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We use large-scale cosmological observations to place constraints on the dark matter pressure,
sound speed and viscosity, and infer a limit on the mass of warm dark matter particles. Measure-
ments of the cosmic microwave background (CMB) anisotropies constrain the equation of state and
sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of
collisionless particles universally implies that these quantities scale like a−2 absent shell crossing, we
infer that today w(DM) < 10−10.0, c2

s,(DM) < 10−10.7 and c2
vis,(DM) < 10−10.3 at the 99% confidence

level. This very general bound can be translated to model-dependent constraints on dark matter
models: for warm dark matter these constraints imply m > 70 eV, assuming it decoupled while
relativistic around the same time as the neutrinos; for a cold relic, we show that m > 100 eV. We
separately constrain the properties of the DM fluid on linear scales at late times, and find upper
bounds c2

s,(DM) < 10−5.9, c2
vis,(DM) < 10−5.7, with no detection of non-dust properties for the DM.

I. INTRODUCTION

Dark matter (DM) is one of the key ingredients in
the current standard model of cosmology ΛCDM, and
is thought to make up about 26% of the energy density
today [1]. It is necessary for the formation of structure
by gravitational clustering and is needed to explain the
rotation curves of galaxies and the motion of galaxies in
clusters. In the concordance cosmological model, ΛCDM,
dark matter is modeled as dust — pressureless matter
moving on geodesics. A typical concrete realization of
this kind of dark matter is provided by weakly interact-
ing massive particles (WIMPs) with masses of the order
of 100 GeV.

However, many years of direct and indirect searches
have been unable to provide a clear detection of any par-
ticles that make up the dark matter. An important goal
is therefore to place as many constraints as possible on
the different quantities that characterize its physical na-
ture. For example, the Bullet cluster places limits on
the self interaction cross section of dark matter parti-
cles to σ/m < 1 cm2g−1 [2]. If dark matter particles are
fermionic and too light, m . 400 eV then their Fermi
pressure does not allow structure to form (the Tremaine-
Gunn bound [3]). Other constraints come from the clus-
tering seen in the Lyman-α forest, for which a compar-
ison with hydrodynamical simulations leads to a bound
of m > 3.3 keV at 2σ [4]. There are however also claims
from X-ray observations concerning the detection of a
3.55 keV line that might be due to the two-body decay
of a dark matter particle with a mass of 7.1 keV (see for
example [5] for a recent review). For more details and
further bounds see e.g. [6–8].

∗ Based in part on observations obtained with Planck
(http://www.esa.int/Planck), an ESA science mission with
instruments and contributions directly funded by ESA Member
States, NASA, and Canada.

In this paper we study the constraints that can be
placed on the fluid aspect of the dark matter, i.e. its
pressure, sound speed and viscosity, from cosmological
observations on large scales, and the implications of these
general results for a broad class of particle dark mat-
ter models. Large-scale observations in cosmology have
the advantage of requiring only linear physics, which
makes them an especially clean and highly successful
probe [9]. As we will see, the bounds from observations
of the anisotropies in the cosmic microwave background
(CMB), the lensing of the CMB and the weak lensing of
galaxies are comparable to those obtained from physics
on smaller scales. The limits we obtain are highly model
independent and robust, and they come from high red-
shifts (close to last scattering) as well as low redshifts
(lensing of the CMB). Where comparable, our results
agree with constraints obtained recently in ref. [10] and
previously with older datasets in [11, 12].
The paper is organized as follows: We start by describ-

ing the way we model the dark matter and how this is
connected to the dark matter mass. We also discuss how
we implement this in the Boltzmann code camb [13] and
how we set the initial conditions. In section III we briefly
review the different data sets used, before presenting the
results. We then discuss the implications for dark matter
physics and conclude.

II. DESCRIBING DARK MATTER

A. Evolution

In this paper, we will assume that, at all times relevant
for observations, the dark matter is decoupled from the
visible sector (baryons, photons and neutrinos) in any
manner except for gravity. This allows us to restrain
its evolution and its effect on observables to that which
is allowed by the conservation of the energy-momentum
tensor (EMT) for dark matter. This assumption means
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that we do not consider, for example, models where dark
matter is either metastable or continues to annihilate to
radiation at a sufficient rate to affect the temperature
of the plasma. For constraints on such effects see e.g.
ref. [14].

This means that all kinds of dark-matter that we will
cover can be described by the standard conservation
equations for a general matter source as given by ref. [15],
the notational conventions of which we adopt here. In
particular, on the level of the cosmological background,
the DM energy density ρ evolves according to

ρ̇+ 3H(1 + w)ρ = 0, (1)

where the overdot signifies differentiation w.r.t. confor-
mal time τ and H ≡ ȧ/a is the conformal Hubble pa-
rameter. The equation of state w will in this paper de-
note the equations of state of the DM, rather than any
dark energy. We assume that we can consistently neglect
vector and tensor perturbations, so that we can consider
only the scalar modes. Thus, on the level of linear per-
turbations, a conserved EMT must satisfy [15]:

δ̇ + (1 + w)
(
θ + ḣ

2

)
+ 3H

(
δp

δρ
− w

)
δ = 0 , (2)

θ̇ +H(1− 3w)θ + ẇ

1 + w
θ − δp/δρ

1 + w
k2δ + k2σ = k2Ψ ,

where we have presented the equations in synchronous
gauge and in a frame comoving with a pressureless dust
component, i.e. the choice of variables made in the camb
numerical code [13] that we use to obtain the results in
this paper.1

Given our freeze-out/energy-conservation assumption,
the model is specified by supplying a DM equation of
state, w, and relations associating the pressure pertur-
bation δp and scalar anisotropic stress σ to the variables
being evolved dynamically, δ, θ or the gravitational po-
tentials.

Frequently these relations are taken from perfect-fluid
hydrodynamics, as in the case of CDM. However, one
cannot necessarily assume that the dark matter is an
ideal fluid with a natural suppression of higher-order
terms in a gradient expansion. The DM particles inter-
act very rarely compared to the timescale of cosmolog-
ical evolution and thus cannot establish thermodynami-
cal equilibrium which would lead to such a hierarchy, but
rather free-stream. Instead, the above relations are ob-
tained by solving the Boltzmann equation for the particle
distribution (for more details see Appendix A), typically
through a multipole moment decomposition. Then one
finds that each higher moment is suppressed with respect

1 When 1 + w ≈ 0, there are some technical issues related to the
observer choice for a general EMT, and it is not always possible
to choose the comoving frame consistently [16–18]. This will not
be an issue here.

to the lower one by the ratio of the particle kinetic energy
to its mass. This means that hydrodynamics is a terri-
ble approximation when the DM is relativistic (just as in
the case of neutrinos) and the full set of coupled moment
equations must be solved, but the moment expansion can
be truncated when the DM is non-relativistic.
Since the dark matter does need to be non-relativistic

at least at the present time to allow for the formation
of galaxies, we will employ a truncation of the multipole
expansion which was introduced in ref. [19, 20], the so-
called cvis parametrization. This parametrization relates
the pressure perturbation to the dynamically evolved
variables through the rest-frame sound-speed cs

δp = c2sδρ− ρ̇(c2s − c2a)θ/k2, (3)

where the adiabatic sound speed is c2a ≡ (wρ)̇/ρ̇. In addi-
tion, the anisotropic stress σ is assumed to evolve through
the phenomenological equation

σ̇ + 3H c2a
w
σ = 4

3
c2vis

1 + w
(2θ + ḣ+ 6η̇) , (4)

where c2vis is a new viscosity parameter. As discussed in
ref. [21], such a parametrization in the limit c2vis = 0 only
restores the hydrodynamical limit of the Boltzmann hi-
erarchy when the multipoles higher than the quadrupole
are unpopulated as an initial condition, which is not the
case for a real relativistic species. On the other hand,
in the relativistic limit w = c2s = c2vis = 1/3, this set of
equations is also missing the input from the higher multi-
poles and therefore is not a very realistic representation.
However, since dark matter must be non-relativistic to-
day we expect that the effect of the higher multipoles
is sufficiently suppressed so as not to make a significant
correction to observables. We thus treat c2vis as a proxy
for the size of the higher multipoles. If we were to find
that the data support c2vis � c2s , then a more precise
investigation of the higher moments is necessary.
All that remains therefore is to specify the time evo-

lution of three parameters: w, c2s , c2vis. We will study two
parameterizations:

1. Initially relativistic DM. We implement time-
varying w, c2s , c2vis interpolating between relativistic
and non-relativistic behavior. This is a physically
motivated parametrization, based on the redshift-
ing of momenta of collisionless particles and it al-
lows us to obtain very general constraints on warm-
dark-matter-type (WDM) scenarios.

2. Constant parametrization: We take all parameters
w, c2s , c

2
vis to be constant. This will allow us to as-

certain the maximum values that these parameters
are allowed to take and also infer the behavior of
the DM fluid at late times. Comparing the two pa-
rameterizations will reveal from which redshift and
therefore due to which physics the constraints arise.
This kind of constraints were recently obtained also
by [10].
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FIG. 1. Left panel: The effective equation of state parameter w for fermionic particles as a function of a rescaled scale factor
x (orange) and the parameterization (5) (green).
Right panel: The relative difference in w for fermions (blue) and bosons (orange) and the parameterization (5). The asymptotic
behavior matches, while there is a 10-15% difference around x = 3, when the species are transitioning between relativistic and
non-relativistic. For x & 30 the parameterization is accurate to 1%, and it is always conservative.

As we review in more detail in Appendix A, the distri-
bution functions for DM evolves according to the Vlasov
equation. Provided it interacts sufficiently frequently, it
can thermalize and be well described by a hydrodynami-
cal perfect fluid. However, once freeze-out occurs at DM
temperature Tdec, the full Boltzmann hierarchy must in
principle be evolved since higher moments are only sup-
pressed by the ratio of the typical kinetic energy to total
particle energy. We thus need to model an initial rela-
tivistic limit, with w = c2s = 1

3 and unsuppressed higher
multipoles of the hierarchy.

On the other hand, the phase-space distribution scales
in a universal manner following freeze-out, since the par-
ticles are now only redshifting with the expansion of
the universe but no longer interacting. Thus, what-
ever the precise DM generation/freeze-out scenario, once
non-relativistic and collisionless, the kinetic energy, and
therefore also the pressure, redshifts as a−2 while the
higher multipoles become increasingly irrelevant. This
allows us to employ a parametrization that is indepen-
dent of the precise model of dark matter: we parameter-
ize the evolution of all of w, c2s and c2vis using the same
functional form

F (x) = 1
3 + x2 , (5)

where x ≡ a/
√
α with α one of w0, c

2
s0, c

2
vis0, the value

of these fluid parameters today. The function F inter-
polates between 1

3 at early times and α
a2 at late times.

We compare how well this analytic approximation com-
pares with the full numerical calculation for the equa-
tion of state in fig. 1. Here, it suffices to say that, in
the case of a species that was thermally distributed un-
til decoupling while relativistic, this parametrization is
conservative. The interpretation of a constraint on the
fluid parameters in terms the DM particle mass depends

on the freeze-out scenario and is discussed in section IV.
We also note that x at late times is approximately pro-
portional to m/T , the ratio of the effective temperature
of the DM to its mass.
Note that, once the DM becomes non-relativistic, the

higher moments of the Boltzmann hierarchy decay away
faster than c2s and w. Nonetheless, since we use a
phenomenological approximation to the full hierarchy
through the c2vis parameter, and are mostly looking for an
upper bound on any effects from the higher moments, for
c2vis we employ the same parametrization (5). With this
parametrization, a preference in the data for c2vis0 > c2s0
would imply that the higher moments are larger than the
lower and our approximation cannot be employed.
The discussion above strictly speaking applies until

shell crossing, at which point, the velocities of the fluid
elements become multivalued and must be re-averaged.
This changes the hydrodynamical parameters for the
fluid (e.g. by introducing pressure from the velocity dis-
persion) and therefore would break the a−2 scaling. This
effect occurs at low redshifts at scales that become non-
linear, and thus our analysis should not be sensitive to
it. Nonetheless, we employ an alternative, constant pa-
rameterization to gauge the magnitude of any potential
such effect in the data. We will demonstrate that it is
small.

B. Initial Conditions

In addition to the evolution equations, appropriate
initial conditions must be chosen for the evolution of
the modes. We generalize the prescription developed in
ref. [15], and extended in ref. [22].
This prescription assumes that after starting from pure

adiabatic inflationary initial conditions, the configuration
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of each mode evolves towards an attractor solution. This
attractor is the appropriate initial condition valid at ex-
tremely superhorizon scales, when the species are not in
causal contact and pressure support is absent. Such an
attractor can only exist when the universe is in a scal-
ing solution (in particular, radiation domination) and the
DM parameters w, c2s , c2vis are constant.
We leave the details for appendix B. Carrying out a full

parameter space investigation requires that correct initial
conditions be set. However, it turns out that for the
parameter values allowed by the data, the observables are
not sensitive to the initial conditions. Thus the posterior
distribution also is insensitive to the choice of ICs.

C. Implementation

We implement this extended DM model in the camb
numerical code by exploiting the dark degeneracy [23].
Note that an alternative implementation of non-cold dark
matter is available for the CLASS Boltzmann code [24].
We modify the camb code by combining our extended
DM and the cosmological constant (“Λ”) into a single
fluid and removing the CDM component in camb, repur-
posing the modification we performed for ref. [25]. We
modify the density and the equation of state of the DM
to take into account the constant contribution of Λ. We
thus define a density fraction of the combined generalized
DM and cosmological constant

ΩX(a) = ΩΛ(a) + Ωc(a) . (6)

The combined fluid then evolves with an equation of state

1 + wX(a) = (1 + w) Ωc(a)
ΩX(a) . (7)

As one should expect, when Λ is subdominant, the equa-
tion of state is just that of the DM. This takes care of
the modifications in the background.

The cosmological constant carries no perturbations
and has equation of state wΛ = −1. We can thus use
the standard perturbation equations for dark energy al-
ready implemented in camb to describe the combined
DM/Λ fluid, using ΩX and wX as the dark energy den-
sity fraction and equation of state but not adjusting at
all any of the parameters c2s , c2vis or c2a. The only point
of care is in implementing equation (4), where the w in
the friction term always is the w of the DM component
alone. The fact that the σ evolution equation is not ad-
justed “automatically” is a result of its not arising from
a well-defined generally covariant model.

III. RESULTS

For our analysis, we have modified the
camb/CosmoMC public codes [13, 26] to imple-
ment the changes described in section II. Our model

contains at most three extra parameters compared to
the concordance ΛCDM model, although we will fix
some of them in some runs.
We perform the analysis by constraining our model us-

ing the 2015 Planck CMB likelihoods [27], in some cases
adding the likelihood for the gravitational lensing of the
CMB from the trispectrum [28]. In order to provide a
reasonable representation of the degeneracies, we also
always include distance data together with each of the
perturbation-related data sets. Therefore, we have in-
cluded the BAO measurements from CMASS and LOWZ
of Ref. [29], the 6DF measurement from Ref. [30], the
MGS measurement from Ref. [31] and the JLA SNe Ia
catalog from [32], all readily available in the CosmoMC
code. We do not include any measurements of the Hubble
constant H0, apart from a uniform prior 0.4 ≤ h ≤ 1.0.
In addition for some of the runs, we include the ultra-

conservative cut of the galaxy weak lensing shear (WL)
correlation function from the CFHTLenS survey [33]. As
is well known, these results are mildly incompatible with
Planck when ΛCDM is assumed for the cosmology [1].
We investigate the extent to which an extended DM
model might resolve the tension between these data while
noting that a recent re-analysis of CFHTLenS data using
3D cosmic shear seems to suggest that the discrepancy
can be resolved by an appropriate cut of the non-linear
scales and the introduction of a bias for photometric red-
shifts [34]. The science verification data release from the
Dark Energy Survey is compatible with both the data
sets [35].

A. Extended DM and Halofit

The effect of introducing a non-zero DM sound speed
is to prevent clustering inside the Jeans length, thus cut-
ting off the matter power spectrum inside this scale.
If the sound speed is high enough, or increases suffi-
ciently rapidly with redshift, fluctuations can be suffi-
ciently erased so as not to allow non-linear structure.
This would prevent collapsed objects such as galaxies
from ever forming.
N-body simulations show that the non-linearities cause

the power spectrum amplitude to increase relative to
the linear prediction at scales 0.1 < k (Mpc/h) . 10
as power is transferred from large scales due to mode
coupling. Accounting for this is important for predict-
ing correctly smaller-scale phenomena and thus is imple-
mented in camb using the Halofit routine [36]. Halofit is
calibrated to replicate the results of ΛCDM N-body sim-
ulations interpolating over a range of ΛCDM parameters.
One should have no expectation that it will work well in
an extended scenario such as the one described in this
paper. Indeed, simulation of WDM scenarios find that
Halofit significantly overestimates the small-scale power
spectrum [37]. Since we are also investigating lower DM
masses, this effect is likely to be much more severe.
One should thus be very careful with a method like
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FIG. 2. The matter power spectrum P (k) for the extended
DM model (blue lines) versus ΛCDM (black lines) with or
without halofit (solid and dashed lines respectively) for the
parameters w = c2

s = 10−11, c2
vis = 10−50 and Ωm,0 = 0.30.

Halofit whenever the correction to the power spectrum
is scale-dependent. We have found that keeping Halofit
turned on in camb results in posteriors that are highly
suspicious: it introduces various oscillations in the poste-
rior parameter probabilities and affects the convergence
of the Markov chains. We have thus decided to switch
Halofit off in both the calculations of the power spectra
and the trispectrum. Since the trispectrum is obtained
only from multipoles ` < 400, the effect there is not sub-
stantial, see Fig. 3 for a direct comparison. On the other
hand, the lack of this correction could bias the CMB lens-
ing constraints from the power spectrum [38, e.g. Fig. 1].
In order to estimate the impact we include the Alens pa-
rameter with and without Halofit in a ΛCDM analysis
using the Planck power spectra as well as weak lensing
data, and find that there is no significant change in Alens
or any of the other parameters.

Comparing the theoretical predictions with and with-
out Halofit we find that the changes to the CMB power
spectrum are at the level of a few per mille, while the
lensing power spectrum varies by a few percent for the
scales of interest as can be seen in Fig. 3. Both changes
are smaller than the error bars of the data. Additionally,
in the cases where, as mentioned above, using Halofit
leads to strange-looking posteriors, we find that the up-
per limits of the fluid parameters are not very different.
We conclude that the data sets used here are sufficiently
conservative so that the behavior of the model on non-
linear scales is not very important. In what follows, we
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FIG. 3. The lensing potential for ΛCDM with (black solid
line) or without (black dashed line) Halofit. Data points from
Planck 2015 derived from the observed trispectrum [28].

will therefore always quote the results without a Halofit
correction.

B. Initially Relativistic DM

As our headline figures, we choose to report the con-
straints using the full Planck power spectrum data (in-
cluding polarization), but excluding the CMB lensing re-
constructed from the trispectrum. We also include the
distance data from SNIa and BAOs. As mentioned in the
previous section, Halofit was switched off. We find that
Planck data places upper bounds on the DM parameters:
log10 w0 < −10.0, log10 c

2
s0 < −10.7, log10 c

2
vis0 < −10.3

at the 99% confidence level. Interestingly, despite the
fact that w and the sound speed affect very different
physics, all the bounds are approximately the same.
A non-zero w0 provides an insignificantly better fit to
Planck data (∆χ2 = χ2 − χ2

ΛCDM = −0.6) for the best
fit log10 w0 = −10.7), but the posteriors for log10 c

2
s0

and log10 c
2
vis0 decrease monotonically toward their upper

bound. In Fig. 4 we show the 2D 68%, 95% confidence
contours and the 1D marginalized posterior distributions
for our hydrodynamical parameters (w0, c

2
s0, c

2
vis0).

Such constraints on the DM parameters imply, as ex-
pected, that already by recombination the dark matter
must be highly non-relativistic w(zrec) . 10−3 and sim-
ilarly for the other parameters. This implies that the
observables are mostly affected by the region x & 100
of the approximation (5), where the deviation from the
full numerical solution is negligible. Thus, improving this
approximation would have no effect on the constraints.
In addition, in this high-x region the difference between
fermions and bosons is very small, so that it will be very
difficult to tell the two apart based on cosmological large-
scale structure data.
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FIG. 4. The 2D 68%, 95% confidence contours and the 1D marginalized posterior distributions for the parameters (w0, cs0, cvis0)
of the initially relativistic model for the Planck (without trispectrum), BAO and SNIa data. Halofit is turned off.

We note that the preferred higher values of w0 also
allow for a slightly wider range of spectral tilt, although
no significant shift occurs in the marginalized posterior.
On the other hand, values of the sound speeds close to the
upper bound result in slightly lower σ8 = 0.805± 0.030,
giving a slightly wider posterior than ΛCDM for which
we find σ8 = 0.830± 0.015. There is no significant effect
on H0.
Allowing for a free neutrino-mass-sum parameter does

not significantly change the constraints on the DM pa-
rameters. However, the constraints on the neutrino
masses are weakened, with

∑
mν < 0.35 eV, compared

to the ΛCDM standard of
∑
mν < 0.23 eV [1]. Finally,

we find that adding the Planck trispectrum does not sig-
nificantly change any of the fits.

The independent constraints on the three fluid param-
eters are compatible with the expected hydrodynamical
scenario: w0 = c2s0 and c2vis0 = 0. Forcing this sce-
nario, which is not disfavored compared to the fully free
one, gives a one-parameter model with an upper bound
log10 w0 < −10.6, with no preference for values differ-
ent from zero. We will use this upper bound to derive

constraints on DM particle mass in section IIID.
The ultraconservative cut of the weak-lensing-shear

data from CFHTLenS, together with distance measure-
ments, allows for a slightly wider range of extended DM
parameters. With AS and nS fixed to their ΛCDM best-
fit values, WL allows for log10 w0 < −8.1, log10 c

2
s0 <

−8.2 and log10 c
2
vis0 < −7.7. The best fit lies at

log10 c
2
s0 = −7.2, but with ∆χ2 = −1.7 it is only a

marginal improvement over ΛCDM. We thus see that this
kind of model is not capable of substantially improving
the fit to the WL data over concordance.
Furthermore, since the constraints from WL are sig-

nificantly weaker than from Planck, the combined fit for
Planck plus distance probes will be mostly constrained
from the Planck-only plus the distances data only. In
this case, we find the following upper bounds on the
DM parameters: log10 w0 < −9.9, log10 c

2
s0 < −10.5,

log10 c
2
vis0 < −10.3 at the 99% confidence level. The cor-

responding 2D 68%, 95% confidence contours and the
1D marginalized posterior distributions can be seen in
the appendix in Fig. 8.
We also note that if the full CFHTLenS data set [33] is
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used instead of the ultraconservative cut, the results are
very different. The full data set together with Planck and
distances strongly prefer a non-zero equation of state,
log10 w0 = −10.1 ± 0.15 while the sound speeds have
the upper bound log10 c

2
s0 < −12.6, log10 c

2
vis0 < −12.1.

Such a detection would be incompatible with a hydrody-
namical interpretation. Evidently, a contribution present
in the full CFHTLenS data is driving an effect which is
in tension with the a−2 scaling, although surprisingly it
prefers lower speeds suggesting that more power is fa-
vored.

C. Constant w, c2
s , c

2
vis

We now consider complementary constraints, with the
fluid parameters w, c2s , c2vis all constant. This gives the
maximum value that any of these parameter is allowed
to take, and therefore, when combined with the results
of section III B, can help estimate the redshift at which
the parameter is constrained most strongly. This pa-
rameterization is also sensitive to some late-time effects
incompatible with the a−2 scaling.
We again use the Planck power spectrum data (in-

cluding polarization), but not the trispectrum, combin-
ing it with probes of background geometry from SNIa
and BAOs. A constant equation of state for DM is con-
strained to w = (−0.26 ± 0.68) · 10−3, i.e. no deviation
from the standard value of w = 0 is preferred. Allow-
ing for a non-zero value of c2s or c2vis does not change the
range of allowed w. In Fig. 5 we show the 2D 68%, 95%
confidence contours and the 1D marginalized posterior
distributions for the parameters of the model in the case
of constant (w, c2s , c2vis) for the Planck (without trispec-
trum and Halofit switched off), BAO and SNIa data.

The sound speed parameters c2s and c2vis are con-
strained from above, log10 c

2
s < −5.9 and log10 c

2
vis <

−5.7 at the 99% confidence level. Forcing w = 0 does
not change the upper bounds on the other parameters
significantly. We also note that these values are in ex-
cellent agreement with a similar analysis performed in
ref. [10] and our analysis for a similar model in ref. [25].

Comparing the constraints in this scenario with those
of section III B allows us to gain insight into the physics
from which the strongest constraints arise. For both con-
stant and initially relatistic w, we compare the predicted
CMB power spectra for values of w separated by approx-
imately 1σ. We find that the difference between the two
spectra is independent of whether the CMB lensing is
included or not and therefore conclude that the effect is
generated at large redshifts. Indeed, comparing the con-
straints for the two parameterizations, w0(1 + z)2 ∼ w,
gives z ∼ 2000, reasonably close to zrec. This results
from a non-zero equation of state for DM around
recombination changing the angular scale of the
CMB peaks, which is extremely well constrained
by Planck.

On the other hand, when this procedure is repeated

for the sound speed, we find that, in the case of constant
parameterization, turning off the lensing removes com-
pletely the effect from c2s on CMB spectra. We can thus
conclude that the constraint that c2s < 10−6 comes from
low redshifts. Nonetheless, the CMB at recombination
is of course sensitive to large values of the sound speed,
constraining it to c2s (zrec) . 10−3. We infer this from the
constraint on the initially relativistic parameterization,
by scaling the late-time constraint. We know that this
is the right way to look at it because firstly switching
lensing on and off in the difference spectra for this case
has only very little impact, and secondly because the
comparison between the constant and initially relativis-
tic parameterization would imply an effective redshift of
z ≈ 100 for the sound speed constraint, which is too high
for lensing. We have shown this analysis in figure 6.
Allowing the neutrino mass sum

∑
mν to vary does

not significantly change the constraints on the sound
speeds. On the other hand, there is a correlation be-
tween larger neutrino mass and higher w. Freeing DM
properties worsens the constraints on the neutrino masses
to
∑
mν < 0.79 eV.

Just as in the initially relativistic case, WL shear data
from CFHTLenS alone, with AS and nS held at the
ΛCDM best fit, allows for a larger range of parameters,
w = (−4± 26) · 10−3, log10 c

2
s < −4.5, log10 c

2
vis < −4.2.

In any case, non-zero values are not preferred signifi-
cantly. Combining theWL, Planck and distance data sets
together leads to a best fit with w = (−0.12±0.68)·10−3,
log10 c

2
s < −5.6 and log10 c

2
vis < −5.4, but with a ∆χ2 =

−0.22 compared to the ΛCDM case this is not a sig-
nificant improvement. These higher values sound speed
modify the fluctuation amplitude in a scale-dependent
manner, yielding 0.67 < σ8 < 0.85, We show the posteri-
ors in the Appendix, Fig. 9.2
When the full CFHTLenS data [33] are combined

Planck and distances, the constraints tighten signifi-
cantly as a result of including much smaller scales. There
is no preference for any deviation from the concordance
CDM value: w = (0.68±0.68) ·10−3, log10 c

2
s < −7.8 and

log10 c
2
vis < −7.6.

D. Implications

Our constraint on the sound speed implies that free-
streaming scale today has the bound

kFS,0 =
√

3
2
H0

cs0
> 81 hMpc−1 , (8)

which scales as a3/2 during matter domination. This
means that despite the scale’s being constrained to lie

2 Note that the update to the Planck 2015 results has decreased the
significance of the improvement to the fit for the model discussed
in ref. [25].
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deep in the non-linear regime today, free streaming will
have affected much larger scales in the past, erasing the
power spectrum also in the linear regime, see Fig. 2.
Indeed, as demonstrated by figure 6, the ini-

tially relativistic sound speed is constrained by
the CMB power spectrum at recombination and
thus implies that the free streaming scale at re-

combination is kFS(zrec) > 1h Mpc−1. Only scales
smaller than this are allowed to be modified by
free streaming for z > zrec.
On the other hand, the constraint on the con-

stant sound speed is mainly from CMB lens-
ing and thus it implies that the free-streaming
scale at low redshifts is constrained to be k >
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0.2 Mpc−1, a much larger scale than implied by
eq. (8). Recombination thus provides a much bet-
ter constraint on the DM properties, but it does
not take any new physics afterwards into account
(∝ a−2 scaling). Thus new physics beyond red-
shifting which might occur after recombination
are constrained much more weakly.

Constraints on the power spectrum amplitude from the
Lyman-α forest mean that scales at about k ∼ 10 Mpc−1

should also have been unaffected by redshift z ∼ 5 and
offer an even stronger constraint on the free-streaming
scale at that redshift[4].

A measurement of the sound speed is equivalent to
a measurement of the dispersion (mean-squared particle
velocity) σ2

v of the dark matter and the constraint implies
that today [40]

σv0 = 3√
5
cs0 < 2.0 km/s . (9)

For redshifting collisionless particles this dispersion scales
as a−1 and this tight constraint is really a result of the
limits imposed by the observed recombination physics.

The limits arising from low redshifts resulting from the
compatibility of CMB lensing with standard CDM give

σlate
v < 450 km/s . (10)

This latter constraint is compatible with the ∼300 km
s−1 expected for the typical peculiar velocities or the dis-
persion in virialized objects.

If one takes to heart the approach of the effective field
theory of large-scale structure (EFTofLSS) proposed in
ref. [41], the shell-crossing and non-linear dynamics at
small scales should be describable using effective hydro-
dynamical corrections to the energy-momentum tensor of
the dark matter of sufficient size to contribute already at
quasi-linear scales (e.g. BAO reduction). Thus according
to this approach one should expect to detect at already
at quasi-linear scales the influence of the non-linearities
through a sound-speed or viscosity speed, with the fidu-
cial size measured from N-body simulations in ref. [42] of
c2s = 10−6 today, a little below the largest sound speeds
compatible with CMB lensing data (10). An alterna-
tive approach of ref. [43] can be interpreted as predicting
c2s + c2vis ∼ 10−7.3
It is thus interesting to note that the full CFHTLenS

data constrains the low-redshift value of te sound speed
to c2s < 10−7.5 at the 99% confidence level while also
preferring a larger value of w than Planck alone, i.e.
suggesting that more power is favored. This may well be
a result of the fact that the data are marginalized over
e.g. non-linear intrinsic alignments, removing some of

3 Strictly speaking, both the approaches predict a value
for c2

s that scales approximately as a, rather than a con-
stant. We have also run this case and find the upper
bound from Planck is a little lower, c2

s < 10−5.

the EFT signal. Moreover, we have not properly incor-
porated the full structure of the EFTofLSS operators,
which may well be biasing our conclusions. Nonetheless,
if the EFT approach is valid, we should be detecting
effective hydrodynamical corrections at intermediate
scales as a good match for the effect of the non-linear
physics at short scales. This sort of constraints from data
containing the full non-linear information obtained on
quasi-linear scales should be able to test the predictivity
of the EFTofLSS approach.

We now turn to a discussion of what the constraints
above imply for fundamental properties of dark matter.
The usefulness of the parametrization (5) is that, on the
assumption that dark matter is collisionless and stable, it
is independent of the actual phase-space distribution for
the DM. It instead merely exploits the redshifting of the
DM momentum. The constraints presented essentially
come purely from recombination physics, since the im-
plied particle momenta at late times are much too small
for any effect on CMB lensing. Adding in information on
the normalization of the shape/amplitude of the matter
power spectrum at smaller scales improve these signifi-
cantly (e.g. the Lyman-α forest).
The constraints point toward the standard expecta-

tion for non-relativistic collisionless matter: w ≈ c2s and
higher multipoles of the Boltzmann hierarchy are sup-
pressed, c2vis ≈ 0. Moreover, they imply a DM that
is non-relativistic already by recombination (w(zrec) .
10−3) and therefore a more precise modelling of the
Boltzmann hierarchy is unlikely to significantly change
the constraint. We are thus going to use the results as-
suming w = c2s and c2vis = 0 to constrain the DM mass.

a. Pure Warm Dark Matter In Warm Dark Matter
scenarios, one typically assumes that the DM froze out
while relativistic with a Fermi-Dirac distribution in phase
space,

f(q) = χ

eq/Tdec + 1
, (11)

where q is the constant comoving momentum, Tdec is the
temperature at which the DM decoupled. A suppression
factor χ can appear in e.g. the case of sterile neutrinos,
where the number density is suppressed as a result of the
small mixing with active neutrinos [44]. The abundance
of such a dark matter is then predicted to be

Ωc0h
2 = χ

( m

92 eV

)(10.75
gdec
∗

)
(12)

where gdec
∗ is the number of relativistic species at decou-

pling [45, 46]. Extending the dark-matter models as we
have done does not significantly change the constraints
on Ωc0 or H0 and therefore the above result is a con-
straint on the required value of χ for a given relativistic
species content and DM mass.
For the distribution (11), the equation of state today
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is then given by

w0 = 4.3
(
Tγ
m

)2( 4
11

10.75
gdec
∗

) 2
3

, (13)

where we have expressed using the current CMB temper-
ature [47]. We thus have:

m
(
gdec
∗
) 1

3 = 3.3 Tγ√
w0

(14)

which is independent of the suppression factor χ. Thus
any cosmological constraint depends only on w0 and Ωc0
always leaves one of gdec

∗ , m or χ unfixed.
The CMB temperature today is Tγ = 2.725 K =

0.235 meV [48]. The corresponding mass bound then be-
comesm

(
gdec
∗
) 1

3 > 155 eV. If the DM decoupled together
with the neutrinos, we have gdec

∗ = 10.75 and m > 70 eV.
This is a much weaker bound than the Tremaine-Gunn

bound requiring that m > 400 eV in order for the gravi-
tational well of galaxies to overcome the Fermi pressure
[3]. On the other hand, constraints from the Lyman
α forest require that m > 3.3 keV so that the power
spectrum remains sufficiently unsupressed at scales up
to k ∼ 10h Mpc−1 [4]. These bounds are stronger than
from CMB alone. Indeed, we can conclude that satis-
fying these non-CMB bounds leaves any current CMB
observables completely unaffected.

b. Mixed Warm and Cold DM (WCDM) Some mod-
els of dark matter predict that in addition to a thermal
distribution for a fraction R of the DM, a large fraction
1−R of the DM is very cold, with momentum q ≈ 0,

f(q) = (1−R)n0δ
(3)(q) + Rχ

eq/Tdec + 1
(15)

where n0 = 6πχζ(3)(adecTdec)3 is the number density as
would be given by the standard distribution (11). Such
a combined distribution can be a result of a resonant
production of sterile neutrinos (e.g. [49]).

The effect of this distribution can be mapped onto our
parametrization, with fluid parameters modified as

(w, c2s , c2vis)WCDM → (Rw,Rc2s , Rc2vis)WDM . (16)

Even though the initial conditions we have modeled do
not reflect the behavior of such a DM, provided that at re-
combination w(zrec), c2s (zrec), c2vis(zrec)) � 1/3, our con-
straints can be remapped to

m
(
gdec
∗
) 1

3 > 3.3Tγ
√

R

w0
. (17)

The importance of this rescaling is that all mixed
WDM/CDM scenarios have the same effect on ob-
servables, provided that the WDM component is non-
relativistic already by recombination. Thus no such sce-
nario will offer a solution to the Planck/CFHTLenS ten-
sion. Since standard massive neutrinos are relativistic at

recombination, such a simple rescaling cannot be used,
but rather their behavior in an interpolation between the
a−2 scaling and the constant parameterization.
This mixed scenario can also be used to describe axion

dark matter, where the majority of the axions exists in a
condensate with momentum q = 0, with a small fraction
surviving in a thermal distribution. Axions that are light
enough have de Broglie wavelengths which are of cosmo-
logical size. This gives rise to an effective pressure even
when they are in the condensate and can erase structure
at small scales [50]. This has a similar effect to the one
described , and the lack of observed deficit of power in
the CMB prevents axions with masses m < 10−25 eV
from comprising the majority of the dark matter [51].

c. Freezeout while Non-Relativistic A cold relic
freezes out when non-relativistic and therefore has a
Maxwell-Boltzmann distribution

f(q) = g

(2π)3 e
−q2

2mTdec , (18)

where g is the number of states. Strictly speaking, con-
sidering cold relics is not compatible with our initial con-
ditions, since we assume that decoupling has already oc-
curred while the species are relativistic. However, since
the posterior is insensitive to the initial conditions, the
error thus generated is not significant.
Integrating over the distribution (18) we obtain

w = Tdec

m

(adec

a

)2
, (19)

noting that we have a linear dependence on the decou-
pling temperature but still a quadratic one on the scale
factor. We can replace the dependence on adec and Tdec
with the CMB temperature and xf ≡ m/Tdec,

w0 =
T 2
γxf

m2

(
4
11

10.75
gdec
∗

) 2
3

, (20)

yielding the result

m
√
xf

(
gdec
∗
)1/3 = 1.6 Tγ√

w0
. (21)

In principle, there are two distinct freezeout
conditions: the usual chemical freezeout, which
sets the final abundance of the DM and a kinetic
freezeout which determines when the DM stops
interacting with other species, e.g. the photons.

xf ≈ −0.3 + ln
(
m1σ27/

√
gdec
∗

)
, (22)

Ωch
2 = 1.05(gdec

∗ )1/2

gdec
∗S

xfσ27 ,

where we have defined the convenient dimensionless av-
eraged annihilation cross-section and mass in units of eV,

σ27 ≡
〈σA|v|〉

10−27 cm3s−1 , m1 ≡
m

1 eV . (23)
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FIG. 7. Constraints on thermal cold relic DM. Only the re-
gion to the right of the blue line (xf = 3) corresponds to
freeze out while non-relativistic. The region shaded in gray is
allowed with our dark matter species contributing an increas-
ing fraction R of the total DM for smaller cross-sections, with
the lower boundary corresponding to this DM’s comprising
all of dark matter. The excluded orange region is the result
of the analysis presented in this paper and its translation to
DM properties through the result (21).

and we have assumed that the annihilations proceed
through an s-wave. On the other hand, following
ref. [52], we can estimate the scattering cross-
section of the cold DM with neutrinos/photons
as

σscatt ∼
(
T

m

)4
σA . (24)

where T is the typical energy of the photons in
the universe at the time. The chemical freezeout
occurs when the scattering rate Γ = nγσscatt ∼ H,
which can be rewritten in our chosen units as(m

T

)4
∼ m1σ27

100
√
gdec
∗

. (25)

For the sort of DM masses that we are constrain-
ing, the chemical freezeout occurs at the same
time or later as the kinetic freezeout. Only when
the mass reaches m ∼ 500 keV does this estimate
imply that the kinetic freezeout is delayed com-
pared to the chemical one. For the purpose of
this analysis, we will neglect the kinetic freezeout
henceforth.

We thus take as the boundary of non-relativistic freeze-
out the condition xf & 3. In figure 7, we show that our

constraints obtained from the CMB restrict the parame-
ter space for cold thermal relics in the m ∼ 10− 100 eV
mass range. Such DM species would freeze out be-
tween Big-Bang nucleosynthesis (BBN) and recombina-
tion (and therefore have gdec

∗ = 3.36) and contribute as
a relativistic degree of freedom during BBN. This is in
tension with the data, but marginally allowed [1]. On
the assumption that this DM contributes the totality of
the DM, we obtain the constraint that

m > 104 eV . (26)

Although very low compared to the typical scenarios
where m ∼ 100 GeV, such low masses are not incompat-
ible with technical requirements: the freeze-out occurs
before recombination, the mass of the mediator is much
larger than m and yet non-relativistic during BBN. Yet
again, we must stress that the Tremain-Gunn bound of
m > 400 eV for fermions remains stronger [3].

The constraints from the Bullet cluster [2] do not re-
strict the parameter space in this region and the light-
ness of the DM would mean that it cannot decay to lep-
tons, but only to photons, making such models compat-
ible with the heating of the intergalactic medium [53].
Models with such masses would produce a line in
the X-ray spectrum. This would be swamped by
the emission of the hot gas in clusters and thus is
not observable for masses m ∼ 100 eV [8, Fig. 19].
The constraint (26) implies that the freezeout took place
at Tdec > 450 eV. This constraint is on the boundary
of sensitivity of the CMB spectrum to energy injections
through µ distortions of the CMB spectrum [54]. This
constraint is also complementary to the those obtained
from the µ distortions caused by scattering of photons
and nucleons off DM particles prior to recombination.
Such a constraint on the mass can be much stronger
(m > 0.1 MeV) provided that there is a sufficiently large
coupling between the DM and baryons/photons [55].

IV. SUMMARY AND DISCUSSION

The Planck mission has provided us with an unprece-
dented quality of data for the CMB, which not only is
sensitive to the universe at recombination, but is pre-
cise enough to see the effect on the propagation of the
CMB photons of the gravitational field through CMB
lensing. We have used this data to constrain the hydro-
dynamical parameters of the dark matter under the very
general assumption that it be collisionless and therefore
the momenta redshift with the scale factor. This leads to
the constraint that today’s value of the equation of state
log10 w0 < −10.0, the sound speed log10 c

2
s0 < −10.7 and

the viscosity parameter log10 c
2
vis0 < −10.3, based on the

assumption that these parameters scale as a−2 after they
exit their relativistic behavior. The rough equality of all
these parameters implies that there is no evidence for
any unexpected non-hydrodynamical corrections in the
evolution of the DM energy-momentum tensor.
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The constraints arise from different physics: the con-
straint on w is mainly from the correction it would intro-
duce to the expansion rate during recombination, which
is limited to w(zrec) < 10−3. The strongest direct con-
straint on the sound speed, on the other hand, comes
from CMB lensing at low redshifts, c2s < 10−6. Nonethe-
less there is also a constraint from zrec requiring that
c2s(zrec) . 10−3. Owing to the a−2 scaling, the recombi-
nation constraint dominates over the lensing constraint
today.

These constraints are largely independent of the parti-
cle model of dark matter and its production mechanism,
depending only on the conservation of the phase-space
distribution function and therefore the translation to pa-
rameter’s values today is very general. If the dark matter
comprises multiple species then these constraints apply
to the density-weighted average under the assumption
that all the subcomponents are non-relativistic by recom-
bination.

On the other hand, the translation into a constraint
on particle properties for DM is model dependent. For
example, for warm dark matter which froze out while
relativistic, these constraints can be translated to a con-
straint on a combination of the mass and the number of
relativistic species at decoupling, m(gdec)1/3 > 155 eV;
the constraint on mass of thermal cold relics is of similar
magnitude, m > 104 eV. We have also shown how such a
constraint can be easily translated into one for a a model
with more than one dark matter species.

These constraints are of course much weaker than those
provided by Lyman-α forest observations: m > 3.3 keV
implies that log10 c

2
s0 < −14, i.e. a constraint on the

sound speed squared better by nearly three orders of
magnitude [4]. Nonetheless, to obtain the constraints
given here, we are using purely linear physics and thus
they are very robust. Lyman-α results depend on un-
derstanding the ionization history of hydrogen, which re-
quires the detailed modelling of its hydrodynamics and
an understanding of the thermal history of the intergalac-
tic medium [56]. The generality of the scaling does imply
that any measurements of the amplitude or shape of the
fluctuation power spectrum, provided they are made at
scales which have not undergone shell crossing, can push
the constraint on the mass much further.

Our results have an important implication for attempts
to decrease the amplitude of fluctuations at smaller
scales: The predictions for cosmological observables for
a very large class of DM models are the same (up to
some remapping of the particle properties). We find that
they do not improve the fit, and even if they did, they
would be excluded by Lyman-α constraints. This is a
very general statement: essentially no model in which
the underlying particles are collisionless, non-relativistic
and redshifting can achieve an improved fit, since it will
always produce the same profile of modification to the
power spectrum. This all results from the very general
a−1 scaling for the sound speed and therefore the veloc-
ity dispersion. The sound speed grows too quickly with

redshift, erasing too large a range of scales to allow such
a model to be compatible with observations.
In the effective-field-theory approach to large-scale

structure, non-linear evolution on small scales manifests
itself on quasi-linear scales through effective hydrody-
namical corrections to the DM EMT. Thus at late times
one should expect to find that fully non-linear evolution
of dark matter can be interpreted as an effective fluid on
intermediate scales. The best constraints at late times
are provided by CMB lensing, c2s < 10−5.9 and are on
the margin of the predicted values of ref. [42]. However,
when the full CFHTLenS data are included, this con-
straint becomes much stronger, c2s < 10−7.5. We did not
properly model the behavior of the effective DM EMT,
the scaling of the effective sound speeds, nor do we have
access to lensing data with no attempt to remove effects
of non-linearities. A more detailed and exact analysis
of this kind of data should lead to a detection of sound
speeds of order 10−6 if the EFTofLSS approach is right.
Finally, measurements of the amplitude of fluctuations

at smaller scales can be very informative as to the funda-
mental nature of the dark sector, especially if evidence of
tension within ΛCDM remains. This is likely to continue
to be a fruitful area of research in the near future.
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Appendix A: Boltzmann Hierarchy

Following ref. [40], a particle ensemble is described by
its distribution function in phase space f(x, q, t), where
q is the momentum conjugate to the coordinate x. We
transform x to Fourier space and rewrite the conjugate
momentum q in terms of a direction n̂ and a comoving
momentum magnitude q.4Additionally, we assume that
we can write this one-particle distribution in terms of a
background value and small perturbations, to obtain

f(k, n̂, q, t) = f0(q, t) (1 + Ψ(k, n̂, q, t)) . (A1)

Here f0 is the unperturbed ‘background’ distribution
function which is independent of position and velocity
direction due to homogeneity and isotropy. This one-
particle distribution function, when in thermal equilib-
rium has the form

f0(p, t) = g

(2π)3

[
eε(p,t)/aT ± 1

]−1
. (A2)

with p the proper momentum of the particle as given by
the background comoving observer, g the number of spin
states and the + for fermions and − for bosons. The co-
moving energy of the particle is defined for convenience
ε(p, t) ≡ a

√
p2 +m2, and the extra factor a cancels ap-

propriately in eq. (A2), meaning there is no explicit de-
pendence on a.

At temperature Tdec, the DM interactions freeze out.
From this point on, the only evolution is the redshifting of
the individual particle proper momenta p, but no rescat-
tering to rethermalize at a new temperature is possible.
This relates f0 at different times after decoupling

f0(p, a(t1)) = f0

(
p
a(t1)
a(t2) , a(t2)

)
, (A3)

which in turn implies that f0 does not evolve as a function
of the comoving momentum q ≡ p/a. Thus the meaning
of the freezeout is to create a distribution function,

f0(q, t) = f0(q) = g

(2π)3

[
e
√
q2+m2/Tdec ± 1

]−1
. (A4)

It is important to stress that neither q nor the tempera-
ture Tdec are evolving here, but rather are fixed (notice
there is no scaling with a even for the mass term). On the
other hand, the comoving energy of each individual par-
ticle evolves in the standard manner as ε =

√
q2 + a2m2.

In linear perturbation theory, the evolution of the per-
turbations Ψ for a particle species that has decoupled are

4 See ref. [15] for a discussion on the difference between the canon-
ical momentum conjugate to x and the comoving momentum; at
background level, they are identical.

given by the linearized, collisionless Boltzmann equation
(e.g. [15])

∂tΨ+i q

ε(q, t) (kn̂)Ψ+d ln f0(q)
d ln q

[
φ̇− i q

ε(q, t) (kn̂)ψ
]

= 0 .

(A5)
This is usually expanded in terms of Legendre polynomi-
als,

Ψ(k, n̂, q, t) =
∞∑
`=0

(−i)`(2`+ 1)Ψ`(k, q, t)P`(µ) , (A6)

and written as a system of coupled ordinary differential
equations (the ‘Boltzmann hierarchy’), e.g. following [40]
and using their definitions

Ψ′0(k, q, x) = − q

ε(q, x)Ψ`(k, q, x)− φ′(k, x) , (A7)

Ψ′1(k, q, x) = q

3ε(q, x) [Ψ0(k, q, x)− 2Ψ2(k, q, x)]

−ε(q, x)
3q ψ(k, x) , (A8)

Ψ′`(k, q, x) = q

(2`+ 1)ε(q, x) [`Ψ`−1(k, q, x)

−(`+ 1)Ψ`+1(k, q, x)] (for ` ≥ 2) .(A9)

with x ≡ kt. We can see that each higher element of the
hierarchy contains an extra factor q/ε. For neutrinos and
other relativistic species ε ≈ q and the whole hierarchy
is important. For non-relativistic species on the other
hand, q/ε ∝ a−1: the higher multipoles are suppressed
by powers of q/ε and this suppression increases with time.
In principle, we can now compute w, c2s and the

anisotropic stress σ in terms of q/ε by solving the Boltz-
mann hierarchy and evaluating the appropriate integrals.

a. Background equation of state

For w we work on the level of the background distri-
bution function f0, the average number density, energy
density and pressure are given by

n̄(a)a3 ∝
∫
dqq2f0(q, a) , (A10)

ρ̄(a)a4 ∝
∫
dqq2ε(q, a)f0(q, a) , (A11)

p̄(a)a4 ∝
∫
dqq2 q2

3ε(q, a)f0(q, a) , (A12)

where we have neglected common prefactors. As dis-
cussed above, at decoupling the function f0 freezes,
f0(q, a) = f0(q) and only the comoving energies ε con-
tinue to redshift.
If the particles are relativistic then q ≈ ε and thus

p̄ = ρ̄/3. As particles become non-relativistic, ε ≈ am,
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with corrections of the order of q2/(a2m2). In this case

ρ̄(a)a3 ∝ m
∫
dqq2f0(q) = mn̄(a) , (A13)

p̄(a)a5 ∝
∫
dqq4f0(q) . (A14)

The momentum integration will just give numbers irre-
spective of the form of f0, and so completely generically
the equation of state of non-relativistic particles evolves
as

w(a) = p̄

ρ̄
∝ 1
a2 . (A15)

Substituting a particular choice of f0(q) gives a concrete
prediction for w. We discuss examples in section IIID.

b. Sound speed and viscosity parameter

The pressure and density perturbations are given by

δρ(k, a) = 4π
a4

∫
dqq2ε(q, a)f0(q, a)Ψ0(k, q, a) , (A16)

δp(k, a) = 4π
a4

∫
dqq2 q2

3ε(q, a)f0(q, a)Ψ0(k, q, a) .(A17)

We see that this is analogous to the situation in Eq.
(A11) and (A12), except that the integral now addi-
tionally contains the perturbation Ψ0(k, q, a). From the
study presented in [40] we can see that Ψ0(k, q, a) is not
a strong function of q and therefore can be taken out
of the integral. Because of this it is again the case that
c2s(a) ≈ w ∝ 1/a2 when non-relativistic.

The velocity potential θ and the anisotropic stress σ
are given by integrals over Ψ1 and Ψ2 respectively. These
higher multipoles Ψ` are suppressed by additional fac-
tors q/ε when the DM is non-relativistic. Thus the
anisotropic stress should decay more quickly than the
pressure. Since we are truncating the Boltzmann hierar-
chy and parameterizing the higher multipoles using c2vis
through eq. (4) as a proxy for all the higher contribu-
tions, we are unable to model the evolution precisely.
Rather, we are interested in testing to what extent there
is any evidence for such contributions. We thus choose
to parameterize c2vis in the same manner as c2s to see if
there is any evidence for anisotropic stress larger than
the pressure. In this case we would need to use the full
hierarchy.

Appendix B: Initial Conditions

In what follows, we will use the subscript ν to denote
a quantity describing the relativistic neutrinos, γ — the
photons, and c — the dark matter. Since w is constant
when the initial conditions are set, c2a = w.

c. Constant Parametrization

When dark matter is subdominant, ref. [15] shows that
the gravitational potentials are driven purely by the ra-
diation and neutrinos and therefore we have

h = C(kτ)2 , (B1)

η = 2C − 5 + 4Ων
6(15 + 4Ων)C(kτ)2 ,

where Ων ≡ ρν/(ργ + ρν) and C the amplitude for
the mode arising from the inflationary initial conditions.
This solution is only valid during radiation domination
and on superhorizon scales, kτ � 1. The initial adiabatic
density perturbations are given by

δγ = δν = −2
3C(kτ)2 , (B2)

while the velocity divergences are given by

θγ = − C18k
4τ3 , θν = − C18

23 + 4Ων
15 + 4Ων

k4τ3 , (B3)

and the anisotropic stress

σγ = 0 , σν = 4
3
C(kτ)2

15 + 4Ων
. (B4)

In the presence of the gravitational field being driven by
these two collapsing relativistic species, the superhorizon
evolution of general dark matter follows the following at-
tractor

δc = − (1 + w)C(kτ)2

2(4 + 3c2s − 6w)× (B5)

×
(

(4− 3c2s )− 48
15 + 4Ων

c2vis
1 + w

(c2s − w)
)
,

θc = − Ck4τ3

2(4 + 3c2s − 6w)×

×
(
c2s + 16

3(15 + 4Ων)
c2vis

1 + w

(
2 + 3c2s − 3w

) )
,

σc = 16C(kτ)2

3(15 + 4Ων)
c2vis

1 + w
,

where again we stress that w, cs, cvis are all constant and
w < 1

3 . We can also see that in the limit w = c2s =
c2vis = 1

3 , solution (B5) reduces to the superhorizon solu-
tion for the neutrinos given above, which was the original
motivation for the form of the parametrization (4).

d. Initially Relativistic DM

Since attractor solutions exist only when there is a sin-
gle timescaleH−1, the initial conditions must be set up in
the relativistic regime whenever a time-varying equation
of state for DM is considered. We thus compute the ini-
tial conditions with w = c2s = 1

3 and consistently include
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the effect of the DM on the gravitational field. Despite
the fact that c2vis is a phenomenological parameter, we
will also give it the standard initial value of 1

3 , showing
below that this particular value replicates the expected
superhorizon behavior of a relativistic species.

The first implication of this is that the early universe
should be considered to consist of three dominant species,
photons γ, relativistic neutrinos ν and the dark matter
c. We define the energy density fractions Ωi in the usual
manner with

Ωγ = 1− Ων − Ωc . (B6)

The parametrization (4) is constructed so that in the
limit w = c2s = c2vis = 1

3 , the superhorizon solution for the
DM is the same as that for relativistic neutrinos, despite
the fact that the superhorizon evolution equation for the
second moment of the neutrino distribution is not the
same [15, Eq. (92)],

σ̇ν = 2
15(2θν + ḣ+ 6η̇) . (B7)

Despite this difference, the superhorizon attractor is
modified in the expected manner, with the replacement
of Ων → Ων + Ωc:

h = C(kτ)2 , (B8)

η = 2C − 5 + 4(Ων + Ωc)
6(15 + 4(Ων + Ωc))

C(kτ)2 .

The initial density perturbation are adiabatic and there-
fore all equal

δc = δγ = δν = −2
3C(kτ)2 . (B9)

The photons, as in the standard solution of ref. [15], carry
no anisotropic stress and are not affected at all, while
the attractor solution for the relativistic neutrinos and
relativistic DM becomes

θc = θν = − C18
23 + 4(Ων + Ωc)
15 + 4(Ων + Ωc)

k4τ3 , (B10)

σc = σν = 4
3

C(kτ)2

15 + 4(Ων + Ωc)
.

We stress that the identical superhorizon behavior of the
relativistic DM and neutrinos is a constructed coinci-
dence which only occurs for c2vis = 1

3 . We also remind the
reader that these initial conditions assume that the DM
is decoupled and does not exchange energy with other
species.

Appendix C: Extra Plots

In this section we show for completeness two extra
plots, both for the case when we include the WL data

to Planck and distance data by using the initially rel-
ativistic and constant parametrizations. In Fig. 8 we
show the 2D 68%, 95% confidence contours and the 1D
marginalized posterior distributions for the parameters
(w0, cs0, cvis0,Ωc) of the initially relativistic model for the
Planck (without trispectrum), WL, BAO and SNIa data,
while in Fig. 9 we show the 2D 68%, 95% confidence
contours and the 1D marginalized posterior distributions
for the parameters of the model (w, cs, cvis,Ωc, σ8,0) in
the case when the first three of these are constant and
free to vary, for the Planck (without trispectrum), WL,
BAO and SNIa data. As mentioned in the main text, the
constraints that result from the addition of the WL are
practically the same as without it, as the fit is mainly
driven by Planck and the distance probes.
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FIG. 8. The 2D 68%, 95% confidence contours and the 1D marginalized posterior distributions for the parameters
(w0, cs0, cvis0,Ωc) of the initially relativistic model for the Planck (without trispectrum), WL, BAO and SNIa data.



17

0.66 0.72 0.78 0.84

σ8

12.5

10.0

7.5

5.0

lo
g 1

0(
c

2 s
)

12

9

6

3

lo
g 1

0(
c

2 vi
s)

0.24

0.26

0.28

Ω
c

0.0015 0.0000 0.0015

w

0.66

0.72

0.78

0.84

σ
8

12.5 10.0 7.5 5.0

log10(c
2
s )

12 9 6 3

log10(c
2
vis)

0.24 0.26 0.28

Ωc

FIG. 9. The 2D 68%, 95% confidence contours and the 1D marginalized posterior distributions for the parameters of the model
(w, cs, cvis,Ωc) and the derived amplitude σ8 in the constant parameterization for the Planck (without trispectrum), WL, BAO
and SNIa data.



18

[1] Planck Collaboration, P. Ade et al., “Planck 2015
results. XIII. Cosmological parameters,”
arXiv:1502.01589 [astro-ph.CO].

[2] M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin,
L. David, W. Forman, C. Jones, S. Murray, and
W. Tucker, “Direct constraints on the dark matter
self-interaction cross-section from the merging galaxy
cluster 1E0657-56,” Astrophys. J. 606 (2004) 819–824,
arXiv:astro-ph/0309303 [astro-ph].

[3] S. Tremaine and J. E. Gunn, “Dynamical Role of Light
Neutral Leptons in Cosmology,” Phys. Rev. Lett. 42
(1979) 407–410.

[4] M. Viel, G. D. Becker, J. S. Bolton, and M. G.
Haehnelt, “Warm dark matter as a solution to the small
scale crisis: New constraints from high redshift
Lyman-a forest data,” Phys. Rev. D88 (2013) 043502,
arXiv:1306.2314 [astro-ph.CO].

[5] D. Iakubovskyi, “Observation of the new line at 3.55
keV in X-ray spectra of galaxies and galaxy clusters,”
arXiv:1510.00358 [astro-ph.HE].

[6] G. Bertone, D. Hooper, and J. Silk, “Particle dark
matter: Evidence, candidates and constraints,” Phys.
Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175
[hep-ph].

[7] A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, “Next
decade of sterile neutrino studies,” Phys. Dark Univ. 1
(2012) 136–154, arXiv:1306.4954 [astro-ph.CO].

[8] R. Adhikari et al., “A White Paper on keV Sterile
Neutrino Dark Matter,” Submitted to: White paper
(2016) , arXiv:1602.04816 [hep-ph].

[9] Planck Collaboration, R. Adam et al., “Planck 2015
results. I. Overview of products and scientific results,”
arXiv:1502.01582 [astro-ph.CO].

[10] D. B. Thomas, M. Kopp, and C. Skordis, “Constraining
dark matter properties with Cosmic Microwave
Background observations,” arXiv:1601.05097
[astro-ph.CO].

[11] E. Calabrese, M. Migliaccio, L. Pagano, G. De Troia,
A. Melchiorri, and P. Natoli, “Cosmological constraints
on the matter equation of state,” Phys. Rev. D80
(2009) 063539.

[12] L. Xu and Y. Chang, “Equation of State of Dark
Matter after Planck Data,” Phys. Rev. D88 (2013)
127301, arXiv:1310.1532 [astro-ph.CO].

[13] A. Lewis, A. Challinor, and A. Lasenby, “Efficient
Computation of CMB anisotropies in closed FRW
models,” Astrophys. J. 538 (2000) 473–476,
astro-ph/9911177.

[14] Y. Yang, “Constraints on the basic parameters of dark
matter using the Planck data,” Phys. Rev. D91 no. 8,
(2015) 083517, arXiv:1504.01195 [astro-ph.CO].

[15] C.-P. Ma and E. Bertschinger, “Cosmological
perturbation theory in the synchronous and conformal
Newtonian gauges,” Astrophys. J. 455 (1995) 7–25,
arXiv:astro-ph/9506072 [astro-ph].

[16] M. Kunz and D. Sapone, “Crossing the Phantom
Divide,” Phys. Rev. D74 (2006) 123503,
arXiv:astro-ph/0609040 [astro-ph].

[17] S. Nesseris and L. Perivolaropoulos, “Crossing the
Phantom Divide: Theoretical Implications and
Observational Status,” JCAP 0701 (2007) 018,

arXiv:astro-ph/0610092 [astro-ph].
[18] I. Sawicki and A. Vikman, “Hidden Negative Energies

in Strongly Accelerated Universes,” Phys.Rev. D87
no. 6, (2013) 067301, arXiv:1209.2961 [astro-ph.CO].

[19] W. Hu, “Structure formation with generalized dark
matter,” Astrophys. J. 506 (1998) 485–494,
arXiv:astro-ph/9801234 [astro-ph].

[20] W. Hu and D. J. Eisenstein, “The Structure of
structure formation theories,” Phys. Rev. D59 (1999)
083509, arXiv:astro-ph/9809368 [astro-ph].

[21] I. M. Oldengott, C. Rampf, and Y. Y. Y. Wong,
“Boltzmann hierarchy for interacting neutrinos I:
formalism,” JCAP 1504 no. 04, (2015) 016,
arXiv:1409.1577 [astro-ph.CO].

[22] G. Ballesteros and J. Lesgourgues, “Dark energy with
non-adiabatic sound speed: initial conditions and
detectability,” JCAP 1010 (2010) 014,
arXiv:1004.5509 [astro-ph.CO].

[23] M. Kunz, “The dark degeneracy: On the number and
nature of dark components,” Phys.Rev. D80 (2009)
123001, arXiv:astro-ph/0702615 [astro-ph].

[24] J. Lesgourgues and T. Tram, “The Cosmic Linear
Anisotropy Solving System (CLASS) IV: efficient
implementation of non-cold relics,” JCAP 1109 (2011)
032, arXiv:1104.2935 [astro-ph.CO].

[25] M. Kunz, S. Nesseris, and I. Sawicki, “Using dark
energy to suppress power at small scales,” Phys. Rev.
D92 no. 6, (2015) 063006, arXiv:1507.01486
[astro-ph.CO].

[26] A. Lewis and S. Bridle, “Cosmological parameters from
CMB and other data: a Monte- Carlo approach,” Phys.
Rev. D66 (2002) 103511, astro-ph/0205436.

[27] Planck Collaboration, N. Aghanim et al., “Planck 2015
results. XI. CMB power spectra, likelihoods, and
robustness of parameters,” Submitted to: Astron.
Astrophys. (2015) , arXiv:1507.02704 [astro-ph.CO].

[28] Planck Collaboration, P. A. R. Ade et al., “Planck
2015 results. XV. Gravitational lensing,”
arXiv:1502.01591 [astro-ph.CO].

[29] L. Anderson et al., “The clustering of galaxies in the
SDSS-III Baryon Oscillation Spectroscopic Survey:
Baryon Acoustic Oscillations in the Data Release 10
and 11 galaxy samples,” Mon.Not.Roy.Astron.Soc. 441
(Jun, 2014) 24–62, arXiv:1312.4877 [astro-ph.CO].

[30] F. Beutler, C. Blake, M. Colless, D. H. Jones,
L. Staveley-Smith, et al., “The 6dF Galaxy Survey:
Baryon Acoustic Oscillations and the Local Hubble
Constant,” Mon.Not.Roy.Astron.Soc. 416 (2011)
3017–3032, arXiv:1106.3366 [astro-ph.CO].

[31] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival,
A. Burden, et al., “The Clustering of the SDSS DR7
Main Galaxy Sample I: A 4 per cent Distance Measure
at z=0.15,” Mon.Not.Roy.Astron.Soc. 449 no. 1, (2015)
835–847, arXiv:1409.3242 [astro-ph.CO].

[32] SDSS Collaboration, M. Betoule et al., “Improved
cosmological constraints from a joint analysis of the
SDSS-II and SNLS supernova samples,” Astron.
Astrophys. 568 (2014) A22, arXiv:1401.4064
[astro-ph.CO].

[33] C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger,
T. D. Kitching, et al., “CFHTLenS tomographic weak

http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1086/383178
http://arxiv.org/abs/astro-ph/0309303
http://dx.doi.org/10.1103/PhysRevLett.42.407
http://dx.doi.org/10.1103/PhysRevLett.42.407
http://dx.doi.org/10.1103/PhysRevD.88.043502
http://arxiv.org/abs/1306.2314
http://arxiv.org/abs/1510.00358
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://arxiv.org/abs/hep-ph/0404175
http://arxiv.org/abs/hep-ph/0404175
http://dx.doi.org/10.1016/j.dark.2012.11.001
http://dx.doi.org/10.1016/j.dark.2012.11.001
http://arxiv.org/abs/1306.4954
http://arxiv.org/abs/1602.04816
http://arxiv.org/abs/1502.01582
http://arxiv.org/abs/1601.05097
http://arxiv.org/abs/1601.05097
http://dx.doi.org/10.1103/PhysRevD.80.063539
http://dx.doi.org/10.1103/PhysRevD.80.063539
http://dx.doi.org/10.1103/PhysRevD.88.127301
http://dx.doi.org/10.1103/PhysRevD.88.127301
http://arxiv.org/abs/1310.1532
http://arxiv.org/abs/astro-ph/9911177
http://dx.doi.org/10.1103/PhysRevD.91.083517
http://dx.doi.org/10.1103/PhysRevD.91.083517
http://arxiv.org/abs/1504.01195
http://dx.doi.org/10.1086/176550
http://arxiv.org/abs/astro-ph/9506072
http://dx.doi.org/10.1103/PhysRevD.74.123503
http://arxiv.org/abs/astro-ph/0609040
http://dx.doi.org/10.1088/1475-7516/2007/01/018
http://arxiv.org/abs/astro-ph/0610092
http://dx.doi.org/10.1103/PhysRevD.87.067301
http://dx.doi.org/10.1103/PhysRevD.87.067301
http://arxiv.org/abs/1209.2961
http://dx.doi.org/10.1086/306274
http://arxiv.org/abs/astro-ph/9801234
http://dx.doi.org/10.1103/PhysRevD.59.083509
http://dx.doi.org/10.1103/PhysRevD.59.083509
http://arxiv.org/abs/astro-ph/9809368
http://dx.doi.org/10.1088/1475-7516/2015/04/016
http://arxiv.org/abs/1409.1577
http://dx.doi.org/10.1088/1475-7516/2010/10/014
http://arxiv.org/abs/1004.5509
http://dx.doi.org/10.1103/PhysRevD.80.123001
http://dx.doi.org/10.1103/PhysRevD.80.123001
http://arxiv.org/abs/astro-ph/0702615
http://dx.doi.org/10.1088/1475-7516/2011/09/032
http://dx.doi.org/10.1088/1475-7516/2011/09/032
http://arxiv.org/abs/1104.2935
http://dx.doi.org/10.1103/PhysRevD.92.063006
http://dx.doi.org/10.1103/PhysRevD.92.063006
http://arxiv.org/abs/1507.01486
http://arxiv.org/abs/1507.01486
http://arxiv.org/abs/astro-ph/0205436
http://arxiv.org/abs/1507.02704
http://arxiv.org/abs/1502.01591
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1093/mnras/stu523
http://arxiv.org/abs/1312.4877
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://arxiv.org/abs/1106.3366
http://dx.doi.org/10.1093/mnras/stv154
http://dx.doi.org/10.1093/mnras/stv154
http://arxiv.org/abs/1409.3242
http://dx.doi.org/10.1051/0004-6361/201423413
http://dx.doi.org/10.1051/0004-6361/201423413
http://arxiv.org/abs/1401.4064
http://arxiv.org/abs/1401.4064


19

lensing cosmological parameter constraints: Mitigating
the impact of intrinsic galaxy alignments,”
Mon.Not.Roy.Astron.Soc. 432 (2013) 2433,
arXiv:1303.1808 [astro-ph.CO].

[34] T. D. Kitching, L. Verde, A. F. Heavens, and
R. Jimenez, “Discrepancies between CFHTLenS cosmic
shear & Planck: new physics or systematic effects?,”
arXiv:1602.02960 [astro-ph.CO].

[35] DES Collaboration, T. Abbott et al., “Cosmology from
Cosmic Shear with DES Science Verification Data,”
arXiv:1507.05552 [astro-ph.CO].

[36] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and
M. Oguri, “Revising the Halofit Model for the Nonlinear
Matter Power Spectrum,” Astrophys.J. 761 (2012) 152,
arXiv:1208.2701 [astro-ph.CO].

[37] M. Viel, K. Markovic, M. Baldi, and J. Weller, “The
Non-Linear Matter Power Spectrum in Warm Dark
Matter Cosmologies,” Mon. Not. Roy. Astron. Soc. 421
(2012) 50–62, arXiv:1107.4094 [astro-ph.CO].

[38] T. Namikawa, “Cosmology from weak lensing of CMB,”
PTEP 2014 no. 6, (2014) 06B108, arXiv:1403.3569
[astro-ph.CO].

[39] A. Lewis and A. Challinor, “Weak gravitational lensing
of the cmb,” Phys. Rept. 429 (2006) 1–65,
arXiv:astro-ph/0601594 [astro-ph].

[40] M. Shoji and E. Komatsu, “Massive Neutrinos in
Cosmology: Analytic Solutions and Fluid
Approximation,” Phys. Rev. D81 (2010) 123516,
arXiv:1003.0942 [astro-ph.CO]. [Erratum: Phys.
Rev.D82,089901(2010)].

[41] D. Baumann, A. Nicolis, L. Senatore, and
M. Zaldarriaga, “Cosmological Non-Linearities as an
Effective Fluid,” JCAP 1207 (2012) 051,
arXiv:1004.2488 [astro-ph.CO].

[42] J. J. M. Carrasco, M. P. Hertzberg, and L. Senatore,
“The Effective Field Theory of Cosmological Large
Scale Structures,” JHEP 09 (2012) 082,
arXiv:1206.2926 [astro-ph.CO].

[43] D. Blas, S. Floerchinger, M. Garny, N. Tetradis, and
U. A. Wiedemann, “Large scale structure from viscous
dark matter,” JCAP 1511 (2015) 049,
arXiv:1507.06665 [astro-ph.CO].

[44] A. D. Dolgov and S. H. Hansen, “Massive sterile
neutrinos as warm dark matter,” Astropart. Phys. 16
(2002) 339–344, arXiv:hep-ph/0009083 [hep-ph].

[45] S. S. Gershtein and Ya. B. Zeldovich, “Rest Mass of
Muonic Neutrino and Cosmology,” JETP Lett. 4 (1966)
120–122. [Pisma Zh. Eksp. Teor. Fiz.4,174(1966)].

[46] R. Cowsik and J. McClelland, “An Upper Limit on the
Neutrino Rest Mass,” Phys. Rev. Lett. 29 (1972)
669–670.

[47] S. Colombi, S. Dodelson, and L. M. Widrow, “Large
scale structure tests of warm dark matter,” Astrophys.
J. 458 (1996) 1, arXiv:astro-ph/9505029 [astro-ph].

[48] D. J. Fixsen, “The Temperature of the Cosmic
Microwave Background,” Astrophys. J. 707 (2009)
916–920, arXiv:0911.1955 [astro-ph.CO].

[49] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and
M. Viel, “Realistic sterile neutrino dark matter with
keV mass does not contradict cosmological bounds,”
Phys. Rev. Lett. 102 (2009) 201304, arXiv:0812.3256
[hep-ph].

[50] W. Hu, R. Barkana, and A. Gruzinov, “Cold and fuzzy
dark matter,” Phys. Rev. Lett. 85 (2000) 1158–1161,
arXiv:astro-ph/0003365 [astro-ph].

[51] R. Hlozek, D. Grin, D. J. Marsh, and P. G. Ferreira, “A
search for ultralight axions using precision cosmological
data,” Phys. Rev. D91 no. 10, (2015) 103512,
arXiv:1410.2896 [astro-ph.CO].

[52] X.-l. Chen, M. Kamionkowski, and X.-m. Zhang,
“Kinetic decoupling of neutralino dark matter,” Phys.
Rev. D64 (2001) 021302, arXiv:astro-ph/0103452
[astro-ph].

[53] M. Cirelli, F. Iocco, and P. Panci, “Constraints on Dark
Matter annihilations from reionization and heating of
the intergalactic gas,” JCAP 0910 (2009) 009,
arXiv:0907.0719 [astro-ph.CO].

[54] W. Hu and J. Silk, “Thermalization and spectral
distortions of the cosmic background radiation,” Phys.
Rev. D48 (1993) 485–502.

[55] Y. Ali-Haïmoud, J. Chluba, and M. Kamionkowski,
“Constraints on Dark Matter Interactions with
Standard Model Particles from Cosmic Microwave
Background Spectral Distortions,” Phys. Rev. Lett. 115
no. 7, (2015) 071304, arXiv:1506.04745
[astro-ph.CO].

[56] A. Garzilli, A. Boyarsky, and O. Ruchayskiy, “Cutoff in
the Lyman α forest power spectrum: warm IGM or
warm dark matter?,” arXiv:1510.07006
[astro-ph.CO].

http://dx.doi.org/10.1093/mnras/stt601
http://arxiv.org/abs/1303.1808
http://arxiv.org/abs/1602.02960
http://arxiv.org/abs/1507.05552
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://arxiv.org/abs/1208.2701
http://dx.doi.org/10.1111/j.1365-2966.2011.19910.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19910.x
http://arxiv.org/abs/1107.4094
http://dx.doi.org/10.1093/ptep/ptu044
http://arxiv.org/abs/1403.3569
http://arxiv.org/abs/1403.3569
http://dx.doi.org/10.1016/j.physrep.2006.03.002
http://arxiv.org/abs/astro-ph/0601594
http://dx.doi.org/10.1103/PhysRevD.81.123516, 10.1103/PhysRevD.82.089901
http://arxiv.org/abs/1003.0942
http://dx.doi.org/10.1088/1475-7516/2012/07/051
http://arxiv.org/abs/1004.2488
http://dx.doi.org/10.1007/JHEP09(2012)082
http://arxiv.org/abs/1206.2926
http://dx.doi.org/10.1088/1475-7516/2015/11/049
http://arxiv.org/abs/1507.06665
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://arxiv.org/abs/hep-ph/0009083
http://dx.doi.org/10.1103/PhysRevLett.29.669
http://dx.doi.org/10.1103/PhysRevLett.29.669
http://dx.doi.org/10.1086/176788
http://dx.doi.org/10.1086/176788
http://arxiv.org/abs/astro-ph/9505029
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://arxiv.org/abs/0911.1955
http://dx.doi.org/10.1103/PhysRevLett.102.201304
http://arxiv.org/abs/0812.3256
http://arxiv.org/abs/0812.3256
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://arxiv.org/abs/astro-ph/0003365
http://dx.doi.org/10.1103/PhysRevD.91.103512
http://arxiv.org/abs/1410.2896
http://dx.doi.org/10.1103/PhysRevD.64.021302
http://dx.doi.org/10.1103/PhysRevD.64.021302
http://arxiv.org/abs/astro-ph/0103452
http://arxiv.org/abs/astro-ph/0103452
http://dx.doi.org/10.1088/1475-7516/2009/10/009
http://arxiv.org/abs/0907.0719
http://dx.doi.org/10.1103/PhysRevD.48.485
http://dx.doi.org/10.1103/PhysRevD.48.485
http://dx.doi.org/10.1103/PhysRevLett.115.071304
http://dx.doi.org/10.1103/PhysRevLett.115.071304
http://arxiv.org/abs/1506.04745
http://arxiv.org/abs/1506.04745
http://arxiv.org/abs/1510.07006
http://arxiv.org/abs/1510.07006

	Constraints on dark-matter properties from large-scale structure
	Abstract
	I Introduction
	II Describing Dark Matter
	A Evolution
	B Initial Conditions
	C Implementation

	III Results
	A Extended DM and Halofit
	B Initially Relativistic DM
	C Constant w,cs2,cvis2
	D Implications

	IV Summary and Discussion
	 Acknowledgments
	A Boltzmann Hierarchy
	a Background equation of state
	b Sound speed and viscosity parameter


	B Initial Conditions
	c Constant Parametrization
	d Initially Relativistic DM


	C Extra Plots
	 References


