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Current constraints on spatial curvature show that it is dynamically negligible: |ΩK| . 5× 10−3

(95% CL). Neglecting it as a cosmological parameter would be premature however, as more stringent
constraints on ΩK at around the 10−4 level would offer valuable tests of eternal inflation models and
probe novel large-scale structure phenomena. This precision also represents the “curvature floor”,
beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-
scale perturbations. In this paper, we discuss what future experiments will need to do in order
to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the
curvature floor is unreachable – by an order of magnitude – even with Stage IV experiments, unless
strong assumptions are made about dark energy evolution and the ΛCDM parameter values. We also
discuss some of the novel problems that arise when attempting to constrain a global cosmological
parameter like ΩK with such high precision. Measuring curvature down to this level would be an
important validation of systematics characterisation in high-precision cosmological analyses.

I. INTRODUCTION

The question of whether spatial curvature is an impor-
tant contribution to the cosmic energy budget has lately
seemed all but settled. Current constraints from com-
bined cosmic microwave background (CMB) and baryon
acoustic oscillation (BAO) data find |ΩK| < 5 × 10−3

(95% CL) [1]. The implication is that curvature is dy-
namically negligible, affecting cosmic expansion by less
than 1% at any epoch.

Is it time, then, to close the door on curvature, fix-
ing it to zero in our cosmological analyses (as is already
common practice)? In some contexts, this is certainly
a valid choice – for example, the effects of non-zero ΩK

on the growth rate of structure are essentially negligi-
ble at the precision of today’s experiments. However, to
assume flatness exclusively would preclude a number of
potentially powerful tests of early Universe physics, and
of general relativistic effects in large-scale structure.

Constraints on ΩK at around the 10−4 level offer a
stringent test of eternal inflation [2–4]. Slow-roll eter-
nal inflation predicts a strong bound on |ΩK| < 10−4,
while false-vacuum eternal inflation would be ruled out
if ΩK < −10−4. Measuring a ‘large’ ΩK would have pro-
found implications for this important class of models. In-
flationary scenarios that give rise to bubble collisions and
other large-scale anomalies also tend to have observable
levels of spatial curvature [5, 6], and an open Universe
(ΩK > 0) has been proposed as a strong prediction of
the string multiverse (although see [7] for a refutation
of this statement). There is therefore a clear theoreti-
cal motivation for seeking a curvature constraint at the

∗Electronic address: danielle.leonard@physics.ox.ac.uk

0.0 0.5 1.0 1.5 2.0
z

10-5

10-4

10-3

10-2
|∆

Ω
K
|

Curvature floor

δ
(2)
DA

Cosmic variance

Planck TT + lowP + lensing + BAO

Super-sample var.

Eternal inflation bound

S4 + LSST + SKA2

CV-limited forecast

FIG. 1: Various contributions to the observed spatial cur-
vature or its variance (shown as a function of redshift where
relevant). Current and forecast upper limits on ΩK are shown
as blue bars (note that the Planck limit fixed w). The green
shaded region shows the approximate super-sample variance
σ(ΩK) ∼ O(1) ×

√
〈δ2b 〉 [8] for a (5 Gpc)3 redshift bin, as

a function of its centre redshift. The shift in ΩK (absolute
value) due to the second-order correction to DA [9] is shown
as a red dashed line, and the maximum permissible value of
ΩK in eternal inflation from [2] as an orange bar. The grey
band is the curvature floor, and the purple dashed line is the
cosmic variance limit from [10]. All upper limits and variance
bounds are shown at the 95% CL level.

0.01% level.

Another motivation for this target is that ∼10−4 repre-
sents a “floor” below which ΩK cannot be decisively dis-
tinguished from primordial fluctuations. The expected
variance of curvature perturbations with wavelengths
of order the horizon size represents an irreducible cos-
mic variance “noise” level, σ(ΩK) ≈ 1.5 × 10−5, below
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which increased observational precision cannot improve
the constraint [10]. Framed as a Bayesian model selection
problem, model confusion between curved and flat mod-
els actually becomes unavoidable at a higher threshold:
|ΩK| ≈ 10−4 if one demands “strong” evidence on the
Jeffreys scale [11]. We adopt this more stringent value as
the “curvature floor”.

Additionally, an observation of non-zero spatial cur-
vature could be the result of large-scale structure effects.
Perturbations to the distance-redshift relation at second-
order contribute a monopole at the sub-percent level, for
example [9], leading to a shift in the apparent value of
ΩK. Local inhomogeneities contribute to the monopole
too, with observers inside potential wells seeing shifts
in ΩK [12–14]. In large-scale structure surveys, super-
sample modes (those with wavelengths larger than the
survey size) also contribute an apparent shift in the back-
ground cosmology [15, 16]. More subtle general relativis-
tic effects related to the behaviour of curvature in inho-
mogeneous spacetimes [17], such as the non-commutation
of spatial averaging with directional averaging [18], time
evolution [19, 20], and wide-angle effects [21], can also
lead to observable discrepancies between different mea-
surements of curvature. Finally, certain alternative the-
ories of gravity predict a non-zero observed ΩK [22].

Given that current curvature upper limits are 1–2 or-
ders of magnitude away from the level required to probe
most of these effects, there is an imperative to continue
pushing ΩK constraints to greater precision. In this pa-
per we address the question of when, and how, we can
expect to make cosmological observations that will detect
or constrain ΩK at the 10−4 level. Recent efforts have ex-
plored future constraints within a range of observational
scenarios and analysis frameworks [11, 21, 23–32]. The
focus in these previous forecasts has largely been on geo-
metric observables, although several probes of the growth
of structure have also been considered. We expand upon
these efforts by considering combined constraints from
the CMB, BAO, and the weak gravitational lensing of
galaxies. The former two probes are arguably the ‘purest’
precision observables, in that they are likely to offer the
best control over systematic effects and biases. We have
similarly selected weak gravitational lensing on the basis
that it is a key observable of several upcoming surveys,
and hence an intensive study of relevant systematic errors
is currently underway.

There are two principle ways in which we seek to im-
prove upon previous forecasts. First, we take a broadly
conservative approach. We incorporate parameters that
may exhibit significant degeneracies with ΩK (e.g. the
neutrino mass and the time-evolution of dark energy),
and then examine the effect of varying or fixing these pa-
rameters. We also fold in uncertainties due to observa-
tional nuisance parameters, and comment on several pos-
sible additional sources of systematic bias. In contrast,
most previous work has focused upon single or limited
extensions beyond a non-flat ΛCDM model. Second, we
explore a suite of current and upcoming surveys in com-

bination, whereas previous work has generally focused
upon a single set or very limited sets of future surveys.
In this way, we aim to answer the question of how and
when we might first achieve the target constraint of 10−4,
rather than to examine the properties of a particular sur-
vey or surveys of interest.

The paper is structured as follows. In Sec. II, we
describe the observational probes and our forecasting
methodology. In Sec. III, we present forecast spatial cur-
vature constraints for three generations of ongoing and
upcoming surveys, identifying the combination of surveys
most likely to reach the curvature floor first, while high-
lighting sources of systematic bias that could jeopardise
the measurement. We conclude in Sec. IV with a discus-
sion of the implications of our results for tests of inflation
and of large-scale structure effects, as well as for the next
generation of cosmological surveys.

II. SURVEYS AND FORECASTING METHOD

A. Observational probes

We examine the constraints that can be placed on
spatial curvature by three observational probes: CMB,
BAO, and weak gravitational lensing. We will use in-
formation from the power spectra of these observables
only, neglecting three-point (and higher) correlations in
the galaxy distribution, for example.

Looking first to measurements of the CMB, we con-
sider the angular power spectra of the temperature and
polarisation anisotropies. We also include information
from the CMB lensing convergence power spectrum, the
theoretical form of which is given below in Eq. 3.

Measurements of the BAO scale are included using a
formalism based on that presented in [33], in which the
redshift-space galaxy power spectrum is modelled as

Pg(k, µ) =
(
b+ fµ2

)2
Psm(k) [1 + fBAO(k)]

×e−
k2

2 ([1−µ2]Σ2
⊥+µ2Σ2

‖), (1)

where b and f are the linear bias and linear growth rate
factors [34], Psm is the smooth (BAO-free) power spec-
trum, and fBAO contains the scale information of the
BAO feature. To extract only the BAO information, we
relabel the argument of fBAO as k′, such that we con-
sider only derivatives with respect to the BAO scale in
the Fisher analysis described below. k′ is defined as

(k′)2 = α2
s

[
(α⊥k⊥)2 + (α‖k‖)

2
]
, (2)

where k⊥ = k
√

1− µ2, k‖ = kµ, {α‖, α⊥} represent
shifts with respect to a fiducial cosmology, and αs ac-
counts for uncertainty in modelling shifts of the BAO
scale due to non-linearities. We marginalise over b and
f , but assume that the BAO smoothing is known, so
(Σ⊥,Σ‖) are treated as fixed parameters.

Our third observable is the weak gravitational lensing
of galaxy images by large-scale structure. The angular
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power spectra of the convergence for galaxy lensing, CMB
lensing, and their cross-correlation, are given by the form

CA
iBj

` =
9

16

∫ χ∞

0

dχ
gA

i

(χ)gB
j

(χ)

fK(χ)2c3
(H(χ)a(χ))4

× ΩM(χ)2Pδ

(
`

fK(χ)
, χ

)
, (3)

where A and B indicate galaxies or CMB, while i and
j refer to the source galaxy redshift bin (relevant only
in the galaxy case). Note that we employ the Limber
approximation [35, 36], and so consider a minimum mul-
tipole of `min = 10 for all lensing spectra in this work.

In Eq. 3, gA
i

(χ) is the lensing kernel,

gA
i

(χ) = 2fK(χ)

∫ χ∞

χ

fK(χ′ − χ)

fK(χ′)
WAi

(χ′)dχ′. (4)

In the case of CMB lensing, Wκc = δ(χ− χ∗), where χ∗
is the comoving distance to last scattering. For galaxy

lensing, Wκi
g (χ) is the distribution of source galaxies in

each redshift bin i, and accounts for photometric redshifts
using the method described in [37]. The photo-z bias
is assumed to be zero, while the photo-z scatter, σz, is
used to determine the number of redshift bins such that
∆z = 3σz(1 + z). Values of σz are given for each weak
lensing survey in Table I. The true redshift distribution of
the total population of source galaxies is modelled using
the form n(z) ∝ zα exp[−(z/z0)β ] from [38], where z0 =
zm/1.412, and zm is the median redshift.

We also account for the possibility of intrinsic galaxy
alignments, which contaminate the observed galaxy ellip-
ticity. For the galaxy lensing auto-correlation, we have

Cε
iεj

` = C
κi
gκ

j
g

` + C
κi
gI

j

` + C
Iiκj

g

` + CI
iIj

` (5)

where I represents the intrinsic ellipticity. For the cross-
correlation between galaxy and CMB lensing, there is a
similar adjustment, which we compute as described in

[39]: Cε
iκc

` = C
κi
gκc

` + CI
iκc

` .
We base our expressions for the final three terms of

Eq. 5 on those from [40]. However, where they assume
that all galaxies contribute equally to the intrinsic align-
ment signal, we follow [41] and assume that only red
galaxies contribute. We additionally make the simpli-
fying assumption that the fraction of red galaxies fred is
constant over the redshifts that we consider. The result
is that each of the final three terms of Eq. 5 depends on
an amplitude parameter fc, where fc = C1ρcfred, and C1

is the standard amplitude parameter for intrinsic align-
ments. We marginalise over the combined parameter fc
in our forecasts to account for uncertainty in the intrinsic
alignment amplitude.

We also expect some minor cross-correlation between
CMB temperature and CMB lensing via the ISW effect.
This is comparatively negligible, however.

α β z0 σz ngal 〈γ2
int〉

1
2 fsky

DES 2 1.5 0.425 0.07 12 0.32 0.12

Euclid 2 1.5 0.637 0.05 30 0.22 0.375

LSST 2 1 0.5 0.03 40 0.18 0.485

TABLE I: Survey parameters for the three generations of
weak gravitational lensing surveys considered. ngal is given
in units of galaxies per square arcminute.

B. Fisher forecasting methodology

We explore the ability of current and future experi-
ments to improve constraints on ΩK by using a Fisher
forecasting methodology (see for example [42, 43]). The
inverse Fisher information matrix approximates the co-
variance matrix for an experiment, given a fiducial signal
model and its behaviour as a function of selected free
parameters, as well as the experiment’s noise character-
istics. The level of optimism in Fisher forecasting can be
controlled by accounting for various nuisance parameters
which would be introduced in a realistic analysis.

We compute the Fisher matrix for each experiment
with respect to the parameters: ΩK, ΩBh

2, ΩCh
2, h, ns,

As, τ , Mν , w0, wa, {fi}, {bi}, and fc. As can be seen
from this parameter list, a non-ΛCDM expansion history
is permitted. Fiducial values of ΛCDM parameters are
taken as reported by Planck in 2015 [1], while {w0, wa}
are taken as −1 and 0, respectively. The fiducial linear
bias in each redshift bin, bi, is survey-specific, and fi
is the linear growth rate per bin. fc is fiducially taken
as 0.0067, following the standard convention in which
C1ρc = 0.0134 [41] and setting fred fiducially to 0.5.

Note that Fisher matrices containing independent in-
formation can be directly summed in order to obtain a
combined Fisher matrix. Here, we assume three inde-
pendent Fisher matrices: one for CMB temperature and
polarisation, one for BAO, and one for CMB lensing and
galaxy lensing. By computing the Fisher matrices in this
manner, any covariance between CMB temperature/E-
mode polarisation and lensing has been neglected.

The single Fisher matrix describing both the temper-
ature and polarisation of the CMB takes the form

FCMB
ab =

∑
`

fsky (∂aC`)
T

Σ−1
` (∂bC`), (6)

where fsky is the fractional sky coverage, and Σ` is the
covariance matrix between angular power spectra at a
given `. Σ` has dimensions N × N where N is equal
to the number of spectra considered. ∂aC` is a vector
of length N , containing derivatives of each spectrum at
multipole ` with respect to parameter a.

Similarly, the weak gravitational lensing of galaxies
and of the CMB are described in a single Fisher matrix.
We employ the formalism developed in [44]:

FL
ab =

∑
`

2`+ 1

2
fskyTr

[
(C`)

−1∂aC` (C`)
−1∂bC`

]
. (7)
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C` is a square matrix with dimensions of the number
of galaxy redshift bins plus one (for the CMB). Each ele-
ment of the C` matrix provides the sum of the theoretical
auto- or cross-spectrum and the relevant noise.

Finally, the Fisher matrix of BAO is related to that for
galaxy clustering. In the distant observer approximation,

FGal
ab =

∫ +1

−1

dµ

∫ kmax

kmin

dk

(2π)2
k2Vsur

(
Pg(k, µ)

Pg(k, µ) + 1/n

)2

× (∂a logPg)(∂b logPg), (8)

where n is the number density of detected galaxies. In
order to extract information only from the BAO, deriva-
tives are considered only with respect to the BAO scale
k′ described above, i.e.: ∂αPg ∝ (∂k′fBAO(k′))∂αk

′. The
desired Fisher matrix, FBAO

ab , then follows directly.

C. Numerical issues and non-linear scales

We use the public CAMB code [45] to output CMB
temperature and polarisation spectra, as well as the mat-
ter power spectra necessary to compute BAO and lensing
observables using the expressions above. Given our ob-
servables, we then compute all derivatives numerically.

When employing numerical derivatives, it is crucial to
select a step size in the differentiation parameter which
lies within the regime of convergence – too small a step
can yield numerical errors, while too large will depart
from the regime of validity. In the case of galaxy weak
lensing, ensuring convergence proved non-trivial. This
was due to the prescription for computing the non-linear
matter power spectrum: in the case where non-linearities
were included, derivative convergence was not uniformly
achievable at higher multipoles, but when predictions
were artificially restricted to linear theory, convergence
was easily achieved. Therefore, in order to be certain of
robust results, we report constraints from galaxy weak
lensing using `max = 300. We select this maximum mul-
tipole because it provides agreement of better than 5%
between the problematic non-linear case and the well-
behaved linear case. Note that we make this conserva-
tive `max cut only for galaxy lensing and for the cross-
correlation between galaxy and CMB lensing; the CMB
lensing auto-correlation is less affected due to its sensi-
tivity to higher redshifts, where non-linear effects are less
important.

Although we make this cut to deal with numerical
problems, we note that it also serves our overall goal of
providing conservative forecasts, as it naturally excises
multipoles at which non-linearities become important.
Regardless of numerical issues, at smaller scales we would
be faced with uncertainties in non-linear modelling and
baryonic physics that currently affect the matter power
spectrum at around the 10% level. To illustrate the po-
tential of including higher multipoles were this problem

to be solved in the future, we also present constraints
with `max = 2000 (and, in the case of the hypotheti-
cal cosmic-variance-limited lensing survey explored be-
low, with `max = 5000). However, these constraints may
be subject to errors due to the numerical issues discussed
above, so should be treated with care.

D. Cosmological surveys

We compute Fisher matrices for experiments that are
representative of three generations of cosmological sur-
veys, for CMB, weak lensing, and BAO observations:

• Stage II (current): Planck [1], the Dark En-
ergy Survey (DES) [46], and the Baryon Oscillation
Spectroscopic Survey (BOSS) [47].

• Stage III (next generation): Advanced ACTPol
(Atacama Cosmology Telescope) [48], and Euclid
[49] (for both galaxy lensing and BAO).

• Stage IV (future): A Stage IV CMB survey [50],
the Large Synoptic Survey Telescope (LSST) [51],
and Stage 2 of the Square Kilometre Array [52].

In defining these three generations of experiments, we use
nomenclature similar to that of the Dark Energy Task
Force [53], but do not attempt to match their stages ex-
actly. For example, Euclid is technically a Stage IV ex-
periment, but we include it in Stage III due to its earlier
operating timeframe than SKA2. Similarly, DES is in-
cluded in Stage II despite typically being considered a
Stage III experiment. SKA2 is selected as the Stage IV
BAO experiment due to the fact that it is expected to
outperform non-radio counterparts in this observable out
to z = 1.4 [54]. We select Advanced ACTPol as the Stage
III CMB experiment, but mention SPT-3G (South Pole
Telescope) [55] as another possible choice.

The survey parameters that we used in our Fisher fore-
casting are given in Table I for weak lensing surveys,
while those pertaining to BAO were given in [56–58] for
BOSS, Euclid, and SKA2 respectively. The specifica-
tions employed here for Advanced ACTPol are the same
as those given in [59] for the Stage III (wide) experiment,
while the CMB Stage IV survey considered here employs
the specifications of the Stage IV CMB survey described
in the same work. Note that, in all cases, forecast con-
straints from CMB experiments include CMB lensing as
well as polarisation.

III. RESULTS

For each ‘generation’ of survey, we consider four com-
binations of observables: CMB-only, CMB + BAO, CMB
+ galaxy weak lensing (WL), and the combination of all
three. The results are shown in Table II, which presents
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Experiments
Uninform.

priors
Mild priors Fixed w Fixed αs Fixed Mν Fixed τ Fixed fc Fixed bi

`max =

2000
Fixed all

Planck CMB 393.4 280.7 239.3 280.7 258.4 267.9 280.7 280.7 280.7 4.6

+ BOSS BAO 382.0 144.2 59.5 144.1 138.1 142.7 144.2 144.2 144.2 4.6

+ DES WL 312.9 240.4 228.6 240.4 219.6 232.8 220.4 240.4 188.8 4.6

+ both 305.9 118.0 56.4 117.8 114.1 116.7 118.0 118.0 105.8 4.6

Advanced ACTPol CMB 164.1 128.7 116.1 128.7 76.3 123.7 128.7 128.7 128.7 1.2

+ Euclid BAO 153.6 44.1 18.8 43.4 29.1 41.0 44.1 44.1 44.1 1.2

+ Euclid WL 97.9 83.4 70.2 83.4 43.0 80.7 74.4 83.4 42.7 1.2

+ both 87.7 25.3 18.3 23.2 23.3 23.5 24.0 25.3 19.7 1.2

S4 CMB 94.1 74.9 63.6 74.9 39.2 73.4 74.9 74.9 74.9 0.9

+ SKA2 BAO 68.2 31.4 13.9 30.6 21.7 28.5 31.4 31.4 31.4 0.9

+ LSST WL 56.6 51.8 31.2 51.8 23.6 51.2 45.0 51.8 24.7 0.9

+ both 47.8 22.2 12.7 19.4 17.3 21.3 21.1 22.2 15.0 0.9

CV-limited 3.6 3.5 3.3 2.2 3.5 1.9 3.4 3.5 — 0.4

TABLE II: Forecast marginal constraints on ΩK (95% CL), divided by 10−4, for all experiment combinations, and for various
priors on other parameters. In columns (3-9), the mild priors of the second column are assumed for the non-fixed parameters
(see text). The final column shows the results when no other parameters are marginalised over. Note that there is no result
for the CV-limited combination of surveys in the `max = 2000 column because we assume `max = 5000 for weak lensing in this
case.

the forecast 95% CL constraint on ΩK for each combina-
tion, and for a range of different prior assumptions. Note
that values in the table have been divided by 10−4.

A. Forecasts for each generation of surveys

We begin with the most pessimistic case, where all pa-
rameters are marginalised without reference to any prior
information (the “uninformative priors” column in Ta-
ble II). Our Planck + BOSS forecast predicts a 95% CL
constraint on ΩK of approximately 3.8 × 10−2, nearly
eight times worse than the published Planck + BAO con-
straint [1]. This is the result of a geometric degeneracy
[60–63], which makes it difficult to disentangle the ef-
fects of curvature and a varying dark energy equation of
state. Information from CMB lensing and low-redshift
BAO helps to break the degeneracy, but the parameters
remain strongly correlated; if w0 and wa are fixed (see the
“fixed w” column), the constraint is very similar to the
published result (which also assumed fixed w). Exam-
ining the “uninformative priors” column more generally,
we see significant improvement in the constraint on ΩK

with progressive generations. The most powerful 95%
CL constraint, coming from the combination of all three
Stage IV experiments, is 4.8× 10−3, far from the target
precision of ∼ 10−4.

A more realistic (but still conservative) analysis corre-
sponds to the “mild priors” column in Table II. In this
case, we assumed that external Gaussian priors would
be applied to certain parameters, corresponding to 95%
(2σ) bounds of σ(αs) = 0.01, σ(bi) = 1, σ(Mν) = 0.4,
σ(fc) = 0.05, σ(w0) = 1, σ(wa) = 2, and σ(τ) = 0.1.
These priors are chosen to be mostly uninformative (i.e.

weak), except for helping to break the more severe de-
generacies. External probes (e.g. supernovae in the case
of w0 and wa, or 21cm experiments in the case of τ [64])
are capable of providing external constraints at this level,
without suffering from the same degeneracies. These
mild priors offer varying levels of improvement over the
case of uninformative priors. The most dramatic gain is
for the Advanced ACTPol + Euclid BAO combination
of surveys, where the constraint is tightened by approxi-
mately a factor of 3.5.

Next, in each subsequent column, a particular param-
eter is fixed to its fiducial value in an attempt to un-
derstand its individual effect on the spatial curvature
constraint. As discussed above, fixing the equation of
state of dark energy (the “fixed w” column) can result
in large improvements by removing a geometric degen-
eracy. However, a key goal of some of the experiments
under consideration (e.g. Euclid) is to measure the time-
dependence of w. For this reason, it is arguable that w0

and wa should remain free. Still, if one had a strong
theoretical prior on a cosmological constant, fixing these
parameters would result in considerable gains for curva-
ture constraints – the S4 + SKA2 + LSST combination
yields a 95% bound of 1.3× 10−3, about a factor of two
better than in the “mild priors” case.

Fixing the neutrino mass, Mν , is shown to be only
mildly helpful in increasing the combined constraining
power of all three observables, although its effect is non-
negligible for constraints from the CMB alone. Fixing τ
has a similarly small effect, with improvements reflecting
the breaking of the degeneracy between the optical depth
and As, which is itself degenerate with ΩK. We see, how-
ever, that fixing τ has a considerable effect in the case of
the combination of cosmic-variance-limited surveys (dis-
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cussed below), demonstrating the potential importance
of this degeneracy for even more futuristic observations
than those of Stage IV.

Fixing the BAO scale exactly (see the “fixed αs” col-
umn) has only a very mild effect for the Stage III and IV
experiments. Similarly, fixing either the galaxy bias bi
or intrinsic alignments parameter fc has a minimal effect
on the forecast constraint values. These parameters are
of more relevance as sources of potential bias in inferred
parameters values, as will be discussed in Section III B.

Allowing the galaxy weak lensing power spectra to
contribute out to a multipole of 2000 rather than 300
(‘`max = 2000’) results in a more noticeable effect: for
Stage IV, the improvement over the “mild priors” sce-
nario in the three-observable case exceeds ∼30%, reach-
ing a constraint on ΩK of 1.5× 10−3.

The last column of Table II shows the constraints that
would be achieved if ΩK was the only unknown param-
eter. In this case, 10−4 is achievable by S4 alone – the
CMB offers the best (conditional) constraint on ΩK. Be-
yond fixing those parameters which have already been
discussed, the greatest effect in producing these tight
forecast constraints comes from fixing h, with a sec-
ondary but relevant effect from fixing ΩC and ΩB. Con-
trolling all other parameters to such a high precision is
unrealistic, however – the conclusion from our analysis is
therefore that 10−3 (95% CL) is the most likely achiev-
able constraint on ΩK for the foreseeable future.

Finally, to explore what might be possible in the more
distant future, we include also forecast constraints for the
case where all three surveys are cosmic variance-limited.
Interestingly, we see that even for this combination of
highly-idealised surveys, only the case where all auxiliary
parameters are fixed can provide a sub-10−4 constraint
on the spatial curvature.

B. Systematics, degeneracies, and theoretical
uncertainties

We now briefly discuss some of the key modelling and
parameter uncertainties that are likely to affect a preci-
sion curvature measurement.

a. Shifts in the BAO scale: Non-linear evolution
of the galaxy distribution broadens the BAO feature
slightly, shifting the peak by ∼ 0.1− 0.3% [65, 66]. This
shift can be partially undone by calibrating off simula-
tions, and correcting for coherent peculiar velocities us-
ing the ‘reconstruction’ technique [67][93]. Uncertainty in
the redshift evolution and scale-dependence of the galaxy
bias also have a small effect on the peak position [68].
One set of simulations to estimate the effects of non-
linear evolution on the BAO peak measured the distri-
bution of shifts to be (0.3 ± 0.015)% at z ' 0 [66]. An
observer could correct for the shift by marginalising over
this distribution, which would correspond to setting a
prior of σ(αs) ≈ 0.015% in our forecasts. Conservatively,
we chose a looser 1% prior for most columns in Table II,

although it can be seen that this does not significantly
change the results (and even fixing αs has little effect).

b. Non-linear power spectrum: Weak lensing is also
sensitive to the modelling of the non-linear power spec-
trum. This is often dealt with by reducing `max, so that
only more linear modes are used, at the cost of reduc-
ing the constraining power of a given experiment. As
discussed above, this is the approach we take for most
columns in Table II, choosing `max = 300. The lensing
power spectrum is more complicated to model than the
BAO feature, so there is little one can do to improve
this situation other than trying to model the non-linear
matter power spectrum as accurately as possible. This
requires high-precision simulations that include realistic
baryonic effects [69–71]; however, current uncertainties
in baryonic modelling on non-linear scales are relatively
large (∼ 10%) [72]. As demonstrated in column 9 of Ta-
ble II, if more accurate modelling of the non-linear power
spectrum were to allow us to increase `max for galaxy
lensing to 2000, this could improve constraints on ΩK by
30% for Stage IV surveys. (See [73] for a more optimistic
assessment of the importance of baryonic effects in weak
lensing observations.)

c. Massive neutrinos: Spatial curvature and the
sum of neutrino masses are correlated in CMB observa-
tions principally due to their similar effect on the ampli-
tude of the CMB lensing power spectrum (see Figure 9 of
[59]). Increasing the neutrino mass increases the matter
density and therefore enhances the growth of structure,
which induces a larger lensing effect on the CMB. This
can be compensated by increasing the curvature param-
eter ΩK which, for a fixed CMB acoustic angular scale,
decreases the matter density and the corresponding lens-
ing amplitude. It is therefore vital to allow for variations
in the neutrino mass in any cosmological analysis involv-
ing spatial curvature (and vice versa).

d. Dark energy evolution: As discussed above, there
is a strong degeneracy between the dark energy equation
of state and ΩK; some of the redshift scaling of the cur-
vature term can always be absorbed into a sufficiently
unconstrained w(z). A similar ‘dark degeneracy’ also ex-
ists for the matter density, ΩM [74]. This problem is often
solved in an ad hoc way, by fixing w (as in, for example,
[1]), but this is a strong choice of prior. A more conserva-
tive alternative may be to use theoretical priors on dark
energy models, e.g. [75–77]. These employ stability con-
ditions and physical modelling assumptions to establish
a subset of (a priori) viable models from a broad class
of dark energy theories. These theoretical priors can be
surprisingly restrictive; using them, instead of allowing
completely arbitrary functional forms for w(z), one can
hope to partially break the degeneracy with curvature in
a more physically-justified manner.

e. Intrinsic alignments: The intrinsic alignment of
galaxies contributes to the observed galaxy lensing power
spectrum, as well as to the observed cross-spectrum be-
tween galaxy lensing and CMB lensing. The choice of
prior for the amplitude of the intrinsic alignment contri-
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bution has a small effect on the spatial curvature con-
straint, as described above. We do, however, find that
increasing the fiducial value of the amplitude parame-
ter fc leads to a tighter constraint on ΩK. For example,
for the combination of all three Stage III experiments,
σ(ΩK) decreases by ∼6% when the fiducial value for fred

is increased from 0.1 to 1 (with fixed fiducial C1). This
result is somewhat surprising, as we might expect that
adding more ‘contaminant’ to the lensing signal in the
form of intrinsic alignments would loosen cosmological
constraints. Intrinsic alignments are sensitive to cosmo-
logical parameters in their own right though, and so it
is entirely plausible that an increase in their amplitude
would render the lensing signal more sensitive to spatial
curvature – essentially, the IA contribution contains ex-
tra information about ΩK.

f. Super-sample modes and local environment: Den-
sity fluctuations on scales larger than the survey size
couple to small-scale modes, causing shifts in observable
quantities that are degenerate with a change in back-
ground cosmological parameters like ΩK. Super-sample
modes are a significant source of sample variance in weak
lensing surveys, and can potentially cause a large degra-
dation in parameter constraints [e.g. 78, 79]. Their effects
can again be calibrated using simulations [8, 80], and the
parameter degeneracies can be broken through measure-
ments of the power spectrum covariance [15].

Inhomogeneities local to both the source and observer
can also shift observables away from their background
values, as well as contributing to the sample variance [81].
A coherent local inhomogeneity, such as the potential
well of the local supercluster [82], can bias the inferred
distance-redshift relation, again leading to a shift in the
observed ΩK. This can be corrected through sufficiently
precise modelling of local structures, or high-precision
CMB spectral distortion measurements [12].

g. Higher-order perturbations: At the precision level
being considered in this paper, higher-order corrections
to perturbative quantities are not necessarily negligible.
For example, at z = 1, second-order lensing effects con-
tribute a ∼ 8 × 10−4 correction to the angular diameter
distance [9], leading to a shift in ΩK significantly larger
than the target uncertainty if left uncorrected. The form
of the higher-order perturbations depends on the observ-
able in question, but can be calculated exactly at a given
order for a given set of background cosmological parame-
ters [83–85]. A number of novel physical effects also arise
at higher order and are worthy of further study in their
own right [85]; high-precision curvature observations will
necessarily measure some of them.

h. CMB systematics: Systematic effects in space-
based CMB experiments like Planck are mostly well un-
derstood, at least in temperature maps [86]. However,
there remain some systematics affecting the CMB lens-
ing reconstruction and polarisation data that are not
fully understood [87]. Additionally, the data analysis
challenges for forthcoming ground-based experiments are
uncertain. Coherent fluctuations of the atmosphere may

prove difficult to model, and could affect the sensitivity
and CMB lensing estimation performance of experiments
like Advanced ACT, especially on large scales. Polarised
foregrounds are also proving harder to clean than initially
expected [88]. The most likely impact on ΩK constraints
is to increase the errorbars by degrading their sensitivity.
i. Photometric redshifts: We have assumed that the

photometric redshift scatter σz is perfectly known for
each survey, and have fixed the photometric redshift bias
to zero. In principle, an error could be introduced into
the weak lensing spatial curvature constraints by uncer-
tainty in either of these parameters. Work is ongoing to
adequately calibrate photometric redshift measurements
for current and future surveys (see, for example, [89, 90]).

IV. DISCUSSION AND CONCLUSIONS

We have shown that forthcoming surveys – even the
combination of Stage IV CMB + BAO + weak lensing
experiments – are likely to place constraints on the spa-
tial curvature of ∼ 10−3 (95% CL) at best. This is an
order of magnitude worse than the ‘ultimate’ precision
on ΩK required to put constraints on eternal inflation
and to detect several large-scale structure effects which
induce an apparent spatial curvature.

This would at first glance seem to be at odds with some
predictions in the literature, which have reported that
constraints at the ∼ few × 10−4 level may be achievable
even with single experiments, or when combined with
Planck CMB measurements (see, for example, [11, 31]).
Our approach has differed in that we have performed
consistent and conservative forecasts for a selection of
real (current or planned) surveys for three observables
simultaneously – BAO, CMB, and weak lensing – each of
which is expected to have precise control over systematic
effects once the observations have fully matured. This is
important, as even small systematic shifts in the obser-
vations could cause a spurious detection of curvature at
the low level being probed here.

We have also incorporated a set of cosmological and
nuisance parameters that cannot be neglected. As shown
in the final column of Table II, the ∼ 10−4 level is reach-
able by both Stage III and Stage IV CMB experiments if
all other parameters are held fixed. This situation is un-
realistic, however. Even then, we have neglected to fold
several other effects into our forecasts, such as super-
sample variance and corrections from higher-order per-
turbation theory (see Sec. III B), which can be expected
to contribute additional uncertainty in ΩK.

This does not mean that the “curvature floor” is un-
reachable in princple. Other observational probes could
improve on the constraints we have presented here, either
directly, by measuring distances and the expansion rate
more precisely, or indirectly, by helping to break param-
eter degeneracies. Experiments like Euclid and SKA2
may produce tighter measurements of ΩK by using in-
formation from redshift-space distortions and the broad-
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band shape of the galaxy power spectrum, while Type
Ia supernova samples will greatly increase in size in the
coming years. Experiments targeting the epoch of reion-
ization (e.g. through 21cm intensity mapping) will help
to break the τ degeneracy [64], while radio weak lens-
ing studies will improve our understanding of intrinsic
alignments [91]. The systematic effects and modelling
uncertainties affecting these probes are, however, typi-
cally worse, or currently less well-understood, than for
the three used here, which may lead to concerns about
the robustness of any 0.01% constraint which depends on
them.

This, really, is the big question in modern observa-
tional cosmology: how well we can hope to understand
the myriad systematic and theoretical uncertainties that
affect various cosmological observables, as well as low-
level corrections (such second-order effects) that are sim-
ply unobservable in current data. In other words, how
accurate can our cosmological inferences be, given their
impressive forthcoming precision?

Spatial curvature, with its relatively well-understood

physical causes and clear target precision level, repre-
sents an ‘acid test’ for this level of accuracy in cosmology.
Reaching the curvature floor, and agreeing on the inter-
pretation of whatever we see there, will be a definitive
sign of maturity for the field – whenever we get there.
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