T µν
11 with the one-photon pole diagram of the standard

U(1) gauge interaction −eψγµψA
µ, we can identify the gauge coupling e2 with the residue

at the pole to obtain

e2 =
3(4π)D/2(m2)(2−D/2)

4NΓ(2−D/2)
. (57)

or in terms of the covariant ultraviolet cutoff in the space-time of D = 4,

e2 =
12π2

N ln(Λ
2
/m2)

. (58)

This is the parallel of Eq.(35) in the bosonic model. While the quartic divergence (∝

Γ(−D/2) ∼ Λ4) and quadratic divergence (∼ Λ2) are present in T (q)µν , they do not enter

the residue of the pole at q2 = 0. Therefore, the coupling e2 involves only the logarithmic

divergence (∼ 1/N ln Λ2) as it does for the bosonic model.

As we have pointed out, we may add to our fermionic model the interaction L′int of Eq.(12)

which is gauge invariant by itself. Let us denote the shifts of the matrices K(q) and T 0 due

6 This has nothing to do with the d-wave threshold behavior ∼ |p|l(l = 2). The threshold behaviors reside

in the spinorial factors in Eq.(49) and have been separated out in defining T (q)µνij .
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to L′int as K(q) → K(q) + ∆K(q) and T 0 → T 0 +∆T 0. Near q2 = 0, these shifts are given

by

∆T 0
µν =

1

2If0
gµν





fm 0

0 0



 . (59)

and

∆Kµκ =
1−D/2

6m2





f 0

0 0



 (gµκq2 − qµqκ). (60)

It is not difficult to see that these modifications, Eqs.(59) and (60), do not alter either the

location of the pole at q2 = 0 nor its residue. In terms of diagrams, we can visualize the

effect of Eqs.(59) and (60) as follows: We should first notice the fact that the newly added

bubble consisting of γµ on one end and γκ on the other end vanishes like (gµκq
2 − qµqκ) at

q = 0. Let us call this bubble as that of the type γµ ⊗ γκ. When the γµ ⊗ γκ bubble enters

the middle of the eigenchannel that produces the bound state, the chain would thus acquire

a factor of O(q2) from this bubble. Therefore it cancels the pole and becomes irrelevant to

formation of the massless bound state. The pole at q2 = 0 is produced only by the gµκ term

of K(q)µκ in the chain of bubbles of the type γµ⊗
↔

∂ ν and
↔

∂µ ⊗γν alone. With the addition

of L′int, therefore, the massless pole is undisturbed and its residue is unaffected.

Let us move on to the self-coupling of the gauge field. Charge conjugation invariance

forbids the triple self-coupling, but the quartic self-coupling is not forbidden by any discrete

symmetry. Since the massless bound state couples only to the 3S1 vertex, namely, to ψγµψ,

the relevant diagrams have a square box at the center with six permutations of the four γ-

vertices, that is, the diagram of Fig 6a in which the boson lines are replaced by the fermion

lines and the γ-matrices sit at the four corners of the box. However, sum of these box

diagrams vanishes in the zero energy-momentum limit of the bound-state bosons, not just

the leading divergent term (∼ ln Λ
2
) but all finite terms as well in this limit. This fact

is well-known as the gauge-invariance requirement ∼ e4F ν
µF

κ
ν F

λ
κF

µ
λ on the photon-photon

scattering amplitude in quantum electrodynamics.

For the diagrams corresponding to Fig 6b and 6c with the boson lines replaced by

fermions, the two chains of bubbles are attached to the six-body fermion interaction. How-

ever, since the six-body fermion interaction is of the form (ψγµψ)(ψ
↔

∂
µ

ψ)(ψψ), one of the

vector vertices starts with the γ-vertex but the other starts with the
↔

∂ -vertex. As we have

already observed, the massless bound-state pole cannot appear in the latter chain. There-
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fore, the massless vector bound state can be formed only in one of the two chains attached

to the six-body interaction point, not in both. That is, only three massless bound states can

be formed in Fig. 6b and two in Fig. 6c. Combining this observation with that for Fig. 6a

above, we conclude that there exists no nonderivative quartic self-coupling of the massless

U(1) bound-state in the fermion model either, just as gauge invariance requires.

The lowest possible couplings of higher dimension with fermion fields is the Pauli term

iψσµνψF
µν . This coupling is gauge invariant by itself. With our interaction Lint, however,

our composite boson does not have this coupling. To see this, recall the decomposition of

the photon-fermion vertex for the fermion on mass shell, iuσµνq
νv′ = u(p+p′)µv

′−2muγµv
′.

This relation tells that if the massless bound state had the Pauli-term interaction, we would

have its pole in the channels of both ψ
↔

∂µ ψ and ψγµψ. In our preceding study, however,

we have found a massless pole only in ψγµψ. That means no Pauli term.

The effective interaction ψψAµA
µ is also of dimension five and not gauge invariant by

itself. As in the bosonic model, If an interactions of Aµ appears with a dimension higher than

four, it ought to appear in a gauge invariant combination since the underlying Lagrangian is

gauge invariant. As for this specific interaction, the accompanying gauge-covariant partners

are ∂µψ∂µψ and ie(ψ
↔

∂µ ψ)A
µ. But we have already found that the coupling (ψ

↔

∂µ ψ)A
µ

does not exist in our model. Neither ∂µψ∂
µψ in Ltot. Therefore the coupling (ψψ)AµA

µ can

be generated as an effective interaction in our model.

One of the merits of our fermionic model is to reveal the dynamical details explicitly

in regard to how the self-interaction of the constituent fermions conspires to generate the

composite gauge boson. Specifically, the composite gauge boson is formed with fermions

in the presence of the process of the transition between the 3S1 and the 3D1 channel. No

massless bound state can be formed with the 3S1 channel alone. There is no place to see

this dynamics in the auxiliary field trick on fermions in which the auxiliary vector field has

only the 3S1 interaction.

V. NON-ABELIAN EXTENSIONS

It is possible to extend our U(1) models to non-Abelian models. The non-Abelian ex-

tension turns out to be quite easy if we choose matter fields in the SU(2) doublet. In this

section we present the SU(2)-doublet model for both bosons and for fermions and compute
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for the composite gauge bosons again in the leading 1/N order. Extension of our U(1)

models to a general Lie group or even to an SU(2) representation other than the doublet

encounters difficulty. This is not a simple technical difficulty, but it involves some problem

at a fundamental level in our class of models. We explain this difficulty in the text, then go

a little further with few examples of the bosonic models in Appendix B.

Those who approach the problem with the auxiliary field trick would trivially extend

the U(1) model to general groups and representations by simply replacing the two-by-two

matrices 1
2
τa of SU(2) with the n×n generator matrices Ta of a general Lie group. In our case,

however, such simple substitution does not extend our models to those of general groups

or representations.7 This is another indication of the fact that our models are physically

different at some fundamental level from what the auxiliary field trick gives.

A. Non-Abelian bosonic model

Let us introduce N families of scalar boson fields in SU(2) doublet,

Φi =





φi
1

φi
2



 , (i = 1, · · ·N), (61)

and their conjugates Φi†, which we write in a row. The subscripts (1, 2) are those of SU(2).

We shall suppress the copy index and/or the SU(2) index wherever there is no confusion.

Our bosonic Lagrangian is given simply by

L0 =
∑

i

∂µΦi†∂µΦ
i −

∑

i

m2Φi†Φi

Lint = λ

∑

i(Φ
i†τ

↔

∂µ Φi) ·
∑

j(Φ
j†τ

↔

∂
µ

Φj)

4
∑

k(Φ
k†Φk)

, (λ→ 1) (62)

where i, j and k are copy indices and τ denotes the Pauli matrices τa(a = 1, 2, 3).8 For the

SU(2) gauge invariance of L0 + Lint, we give the proof here for the infinitesimal rotation,

Φ → (1 +
i

2
τ · α)Φ,

7 One well-known example of the special role of the SU(2) may come to minds of some people. That is

the instanton. The instanton is special to SU(2), not extendable to SU(N) (N ≥ 3) or other general

groups because of its topological property. In our case, however, topology is not an issue. Important is

the self-duality of the group and the representation.
8 This bosonic Lagrangian as well as its Abelian version appears in the earlier paper[4].
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Φ† → Φ†(1−
i

2
τ · α), (63)

where α is a space-time dependent vector function. Let us compute the variations L0 →

L0 + δL0 and Lint → Lint + δLint separately and confirm cancellation to O(α) between the

two variations. For L0, it is easy to obtain

δL0 = −
i

2
(Φ†τ

↔

∂µ Φ) · ∂µα+O(α2). (64)

We need a little care in computation of δLint. To the order O(α), it is not difficult to obtain

the transformation,

(Φ†τ
↔

∂
µ

Φ) → Φ†U †τU∂µΦ− (∂µΦ†)U †τUΦ + 2i(Φ†Φ)∂µα+O(α2), (65)

where U = 1+ iτ ·α/2. The third term proportional to ∂µα in the right-hand side has been

obtained by use of the relation,

τ (τ · ∂µα) + (τ · ∂µα)τ = 2∂µα. (66)

Since an isoscalar product remains unchanged under global SU(2) rotations, it holds for

arbitrary SU(2)-doublet functions, A,B,C and D, that

(

(UA)†τUB
)

·
(

(UC)†τUD
)

= (A†τB) · (C†τD). (67)

Thanks to this relation, when we take product of Eq.(65) with itself in Lint, four products

made of the first two terms are invariant by themselves as

(Φ†U †τU∂µΦ) · (Φ
†U †τU∂µΦ) = (Φ†τ∂µΦ) · (Φ

†τ∂µΦ), (68)

and so forth. The product of the third term with itself is O(α2). In the cross products of the

first two terms with the third term 2i(Φ†Φ)∂µα, we may set U = 1 since we are computing

to O(α). Dividing these terms of O(α) in the numerator of δLint by 4(Φ†Φ), we obtain that

the variation of Lint is equal to

+
i

2
λ(Φ†τ

↔

∂µ Φ) · ∂µα+O(α2), (69)

which cancels δL0 for λ = 1.

The proof to all orders of α is not difficult though a bit tedious. We can carry it out

with brute force using the local rotation matrix U for the SU(2) doublet matter fields,

U = cosα + i(α̂ · τ ) sinα, (70)
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where α̂ = α/α. Alternatively, in the case of bosons, we could introduce the auxiliary

fields and integrate over them to reach the Lagrangian Eq.(62). Operationally, this turns

out to be a much simpler avenue. While its physical meaning is subject to debate or some

people feel it questionable, we can use the auxiliary field method as a mathematical tool of

manipulation without a problem. If one wants to proceed along that line, one starts with

Ltot = (∂µ + iAµΦ)† · (∂µ + iAµ)Φ−m2Φ†Φ +
1

2
µ2AµAµ, (71)

where Aµ = 1
2
τaA

µ
a . Although we do not really need it here, we have added the mass term

µ2 to Aµ for gauge fixing, which is to be removed after functional interaction is completed.

Having seen the Lagrangian of Eq.(62), it is tempting to speculate that if the isospin

1
2
τa is replaced by the n × n matrices of the generator Ta of some other group G, we could

obtain the non-Abelian extension to the case where the matter fields form the n-dimensional

multiplets of group G. Namely,

Ltot =
∑

i

∂µΦi†∂µΦ
i −m2Φi†Φi + λ

∑

i(Φ
i†Ta

↔

∂µ Φi) ·
∑

j(Φ
j†Ta

↔

∂
µ

Φj)
∑

k(Φ
k†Φk)

, (λ→ 1), (72)

where Ta 6=
1
2
τa. Unfortunately, this does not work. The Lagrangian of Eq.(72) is not gauge

invariant. We can pinpoint the step where the proof fails in this attempt: The relation

of Eq.(66) is crucial in achieving non-Abelian gauge invariance in the Lagrangian Eq.(62).

This relation holds only for the SU(2) doublet.

Some may yet wonder why one cannot resort to the auxiliary field trick starting with

Ltot = (∂µ + iAµΦ)† · (∂µ + iAµ)Φ−m2Φ†Φ, , (73)

where Aµ = TaA
a
µ. The equation of motion for the auxiliary field Aa

µ is to be obtained by

solving

−i(Φ†Ta
↔

∂µ Φ) + Φ†{Ta, Tb}ΦA
b
µ = 0. (74)

The n×n matrix {Ta, Tb} is not proportional to a unit matrix except in the case of Ta =
1
2
τa.

In fact, its determinant is zero in most cases. Consequently, the set of the algebraic equations

Eq.(74) is generally unsolvable. This same problem derails an attempt to integrate over the

field Aa
µ to get an effective action in terms of Φ and Φ† alone. We have illustrated this

difficulty by two examples in Appendix B.

When one attempts diagram calculation with the wrong Lagrangian of Eq.(72), one could

tune the location of a pole in the chain of the bubble diagrams to zero by setting λ off
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unity. However, when one proceeds to calculate the coupling of Φ†ΦAµA
µ (see Fig. 3), the

Lagrangian of Eq.(72) would generate the form

Φ†ΦAµ ·A
µ, (75)

where the structure Aµ ·A
µ arises from the denominator of Lint and enters the center of the

triangular loop in Fig. 3. However, the correct non-Abelian structure for these couplings

ought to be

Φ†{Ta, Tb}ΦA
a
µA

µb. (76)

This conflict is another manifestation of the fact that the Lagrangian of Eq.(72) is not gauge

invariant.

These arguments are more than what we really need, but they hopefully clarify the special

role of the SU(2) doublet matter fields when we attempt to write a local non-Abelian gauge

invariant Lagrangian with matter fields alone. We have not succeeded in finding such a

Lagrangian in a reasonably simple form except for the SU(2) doublet matters.

B. Non-Abelian fermionic model

The non-Abelian extension is possible for the fermionic model if one follows the bosonic

model given above. For the SU(2) gauge group where the Dirac fields form SU(2) doublets

with N copies,

Ψi =





ψi
1

ψi
2





Ψ
i
= (ψ

i

1, ψ
i

2), (i = 1, 2 · · ·N), (77)

the gauge invariant Lagrangian is given by

L0 =
∑

i=1

Ψ
i
(i 6∂ −m)Ψi

Lint = −iλ

∑

i(Ψ
i
τγµΨ

i) ·
∑

j(Ψ
j
τ
↔

∂
µ

Ψj)

2
∑

k(Ψ
k
Ψk)

, (λ→ 1). (78)

Gauge invariance can be proved in parallel to the bosonic model although the auxiliary field

method never leads us to this Lagrangian. To the first order in α(x) under the space-time
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dependent rotation Ψ → exp(iτ ·α(x)/2)Ψ and its conjugate, the gauge variations are given

by

δL0 = −
1

2
(ΨγµτΨ) · ∂µα+O(α2),

δLint = −λδL0. (λ→ 1) (79)

We can prove the gauge invariance to all orders of α(x) using Eq.(70). In fact, a brute-force

proof to all orders of α is mathematically less cumbersome for the fermionic model than for

the bosonic model.

Just as in the case of bosonic matters, this simple form of the non-Abelian model is

possible only for the doublet matter fields in SU(2) gauge symmetry. It should be em-

phasized that our non-Abelian fermionic model cannot be obtained from the Lagrangian of

nonpropagating auxiliary vector fields.

C. Noether current

As it happens in the Abelian models, the Noether current does not exist in our bosonic

nor fermionic non-Abelian models. The reason is the same as in the Abelian case: For the

Lagrangians with the matter fields alone, the contributions to the Noether current from L0

and Lint cancel each other as a very consequence of gauge invariance. The proof in Appendix

A can be trivially extended to the non-Abelian models. Even without such a general proof,

the Noether currents off the gauge symmetry limit, which are given below, clearly show their

absence in the gauge symmetry limit.

The Noether current exists off the gauge symmetry limit. Following the standard pre-

scription, we obtain the Noether currents from our Lagrangians of Eqs.(62) and (78) in the

form,

JN
µ = i(1 − λ)Φ†

τ

2

↔

∂µ Φ, (bosonic)

JN
µ = (1− λ)Ψ

τ

2
γµΨ. (fermionic) (80)

As for the energy-momentum tensor, the conserved tensor operator exists for any value

of λ just as in the U(1) models.
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D. Composite gauge bosons

In the case of the SU(2)-doublet matter fields, the non-Abelian diagram calculation is

almost identical with the Abelian one. The only difference is in the insertion of the τ matrix

at every point of vectorial interactions in Fig. 1 and Fig. 7. The massless composite bosons

emerge in the JPC = 1−− channels of the adjoint representation of SU(2). In the case

of fermion matter the composite massless bosons appear in the 3S1 eigenchannel, that is,

they couple only through ΨτγµΨ. The correct properties of the massless bound states are

confirmed just as in the Abelian cases.

We summarize the difference of the SU(2)-doublet models from the Abelian models:

(A) For the non-Abelian models of SU(2)-doublet matter fields, the vacuum expecta-

tion value Ib0 = 〈0|Φ†Φ|0〉 and If0 = 〈0|ΨΨ|0〉 are twice as large as their Abelian values,

respectively, since both the upper and lower components of the doublet matter contribute.

(B) The bubble diagrams entering the kernelK of the iteration equation are scaled upward

by the same factor of two since a trace is taken within the bubble loop; tr(τa · τb) = 2δab.

(C) Since the multiplication of the factor two in (A) and (B) occurs in both the numerator

and the denominator of the kernel K in Eq.(31) and Eq.(53), it keeps the kernel K unchanged

from the Abelian value. Meanwhile, the lowest-order T-matrix, T 0, is scaled down by factor

two since it is inversely proportional to Ib0 (If0 ). So is the amplitude T = (I −K)−1T0.

Since the kernel Kµν remains unchanged, (I − K) is still transverse and starts with a

term proportional to gµνq2− qµqν with the same nonvanishing coefficient. Consequently the

solution for the iterated amplitude T takes the same form as in the corresponding Abelian

models, but the residue at q2 = 0 is half as large, reflecting the fact that the lowest-order

term T 0 is scaled down by factor two.

Summing up this argument, the location of the pole at q2 = 0 remains the same and its

residue is scaled down by factor two, relative to the Abelian models, for both the bosonic

and the fermionic model. We describe below some more details specific to each of the

non-Abelian models.

The bosonic model

We compute the chain of bubble diagrams as shown in Fig. 1 where the τ -matrices are

inserted at every point of interaction. The residue at the massless pole is compared with
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that of the corresponding Feynman diagram computed with the standard Lagrangian of the

SU(2) gauge symmetry,

Lint = ig2

(

Φ†Aµ∂µΦ− ∂µΦ
†AµΦ

)

+ g22Φ
†(Aµ ·Aµ)Φ, (81)

where Aµ = 1
2
τaA

µ
a . We obtain the gauge coupling of the composite SU(2) gauge bosons Aµ

to the matter fields,
g22
4π

=
96π2

N ln(Λ
2
/m2)

, (82)

when it is expressed with the cutoff Λ in the space-time dimension of four.9 Recall that

the standard definition of g2 accompanies the generators 1
2
τ instead of just τ . (See the

definition of Aµ following Eq.(81). In the leading 1/N order, the magnitude of coupling

Eq.(82) coincides with what one would obtain in the auxiliary field trick since it comes from

the same single bubble diagram with τ on the both ends.

The four-body interaction Φ†ΦAµA
µ can be computed with the second term of the ex-

pansion for 1/(Φ†Φ) around its vacuum value in Lint, namely,

−
1

4(Ib0)
2
(Φ†τ

↔

∂µ Φ) · (Φ†τ
↔

∂
µ

Φ)(: Φ†Φ :). (83)

Attaching chains of bubbles to (Φ†τ
↔

∂
µ

Φ) and (Φ†τ
↔

∂µ Φ) of this interaction and approach-

ing the zero momentum limit, we obtain g42, of which g
2
2 is assigned to the gauge couplings of

two composite gauge bosons with the external Φ†τΦ at the outer ends of the chains and the

remaining g22 is assigned to the Φ†ΦAµA
µ coupling. This step is a repeat of what we have

done for the Abelian model depicted in Fig. 3 and Fig. 4. Going through this computation,

we find that the resulting g22 for Φ†(Aµ ·Aµ)Φ is equal to the value given in Eq.(82), as we

expect.

For the non-Abelian gauge bosons, there must be the triple self-coupling and the quartic

self-coupling. They are computed with the diagrams of Fig.5 and Fig.6 after inserting the

τ -matrices appropriately. The triple self-coupling diagrams, of course, do not cancel among

themselves in the non-Abelian case. Charge conjugation invariance allows the triple self-

coupling since the non-Abelian charge flowing in the opposite directions in a pair of triangular

diagrams survives with τaτb − τbτa = 2iǫabcτc 6= 0. Paying attention to the subtlety of the

9 For Λ, see Eq.(36) and the line following it.
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linear divergence that has been cautioned earlier, we find that the value obtained for the

triple self-coupling agrees with what the SU(2) gauge symmetry requires by −1
4
Gµν ·G

µν .

The quartic self-coupling arises from the diagrams with four-corner, three-corner and two-

corner loops at the center (i.e., Fig. 6a, 6b, and 6c) and survives in the limit of zero external

momenta. They have the correct magnitude and group structure as required by the SU(2)

gauge symmetry.

All this should not be surprising after we have found a triplet of spin-one massless bound

states out of the manifestly gauge invariant Lagrangian. Once we have found that the

effective fields of these bound states couple with the matter fields in the form

Lint = ig2(Φ
†Aµ∂µΦ− ∂µΦ

†AµΦ), (84)

with Aµ = 1
2
τaA

µ
a , all other couplings of Aµ necessary to satisfy the SU(2) gauge invariance

ought to be generated by loop and chain diagrams in the same 1/N order. Otherwise the

models would violate the SU(2) gauge invariance that has been embedded in Lagrangian at

the beginning. We know no other way to be compatible with the SU(2) gauge symmetry

once the interaction of Eq.(84) emerges.

The fermionic model

Let us turn to the fermionic model. While presence of two JPC = 1−− channels requires

2×2 matrix calculation, the diagram computation of the bound-state generation is identical

with that of the Abelian case except for insertion of the τ matrices into the 2 × 2 matrix

equation of Fig. 7 after replacing the boson lines with the fermion lines. Massless bound

states appear in the 3S1 channel here again and the squared SU(2) gauge coupling expressed

in g22 is larger than that of the U(1) fermionic model by factor two just as in the bosonic

case:
g22
4π

=
24π2

N ln(Λ
2
/m2)

, (85)

where the coupling g2 is defined by

Lint = −g2ΨγµA
µΨ. (86)

When we work on the other couplings of dimension four, we do not encounter any complica-

tion new to the non-Abelian symmetry. The reason is that the massless bound states couple

to the matter fields only through the vertex of (ΨγµτΨ), not through (Ψτ
↔

∂µ Ψ). Therefore
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the computation of the triple and quartic self-couplings can be carried out in the same way

as in the U(1) model. The relevant diagrams are those of Fig. 5 and Fig. 6 where the boson

lines are replaced with the fermion lines. Since the composite bound states generated in the

chains of bubbles couple with the fermions only through (ΨτγµΨ), not through (Ψτ
↔

∂
µ

Ψ),

the vertices of the triangle (Fig. 5) and the box (Fig. 6a) at the center of diagram are only

those of γµ, not of
↔

∂µ. The diagrams of Fig. 6b and Fig. 6c do not contribute since the six-

body interaction (ΨτγµΨ)(Ψτ
↔

∂
µ

Ψ)(ΨΨ) is incapable of producing two composite bosons.

(Recall the argument in the Abelian fermionic model.) As for the fermionic triangular and

box diagrams corresponding to Figs. 5 and 6a, the same large-N computation was actually

carried out twenty years ago in a similar model[20] that contains an explicit gauge-symmetry

breaking but only through the gauge boson mass. We do not repeat the calculation of the

self-couplings for the non-Abelian fermionic model here. The bottom line is that the same

coupling g2 as the matter-gauge-boson coupling of Eq.(85) appears in the self-interaction of

the gauge bosons as we expect.

All these beautiful outcomes conforming to non-Abelian gauge symmetry are manifesta-

tion of gauge invariance that is embedded in the Lagrangian at the beginning. Hoping that

we are not overly repetitious, we emphasize that once the massless bound states of spin-one

appear and their effective fields Aµ couple with the matter fields like g2ΨγµA
µΨ, the bound

states must be gauge bosons and the associated gauge self-couplings of Aµ in −1
4
GµνG

µν

must be generated in order to satisfy SU(2) gauge invariance of Ltot. We know no other way

to realize the non-Abelian gauge invariance.

VI. DISCUSSION

We start the final section with an obvious observation common to all of our models. In

our models we cannot introduce an elementary gauge field by the method of the substitution

rule ∂µ → ∂µ+ieAµ in our Lagrangian. The reason is obvious by the structure of the models:

This substitution operation is nothing other than one special gauge transformation. Take for

example the fermion fields ψ in our U(1) Lagrangian. The substitution ∂µψ → (∂µ+ ieAµ)ψ

is realized by the rotation

ψ(x) → exp(ie

∫ x

Aµ(y)dy
µ)ψ(x). (87)
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Since Eq.(87) is one of the gauge transformations with

α(x) = e

∫ x

Aµ(y)dy
µ, (88)

the function α(x) is canceled out between L0 and Lint by gauge invariance and disappears

from Lagrangian entirely. Therefore the elementary Aµ field cannot be introduced into our

Lagrangians in this way. Inability to introduce the elementary Aµ field in our Lagrangians

by the so-called substitution rule is closely in parallel with vanishing of the Noether current.

The next observation concerns the no-go theorem of Weinberg and Witten. The theorem

was stated in the following way [11]:

Theorem A theory that allows the construction of a Lorentz-covariant conserved four-

vector current Jµ cannot contain massless particles of spin j > 1/2 with nonvanishing values

of the conserved charge
∫

J0d3x.

The proof is simple. Fix first the Lorentz scalar value of the matrix element 〈p′|Jµ|p〉

for the massless spin-one particle in the forward limit p′ → p. Then make a Lorentz trans-

formation and examine its rotational property around the momentum p in the brick-wall

frame (p′ = −p). We need the conserved current Jµ that provides the Lorentz scalar charge
∫

J0d
3x.

The theorem holds whether the massless boson is elementary or composite. As was

emphasized by the authors[11], however, the theorem does not apply to the standard non-

Abelian gauge bosons (without spontaneous symmetry breaking). The catch is in the word

“Lorentz-covariant”. The state of zero helicity does not exist for massless gauge bosons. In

order to make the theory manifestly Lorentz covariant and gauge invariant at the same time,

one has to fix a gauge by introducing an unphysical ghost state in the Lagrangian. Otherwise,

one cannot carry out diagram calculation. Fixing a gauge by a subsidiary condition either

violates manifest gauge invariance or introduces a state that does not exist as a physical

particle state. Therefore, Lorentz scalar charges that meet the conditions of the Theorem

do not exist in the standard non-Abelian gauge theory.10

What should we do with this theorem for our non-Abelian models ? If we could write the

10 If one takes the purist viewpoint that the initial and final states of the matrix element 〈p′|Jµ|p〉 must

be asymptotic states, the theorem does not apply to the non-Abelian gauge theory like QCD, which is

singular in the infrared limit so that one-gluon states are not asymptotic states. Our non-Abelian models

contain N(→ ∞) doublets of matter particles so that the infrared limit is nonsingular, i.e., not confining.
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non-Abelian Noether currents with the matter fields alone, we would potentially interfere

with this theorem. However, the Lorentz-covariant conserved currents do not exist in our

models. They exist only off the gauge symmetry limit (λ 6= 1) and disappear as we go to the

gauge symmetry limit of λ = 1, only at which point the vector bound states become massless.

We thus circumvent the theorem. Is this really the answer to the potential conflict of the

composite non-Abelian gauge bosons with the Weinberg-Witten theorem ? To be frank, the

present author is not totally comfortable with this answer. But it appears in our models

that generation of the massless non-Abelian composite bosons evades the conflict with the

Weinberg-Witten theorem.11

It is explicitly visible in our models that gauge invariance requires that the force in the

1−− channel be attractive (λ > 0) and that the bound state in this channel be massless

(λ→ 1 ). Repulsive forces (λ < 0) cannot be gauge invariant. We are tempted to speculate

that even if gauge fields are not introduced explicitly, gauge bosons must appear as composite

states if a theory is gauge invariant. While it sounds like a trivial proposition, it is desirable

to elevate it to a rigorous theorem of field theory.

One obvious question is whether our models have anything to do with the real world. At

an early stage of the electroweak theory, people discussed the possibility of composite W and

Z.[18, 19] A quarter century ago the present author also joined to propose an unrenormal-

izable phenomenological model of composite W and Z bosons which an explicit symmetry

breaking enters only through the W/Z masses [20, 21]. It was the time right after the ex-

perimental confirmation of the W and Z bosons by accelerator[22, 23]. At that time very

little was known experimentally about the properties of W and Z. One sensitive theoretical

test was to study how much deviation from the gauge symmetry could be accommodated

for the self-couplings of dimension four through their loop contributions[24]. More general

test irrespective of sources was proposed [25] and is still being used for experimental test of

the minimal standard model. Now the Higgs boson has been discovered with its properties

roughly in agreement with the theoretical expectation, the next step is to raise precision in

the interaction of W and Z by direct measurement. The early indication of the two-photon

anomaly at 750GeV is one example that may open up a new window. However, since the

11 The W and Z bosons in the extra dimension model[14] are the lowest lying Kaluza-Klein modes with mass

so that they do not conflict with the theorem.
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invariant mass of 750GeV is near the upper end of the two-photon phase space in the current

data and “the anomaly” is still no more than a three-standard-deviation effect even with the

ATLAS and CMS data combined, we need to wait some time before a consensus is reached

among experimentalists on this anomaly. Both experimentalists and phenomenologists are

working toward to this goal [26, 27].

When our model is expressed as a composite gauge theory with the effective fields Aµ,

difference from the minimal standard model would appear in the interactions of dimension

higher than four which are suppressed by powers of p2/Λ
2
at |p2| < Λ

2
. When experiment

explores the region of energies comparable or higher than Λ, shall we be able to discriminate

directly our model Lagrangian from the standard model of W and Z. But we have no

theoretical basis to speculate on magnitude of Λ at present.

We conclude with one disturbing question to which we give no good answer. Is it really

possible to tell experimentally or even theoretically whether a given particle is elementary or

composite ? This is a nagging question that confronted theorists[28] at the height of nuclear

democracy in the early 1960’s. Theorists proposed various criteria of compositeness, but no

consensus emerged. Although we have started with the matter fields alone and constructed

the massless gauge bosons explicitly as their bound states, can’t we describe exactly the

same physics with some other Lagrangian in which all particles are elementary ? Can we

really answer the question of elementarity vs compositeness once for all ?

The following theorem was given by Kamefuchi, O’Rafeartaigh and Salam[29] in 1961:

If a composite local operator carries all quantum numbers of a given particle in regard to

space-time (JPC) and other properties (charge, isospin etc), it gives the same S matrix

amplitudes on the particle mass shell up to overall normalizations. Difference shows up only

off the mass shell. But the “off-shell amplitudes” are not really scattering amplitudes of

the particle, but include continuum contributions. According to this theorem, therefore, the

definition of particle fields is infinitely ambiguous with respect to their continua. When a

different particle field is used, its interaction Lagrangian takes a different form. To avoid

this ambiguity and the issue of renormalizability, we were tempted to replace the field theory

with the S-matrix theory in the 1960’s so as to deal only with the on-shell amplitudes and the

observables. As we know, it led us to the dual resonance model and then back to Lagrangian

theory of strings with the Nambu-Goto action.

Meanwhile, the present author has been brought attention to one interesting observation
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in supersymmetric theory. Along the line of the Olive-Montonen conjecture, Seiberg and

Witten[30] showed in the N = 2 supersymmetric theory that the strong and weak coupling

limits are dual to each other. To be more specific, the roles of a particle and a soliton of the

same spin-parity are interchanged between the strong and weak limits of coupling. Since

solitons are composite in everyone’s picture, in such theories elementarity vs compositeness

loses its absolute meaning. It depends on the strength of coupling. The similar duality

was shown earlier for a model of N=4 too.[31] Proof of this duality relies on the simple

holomorficity special to supersymmetry. If something similar holds in nonsupersymmetric

theory as well, the meaning of elementarity and compositeness of particles would finally

disappear and the naming would become just for a matter of convenience; if Lagrangian

takes the simplest form with a certain choice for a set of particle fields, one would call such

particles as elementary for convenience.

Appendix A: Nonexistence of Noether current

The Noether current does not exist in the theories that satisfy local gauge invariance with

matter fields alone. The proof is almost trivial. We give it here only for the U(1) bosonic

model since extension to fermions and non-Abelian theories is straightforward.

Under the U(1) gauge transformation, the Lagrangian satisfies the local invariance,

L(e−iα(x)φ∗, eiα(x)φ) = L(φ∗, φ), (A1)

where α(x) is an arbitrary function of space-time that satisfies mild conditions such as

differentiability. The copy index i (= 1, · · ·N) has been suppressed in Eq.(A1). For the

infinitesimal α(x), gauge invariance requires

−i
(

φ∗
∂L

∂φ∗
+ ∂µφ

∗ ∂L

∂(∂µφ∗)

)

α + i
(∂L

∂φ
φ+

∂L

∂(∂µφ)
∂µφ

)

α

+ i
(

−φ∗
∂L

∂(∂µφ∗)
+

∂L

∂(∂µφ)
φ
)

∂µα = 0. (A2)

Since α(x) and ∂µα(x) are two independent functions when α(x) is an arbitrary function

of xµ, the condition of Eq.(A2) requires that the terms proportional to α(x) and to ∂µα(x)

must be separately equal to zero. After use of the equations of motion, the coefficient of

α(x) equal zero gives

−∂µ

(

φ∗
∂L

∂φ∗µ

)

+ ∂µ

(

φ
∂L

∂φµ

)

= 0. (A3)
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Normally this would be the statement of conservation of the Noether current, ∂µJN
µ = 0.

However, the third term proportional to ∂µα(x) in Eq.(A2) gives

−
∂L

∂(∂µφ∗)
φ∗ +

∂L

∂(∂µφ)
φ = 0. (A4)

This is nothing other than the statement of

JN
µ ≡ 0 (A5)

at all space-time locations. In the case that the elementary gauge field Aµ exists in La-

grangian, the gauge transformation Aµ → Aµ + i∂µα generates an additional term pro-

portional to ∂µα(x) and adds to the third term in Eq.(A2) to cancel exactly the variation

due to φ/φ∗. This cancellation is nothing other than gauge invariance itself. Consequently,

Eq.(A5) does not follow in the conventional gauge theory. Extension of this proof to the

fermion models and the non-Abelian models is just as simple and easy.

Despite this general proof of JN
µ ≡ 0, some may wonder if it is possible to define a

conserved current in the gauge symmetry limit by factoring out (1− λ) from the current Jµ

defined by Eq.(19) off the gauge limit (λ 6= 1) and then going to the limit of λ = 1. If physics

is somehow “continuous” in this respect in the neighborhood of λ = 1, this might allow us

to circumvent the difficulty. That is, choose as a conserved current simply the current

J ′µ = i
∑

i

(φ∗i
↔

∂µ φi), (A6)

so that the charge is Q ≡
∫

J ′0d
3x. This charge is not gauge invariant, but let us leave

it aside for a moment. If one computes by brute force the divergence of this current J ′µ

with the equation of motion, one would not be led to ∂µJ ′µ = 0. Instead one would end

up with the trivial circular identity as follows: Since ∂µJ ′µ = i
∑

i(φ
∗
i�φi − �φ∗iφi), one

multiplies the equation of motion for φi with the field φ∗i and subtracts the corresponding

bilinear object with φi ↔ φ∗i . Then the result is a trivial identity: i
∑

i(φ
∗
i�φi − φ∗i�φi) =

i
∑

i(φ
∗
i�φi −�φ∗iφi). Therefore the conclusion from this exercise is as follows: Only when

one violates gauge invariance by staying away from the symmetry limit (λ 6= 1), can the

Noether theorem define a conserved current in the familiar form with strength reduced by

(1− λ).

The same happens for our fermion model. Just as in the bosonic model, the current
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∑

i ψiγµψi is not the conserved Noether current in the gauge symmetry limit.12 The equation

of motion of Ltot does not allow us to compute ∂µ(ψγµψ) in the gauge symmetry limit: Such

computation drives us around a circular loop just as in the case of bosons.

In the perturbative diagram calculation which is performed in the interaction picture,

however, the fields obey the equation of free motion. Therefore φ∗
↔

∂µ φ and ψγµψ are both

divergence free, that is, conserved currents.

Appendix B: Difficulty in general non-Abelian models

The local Lagrangian of matter fields alone has been easily obtained by the auxiliary

gauge fields method for the SU(2) model with the doublet matter. But we cannot extend it

to other groups and representations. We show it here with two explicit examples.

Let us start with the Lagrangian of the nonpropagating auxiliary gauge fields,

L = Φ†(
←

∂
µ

−iAµ)(∂µ + iAµ)Φ−m2Φ†Φ +
1

2
µ2Aa,µA

µ
a , (µ2 → 0) (B1)

where Φ and Φ† are the column and row fields belonging to the n-dimensional representation

of group G. We have absorbed the coupling e into Aµ. Let the group G be induced by the

generators Ta (a = 1, · · ·k), which are n × n matrices. We represent the nonpropagating

gauge fields Aµ
a(a = 1 · · · k) in the n× n matrices,

Aµ =
k

∑

a=1

TaA
µ
a . (B2)

The Lagrangian Eq.(B1) is invariant under the local gauge transformation,

Φ → UΦ,

Aµ → UAµU † − i(∂µU)U †. (B3)

where U = exp(iTaαa). In order to integrate the exponentiated action of L over Aµ
a , we

combine the terms bilinear and linear in Aµ
a into a quadrature and “shift the origin”. In

the case of the SU(2)-doublet matter fields, we see with {τa, τb} = 2δab that the coefficients

of the bilinear terms of Aµ
a are simply δabΦ

†Φ so that no diagonalization is needed for

symmetrized product of the generators {Ta, Tb} = 1
4
{τa, τb} = 1

2
δab. Upon integration over

12 Unlike the corresponding object in the bosonic case, this current is gauge invariant.
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Aµ
a , the denominator of Lint(Φ

†,Φ) comes out to be the singlet Φ†Φ, as given in Eq.(62).

Upon integration, an additional term

−2tr ln(Φ†Φ) (B4)

appears in the effective action. But we may remove this term since it is gauge-invariant by

itself. We retain the remainder as the gauge-invariant Lagrangian in terms of Φ†/Φ.

However, this procedure does not work in the cases other than the SU(2) doublet. When

{Ta, Tb} 6∝ δabI, it happens that the integral over Aµ is generally impossible. Even if it were

possible, the trace-log term would not be invariant by itself under rotations of group G, not

even under global rotations. While the whole action is gauge invariant, it is not separately

so for the effective Lagrangian and the trace-log term. Unfortunately, this is what happens

in the cases other than the SU(2) doublet. We show two simple examples below.

Let us first examine the case of the real triplets of SU(2). In this case the coefficient of

the bilinear terms of Aµ
a (a = 1, 2, 3) is written in terms of the 3×3 matrices (Ta)bc = −iεabc

and the matter fields Φ = (φ1, φ2, φ3)
t and Φ† = Φt. The bilinear terms of Aµ

a is given by

(ΦtTaTbΦ)A
µ
aAb,µ. (B5)

It can be diagonalized by the orthogonal transformation A′µ = OAµ into

(A
′µ
1 , A

′µ
2 , A

′µ
3 )











ΦtΦ 0 0

0 ΦtΦ 0

0 0 0





















A′1µ

A′2µ

A′3µ











. (B6)

When this is placed in the action and exponentiated, we cannot integrate it over the third

component of A′µ since the action is flat along that direction (at µ → 0). The action blows

up as µ→ 0 and there is no way to keep it well-defined.

How about the SU(3)-triplet matter fields as the next-to-simplest example? For the

triplet matter fields, the bilinear terms in Aµ
a(a = 1, · · · 8) can be written as

Aa
µMabA

b,µ, (B7)

where Mab =
1
8
Φ†{λa, λb}+Φ is a symmetric matrix under a ↔ b. The matrix Mab can be

diagonalized into D by some orthogonal rotation O as

(A′µ)
tOtMOA′µ = A′a,µDaaA

′µ
a . (B8)
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Can the diagonal matrix D be proportional to the unit matrix? If so, the functional integral

over Aa
µ would produce a denominator common to all a in Lint just as in the case of SU(2).

But that is obviously not the case: If D ∝ I, then Mab = (ODOt)ab would also have to be

proportional to δab even before the rotation. We can easily see by simple inspection using

the representation Ta =
1
2
λa familiar to physicists, that Mab is not proportional to an 8× 8

unit matrix. Consequently the resulting Lagrangian in terms of matter fields alone would

not take a form as compact as in the SU(2) doublet case, if one could write it at all.13

These two examples show that the auxiliary field method can lead to a simple local field

theory only for the U(1) and the SU(2)-doublet models of bosonic matter fields.
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