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I. INTRODUCTION

There are multiple indications pointing toward a model containing cold dark matter (DM) as the best explanation
for the universe we see at different scales. In particular, the importance of the dark sector component of matter on
stellar scales has been less extensively studied and has mainly focused on the sun, planets, white dwarfs [1–3] and
compact stars [4]. This is due to the expected moderate capability of gravitational accretion by these individual
celestial bodies from an existing DM galactic distribution. Although the current situation of DM searches has greatly
benefited from a world-wide experimental effort, at the present time there still remains a relatively vast DM phase
space to explore. Regarding possible values for DM particle masses within the weak interaction sector (wimp scenario),
most popular candidates range from the sub-GeV region up to ∼ 100 TeV. As for the interaction cross-sections with
nuclear matter (i.e. nucleons, N), there are at least five orders of magnitude in the ∼ GeV mass range remaining to
be fully tested, namely σχN ∼ 10−43-10−48 cm2 as quoted by direct detection searches [5].
Apart from this, concerning the nature of the DM particle, in the case of a Majorana candidate, the expected

indirect signal involving gamma-rays or neutrino final products is still under debate [6]. In this same direction we
may cite other astrophysical effects such as the modification of the emissivity of Standard Model neutrinos from solar
reaction chains that have been recently suggested [7]. In the case of asymmetric candidates, accretion of DM mass
beyond a critical value, i.e. the Chandrasekhar mass, could induce a dramatic fate for the star where DM accumulates
over time [8–10] and eventually collapses to a black hole. Another catastrophic event could be triggered following
compact object formation via DM seeding. In case of a Majorana candidate, it could induce spark formation energetic
enough to nucleate stable bubbles of deconfined quark matter leading to a softening of the nucleon equation of state.
This would drive a neutron star to quark star conversion [11–13]. In addition, unstable DM can also be constrained
by structural stability of accreting objects [14].
However, aside from a pure particle physics description, from the thermodynamical point of view, average magni-

tudes incorporating the effect of a novel dark sector could be, in principle, determined by evaluating the interplay
of both types of matter in a common environment. Typically, the possible dark self-interaction effects are expected
to be small as long as the numbers of DM particles remain tiny at all times, with respect to the baryons, and their
relative fraction Yχ = Nχ/NB ≪ 1. This could be important, however, for a precise determination of the critical dark
matter mass capable of being sustained in a star [8].
As mentioned before, for a given candidate, σχN mainly determines the relative fraction of DM to be captured by

a compact-sized (spherical) object of mass M and radius R. Once inside, it is believed to diffuse toward the denser
central stellar regions according to the exponential law ∼ e−mχφ(r)/kBT (r), being T (r) a local temperature, φ(r) the
gravitational potential and r the radial coordinate [15].
As an order-of-magnitude estimate, the mean free path of a DM particle, λχ, is quoted as λχ ≃ 1/σχNn where n

is the ordinary nucleon number density. This is usually considered as being sufficient to obtain knowledge about the
most efficient opaque environments. For example, a dense nuclear medium such as the central core in a neutron star
(with a content >∼ 90% neutrons), exhibits densities well in excess nuclear saturation density n0 ≃ 0.17 fm−3. It is
important to note, however, that in-medium effects are mostly absent from the previous rough estimate. Let us briefly
comment on some of the missing corrections. To begin with, Fermi-blocking due to partial restriction of the outgoing
nucleon phase space can play a role diminishing the χN cross section. Finite temperature effects will additionally
allow the population of higher energy states in the nucleon sector with respect to the vanishing temperature case to
provide the opposite effect. Let us remind ourselves here that temperatures in the range T <∼ 50 MeV are usually
achieved in the very early stages of proto-neutron star evolution [16]. Later, after a primary neutrino cooling era,
temperatures fall to the ∼ keV range. This will effectively set at large times a T ≈ 0 configuration, as thermal energies
are indeed much smaller than nucleon Fermi energies kBT << EFN in the dense medium.
Motivated for the need to compare bounds from the colliders to direct detection, one can describe interactions

between DM and fermions with effective operators in the context of effective field theories (EFT). In direct detection
searches, for example, a non-relativistic incoming χ particle with low Maxwellian velocity, v/c ≪ 1 is considered.
However, collider searches can constrain the high energy part of the interaction as particles are increasingly more
relativistic v/c ∼ 1 allowing, in addition, higher values of

√
s and momentum transfer ∼ TeV. Typically, all the

quoted interactions have been largely explored in very low density or vacuum conditions. In particular, scalar, vector
and pseudoscalar couplings can play a crucial role as seen in [17, 18]. To test increasing relativistic velocity ranges,
natural sources of acceleration can be provided by gravitational boosting near compact stars. In this way (neutral)
DM particles can acquire large velocities v ∼ c and scatter very dense macroscopic regions of size nearly the radius of
the star R ∼ 10− 12 km. This extent has so far only been marginally explored [19, 20]. In this work we will focus on
the impact of the relativistic contribution of scalar and vector χN couplings to the spin-independent (SI) diffusion of
DM inside a dense and hot nuclear medium.
The structure of this contribution is as follows. In section II, we present the effective field theory Lagrangian model

using dark matter-nucleon contact interaction via scalar and vector couplings in a relativistic framework. Later, we
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compute the doubly differential and integrated χN cross sections at finite nucleon chemical potential and temperature.
We especially focus on the resulting diffusive behavior of weakly interacting DM particles. In Section III we discuss
the obtained dependencies by presenting the figures for selected cases. Finally, in Section IV we give our conclusions.

II. DARK MATTER MODEL AND CROSS SECTIONS

We consider a fermionic dark matter particle of Dirac type, χ, with scalar and vector couplings to the nucleon field
N (protons and neutrons). We can write the interaction Lagrangian under the form

LI =
∑

N=n,p

gNsχχNN + gNvχγ
µχNγµN, (1)

where γµ are the Dirac matrices and gNs, gNv are the scalar and vector coupling constants, respectively. This treatment
is already used in direct detection at low energies with non-relativistic effective field theory operators as shown in
[21]. Typically, elastic scattering (rather than inelastic) is considered as it is the case relevant for direct detection.
Generically, operators containing two fermionic dark matter fields can be categorized as shown in [5, 26]. In particular,
we will focus on those labeled D1 and D5, both contributing to the SI interaction. This interaction is equivalent to
considering a Fermi four-fermion interaction model, where the effective couplings of mass dimension (−2) for these
operators are obtained by integrating out the propagator of a generic φ mediator with mass Mφ. Motivated by the
need to compare bounds from colliders to direct detection, we describe interactions of DM with quarks q = u, d and
averaging in terms of nucleon fields we can write for the vector case gNv/M

2
φ ∼ 1/Λv

2 and gNs/M
2
φ ∼ mq/Λs

3 where

Λv ( Λs) is the suppression mass scale for the vector (scalar) case. As usual, we are assuming the effective couplings
are of order O(1) and can be absorbed into Λs,v [22]. Using bounds from CMS and ATLAS [23, 24] we set Λv

>∼ 1
TeV and Λs

>∼ 100 GeV. At this point it is worth to mention that a larger parameter range can be considered by
means of a multiplicative factor in each coupling, gNs, gNv. We have selected these values as they refer to families of
phenomenological models that are currently allowed.
Usually, the incoming DM particle is supposed to be thermalized in the galaxy with the Maxwellian mean velocities

v̄ ∼ 220 km/s. However, in the scenario we consider, an accreting dense star (typically with the mass and dimensions
of a neutron star), general relativistic effects are non-negligible and are capable of providing a sizable gravitational
boost to the incoming DM particle [19, 25]. Let us consider, in order to be concrete, a canonical neutron star of mass
MNS ≃ 1.5M⊙ and radius RNS ≃ 12 km. Expliciting the ratio used as unity, GMNS

c2 = 1, the velocity modulus v at
the star surface is given by

β =
v

c
=

√

2GMNS

rc2
≈ 0.6

√

(

12 km

RNS

)(

MNS

1.5M⊙

)

, (2)

yielding a minimum Lorentz factor at the surface γ = 1/
√

1− β2 ≈ 1.26. If scattering happens well inside the
core, the previous value is a lower limit, then γ >∼ 1.26. The associated wavelength of the incoming DM particle is

λ = 2π h̄c√
γ2−1mχc2

. This expression sets, in practice, a measure of the validity of our calculation since matter is tested

to sizes around λ ∼ 1 fm, i.e. in the DM mass range mχ
<∼ 5 GeV. Although further modeling would be required for

the description of the inner hadron structure, the use of nuclear form-factors can somewhat mitigate the short-range
correlations arising in our calculation as we will see later in the manuscript.
In order to calculate the differential cross-section per unit volume for the DM-nucleon scattering, we use the

interaction terms appearing in Eq. (1). We denote p′µ = (E′, ~p′) and pµ = (E, ~p) as the four-momentum for the

outgoing and incoming nucleon of effective mass m∗
N , respectively, and k′µ = (ω′, ~k′) and kµ = (ω,~k) the analogous

for the DM particle of mass mχ. Momentum transfer is denoted by qµ = p′µ − pµ = kµ − k′µ. In this way

q0 = E′ − E = ω − ω′ and ~q = ~p′ − ~p = ~k − ~k′. The general expression can be written as [28, 29]

dσ =
|MN |2

4
√

(pk)2 −m∗2
Nm2

χ

dΦ(p, p′, k, k′)FFB (3)

where the phase space volume element is

dΦ(p, p′, k, k′) = (2π)4δ(4)(p+ k − p′ − k′)
d3~p′

(2π)32E′

d3~k′

(2π)32ω′
, (4)
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|MN |2 is the square of the scattering amplitude of the process considered in our interaction model that we will discuss
in detail later. The four-dimensional delta assures the conservation of momentum and energy in the collision. The
factor FFB accounts for the Fermi blocking term that takes into account the occupation of states and in our calculation
affects only to the the nucleon sector (protons or neutrons) FFB = fN(E)(1 − fN (E′)) with fi(E) = 1

1+e(E−µ∗
i
)/kBT

i =p,n. µ∗
i is the effective nucleon chemical potential for a particle with isospin of ith-type. From this point and in

what follows we will consider h̄ = c = 1. Let us remark that for the dark sector, we will assume that all outgoing
DM particles states are in principle allowed and 1 − fχ(ω

′) ≈ 1 since the fraction of DM inside the star remains
tiny at all times. The validity of this approximation is given by the estimate of DM particles inside the object as

Nχ(t) ≈ N0χ + Cχδt. Using Cχ ≃ 6 × 1025
(

M
1.5M⊙

)

(

R
12 km

)

(

1GeV
mχ

)

(

ρambient
χ

0.3GeV
cm3

)

(

σχN

σ0

)

s−1 [8] and the number of

nucleons in the star NN = NB ≃ 1058 we obtain Yχ = Nχ/NN < 10−20 for an old neutron star with a lifetime
δt ∼ 106 yr. We will assume a cross-section σχN > σ0, larger than the geometrical or critical cross-section [2]
σ0 ≃ πR2

NSmN/MNS ∼ 10−45 cm2 so the star can effectively scatter and capture DM. Let us mention here that the
cross-section ratio σχN/σ0 could be, in principle, even smaller than unity but in that case the scattering scenario we
present would be mostly insensitive to dark matter. Assuming cross-sections compatible with the range of currently
allowed experimental constraints, σχN/σ0 > 1, however. DM population in the NS (after the supernova explosion)
should not be negligible since the massive progenitor 8M⊙

<∼ Mprogenitor
<∼ 15M⊙ can be efficient in the DM accretion

process [14]. Then N0χ
<∼ 1039 for an environment with ambient DM density ρambient

χ ≃ 0.3 GeV/cm3. Effective
values of nucleon mass and chemical potential define the quasi-particle nature of the nucleon in the medium and differ
from the nude values by the presence of average meson fields. In this work we will consider this correction as obtained
in the existing literature and refer for further reading to, for example, [30].
Since we are interested in calculating the DM particle mean free path we will also consider the differential and

integrated cross-section per unit volume and thus we must integrate over the incoming nucleon phase space [28]. Then
our expression reads

dσ(ω)

V
=

1

(2π)5

∫

d3~p

∫

d3~k′δ(E + ω − E − ω′)
|MN |2

16ω′E′
√

E2ω2 −m∗2
Nm2

χ

FFB, (5)

where we have performed a partial integration over 3-dimensional momentum space. The flux expression appearing
in the denominator in Eq. (5) as well as the scattering amplitude we will discuss later in the manuscript have,
in general, momentum dependences. In the cross-section calculation, we have retained only the lowest order terms

following [28] since v2χ ∼ v2N ≪ 1 given |~pi|
Ei

= vi, i = χ,N from reference values vχ ∼ 0.6 and nucleon Fermi velocities

vN ∼ vFN = |~pFN |/EFN ∼ 0.4 at n = |~pFN |3

3π2 = n0. In particular for the flux, this leads to the final expression
√

(pk)2 −m2
Nm2

χ =
√

(Eω − ~p~k)2 −m2
Nm2

χ ≃
√

E2ω2 −m2
Nm2

χ.

Let us further rewrite Eq. (5), using a dispersion angle θ for the outgoing DM particle. In this way we obtain

d3~k′ = |~k′|22πd(cos θ) d|~k′| = 2π|~q| ω′

|~k|
d|~q|dq0. This follows from ω′dω′ = |~k′|d|~k′| and d(cos θ) = |~q|d|~q|

|~k||~k′|
. Finally, we

obtain after a trivial partial integration,

dσ(ω)

V
=

1

(2π)4

∫

d3~p

∫

d|~q|
∫

dq0δ(q0 + E − E′)
|~q|
|~k|

|MN |2

16E′
√

E2ω2 −m∗2
Nm2

χ

FFB. (6)

In this calculation, we will restrict ourselves to temperatures and densities typical for the thermodynamical evolution
of the stellar core region, that is T <∼ 50 MeV and n ≃ (1−3)n0. Due to the fact that squared Fermi nucleon velocities
are v2FN ≪ 1 we will perform an expansion of the single particle energies for the incoming and outgoing nucleon states

E = m∗
N +

|~p|2
2m∗

N

, E′ = m∗
N +

|~q + ~p|2
2m∗

N

. (7)

In order to perform the integral in Eq.(6) we express the energy delta function as

δ(q0 + E − E′) =
m∗

N

|~p||~q|δ(cos θ − cos θ0)Θ(|~p|2 − |~p−|2), (8)

where

cos θ0 =
m∗

N

|~p||~q|

(

q0 −
|~q|2
2m∗

N

)

, (9)
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and

|~p−|2 =
m∗

N
2

|~q|2
(

q0 −
|~q|2
2m∗

N

)2

. (10)

Let us now discuss the range of the integration variables. For the energy transfer range −∞ < q0 < ω −mχ, since

mχ < ω′ < ∞, and |~k| − |~k′| < |~q| < |~k| + |~k′| from the constraint of a real-valued angle. Instead, at T = 0, the
energy transfer can not be negative, so that q0 > 0 and 0 < q0 < ω − mχ and for the incoming nucleon it follows
|~p−| < |~p| < ∞. Note that for T = 0 in the limit of vanishing kinetic energy for the incoming DM particle, the q0
range reduces to zero as the outgoing states are all occupied, therefore providing a null cross-section, while this is not
true in the finite T case as more channels are available.
Finally, if we are interested in the doubly differential cross-section, this can be obtained as

1

V

dσ

dΩdq0
=

1

(2π)4

∫ ∞

|~p−|

d|~p||~p|
4E′

m∗
N |~k′|
|~q| δ(cos θ − cos θ0)Θ(|~p|2 − |~p−|2)M, (11)

with

M =
|MN |2fN (E)(1 − fN(E′))

4
√

E2ω2 −m∗2
Nm2

χ

. (12)

The sum of scalar(s) and vector(v) contributions from the Lagrangian in Eq. (1) gives a scattering amplitude
MN = Ms +Mv and therefore

|MN |2 =
1

4

∑

spins

MNM∗
N = |Ms|2 + |Mv|2 +

1

2

∑

spins

M∗
sMv, (13)

where

|Ms|2 = 4g2Ns(p
′p+m∗

N
2)(k′k +m2

χ),

|Mv|2 = 8g2Nv[2m
∗
N

2m2
χ −m∗

N
2k′k −m2

χp
′p+ (p′k′)(pk) + (p′k)(pk′)],

and

1

2

∑

spins

M∗
sMv = 8gNsgNvm

∗
Nmχ(pk + pk′ + p′k + p′k′).

As a further correction at short ranges, we can model the structure of the nucleon with a form factor F (|~q|). We
will consider a monopolar form with a cut-off parameter Λ = 1.5 GeV. Then we will replace gNs → gNsF (|~q|2) and
gNv → gNvF (|~q|2) with F (|~q|2) = Λ2

Λ2+q2 so that F (0) = 1.

Retaining the lowest order in particle velocities in the averaged squared matrix element we obtain

|MN |2 ≃ 4g2Ns(E
′E +m∗

N
2)(ω′ω +m2

χ) + 8g2Nv(2m
∗
N

2m2
χ −m∗2

Nωω′ −m2
χE

′E + 2E′ω′Eω)

+ 8gNsgNvm
∗
Nmχ(Eω + Eω′ + E′ω + E′ω′).

Let us note that if finite temperature is considered, detailed balance factors must be added to the medium response
to weak probes [31, 32] under the form

S(q0, T ) =
1

1− e
−

|q0|
kBT

. (14)

This factor provides the relation between the dynamical nuclear structure factor for positive and negative energy
transfers q0 as the thermodynamic environment can donate energy to the outgoing particle.

As we are interested in obtaining the total integrated cross-section per unit volume σ(ω)
V and the inverse of it, i.e.

the mean free path, λχ =
(

σ(ω)
V

)−1

, we must integrate over all possible outgoing energy transfer values and solid

angle. In this way we obtain

λ−1
χ =

σ(ω)

V
=

m∗
N

4(2π)3

∫ ω−mχ

0

dq0

∫ |~k|+|~k′|

|~k|−|~k′|

d|~q|
∫ ∞

|~p−|

d|~p| |MN |2|~p|fN (E)(1 − fN (E′))S(q0, T )

4E′|~k|
√

E2ω2 −m∗
N

2m2
χ

. (15)
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III. RESULTS

In this section we present the results. We start by discussing the low T regime. We set gNs ∼ 10−15 MeV−2 and
gNv ∼ 10−13 MeV−2 and a cut-off parameter Λ = 1.5 GeV. In order to include the effect of the medium we replace
vacuum nucleon mass and chemical potential values by the effective ones at each baryonic density and T [30]. The

ith-type isospin is obtained according to ni =
2

(2π)3

∫∞

0
4πp2dp

1+e

(√
p2+m∗

N
2−µ∗

i

)

/kBT
.

In Figure 1 we show the differential cross-section per unit volume as a function of the energy transfer q0 for
different values of |~q| = 20, 41, 207 and 290 MeV with dash-dotted, dashed, dotted and solid lines, respectively, for
a pure neutron system with n = n0. We use mχ = 0.5 GeV setting T = 0. The limiting upper value of the energy
transfer is ω −mχ ≈ 130 MeV. The triangular shape is due to the Heaviside Fermi distribution at T = 0. Beyond q0
values limited by real-valued angles in Eq.(9) the scattered states are not allowed since it is kinematically impossible
to scatter a nucleon due to lack of empty states.

 0
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 c
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-1
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q=41 MeV

q=207 MeV
q=290 MeV

FIG. 1. Differential cross section per unit volume as a function of the energy transfer q0 for values of |~q| = 20, 41, 207 and 290
MeV. The DM particle mass is mχ = 0.5 GeV and T = 0 at n = n0.

In Figure 2 we show the differential cross-section per unit volume as a function of the energy transfer q0 for different
values of the nucleon number density n = (0.5, 1, 2)n0 with dotted, dashed and solid lines, respectively for |~q| = 20
MeV. We use mχ = 0.5 GeV setting T = 0 and effective nucleon masses m∗

N/mN ≃ 0.85, 0.7 and 0.4 for the increasing
density set. A combined effect of the density dependence of nucleon masses and the nucleon Fermi momentum value
provide a rapid increase of the maximum q0 value.
In order to test the variability with the dark probe mass we depict in Figure 3 the differential cross-section per unit

volume as a function of q0 for mass values mχ = 0.5, 1 and 5 GeV. We set T = 0 and n = n0 at |~q| = 20 MeV. The
curve with mχ = 5 GeV has been decreased a factor 10 to make the trend more clear.
Finite temperature effects can be observed in Figure 4 where the detailed balance factors have been included. We use

values of temperature T = 0, 5 and 10 MeV with solid, dashed and dotted lines, respectively for |~q| = 20 MeV. We set
a fixed value of the chemical potential µ = EFN at n = nsat. This corresponds to densities n = 0.170, 0.174 and 0.209
fm−3 setting mχ = 0.5 GeV. At temperatures T > 0 the negative energy transfer states get increasingly populated
and the sharp nucleon distribution is smoothed. As q0 → 0 the inverse detailed balance factor S−1(q0, T ) → 0. The
corresponding divergence will, however, be integrable in order to obtain a finite integrated cross-section.
In Figure 5 we show the mean free path for the χ particle as a function of kinetic energy K = ω−mχ for three mass

values mχ = 0.5, 1, 5 GeV with solid, dashed and dotted lines, respectively. We set n = n0 and T = 0. We can see that
in this DM mass range, scattering is diffusive to very good approximation as λ/R ≪ 1. We show with dot-dashed line
the simplified estimate yields a constant value λχ ≃ 1/σχNn ∼ 5.9 m assuming sensitivities σχN ∼ 10−41 cm2. For our
choice of couplings strengths, fixed K energy, a Standard Model neutrino displays typical mean free path somewhat
smaller [28, 31, 35] however being an efficient heat carrier inside the star. The larger the mass of the DM particle
the more opaque is the medium to it. Note that as ω → mχ the phase space available for the outgoing particles
vanishes as the energy transferred q0 → 0. As all the outgoing states are all occupied in the nucleon sea at T = 0, this
provides a null value of the integrated cross-section value for the DM-nucleon interaction. This behavior is shown in
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FIG. 2. Differential cross-section per unit volume as a function of the energy transfer q0 for nucleon densities n = (0.5, 1, 2)n0.
We set |~q| = 20 MeV and mχ = 0.5 GeV at T = 0.
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FIG. 3. Differential cross-section per unit volume as a function of the energy transfer q0 for a nucleon density n = n0. We set
|~q| = 20 MeV at T=0. The mχ = 5 GeV case has been decreased a factor 10 in this plot.

Figure 6 where we plot the variation of the mean free path with kinetic energies for temperatures T = 0 (solid line)
T = 10 MeV (dashed line) and T = 30 MeV (dotted line). We consider mχ = 1 GeV and n = n0. At T = 0 and
vanishing kinetic energy the mean free path goes arbitrary large as the integrated cross-section also vanishes due to
filled population levels. This behavior is smoothed at finite temperature where a non-vanishing mean free path value
is recovered.

In Figure 7 the variation of the DM particle mean free path is shown as a function of density (in units of n0)
for two values of temperature, T=0 (solid line) and T=10 MeV (dashed line). We use mχ = 1 GeV and effective
nucleon masses have been considered for the T=0 case while not for the finite temperature case in order to estimate
competitive effects. A steady decrease is obtained in case the naked nucleon mass is considered. Incoming energy
has been fixed to ω = 1.26mχ for each case. Temperature effects, which are relevant in the early stages of dense star
evolution, tend to increase the opacity of nucleon matter to prevent DM nearly-free streaming.

In order to qualitatively compare our findings with existing current experiments we consider generic sensitivities
constrained from direct and collider searches. In this part our aim is to see how our results fit in the global present
picture of relativistic scattering of DM coming from a complementary and different scenario.
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FIG. 4. Differential cross-section per unit volume as a function of the energy transfer q0 at T = 0, 5, 10 MeV for a nucleon
density n = n0. We set |~q| = 20 MeV and mχ = 0.5 GeV
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FIG. 5. Dark matter mean free path as a function of kinetic energy for mχ = 0.5, 1 and 5 GeV at T=0 and n = nsat. Dot-dashed
line shows the simplified estimate yields a constant value λχ ≃ 1/σχNn ∼ 5.9 m assuming current experimental sensitivities
σχN ∼ 10−41 cm2. See text for details.

From our earlier discussion, the scenario we present in our work is meaningful for χN cross-section larger than
that of the geometrical cross-section 〈σχN 〉 ∼ σ0 ≃ πR2mn/M ∼ 10−45 cm2. Typical constrained values in current
experiments are larger than this value. In order to compare strengths we consider a typical reference value of central
baryonic density in the star n = 2n0, and estimate integrated cross-sections per particle, averaging over the nucleon

particle density, as 〈σχN 〉 ≃ σχN/V
n .

Using our set of generic couplings gNs, gNv we obtain scalar and vector contributions 〈σs,χN 〉 ∼ 10−47, 〈σv,χN 〉 ∼
10−43 cm2 for masses in the range mχ ∼GeV. These results must be considered as an averaged value in momentum
space and are consistent with existing collider constraints on D1, D5 couplings [23, 24] at mχ ∼GeV range derived
in the context of EFT. Note that these quoted constraints on collider and direct searches should be however taken
with caution since they present some already well-known problems, i.e. (over-) under-estimates, and inconsistencies
with the thermal relic density for mχ ranges outside a mχ ∼ (170− 500) GeV range, see a discussion in, for example
[36, 37]. The energy range that we describe in the relativistically boosted scenario accounts for center-of-mass energies
of

√
s <∼ 6 GeV for DM candidates with mχ

<∼ 5 GeV scattering target nucleons in a dense nuclear sea. However, as
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FIG. 6. DM particle mean free path as a function of kinetic energy for mχ = 1 GeV at n = n0 for T = 0, 10, 30 MeV.
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FIG. 7. DM particle mean free path as a function of density (in units of n0) for two values of temperature, T=0 and T=10
MeV. Effective (naked) nucleon mass has been used in the zero (finite) T calculation.

stated in [37] it is also the momentum transfer and mediator mass, Mφ, that provide the validity of interpretation of
EFT as it must fulfill q2 ≪ M2

φ.

In the current status of the direct detection DM search in the low mass range region CDMS [33] and SuperCDMS
SNOLAB [34] provide the best limits up to date with a sensitivity of σχN ∼ 10−41 cm2 for a limiting value mχ ∼ 5
GeV. Below this mass, collider searches can provide better sensitivities than direct searches because the momentum
transfer becomes small and the nuclear recoil energy falls below experimental thresholds. We expect, nevertheless,
that a more refined model of hadron structure or the mediators in the interaction will provide a richer contribution
to be determined in the future, as this is far from the present scope of this work. We consider that, despite indirectly,
dense astrophysical sites can contribute to probing the low mass region of the DM phase space.

IV. CONCLUSIONS

In summary, we have calculated dark matter scattering cross sections in an environment of dense and hot nucleon
matter. We have considered a fermionic DM particle with scalar and vector effective couplings. In this scattering
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scenario, we have tested a low mass region mχ
<∼ 5 GeV. Examples for this setting are the interiors of neutron stars

where core densities range typically exceed n/n0
>∼ 1 and temperatures T <∼ 50 MeV. We have included the nuclear

medium effects through Fermi-Dirac distributions for the nucleon sector assuming the amount of DM mass in the star
remains tiny at all times. To partially correct for the fact that we consider a point-like interaction, we use monopolar
form factors for the hadron structure. We find that the differential and integrated cross-sections are greatly affected
by the finite density of matter, namely by the effect of a smaller effective nucleon mass m∗

N < mN . Temperature
effects are taken into account with additional detailed balance factors and are found to be important although to a
lesser extent relative to density. The mean free path for a DM particle is found to be larger than the typical values
of those found for Standard Model neutrinos with vector-axial couplings. The simplified estimate for the mean free
path , λχ ≃ 1/σχNn, lacks the rich dependence on the phase space of the scattering process. In this paper we show
that the diffusive behavior approximation at finite density and temperature in the interior of NS is well grounded and
DM can contribute to the energy transport in their interior. While a specific application to proto-neutron stars is
deferred to a later paper, here we have discussed the interest of dense neutron stars to expose the importance of the
medium effects in the interaction of ordinary and dark matter.
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