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Abstract

We study the diphoton excesses near 750 GeV recently reported by the ATLAS and CMS collab-

orations within the context of a phenomenologically interesting intersecting/magnetized D-brane

model on a toroidal orientifold. It is shown that the model contains a SM singlet scalar as well as

vector-like quarks and leptons. In addition, it is shown that the singlet scalar has Yukawa couplings

with vector-like quarks and leptons such that it may be produced in proton-proton collisions via

gluon fusion as well as decay to diphotons through loops involving the vector-like quarks. More-

over, the required vector-like quarks and leptons may appear in complete SU(5) multiplets so that

gauge coupling unification may be maintained. Finally, it is shown that the diphoton signal may

be accommodated within the model.

PACS numbers: 11.10.Kk, 11.25.Mj, 11.25.-w, 12.60.Jv
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I. INTRODUCTION

Recently, the ATLAS [1] and CMS [2] collaborations have both reported an excess in the

diphoton channel near 750 GeV. With an integrated luminosity of 3.2 fb−1, the ATLAS col-

laboration has observed a local 3.6σ excess at a diphoton invariant mass of around 747 GeV,

assuming a narrow width resonance. For a wider width resonance, the signal significance

increases to 3.9σ with a preferred width of about 45 GeV. With an integrated luminosity of

2.6 fb−1, the CMS collaboration has also observed a diphoton excess with a local significance

of 2.6σ at invariant mass of around 760 GeV. Assuming a decay width of around 45 GeV,

the significance reduces to 2σ in this case. The corresponding excesses in the cross section

can be roughly estimated as σ13 TeV
pp→γγ ∼ 3−13 fb [1, 2]. While this is well below the threshold

to claim a discovery, this excess could be the first signal of physics beyond the Standard

Model. As such, it is worthwhile to consider possible models of new physics which may

explain the excess. Indeed, many groups have proposed such possible explanations [3–23]

Perhaps the simplest explanation for the excess is the addition of a SM singlet scalar

with a mass near 750 GeV along with additional vector-like multiplets of colored particles.

With this set-up, the singlet may be produced via gluon fusion with the vector-like particles

appearing in loops. Similarly, the singlet may decay to diphotons. However, in order to

preserve gauge coupling unification as in supersymmetric versions of the SM, these vector-

like states should come in complete multiplets of SU(5). Moreover, to preserve unification

and avoid Landau poles, the types and numbers of SU(5) multiplets is restricted [14].

Such light vector-like multiplets are often found in models constructed within the frame-

work of string theory[24]. Indeed, vector-like states are generically present in intersect-

ing/magnetized D-brane models on orientifold backgrounds [25–37]. One such model satis-

fying all global consistency conditions has been constructed from intersecting/magnetized

D-branes within the context of Type II orientifold compactifications [38, 39] on a T 6/(Z2×Z2)

background. This model corresponds to the MSSM with three generations of quarks and

leptons as well as a single pair of Higgs fields. The model contains a minimal amount of ex-

otic matter, which may be decoupled from the low-energy sector. In addition, the tree-level

gauge couplings are automatically unified at the string scale [38, 39]. Finally, the Yukawa

couplings are allowed by global U(1) symmetries, and it is possible to obtain correct masses

and mixings for quarks and charged leptons. Thus, this is a phenomenologically interesting

model worthy of detailed study.

In the following, we briefly summarize the intersecting D-brane model under study, which

is a variation of the model discussed above. It is shown that vector-like quarks are present in

the model, and that these states may appear in complete multiplets of SU(5) so that gauge

coupling unification may be maintained. Furthermore, it is shown that there are SM singlets
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in the model which have Yukawa couplings to the vector-like quarks and leptons. It should

be emphasized that this is a non-trivial result as these fields carry global U(1) charges, under

which the Yukawa coupling must be neutral. Finally, we show that the diphoton excesses

may be explained in the model.

II. THE MODEL

A phenomenologically interesting intersecting D-brane model has been studied in Refs. [38,

39]. A variation of this model with a different hidden sector was also studied in Refs. [40, 41].

Type IIA orientifold string compactifications with intersecting D-branes (and their Type

IIB duals with magnetized D-branes) have provided exciting geometric tools with which

the MSSM may be engineered. While this approach may not allow a first-principles under-

standing of why the SM gauge groups and associated matter content arises, it may allow a

deeper insight into how the finer phenomenological details of the SM may emerge. In short,

D6-branes in Type IIA fill (3+1)-dimensional Minkowski spacetime and wrap 3-cycles in

the compactified manifold, such that a stack of N branes generates a gauge group U(N) [or

U(N/2) in the case of T 6/(Z2 × Z2)] in its world volume.

In general, the 3-cycles wrapped by the stacks of D6-branes intersect multiple times in

the internal space, resulting in a chiral fermion in the bifundamental representation localized

at the intersection between different stacks a and b. The multiplicity of such fermions is

then given by the number of times the 3-cycles intersect. Each stack of D6-branes a may

intersect the orientifold images of other stacks b′, also resulting in fermions in bifundamental

representations. Each stack may also intersect its own image a′, resulting in chiral fermions in

the symmetric and antisymmetric representations. Non-chiral matter may also be present

between stacks of D-branes which do not intersect on one two-torus. A zero intersection

number between two stacks of branes implies that the branes are parallel on at least one

torus. At such kind of intersection additional non-chiral (vector-like) multiplet pairs from

ab + ba, ab′ + b′a, and aa′ + a′a can arise. Global consistency of the model requires certain

constraints to be satisfied, namely, Ramond-Ramond (R-R) tadpole cancellation and the

preservation of N = 1 supersymmetry. In particular, the conditions for preserving N = 1

supersymmetry fixes the complex structure parameters.

The set of D6 branes wrapping the cycles on a T 6/(Z2×Z2) orientifold shown in Table I

results in a three-generation Pati-Salam model with additional hidden sectors. The full gauge

symmetry of the model is given by [U(4)C×U(2)L×U(2)R]observable× [U(2)×USp(2)2]hidden.

As discussed in detail in [38, 39], with this configuration of D6 branes all R-R tadpoles

are canceled, K-theory constraints are satisfied, and N = 1 supersymmetry is preserved.

Furthermore, the tree-level MSSM gauge couplings are unified at the string scale. Finally,
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TABLE I. D6-brane configurations and intersection numbers for a three-family Pati-Salam model

on a Type-IIA T 6/(Z2×Z2) orientifold, with a tilted third two-torus. The complete gauge symmetry

is [U(4)C×U(2)L×U(2)R]observable× [U(2)×USp(2)2]hidden and N = 1 supersymmetry is preserved

for χ1 = 3, χ2 = 1, χ3 = 2.

U(4)C ×U(2)L ×U(2)R ×U(2)×USp(2)2

N (n1, l1)× (n2, l2)× (n3, l3) nS nA b b′ c c′ d d′ 3 4

a 8 (0,−1)× (1, 1)× (1, 1) 0 0 3 0 −3 0 0(2) 0(1) 0 0

b 4 (3, 1)× (1, 0)× (1,−1) 2 −2 - - 0(6) 0(1) 1 0(1) 0 −3

c 4 (3,−1)× (0, 1)× (1,−1) −2 2 - - - - -1 0(1) 3 0

d 4 (1, 0)× (1,−1)× (1, 1) 0 0 - - - - - - -1 1

3 2 (0,−1)× ( 1, 0)× ( 0, 2) χ1 = 3

4 2 (0,−1)× ( 0, 1)× ( 2, 0) χ2 = 1, χ3 = 2

the Yukawa matrices for quarks and leptons are rank 3 and it is possible to obtain correct

mass hierarchies and mixings.

Since U(N) = SU(N)×U(1), associated with each the stacks a, b, c, and d are U(1) gauge

groups, denoted as U(1)a, U(1)b, U(1)c, and U(1)d. In general, these U(1)s are anomalous.

The anomalies associated with these U(1)s are canceled by a generalized Green-Schwarz

(G-S) mechanism that involves untwisted R-R forms. As a result, the gauge bosons of

these Abelian groups generically become massive. However, these U(1)s remain as global

symmetries to all orders in perturbation theory. These global U(1) symmetries may also

result in the forbidding of certain superpotential operators, such as Yukawa couplings and

those which mediate baryon and lepton number violation. However, these global symmetries

may be broken by nonperturbative effects, such as from D-brane instantons.

Some linear combinations of U(1)s may also remain massless if certain conditions are

satisfied. For the present model, precisely one linear combination has a massless gauge

boson and is anomaly- free:

U(1)X = U(1)a + 2 [U(1)b + U(1)c + 3U(1)d] . (1)

Thus, the effective gauge symmetry of the model at the string scale is given by

SU(4)C × SU(2)L × SU(2)R × U(1)X ×
[
SU(2)× USp(2)2

]
. (2)

The gauge symmetry is first broken by splitting the D-branes as a→ a1+a2 with Na1 = 6

and Na2 = 2, and c → c1 + c2 with Nc1 = 2 and Nc2 = 2, and d → d1 + d2 withNd1 = 2
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FIG. 1. Breaking of the effective gauge symmetry via D-brane splitting. This process corresponds to

assigning VEVs to adjoint scalars, which arise as open-string moduli associated with the positions

of stacks a and c in the internal space.

TABLE II. The chiral superfields, their multiplicities and quantum numbers under the gauge

symmetry [SU(3)C × SU(2)L ×U(1)Y ]observable × [U(1)I3V ×USp(2)2]hidden.

Mult. Quantum Number QI3R QB−L Q3B+L QY QB QL QY ′ Field

a1b 3 (3, 2, 1, 1, 1, 1) 0 1/3 1 1/6 1/3 0 1/6 QL

a1c2 3 (3, 1, 1, 1, 1, 1) -1/2 -1/3 -1 -2/3 -1/3 0 -2/3 UR

a1c1 3 (3, 1, 1, 1, 1, 1) 1/2 -1/3 -1 1/3 -1/3 0 1/3 DR

a2b 3 (1, 2, 1, 1, 1, 1) 0 -1 1 -1/2 0 1 -1/2 L

a2c1 3 (1, 2, 1, 1, 1, 1) 1/2 1 -1 1 0 -1 1 ER

a2c2 3 (1, 2, 1, 1, 1, 1) -1/2 1 -1 0 0 -1 0 NR

and Nd2 = 2, as shown schematically in Fig.1. After splitting the D6-branes, the gauge

symmetry of the observable sector is

SU(3)C × SU(2)L × U(1)I3R × U(1)B−L × U(1)3B+L × U(1)I3V , (3)
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TABLE III. The chiral hidden sector superfields, their multiplicities and quantum numbers under

the gauge symmetry [SU(3)C × SU(2)L ×U(1)Y×]observable × [U(1)I3V ×USp(2)2]hidden.

Mult. Quantum Number QI3R QB−L Q3B+L QY QI3V QB QL QY ′ Field

bd1 1 (1, 2, 1, 1, 1, 1) 0 0 -4 0 1/2 -1 -1 1/2 Xbd1

bd2 1 (1, 2, 1, 1, 1, 1) 0 0 -4 0 -1/2 -1 -1 -1/2 Xbd2

c1d1 1 (1, 1, 1, 1, 1, 1) 1/2 0 4 1/2 1/2 1 1 1 Xc1d1

c1d2 1 (1, 1, 1, 1, 1, 1) 1/2 0 4 1/2 -1/2 1 1 0 Xc1d2

c2d1 1 (1, 1, 1, 1, 1, 1) -1/2 0 4 -1/2 1/2 1 1 0 Xc2d1

c2d2 1 (1, 1, 1, 1, 1, 1) -1/2 0 4 -1/2 -1/2 1 1 -1 Xc2d2

b4 3 (1, 2, 1, 1, 1, 2) 0 0 -2 0 0 -1/2 -1/2 0 Xi
b4

c13 3 (1, 1, 2, 1, 2, 1) 1/2 0 -2 1/2 0 -1/2 -1/2 1/2 Xi
c13

c23 3 (1, 1, 2, 1, 2, 1) -1/2 0 -2 -1/2 0 -1/2 -1/2 -1/2 Xi
c23

d13 1 (1, 1, 1, 1, 2, 1) 0 0 -6 0 1/2 -3/2 -3/2 1/2 Xd13

d23 1 (1, 1, 1, 1, 2, 1) 0 0 -6 0 -1/2 -3/2 -3/2 -1/2 Xd23

d14 1 (1, 1, 1, 1, 2) 0 0 -6 0 1/2 -3/2 -3/2 1/2 Xd14

d24 1 (1, 1, 1, 1, 2) 0 0 -6 0 -1/2 -3/2 -3/2 -1/2 Xd24

bS 2 (1, 3, 1, 1, 1, 1) 0 0 -4 0 0 -1 -1 0 T i
L

bA 2 (1, 1, 1, 1, 1, 1) 0 0 4 0 0 1 1 0 Si
L

cS 2 (1, 1, 1, 1, 1, 1) 0 0 -4 0 0 0 -1 0 T i
R

where

U(1)I3R =
1

2
(U(1)c1 − U(1)c2), U(1)B−L =

1

3
(U(1)a1 − 3U(1)a2), (4)

U(1)I3V =
1

2
(U(1)d1 − U(1)d2),

and

U(1)3B+L = −[U(1)a1 + U(1)a2 + 2(U(1)b + U(1)c1 + U(1)c2 + 3U(1)d1 + 3U(2)d2)], (5)

The gauge symmetry must be further broken to the SM, with the possibility of one or

more additional U(1) gauge symmetries. In particular, the U(1)B−L × U(1)I3R × U(1)3B+L

gauge symmetry may be broken by assigning VEVs to the right-handed neutrino fields N i
R.

In this case, the gauge symmetry is broken to

[SU(3)C × SU(2)L × U(1)Y × U(1)B]observable ×
[
U(1)I3V × USp(2)2

]
hidden

(6)
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TABLE IV. The vector-like superfields not charged under U(1)I3V ,

their multiplicities and quantum numbers under the gauge symmetry

[SU(3)C × SU(2)L × U(1)Y ]observable
[
U(1)I3V × USp(2)2

]
hidden

and their charges under dif-

ferent U(1) groups. Here a, b, c, etc. refer to different stacks of D-branes.

Mult. Quantum Number QI3R QB−L Q3B+L QY QB QL QY ′ Field

a1b′ 3 (3, 2, 1, 1, 1, 1) 0 1/3 -3 1/6 -2/3 -1 1/6 XQi
L

3 (3, 2, 1, 1, 1, 1) 0 -1/3 3 -1/6 2/3 1 -1/6 XQ
i

L

a2b′ 3 (1, 2, 1, 1, 1, 1) 0 -1 -3 -1/2 -1 0 -1/2 XLi
L

3 (1, 2, 1, 1, 1, 1) 0 1 3 1/2 1 0 1/2 XL
i

L

a1c1′ 3 (3, 1, 1, 1, 1, 1) 1/2 1/3 -3 2/3 -2/3 -1 2/3 XU i
R

3 (3, 1, 1, 1, 1, 1) -1/2 -1/3 3 -2/3 2/3 1 -2/3 XU
i

R

a1c2′ 3 (3, 1, 1, 1, 1, 1) -1/2 1/3 -3 -1/3 -2/3 -1 -1/3 XDi
R

3 (3, 1, 1, 1, 1, 1) 1/2 -1/3 3 1/3 2/3 1 1/3 XD
i

R

a2c1′ 3 (1, 1, 1, 1, 1, 1) 1/2 -1 -3 0 -1 0 0 XN i
R

3 (1, 1, 1, 1, 1, 1) -1/2 1 3 0 1 0 0 XN
i

R

a2c2′ 3 (1, 1, 1, 1, 1, 1) -1/2 -1 -3 -1 -1 0 -1 XEi
R

3 (1, 1, 1, 1, 1, 1) 1/2 1 3 1 1 0 1 XE
i

R

bc1 6 (1, 2, 1, 1, 1, 1) -1/2 0 0 -1/2 0 0 -1/2 Hi
d

6 (1, 2, 1, 1, 1, 1) 1/2 0 0 1/2 0 0 1/2 H
i

d

bc2 6 (1, 2, 1, 1, 1, 1) 1/2 0 0 1/2 0 0 1/2 Hi
u

6 (1, 2, 1, 1, 1, 1) -1/2 0 0 -1/2 0 0 -1/2 H
i

u

bc1′ 1 (1, 2, 1, 1, 1, 1) -1/2 0 4 -1/2 1 1 -1/2 H1

1 (1, 2, 1, 1, 1, 1) 1/2 0 -4 1/2 -1 -1 1/2 H1

bc2′ 1 (1, 2, 1, 1, 1, 1) 1/2 0 4 1/2 1 1 1/2 H2

1 (1, 2, 1, 1, 1, 1) -1/2 0 -4 -1/2 -1 -1 -1/2 H2

where

U(1)Y = 1
6

[U(1)a1 − 3U(1)a2 + 3U(1)c1 − 3U(1)c2] (7)

= 1
2
U(1)B−L + U(1)I3R,

and

U(1)B = 1
4
[U(1)B−L + U(1)3B+L] (8)

= −[1
6
U(1)a1 + 1

2
(U(1)a2 + U(1)b + U(1)c1 + U(1)c2 + 3U(1)d)].
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Alternatively, the gauge symmetry may also be broken by assigning VEVs to the vector-like

fields XN i
R and XN

i

R in the a2c1 sector shown in Table V. The gauge symmetry in this

case is then

[SU(3)C × SU(2)L × U(1)Y × U(1)L]observable ×
[
U(1)I3V × USp(2)2

]
hidden

(9)

where

U(1)L = 1
4
[−3U(1)B−L + U(1)3B+L]. (10)

From Table II, it may be seen that U(1)B and U(1)L count baryon number and lepton

respectively for the chiral fields, although this is not the case for the vector-like fields. The

U(1)Y ×U(1)B×U(1)I3V and U(1)Y ×U(1)L×U(1)I3V gauge symmetries may also be broken

by assigning VEVs to some of the vector-like singlet fields ϕ21i, ς21, ψ12, and ψ21 shown

in Table VI. After this breaking, one anomaly-free linear combination remains:

U(1)Y ′ =
1

6
[U(1)a1 − 3U(1)a2 + 3U(1)c1 − 3U(1)c2 + 3U(1)d1 − 3U(1)d2] . (11)

The VEVs assigned to the vector-like singlets may be string scale or just below the string

scale, so that below the string scale the gauge symmetry is

[SU(3)C × SU(2)L × U(1)Y ′ ]observable ×
[
USp(2)2

]
hidden

, (12)

with U(1)Y ′ being identified with the SM hypercharge. We will further assume that all

exotic matter, shown in Table III, may become massive, as shown in Ref. [41]. The resulting

low-energy field content is shown in Tables II and along with their charges under U(1)I3R,

U(1)B−L, U(1)3B+L, U(1)Y , U(1)I3V , U(1)B, and U(1)L. It should be noted that there are

several fields present which are SM singlets.

Finally, it is possible to calculate the gauge couplings at the string scale. For this model,

it is found that the tree-level gauge couplings are unified at the string scale:

g2s = g2w =
5

3
g2Y = 2g2Y ′ , (13)

where the unification with g2Y ′ is non-canonical [39]. Moreover, the hidden sector gauge

groups USp(2)3 and USp(2)4 will become strongly coupled near the string scale, thus de-

coupling matter charged under these groups [39].

III. GAUGE COUPLING UNIFICATION AND VECTOR-LIKE MATTER

Vector-like matter appears in intersecting/magnetized D-brane models on toroidal ori-

entifolds between stacks of D-branes which do not intersect. The mass of such vector-like
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TABLE V. The vector-like quarks and SU(2)L doublets charged under

U(1)I3V , their multiplicities and quantum numbers under the gauge symmetry

[SU(3)C × SU(2)L × U(1)Y ]observable
[
U(1)I3V × USp(2)2

]
hidden

and their charges under dif-

ferent U(1) groups. Here a, b, c, etc. refer to different stacks of D-branes.

Mult. Quantum Number QI3R QB−L Q3B+L QY QI3V QB QL QY ′ Field

a1d1 2 (3, 1, 1, 1, 1, 1) 0 1/3 5 1/6 1/2 4/3 1 2/3 ϕ11i

2 (3, 1, 1, 1, 1, 1) 0 -1/3 -5 -1/6 -1/2 -4/3 -1 -2/3 ϕ11i

a1d2 2 (3, 1, 1, 1, 1, 1) 0 1/3 5 1/6 -1/2 4/3 1 -1/3 ϕ12i

2 (3, 1, 1, 1, 1, 1) 0 -1/3 -5 -1/6 1/2 -4/3 -1 1/3 ϕ12i

a1d1′ 1 (3, 1, 1, 1, 1, 1) 0 1/3 -7 1/6 1/2 -5/3 -2 2/3 ς11

1 (3, 1, 1, 1, 1, 1) 0 -1/3 7 -1/6 -1/2 5/3 2 -2/3 ς11

a1d2′ 1 (3, 1, 1, 1, 1, 1) 0 1/3 -7 1/6 -1/2 -5/3 -2 -1/3 ς12

1 (3, 1, 1, 1, 1, 1) 0 -1/3 7 -1/6 1/2 5/3 2 1/3 ς12

bd1′ 1 (1, 2, 1, 1, 1, 1) 0 0 -8 0 1/2 -2 -2 1/2 ξ1

1 (1, 2, 1, 1, 1, 1) 0 0 8 0 -1/2 2 2 -1/2 ξ1

bd2′ 1 (1, 2, 1, 1, 1, 1) 0 0 -8 0 -1/2 -2 -2 -1/2 ξ2

1 (1, 2, 1, 1, 1, 1) 0 0 8 0 1/2 2 2 1/2 ξ2

states depends upon the separation between the stacks of D-branes in the internal space.

As such, it is generically massive. Only stacks of D-branes which are directly on top of one

another have massless vector-like states between them. In the model studied in Section II,

the toroidal orientifold consist of a six-torus which is factorizable, T6 = T2 × T2 × T2. If

two stacks of D-branes are parallel on one two-torus, then vector-like matter appears in the

bifundamental representation of the gauge groups within the world-volume of each stack. If

the two stacks are not separated on the two torus on which they are parallel, the vector-like

multiplets are massless. However, these states become massive if the stacks are separated.

The most straightforward way to obtain the diphoton excesses is with a SM singlet scalar

with a mass ∼ 750 GeV coupled to vector-like quarks. The coupling to vector-like quarks

is necessary in order to produce the scalar via gluon fusion and to allow the decay of the

scalar into diphotons. The requisite vector-like quarks are indeed present in the model. In

particular, the vector-like quarks and leptons in the ab′ and ac′ sector fill 16 and 16 spinorial
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TABLE VI. The vector-like singlets charged under U(1)I3V ,their multiplicities and quantum num-

bers under the gauge symmetry [SU(3)C × SU(2)L × U(1)Y ]observable
[
U(1)I3V × USp(2)2

]
hidden

and their charges under different U(1) groups. Here a, b, c, etc. refer to different stacks of D-

branes.

Mult. Quantum Number QI3R QB−L Q3B+L QY QI3V QB QL QY ′ Field

a2d1 2 (1, 1, 1, 1, 1, 1) 0 -1 5 -1/2 1/2 1 1/2 0 ϕ21i

2 (1, 1, 1, 1, 1, 1) 0 1 -5 1/2 -1/2 -1 -1/2 0 ϕ21i

a2d2 2 (1, 1, 1, 1, 1, 1) 0 -1 5 -1/2 -1/2 1 1/2 -1 ϕ22i

2 (1, 1, 1, 1, 1, 1) 0 1 -5 1/2 1/2 -1 -1/2 1 ϕ22i

a2d1′ 1 (1, 1, 1, 1, 1, 1) 0 -1 -7 -1/2 1/2 -2 -1 0 ς21

1 (1, 1, 1, 1, 1, 1) 0 1 7 1/2 -1/2 2 1 0 ς21

a2d2′ 1 (1, 1, 1, 1, 1, 1) 0 -1 -7 -1/2 -1/2 -2 -1 -1 ς22

1 (1, 1, 1, 1, 1, 1) 0 1 7 1/2 1/2 2 1 1 ς22

c1d1′ 1 (1, 1, 1, 1, 1, 1) 1/2 0 -8 1/2 1/2 -2 -2 1 ψ11

1 (1, 1, 1, 1, 1, 1) -1/2 0 8 -1/2 -1/2 2 2 -1 ψ11

c1d2′ 1 (1, 1, 1, 1, 1, 1) 1/2 0 -8 1/2 -1/2 -2 -2 0 ψ12

1 (1, 1, 1, 1, 1, 1) -1/2 0 8 -1/2 1/2 2 2 0 ψ12

c2d1′ 1 (1, 1, 1, 1, 1, 1) -1/2 0 -8 -1/2 1/2 -2 -2 0 ψ21

1 (1, 1, 1, 1, 1, 1) 1/2 0 8 -1/2 -1/2 2 2 0 ψ21

c2d2′ 1 (1, 1, 1, 1, 1, 1) -1/2 0 -8 -1/2 -1/2 -2 -2 -1 ψ22

1 (1, 1, 1, 1, 1, 1) 1/2 0 8 1/2 1/2 2 2 1 ψ22

representations of SO(10), or equivalently 5 + 5 + 10 + 10 + 1 + 1 of SU(5). For example,

5i + 5
i

=
{

(XDi
R, XD

i

R), (XLiL, XL
i

L)
}
, (14)

10i + 10
i

=
{

(XQi
L, XQ

i

L), (XU i
R, XU

i

R), (XEi
R, XE

i

R)
}
,

1i + 1
i

=
{
XN i

R, XN
i

R

}
.

It is well-known that gauge coupling unification may be preserved at the 1-loop level if

the extra matter comes in complete representations of SU(5). However, at the 2 or 3-loop

level, a Landau pole may appear. This restricts the number of SU(5) multiplets which may

remain light to either one (10 + 10) or three copies of (5 + 5). In addition, any number of

SM singlets may be present in the light spectrum. Generically, there are many more vector-

like states in the spectrum, as can be seen from Tables IV,V, and VI. Thus, in order to
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preserve gauge coupling unification, many of these states must obtain string-scale masses,

while simultaneously maintaining light masses for either of the two cases stated above.

Recalling that vector-like matter appears between stacks of D-branes which are parallel on

one two-torus, the masses of these vector-like states depend on the separation between the

stacks on the two-torus on which they are parallel. So, it is possible to give string-scale

masses to some of the vector-like states by separating the two stacks of D-branes on the

two-torus on which they are parallel and where these vector-like states are localized.

Is it possible to choose the position of the stacks of D-branes so that only the 5 + 5 or

10+10 fields remain light? The answer to this question is yes. As an example, let us consider

just the fields in the ab′ and ac′ sectors, where it should be noted that these stacks of D-branes

are parallel on the third two-torus. Thus, for example the fields (XQi
L, XQ

i

L) may become

massive by separating stacks a1 and b′ on the third torus. Similarly, the fields (XU i
R, XU

i

R)

may become massive by separating stacks a1 and c1′, while (XEi
R, XE

i

R) become massive

if stacks a2 and c2′ are separated on the third two-torus. The fields (XDi
R, XD

i

R) may

remain massless if stacks a1 and c2′ overlap on the third two-torus, and the same is true for

(XLiL, XL
i

L) if stacks a2 and b′ overlap on the third two-torus. Thus with this configuration,

only the fields in the 5i + 5
i

and 1i + 1
i

(with i = 1 . . . 3) representations of Eq. 14 remain

light.

In addition, there are additional vector-like quarks and leptons in the spectrum in the

ad and ad′ sectors, as shown in Tables V and VI. These fields may also become massive

by separating the relevant stacks of D-branes on the two-torus where they are parallel. For

example, stacks a1 and a2 are parallel with stacks d1 and d2 on the third two-torus, and

so the vector-like matter in these sectors may be eliminated if these stacks are separated on

the third two-torus. Similarly, stacks a1 and a2 are parallel with stacks d1′ and d2′ on the

second two-torus, and the vector-like matter in this sector may be eliminated by displacing

these stacks on the second two-torus.

On the other hand, it must also be kept in mind that splitting the stacks in this fashion

may affect the Higgs sectors, which are also vector-like. For example the Higgs fields Hu

and Hd arise from vector-like matter in the bc1 and bc2 sectors respectively. Stackss a1 and

c2′ must overlap to keep (XEi
R, XE

i

R) light while stacks a1 and b′ must be separated to

give masses to the fields (XQi
L, XQ

i

L) such that the light vector-like fields may be placed

in 5 + 5 representations. However, this implies that stacks b and c2 must be separated and

thus that the Higgs field Hd is not present in the light spectrum. Clealy, then it is not

possible to eliminate the fields in the 10 + 10 while keeping the fields in the 5 + 5 without

also eliminating some of the Higgs field. Note that this constraint only applies to those fields

in the ab′ and ac′ sectors. In the next section, we shall also consider the vector-like matter

in the ad and ad′ sectors. We shall find that it is possible to have just vector-like matter in

11



the 5 + 5 representation without eliminating some of the Higgs fields as a by-product.

IV. MSSM SINGLETS COUPLED TO VECTOR-LIKE MATTER

We have seen in the previous section that the model contains vector-like quarks and

leptons in the ab′ and ac′ sectors which may be grouped into complete representations of

SU(5). Furthermore, by displacing the stacks of D-branes, it is possible to eliminate some

of these fields from the spectrum so that only three copies of 5 + 5 remain light. In this

way, gauge coupling unification may be maintained while also avoiding the Landau pole

problem. However, upon inspection, none of these vector-like quarks and leptons appear to

have Yukawa couplings with any of the singlet fields present in the model. Therefore, they

may not be involved in producing the diphoton excesses. However, this is not the case if we

examine the vector-like quarks and leptons present in the ad and ad′ sectors.

Let us turn our attention to the SM singlet fields Xc1d2 and Xc2d1 shown in Table III.

These fields have Yukawa couplings with the vector-like quarks in the ad and ad′ sectors:

W3 = ci1 · ψ12 ·Xc1d2 · ϕ12i · ς12 + ci2 · ψ21 ·Xc2d1 · ϕ11i · ς11, (15)

where
〈
ψ12

〉
and

〈
ψ21

〉
are near the string scale MSt as discussed in Section I. In addition,

there are Yuakwa couplings between these singlets and some of the vector-like doublets:

W2 = k1Xc1d2H1ξ2 + k2Xc2d1H2ξ1. (16)

Finally, there are additional Yukawa couplings between Xc1d2 and Xc2d1 and the singlet fields

in the a2d and a2d′ sectors:

W1 = di1 · ψ12 ·Xc1d2 · ϕ22i · ς22 + di2 · ψ21 ·Xc2d1 · ϕ21i · ς21. (17)

Thus, the required couplings of the SM singlet fields to vector-like quarks are present so

that the singlet fields may be produced by gluon fusion and decay to diphotons. In addition,

the singlet fields have additional couplings to other doublet and singlet fields. Note that the

vector-like quarks involved in these couplings combined with additional vector-like matter

may be placed in complete representations of SU(5) by replacing the right-handed vector-

like quarks, leptons, and singlets in Eq. 14 with some of the quarks, leptons and singlets of

12



Tables V and VI. For example, making the interchanges

(XDi
R, XD

i

R)→ (ϕ12i, ϕ12
i
), (18)

(XU i
R, XU

i

R)→ (ϕ11i, ϕ11
i
),

(XEi
R, XE

i

R)→ (ϕ22i, ϕ22
i
),

(XN i
R, XN

i

R)→ (ϕ21i, ϕ21
i
),

(XLiL, XL
i

L)→ (Hi,Hi
),

we have

5i + 5
i

=
{

(ϕ12i, ϕ12
i
), (Hi,Hi

)
}
, (19)

10i + 10
i

=
{

(XQi
L, XQ

i

L), (ϕ11ii, ϕ11
i
), (ϕ22i, ϕ22

i
)
}
,

1i + 1
i

=
{
ϕ21i, ϕ21

i
}
.

where i = 1 . . . 2, and making the interchanges

(XD3
R, XD

3

R)→ (ς12, ς12), (20)

(XU3
R, XU

3

R)→ (ς11, ς11),

(XE3
R, XE

3

R)→ (ς22, ς22),

(XN3
R, XN

3

R)→ (ς21, ς21),

(XL3
L, XL

3

R)→ (ξ1, ξ1),

we have

5 + 5 =
{

(ς12, ς12), (ξ1, ξ1)
}
, (21)

10 + 10 =
{

(XQ3
L, XQ

3

L), (ς11, ς11), (ς22, ς22)
}
,

1 + 1 =
{
ς21, ς21

}
.

In order to have just three 5+5 multiplets + additional singlets in the light spectrum, the

fields grouped into the 10 + 10 multiplets must become massive, as well as any additional

vector-like states. To eliminate the vectorlike fields in the ab′ and ac′ sectors from the light

spectrum, we must require that stacks a1 and a2 are separated from stacks b′, c1′, and c2′

on the third two-torus. Futhermore, to eliminate the fields in the above 10+10, we require

that stack a1 be separated from stack d1 on the third two-torus and from d1′ on the second

two-torus. Let us also require that stack a2 be separated from both stacks d1, d1′, d2 and

d2′.

13



To keep the fields in the above 5 + 5 representations light, we require that stack a1

overlap with stack d2 on the third two-torus and with stack d2′ on the second two torus.

In addition, we require that stack b overlap stacks c1, c1′, c2, and c2′ as well as stacks d1′.

This configuration assures that the Higgs fields H i
u and H i

d are present in the spectrum. In

addition, stack b may not overlap stack d1′ since stack a1 overlaps stack d1. Since stack a1

and b′ are separated, this implies that stacks b and d1′ are also separated.

Then, the fields in the light spectrum consist of the following fields with quantum numbers

under the SU(3)C × SU(2)L × U(1)Y gauge symmetry shown:

(XD1,2, XD
c
1,2) ≡ 2× (ϕ12, ϕ12) = 2×

{
(3,1,

1

3
) + (3,1,−1

3
)

}
, (22)

(XD3, XD
c
3) ≡ 1× (ς12, ς12) =

{
(3,1,

1

3
) + (3,1,−1

3
)

}
,

(XLL1,2 , XL
c
L1,2

) ≡ 2× (H1,H1) =

{
(1,2,−1

2
) + (1,2,

1

2
)

}
,

(XLL3 , XL
c
L3

) ≡ 1× (ξ1, ξ1) =

{
(1,2,−1

2
) + (1,2,

1

2
)

}
,

plus additional singlets. As shown in Eq. 15, the vector-like quarks (ϕ121,2, ϕ12
1,2

) and

(ς12, ς12) have Yukawa couplings with the singlet field S ≡ Xc1d2. Thus, this singlet field

may be produced via loops involving these vector-like quarks as well as decay to diphotons

via gluon fusion. In addition, the singlet field S has couplings to the doublets (XLL, XL
c
L)

to which it may also decay.

Using the notation of Eq. 22, the superpotential for the extra vector-like states and the

singlet S is

W = λDSXDXD
c + λLSXLXL

c

+MXDXDXD
c +MXLXLXL

c . (23)

The corresponding supersymmetry breaking soft terms are

Vsoft = M̃2
XD(|X̃D|2 + |X̃D

c
|2) + M̃2

XL(|X̃L|2 + |X̃L
c
|2)

−
(
λDADSX̃DX̃D

c

+λLALSX̃LX̃L
c

+BXDMXDXDXD
c +BXLMXLXLXL

c + H.C.) . (24)

V. THE DIPHOTON EXCESSES

The 750 GeV diphoton production cross-sections observed by the CMS collaboration are

σ(pp→ S → γγ) = 0.5± 0.6 fb at
√
s = 8 TeV [47]and 6± 3 fb at

√
s = 13 TeV [2], while
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TABLE VII. Decay widths and production cross-sections for a total decay width of Γ = 5 GeV for

some sample points. All masses and decay widths are in GeV. The cross-sections are in femtobarns

(fb). The BrDM represents the branching ratio allocated to dark matter. For simplicity, we assume

here that MXE = MXN and λE = λN .
Γ = 5 GeV

MXD MXE M
X̃D

M
X̃E

M̃XD M̃XE λD λE AD AE Γγγ Γgg ΓXE+XN Brγγ Brgg BrXE+XN BrDM σ8 TeV
γγ σ13 TeV

γγ

1200 255 2050 400 1662 308 0.65 0.351 3600 1530 0.0037 0.185 1.45 0.0007 0.037 0.290 0.672 0.38 1.77

1350 225 1750 330 1114 241 0.55 0.351 4050 1350 0.0077 0.138 1.88 0.0015 0.028 0.376 0.594 0.60 2.77

1200 265 1800 310 1342 161 0.60 0.351 3600 1590 0.0083 0.178 1.30 0.0017 0.036 0.260 0.702 0.82 3.83

1400 235 1750 330 1050 232 0.70 0.351 4200 1410 0.0081 0.218 1.74 0.0016 0.044 0.348 0.607 0.99 4.58

1050 225 1800 300 1462 198 0.70 0.351 3150 1350 0.0072 0.284 1.88 0.0014 0.057 0.376 0.565 1.14 5.32

1000 215 1450 330 1050 250 0.65 0.351 3000 1290 0.0075 0.319 2.02 0.0015 0.064 0.404 0.530 1.34 6.22

1000 255 1500 330 1118 209 0.65 0.351 3000 1530 0.0088 0.307 1.45 0.0018 0.061 0.290 0.647 1.50 7.00

TABLE VIII. Decay widths and production cross-sections for a total decay width of Γ = 45 GeV for

some sample points. All masses and decay widths are in GeV. The cross-sections are in femtobarns

(fb). The BrDM represents the branching ratio allocated to dark matter. For simplicity, we assume

here that MXE = MXN and λE = λN .
Γ = 45 GeV

MXD MXE M
X̃D

M
X̃E

M̃XD M̃XE λD λE AD AE Γγγ Γgg ΓXE+XN Brγγ Brgg BrXE+XN BrDM σ8 TeV
γγ σ13 TeV

γγ

1200 255 1750 340 1274 225 0.70 0.351 3600 1530 0.0090 0.250 1.45 0.00020 0.0055 0.032 0.962 0.14 0.65

950 255 1300 300 887 158 0.65 0.351 2850 1530 0.0079 0.380 1.45 0.00018 0.0085 0.032 0.959 0.19 0.87

1100 255 1450 350 945 240 0.70 0.351 3300 1530 0.0092 0.337 1.45 0.00021 0.0075 0.032 0.960 0.19 0.90

1000 265 1350 330 907 197 0.70 0.351 3000 1590 0.0091 0.401 1.30 0.00020 0.0089 0.029 0.962 0.23 1.05

900 265 1250 340 867 213 0.65 0.351 2700 1590 0.0094 0.420 1.30 0.00021 0.0093 0.029 0.962 0.25 1.14

950 265 1300 350 887 229 0.70 0.351 2850 1590 0.0097 0.441 1.30 0.00021 0.0098 0.029 0.961 0.26 1.23

800 265 1200 360 894 244 0.70 0.351 2400 1590 0.0099 0.580 1.30 0.00022 0.0129 0.029 0.958 0.36 1.67

the ATLAS collaboration observed σ(pp→ S → γγ) = 0.4± 0.8 fb at
√
s = 8 TeV [48] and

10 ± 3 fb at
√
s = 13 TeV [1]. Replicating the strategy of Ref. [15], we constrain the total

decay width to Γ ∼ 5 − 45 GeV. To reproduce the observed production cross-sections, we

constrain the model using ΓγγΓgg/M
2
S & 10−9.

The effective loop-level couplings amongst the Standard Model gauge bosons and scalar

S are given by

−L =
S

MS

[
κEMF

EM
µν FEMµν + κ3G

a
µνG

µν a
]

(25)

where FEM
µν and Ga

µν are the photon and gluon field strength tensors, respectively, with

a = 1, 2, ..8. The effective operators are represented by κEM and κ3, which are written as

κEM =
αEM
4π

∑
f

λfMS

Mf

Q2
fN

f
EMFf +

∑
f̃

λfAfMS

M2
f̃

Q2
f̃
N f
EMFf̃

 (26)

κ3 =
α3

4π

∑
f

λfMS

Mf

N f
3 Ff +

∑
f̃

λfAfMS

M2
f̃

N f
3 Ff̃

 (27)
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where NXD
EM = 3, NXE

EM = 1, and NXD
3 = 1, and the functions Ff and Ff̃ are expressed as

Ff = 2χ [1 + (1− χ)f(χ)] (28)

Ff̃ = χ [−1 + χf(χ)] (29)

with the function χ denoted by

χ = 4
M2

f/f̃

M2
S

(30)

The triangle loop functions f(χ) are defined here as

f(χ) =

arcsin2[
√
χ−1] if χ ≥ 1

−1
4

[
ln 1+

√
1−χ

1−
√
1−χ − iπ

]2
if χ < 1.

(31)

The diphoton and digluon decay widths in F -SU(5) are computed from

Γγγ =
|κEM |2

4π
MS (32)

Γgg =
2 |κ3|2

π
MS (33)

The diphoton production cross-section is calculated from

σ(pp→ S → γγ) = K
CggΓ(S → gg)Γ(S → γγ)

ΓsMS

(34)

where Γ is the total decay width,
√
s is the proton-proton center of mass energy, and Cgg

is the dimensionless partonic integral computed for an MS = 750 GeV resonance, yielding

Cgg = 174 at
√
s = 8 TeV and Cgg = 2137 at

√
s = 13 TeV [49]. We use the gluon fusion

K-factor of 1.98.

We construct our intersecting D-brane model with the (XD,XDc) and (XL,XLc) vector-

like particles, implementing three copies of the (5,5). For the calculations, we decompose

the (XL,XLc) multiplet into its (XE,XEc) and (XN,XN c) components. Given the null

XN electric charge QXN = 0, no constraints can be placed on MXN , λN , or AN in the

model via the production cross-section calculations, so for simplicity we set MXN = MXE

and λN = λE when computing the decay of the scalar S directly to the XN multiplet. The

multiplets (XD,XDc) and (XE,XEc) participate in the S → γγ loop diagrams and only

(XD,XDc) in the S → gg loops, hence there are 8 free parameters in the effective operators

κEM and κ3 consisting of the Yukawa couplings λf , trilinear A term couplings Af , fermionic

component masses Mf , and scalar component masses Mf̃ . In total, there are 10 parameters

to compute:

MXD, MXE, MX̃D, MX̃E, M̃XD, M̃XE, λD, λE, AD, AE (35)
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though the supersymmetry breaking soft terms M̃XD, and M̃XE can be trivially computed

from the fermionic and scalar components using the following relations

M2
X̃D

= M2
XD + M̃2

XD (36)

M2
X̃E

= M2
XE + M̃2

XE (37)

The freedom on the 8 free-parameters engenders a large D-brane model parameter space.

We treat the fermionic component of the vector-like particle and its soft supersymmetry

breaking term independently, such that Mf 6= M̃f . Recent constraints at the LHC on

vector-like B quarks [50] provide lower limits of around 735 GeV for the XD multiplet,

allowing a light XE multiplet, which contributes to invisible branching fractions when

MXE < 375 GeV. The maximum XD Yukawa coupling applied here is λD . 0.70, though

we maintain λE ≈ 0.351, restricting their freedom. Constraints are placed on the A terms of

AD . 3MD and AE . 6ME to preclude premature breaking of the SU(3)C ×U(1)EM gauge

symmetry. Some sample benchmark points are detailed in TABLE VII and TABLE VIII.

The cross-sections σ8 TeV
γγ and σ13 TeV

γγ in TABLES VII - VIII display a gain of 4.65 from

8 TeV to 13 TeV. We use values of the coupling constants at the MZ scale in our calcula-

tions of α3 = 0.1185 and αEM = 128.91−1. The S → XEXEc and S → XNXN decay

modes reflected in the ΓXE+XN decay width and BrXE+XN branching ratio in TABLES VII

- VIII are given by

Γ(S → ff) =
1

16π
MSλ

2
f

(
1−

4M2
f

M2
S

)3/2

. (38)

where we take MXE = MXN and λE = λN in the calculations. These decay modes are

kinematically allowed if MXE,XN < 375 GeV.

VI. CONCLUSION

We have studied the diphoton excesses near 750 GeV recently reported by the ATLAS

and CMS collaborations within the context of a phenomenologically interesting intersect-

ing/magnetized D-brane model on a toroidal orientifold. We have shown that the model

contains a SM singlet scalar as well as vector-like quarks and leptons. In addition, we have

shown that the singlet scalar has Yukawa couplings with vector-like quarks and leptons such

that it may be produced in proton-proton collisions via gluon fusion as well as decay to

diphotons through loops involving the vector-like quarks. Moreover, the required vector-like

quarks and leptons may appear in complete SU(5) multiplets so that gauge coupling unifi-

cation may be maintained. In particuar, we showed that we may have three copies of 5 + 5

representations of SU(5) in the light spectrum which are present in the model. Finally, we
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showed that the diphoton excesses observed by the ATLAS and CMS collaborations may be

accommodated.

It should be emphasized that we have obtained these results within the context of a

complete, globally consistent string model. This particular model has many interesting

phenomenological features such as automatic gauge coupling unification, realistic Yukawa

mass matrices for quarks and leptons, and mimimal exotic matter. It is of note that the

singlet fields required to explain the diphoton signal arise from this extra matter. In addition,

the required vector-like quarks are naturally present in the spectrum. Finally, the Yukawa

couplings between the singlet fields and the vector-like quarks are allowed by the global

symmetries arising from U(1) factors whose gauge bosons become heavy at the string scale

via the Green-Schwarz mechanism, a result which is completely non-trivial.

An interesting question is whether or not is it possible to obtain supersymmetry partner

spectra from the model which take into account the light vector-like matter. As mentioned

earlier, the vector-like quarks and leptons have Yukawa couplings with the Higgs fields in

the model, and thus may raise the Higgs mass by up to a few GeV. This may alleviate

the problem with electroweak fine-tuning. In addition, the vector-like matter affects the

RGE running of the soft masses. Finally, the soft supersymmetry breaking masses may be

calculated at the string scale in the model. Thus, it would be very interesting to study

the possible supersymmetry partner spectra obtainable in the model including the extra

vector-like matter. We plan to study this in future work.

ACKNOWLEDGMENTS

This research was supported in part by the Natural Science Foundation of China under

grant numbers 11135003, 11275246, and 11475238 (TL), and by the DOE grant DE-FG02-

13ER42020 (DVN).

[1] ATLAS note, ATLAS-CONF-2015-081, “Search for resonances decaying to photon pairs in

3.2 fb−1 of pp collisions at
√
s = 13 TeV with the ATLAS detector”.

[2] CMS note, CMS PAS EXO-15-004, “Search for new physics in high mass diphoton events in

proton-proton collisions at 13 TeV”.

[3] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, arXiv:1512.05439 [hep-ph].

[4] A. Falkowski, O. Slone and T. Volansky, arXiv:1512.05777 [hep-ph].

[5] K. Harigaya and Y. Nomura, arXiv:1512.04850 [hep-ph]; Y. Mambrini, G. Arcadi and

18



A. Djouadi, arXiv:1512.04913 [hep-ph]; M. Backovic, A. Mariotti and D. Redigolo,

arXiv:1512.04917 [hep-ph]; A. Angelescu, A. Djouadi and G. Moreau, arXiv:1512.04921 [hep-

ph]; Y. Nakai, R. Sato and K. Tobioka, arXiv:1512.04924 [hep-ph]; S. Knapen, T. Melia,

M. Papucci and K. Zurek, arXiv:1512.04928 [hep-ph]; D. Buttazzo, A. Greljo and D. Mar-

zocca, arXiv:1512.04929 [hep-ph]; A. Pilaftsis, arXiv:1512.04931 [hep-ph]; R. Franceschini et

al., arXiv:1512.04933 [hep-ph]; S. Di Chiara, L. Marzola and M. Raidal, arXiv:1512.04939

[hep-ph].

[6] S. D. McDermott, P. Meade and H. Ramani, arXiv:1512.05326 [hep-ph]; R. Ben-

brik, C. H. Chen and T. Nomura, arXiv:1512.06028 [hep-ph]; J. Ellis, S. A. R. El-

lis, J. Quevillon, V. Sanz and T. You, arXiv:1512.05327 [hep-ph]; M. Low, A. Tesi and

L. T. Wang, arXiv:1512.05328 [hep-ph]; B. Bellazzini, R. Franceschini, F. Sala and J. Serra,

arXiv:1512.05330 [hep-ph]; R. S. Gupta, S. Jger, Y. Kats, G. Perez and E. Stamou,

arXiv:1512.05332 [hep-ph]; C. Petersson and R. Torre, arXiv:1512.05333 [hep-ph]; E. Moli-

naro, F. Sannino and N. Vignaroli, arXiv:1512.05334 [hep-ph]; Q. H. Cao, Y. Liu, K. P. Xie,

B. Yan and D. M. Zhang, arXiv:1512.05542 [hep-ph]; S. Matsuzaki and K. Yamawaki,

arXiv:1512.05564 [hep-ph]; A. Kobakhidze, F. Wang, L. Wu, J. M. Yang and M. Zhang,

arXiv:1512.05585 [hep-ph]; R. Martinez, F. Ochoa and C. F. Sierra, arXiv:1512.05617

[hep-ph]; P. Cox, A. D. Medina, T. S. Ray and A. Spray, arXiv:1512.05618 [hep-ph];

D. Becirevic, E. Bertuzzo, O. Sumensari and R. Z. Funchal, arXiv:1512.05623 [hep-ph];

J. M. No, V. Sanz and J. Setford, arXiv:1512.05700 [hep-ph]; S. V. Demidov and D. S. Gor-

bunov, arXiv:1512.05723 [hep-ph]; W. Chao, R. Huo and J. H. Yu, arXiv:1512.05738 [hep-

ph]; S. Fichet, G. von Gersdorff and C. Royon, arXiv:1512.05751 [hep-ph]; D. Curtin

and C. B. Verhaaren, arXiv:1512.05753 [hep-ph]; L. Bian, N. Chen, D. Liu and J. Shu,

arXiv:1512.05759 [hep-ph]; J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal and T. Sri-

vastava, arXiv:1512.05767 [hep-ph]; A. Ahmed, B. M. Dillon, B. Grzadkowski, J. F. Gunion

and Y. Jiang, arXiv:1512.05771 [hep-ph]; C. Csaki, J. Hubisz and J. Terning, arXiv:1512.05776

[hep-ph]; D. Aloni, K. Blum, A. Dery, A. Efrati and Y. Nir, arXiv:1512.05778 [hep-

ph]; Y. Bai, J. Berger and R. Lu, arXiv:1512.05779 [hep-ph]; E. Gabrielli, K. Kan-

nike, B. Mele, M. Raidal, C. Spethmann and H. Veerme, arXiv:1512.05961 [hep-ph];

J. S. Kim, J. Reuter, K. Rolbiecki and R. R. de Austri, arXiv:1512.06083 [hep-ph];

A. Alves, A. G. Dias and K. Sinha, arXiv:1512.06091 [hep-ph]; E. Megias, O. Pujolas

and M. Quiros, arXiv:1512.06106 [hep-ph]; L. M. Carpenter, R. Colburn and J. Goodman,

arXiv:1512.06107 [hep-ph]; J. Bernon and C. Smith, arXiv:1512.06113 [hep-ph]; W. Chao,

arXiv:1512.06297 [hep-ph]; M. T. Arun and P. Saha, arXiv:1512.06335 [hep-ph]; C. Han,

H. M. Lee, M. Park and V. Sanz, arXiv:1512.06376 [hep-ph]; S. Chang, arXiv:1512.06426

19



[hep-ph]; I. Chakraborty and A. Kundu, arXiv:1512.06508 [hep-ph]; H. Han, S. Wang and

S. Zheng, arXiv:1512.06562 [hep-ph]; X. F. Han and L. Wang, arXiv:1512.06587 [hep-ph];

F. Wang, L. Wu, J. M. Yang and M. Zhang, arXiv:1512.06715 [hep-ph]; J. Cao, C. Han,

L. Shang, W. Su, J. M. Yang and Y. Zhang, arXiv:1512.06728 [hep-ph]; F. P. Huang, C. S. Li,

Z. L. Liu and Y. Wang, arXiv:1512.06732 [hep-ph]; J. J. Heckman, arXiv:1512.06773 [hep-

ph]; X. J. Bi, Q. F. Xiang, P. F. Yin and Z. H. Yu, arXiv:1512.06787 [hep-ph]; J. S. Kim,

K. Rolbiecki and R. R. de Austri, arXiv:1512.06797 [hep-ph]; J. M. Cline and Z. Liu,

arXiv:1512.06827 [hep-ph]; M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg,

arXiv:1512.06833 [hep-ph]; S. M. Boucenna, S. Morisi and A. Vicente, arXiv:1512.06878

[hep-ph]; P. S. B. Dev and D. Teresi, arXiv:1512.07243 [hep-ph]; J. de Blas, J. Santiago

and R. Vega-Morales, arXiv:1512.07229 [hep-ph]; C. W. Murphy, arXiv:1512.06976 [hep-ph];

U. K. Dey, S. Mohanty and G. Tomar, arXiv:1512.07212 [hep-ph]; G. M. Pelaggi, A. Stru-

mia and E. Vigiani, arXiv:1512.07225 [hep-ph]; W. C. Huang, Y. L. S. Tsai and T. C. Yuan,

arXiv:1512.07268 [hep-ph]; Q. H. Cao, S. L. Chen and P. H. Gu, arXiv:1512.07541 [hep-ph];

S. Chakraborty, A. Chakraborty and S. Raychaudhuri, arXiv:1512.07527 [hep-ph]; W. Alt-

mannshofer, J. Galloway, S. Gori, A. L. Kagan, A. Martin and J. Zupan, arXiv:1512.07616

[hep-ph]; M. Cveti, J. Halverson and P. Langacker, arXiv:1512.07622 [hep-ph]; K. Das

and S. K. Rai, arXiv:1512.07789 [hep-ph]; K. Cheung, P. Ko, J. S. Lee, J. Park and

P. Y. Tseng, arXiv:1512.07853 [hep-ph]; J. Liu, X. P. Wang and W. Xue, arXiv:1512.07885

[hep-ph]; J. Zhang and S. Zhou, arXiv:1512.07889 [hep-ph]; G. Li, Y. n. Mao, Y. L. Tang,

C. Zhang, Y. Zhou and S. h. Zhu, arXiv:1512.08255 [hep-ph]; M. Son and A. Urbano,

arXiv:1512.08307 [hep-ph]; H. An, C. Cheung and Y. Zhang, arXiv:1512.08378 [hep-ph];

F. Wang, W. Wang, L. Wu, J. M. Yang and M. Zhang, arXiv:1512.08434 [hep-ph]; Q. H. Cao,

Y. Liu, K. P. Xie, B. Yan and D. M. Zhang, arXiv:1512.08441 [hep-ph]; J. Gao, H. Zhang

and H. X. Zhu, arXiv:1512.08478 [hep-ph]; X. J. Bi et al., arXiv:1512.08497 [hep-ph]. F. Go-

ertz, J. F. Kamenik, A. Katz and M. Nardecchia, arXiv:1512.08500 [hep-ph]; P. S. B. Dev,

R. N. Mohapatra and Y. Zhang, arXiv:1512.08507 [hep-ph]; L. A. Anchordoqui, I. Anto-

niadis, H. Goldberg, X. Huang, D. Lust and T. R. Taylor, Phys. Lett. B 755, 312 (2016)

doi:10.1016/j.physletb.2016.02.024 [arXiv:1512.08502 [hep-ph]]. Y. L. Tang and S. h. Zhu,

arXiv:1512.08323 [hep-ph]; J. Cao, F. Wang and Y. Zhang, arXiv:1512.08392 [hep-ph]; C. Cai,

Z. H. Yu and H. H. Zhang, arXiv:1512.08440 [hep-ph]; W. Chao, arXiv:1512.08484 [hep-ph];

N. Bizot, S. Davidson, M. Frigerio and J.-L. Kneur, arXiv:1512.08508 [hep-ph]; L. E. Ibanez

and V. Martin-Lozano, arXiv:1512.08777 [hep-ph]; Y. Hamada, T. Noumi, S. Sun and G. Shiu,

arXiv:1512.08984 [hep-ph]; S. K. Kang and J. Song, arXiv:1512.08963 [hep-ph]; S. Kanemura,

K. Nishiwaki, H. Okada, Y. Orikasa, S. C. Park and R. Watanabe, arXiv:1512.09048 [hep-ph];

20



Y. Jiang, Y. Y. Li and T. Liu, arXiv:1512.09127 [hep-ph]; K. Kaneta, S. Kang and H. S. Lee,

arXiv:1512.09129 [hep-ph]; L. Marzola, A. Racioppi, M. Raidal, F. R. Urban and H. Veerme,

arXiv:1512.09136 [hep-ph]. A. Dasgupta, M. Mitra and D. Borah, arXiv:1512.09202 [hep-ph].

W. Chao, arXiv:1601.00633 [hep-ph]. W. Chao, arXiv:1601.04678 [hep-ph]. K. Ghorbani and

H. Ghorbani, arXiv:1601.00602 [hep-ph]. U. Danielsson, R. Enberg, G. Ingelman and T. Man-

dal, arXiv:1601.00624 [hep-ph].

[7] L. J. Hall, K. Harigaya and Y. Nomura, arXiv:1512.07904 [hep-ph];

[8] K. M. Patel and P. Sharma, arXiv:1512.07468 [hep-ph].

[9] R. Ding, L. Huang, T. Li and B. Zhu, arXiv:1512.06560 [hep-ph].

[10] B. C. Allanach, P. S. B. Dev, S. A. Renner and K. Sakurai, arXiv:1512.07645 [hep-ph].

[11] U. Aydemir and T. Mandal, scalars in SO(10) grand unification,” arXiv:1601.06761 [hep-ph].

[12] R. Ding, Y. Fan, L. Huang, C. Li, T. Li, S. Raza and B. Zhu, arXiv:1602.00977 [hep-ph].

[13] X. F. Han, L. Wang, L. Wu, J. M. Yang and M. Zhang, arXiv:1601.00534 [hep-ph].

[14] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze, T. Li, Q. Shafi and J. W. Walker, arXiv:1601.00866

[hep-ph].

[15] T. Li, J. A. Maxin, V. E. Mayes and D. V. Nanopoulos, arXiv:1602.01377 [hep-ph].

[16] Y. Hamada, H. Kawai, K. Kawana and K. Tsumura, arXiv:1602.04170 [hep-ph].

[17] F. Staub et al., arXiv:1602.05581 [hep-ph].

[18] S. Baek and J. h. Park, arXiv:1602.05588 [hep-ph].

[19] P. Ko, T. Nomura, H. Okada and Y. Orikasa, arXiv:1602.07214 [hep-ph].

[20] F. Domingo, S. Heinemeyer, J. S. Kim and K. Rolbiecki, arXiv:1602.07691 [hep-ph].

[21] M. Cvetic, J. Halverson and P. Langacker, arXiv:1602.06257 [hep-ph].

[22] J. Ren and J. H. Yu, arXiv:1602.07708 [hep-ph].

[23] G. Lazarides and Q. Shafi, arXiv:1602.07866 [hep-ph].

[24] For a review, see K. R. Dienes, Phys. Rept. 287, 447 (1997).

[25] M. Berkooz, M. R. Douglas and R. G. Leigh, Nucl. Phys. B 480, 265 (1996).

[26] L. E. Ibanez, F. Marchesano and R. Rabadan, JHEP 0111, 002 (2001).

[27] R. Blumenhagen, B. Kors, D. Lust and T. Ott, Nucl. Phys. B 616, 3 (2001).
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