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Abstract

We estimate the photon production rate from an SU(3) plasma at temperatures of about 1.1Tc

and 1.3Tc. Lattice results for the vector current correlator at spatial momenta k ∼ (2−6)T are

extrapolated to the continuum limit and analyzed with the help of a polynomial interpolation

for the corresponding spectral function, which vanishes at zero frequency and matches to

high-precision perturbative results at large invariant masses. For small invariant masses

the interpolation is compared with the NLO weak-coupling result, hydrodynamics, and a

holographic model. At vanishing invariant mass we extract the photon rate which for k >∼ 3T

is found to be close to the NLO weak-coupling prediction. For k <∼ 2T uncertainties remain

large but the photon rate is likely to fall below the NLO prediction, in accordance with the

onset of a strongly interacting behaviour characteristic of the hydrodynamic regime.



1. Introduction

The intensity and spectral properties of the photons that are emitted from a thermal QCD

plasma constitute excellent probes for the interactions that the plasma particles experience.

Consequently, observing a thermal component in the photon yield of heavy ion collision

experiments is among the main goals of the on-going program [1–3]. Simultaneously, on the

theory side, the thermal photon rate has served as a classic testing ground for developing

increasingly advanced computational tools [4–11].

In order to test thermal QCD in a model-independent way, we would like to compare first-

principles computations with experimental heavy-ion data. Apart from difficulties related to

large non-thermal backgrounds, this goal is faced with formidable challenges on the theory

side. On one hand, QCD continues to be strongly coupled in the temperature range reached

in practice, so that a weak-coupling expansion may not suffice for obtaining quantitatively

accurate predictions (unless a very high order is reached, cf. e.g. ref. [12]). On the other hand,

lattice QCD is not directly applicable either, because simulations are carried out in Euclidean

spacetime, and analytic continuation to Minkowskian signature represents a numerically ill-

posed problem (though the problem is again surmountable in principle [13]).

In the present paper, we suggest and test a pragmatic workaround to these challenges,

which could lead to a relatively reliable practical estimate of the photon production rate in

the temperature range accessible to the current generation of heavy ion collision experiments.

The idea is to combine lattice and perturbative techniques, but only in regimes where they

should be well under control. Concretely, this means that we make use of the weak-coupling

expansion in the regime of large “photon masses”, M >∼ 1 GeV, where the series shows rea-

sonable convergence thanks to asymptotic freedom and the high loop order that has been

reached. This “hard” component permits for us to reproduce the continuum-extrapolated

lattice measurements at small imaginary-time separations. In contrast, at large imaginary-

time separations the lattice data show clear deviations from the weak-coupling prediction.

In order to account for these, we suggest a general polynomial description of the spectral

shape at “soft” photon masses. The parameters of the interpolation are determined though a

least-squares fit to the lattice data at large imaginary-time separations. Subsequently the fit

result can be employed in order to extract spectral information concerning the soft domain.

This paper is organized as follows. After discussing what is known theoretically about

the vector channel spectral function in various regimes in sec. 2, we introduce a general

polynomial interpolation, designed to describe the soft regime, in sec. 3. The lattice analysis,

incorporating a continuum extrapolation at three non-zero momenta and two temperatures,

is described in sec. 4. Our fitting strategy and the corresponding results are presented in

sec. 5, and we conclude in sec. 6. In an appendix the analysis is repeated for lattice data at

zero momentum, pointing out that systematic uncertainties are much larger in this case.
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2. Theoretical constraints on the vector channel spectral function

2.1. Basic definitions

To leading order in the electromagnetic fine structure constant but to all orders in the strong

coupling, the photon production rate per unit volume can be expressed as [14,15]

dΓγ(k)

d3k
=

1

(2π)32k

∑

λ

ǫ
(λ)
µ,kǫ

(λ)∗
ν,k

∫

X

eiK·X
〈

Jµ
em(0)J

ν
em(X )

〉

(2.1)

=
1

(2π)32k

∫

X

eiK·X
〈

3
∑

i=1

J i
em(0)J

i
em(X )− J0

em(0)J
0
em(X )

〉

, (2.2)

where K ≡ (k,k), k ≡ |k|; X ≡ (t,x); K · X ≡ kt − k · x, ǫ(λ)µ,k denote polarization vectors,

and Jµ
em is the electromagnetic current. In the second step we made use of a Ward identity,

guaranteeing that longitudinal polarizations do not contribute for K2 = 0.

The electromagnetic current can in turn be expressed as Jµ
em = e

∑Nf

f=1Qf
V µ
f
, where

V µ
f

≡ ψ̄
f
γµψ

f
is the vector current associated with the quark flavour f, and Q

f
denotes

the electric charge of flavour f in units of the elementary charge e. We consider the case

of three degenerate flavours, Nf = 3, so that
∑Nf

f=1Qf
= 0 and

∑Nf

f=1Q
2
f
= 2/3. Then the

disconnected quark contraction drops out. Relating furthermore the Wightman correlator of

eq. (2.2) to a spectral function we can write

dΓγ(k)

d3k
=

e2
∑Nf

f=1Q
2
f

(2π)3k
nB(k) ρV

(k,k) , (2.3)

where nB is the Bose distribution. The vector channel spectral function has been defined as

ρ
V
(ω,k) ≡

∫

X

ei(ωt−k·x)
〈1

2

[

V i(t,x) , V i(0)
]

− 1

2

[

V 0(t,x) , V 0(0)
]

〉

c
, (2.4)

where 〈...〉c indicates that only the connected contraction is included. The same spectral

function also determines the dilepton production rate as

dΓℓ−ℓ+(ω,k)

dω d3k
=

2e4
∑

f
Q2

f
θ(M2 − 4m2

ℓ )

3(2π)5M2

(

1 +
2m2

ℓ

M2

)(

1− 4m2
ℓ

M2

)
1

2

n
B
(ω) ρ

V
(ω,k) , (2.5)

where the invariant mass of the dilepton pair has been defined as

M2 ≡ ω2 − k2 . (2.6)

2.2. NLO weak-coupling expansion

In vacuum (T = 0, where T denotes the temperature), ρ
V
is a function only of the photon

invariant mass defined in eq. (2.6). The presence of a thermal plasma breaks Lorentz invari-

ance, so that ρ
V
is a function of two independent kinematic variables, ω ± k. In particular,
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in the non-interacting limit [16],

ρ
V
(ω,k) =

NcTM
2

2πk

{

ln

[

cosh(ω+k
4T )

cosh(ω−k
4T )

]

− ω θ(k − ω)

2T

}

, (2.7)

where Nc = 3. This “Born” or “thermal Drell-Yan” rate provides for a reasonable approxi-

mation at large invariant masses, M ≫ πT . However for zero invariant mass the Born rate

vanishes, and the leading-order (LO) result is proportional to αsT
2.

The determination of the correct LO result poses a formidable challenge [10]. However

there is a logarithmically enhanced term that can be worked out analytically [7, 8],

ρ
V
(k,k) =

αsNcCFT
2

4
ln

(

1

αs

)

[

1− 2nF(k)
]

+O(αsT
2) , (2.8)

where nF is a Fermi distribution and CF ≡ (N2
c − 1)/(2Nc). The non-logarithmic terms are

only known in numerical form [9,10]. Recently, these results have been extended to O(α
3/2
s T 2)

both at vanishing [11] and non-vanishing photon masses (|M |<∼ gT , where g ≡ √
4παs) [17].

In the following we make use of the results of ref. [17].

If the photon mass is large, M ≫ g1/2T , then there is a “crossover” to a different type of

behaviour [17, 18]. For M ∼ πT the NLO corrections are suppressed by αs and numerically

small [19, 20]. For M ≫ πT , the spectral function goes over into a vacuum result [21] which

is known to relative accuracy O(α4
s ) [22, 23] and can directly be taken over for a thermal

analysis [20,24]. Such precisely determined results play an essential role in our investigation.

2.3. Hydrodynamic regime

A special kinematic corner in which it is possible to make statements about ρ
V

beyond

the weak-coupling expansion is given by the so-called hydrodynamic regime, parametrically

ω, k <∼α2
sT . This is the regime in which the general theory of statistical fluctuations [25]

applies. Then the properties of ρ
V
can be parametrized by a diffusion coefficient, denoted

by D, and by a susceptibility, denoted by χq. The susceptibility determines the value of the

conserved charge correlator at zero momentum, χq ≡
∫ β
0 dτ

∫

x
〈V 0(τ,x)V 0(0)〉, whereas D

can be defined through a Kubo formula as

D ≡ 1

3χq

lim
ω→0+

3
∑

i=1

ρii(ω,0)

ω
. (2.9)

The electrical conductivity is a weighted sum over these quantities,

σ = e2
Nf
∑

f=1

Q2
f χqD , (2.10)

where the disconnected contribution has been omitted thanks to
∑

f
Q

f
= 0.
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In the hydrodynamic regime, the full ρ
V
can be expressed in terms of D and χq. As already

mentioned the longitudinal components do not contribute at the on-shell point, but they have

a non-trivial diffusive structure elsewhere, leading to the prediction (cf. e.g. ref. [26])

ρ
V
(ω,k)

ω
=

(

ω2 − k2

ω2 +D2k4
+ 2

)

χqD . (2.11)

Consequently the photon production rate from eq. (2.3) becomes

dΓγ(k)

d3k

k<∼α2
sT≈ 2Tσ

(2π)3k
. (2.12)

We also note that, for ω ≪ Dk2 and k ≪ 1/D, eq. (2.11) predicts that

lim
ω→0

ρ
V
(ω,k)

ω
= −

χq

Dk2
, (2.13)

i.e. the slope should be negative at small enough frequencies. The reason is that for very

small k, ρ00 resembles a Dirac delta-function, which comes with a negative sign in ρ
V
.1

2.4. AdS/CFT limit

In the AdS/CFT framework ρ
V
has the same infrared structure as in eq. (2.11), with the

specific values D = 1/(2πT ) and χq = N2
c T

2/8 [27,28]. The spectral function is close to the

hydrodynamic form for k <∼ 0.5/D, and becomes negative at the smallest ω for k <∼ 1.07/D.

Below we make use of the results of ref. [28], evaluated numerically so that they make pre-

dictions beyond the hydrodynamic regime as well. Of course, there is no reason for these

predictions to be applicable to thermal QCD, and in general the results need to be rescaled

to be useful at all (see below); this is why we refer to the AdS/CFT limit as a “holographic

model”. Nevertheless, they offer useful qualitative insight into the structures that may be

expected at small ω and k in an interacting system.

3. Polynomial interpolation

As alluded to in sec. 2.2, we expect the perturbatively determined ρ
V
to be least precise at

small frequencies. For instance deep in the spacelike domain (ω ≪ k) only the LO result is

known (cf. eq. (2.7)), but we have argued in sec. 2.3 that the true behaviour is qualitatively

different, at least for very small k. Close to the light cone (for |M |<∼ gT ), NLO corrections

are known, but they are only suppressed by O(g) so the weak-coupling expansion might not

1The physical spectral function is positive at and somewhat below the light cone [17]. According to

eq. (2.13), it should cross zero at some ω < k if k is small enough, k <
∼
α
2
sT . Because of unknown numerical

prefactors, it is unclear whether such k are reached in our simulations.
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converge well. In contrast, we may assume that the regime of large frequencies, known up to

O(g2) for M >∼πT and up to O(g8) for M ≫ πT , is better under control.

It is an interesting question whether the spectral function needs to be analytic across the

light cone.2 At zero temperature this is not the case: ρ
V
vanishes identically in the spacelike

domain. However, in an interacting system the spectral function gets generally smoothened

by a temperature. Physical arguments in favour of smoothness at the NLO level have been

presented in ref. [29], and this is also the case in the concrete NLO computation [17] as

well as in the non-perturbative frameworks discussed in secs. 2.3 and 2.4. In the following,

we assume ρ
V

to be a smooth function across the light cone, and represent it through a

polynomial interpolation on both sides.

Let ω0 lie in the time-like domain, for instance ω0 ≃
√

k2 + (πT )2. We introduce a polyno-

mial starting with a linear behaviour at ω ≪ T and attaching to the known ρ
V
continuously

and with a continuous first derivative at ω = ω0. Defining

ρ
V
(ω0,k) ≡ β , ρ′

V
(ω0,k) ≡ γ , (3.1)

where the dimension of β is T 2 and that of γ is T , a general (5 + 2nmax)
th order polynomial

proceeding in odd powers of ω and satisfying these boundary values can be expressed as

ρfit ≡ β ω3

2ω3
0

(

5− 3ω2

ω2
0

)

− γ ω3

2ω2
0

(

1− ω2

ω2
0

)

+
nmax
∑

n≥0

δnω
1+2n

ω1+2n
0

(

1− ω2

ω2
0

)2

. (3.2)

We treat β and γ as known from perturbation theory through the matching in eq. (3.1). For

nmax = 0 there is only one free parameter in the 5th order polynomial, given by the slope

at origin (α ≡ δ0/ω0), and more generally there are nmax + 1 free parameters (α, δ1, ...). For

ω > ω0, a perturbative result is used (its details are explained in footnote 3).

4. Lattice analysis

4.1. Observable and parameters

In continuum notation, the imaginary-time observable measured on the lattice reads

G
V
(τ,k) ≡

∫

x

e−ik·x
〈

V i(τ,x)V i(0) − V 0(τ,x)V 0(0)
〉

c
. (4.1)

In order to minimize discretization effects, the momentum is taken to point along one of the

lattice axes. In a finite-size box momenta are of the type k = 2πn/(aNs), where a is the

lattice spacing and n is an integer; given that aNτ = 1/T , we thus consider

k = 2πnT × Nτ

Ns
, (4.2)

2This discussion concerns the infinite-volume limit.
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β
0

N3

s
×N

τ
confs T

√
t
0

T/Tc|t
0

Tr
0

T/Tc|r
0

7.192 963 × 32 314 0.2796 1.12 0.816 1.09

7.544 1443 × 48 358 0.2843 1.14 0.817 1.10

7.793 1923 × 64 242 0.2862 1.15 0.813 1.09

7.192 963 × 28 232 0.3195 1.28 0.933 1.25

7.544 1443 × 42 417 0.3249 1.31 0.934 1.25

7.793 1923 × 56 273 0.3271 1.31 0.929 1.25

Table 1: The lattices included in the current analysis, with β0 denoting the coefficient of the Wilson

plaquette term. Simulations are carried out within quenched SU(3) gauge theory. Conversions to

units of t
0
[30], r

0
[31] and Tc are based on ref. [32]. In a separate set of simulations at a somewhat

higher temperature [36], spatial volume dependence has been verified to be within statistical errors.

where Nτ and Ns are the temporal and spatial lattice extents, respectively.

The set of lattice simulations considered in the present study is listed in table 1. The

aspect ratio was kept fixed at Ns/Nτ = 3 for T = 1.1Tc and at Ns/Nτ = 24/7 for T = 1.3Tc.

Employing n ∈ {1, 2, 3} in eq. (4.2) the momenta were thus k/T ∈ {2.094, 4.189, 6.283}
and k/T ∈ {1.833, 3.665, 5.498} for T = 1.1Tc and T = 1.3Tc, respectively. In order to

consider smaller momenta, relevant for reaching the hydrodynamic regime, larger Ns should

be simulated. On the other hand, for the phenomenology of photon production, these values

appear to be quite reasonable.

Our measurements were separated by 500 sweeps, each consisting of 1 heatbath and 4

overrelaxation updates. However, the large values β0>∼ 7.2 needed imply that topological

degrees of freedom do not thermalize properly even with this much updating, so that in

general errors may be underestimated [33]. Given that at T > Tc the physical value of the

topological susceptibility is small and that our observables should not couple much to the

slow modes, we do not expect to be significantly affected by this problem, even if in practice

our simulations are frozen to the trivial topological sector.

4.2. Continuum extrapolation

For the lattice analysis we employed a local discretization of the vector current, with non-

perturbatively clover-improved Wilson fermions [34, 35]. As discussed in sec. 2.1, only the

connected quark contraction needs to be evaluated for the observable that we are interested

in. The general techniques of the lattice analysis have been discussed in ref. [36], and the

ensemble employed for our numerical investigation in ref. [37].

We carry out a continuum extrapolation for the ratios G
V
(τ,k)T 2/[χqGV,free(τ,0)], where
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k = 3.665T

k = 5.498T

Figure 1: Fitted imaginary-time correlators at non-zero momenta. The “best estimate from pQCD”

(perturbative QCD) is based on refs. [17,18,20], and has been constructed as explained in footnote 3.

“Polynomial interpolations” correspond to nmax = 0, but similarly good fits are obtained for nmax = 1.

χq is the quark number susceptibility and

G
V,free(τ,0) ≡ 6T 3

[

π(1− 2τT )
1 + cos2(2πτT )

sin3(2πτT )
+

2 cos(2πτT )

sin2(2πτT )

]

. (4.3)

Normalization by χq removes the renormalization factors associated with our local discretiza-

tion of the vector current, and normalization through G
V,free hides the short-distance growth

of the imaginary-time correlator. O(a) improvement permits for a continuum extrapolation

quadratic in 1/Nτ . More details can be found in ref. [37]. With this approach a continuum

extrapolation could be carried out at τT ≥ 0.18 for T = 1.1Tc and at τT ≥ 0.22 for T = 1.3Tc.

These are the distances included in the subsequent analysis. A bootstrap sample was gen-

erated for the continuum extrapolated results, which was used for estimating the statistical

errors of our final observables. In a separate set of continuum extrapolations, the suscepti-

bilities were determined through a quadratic fit, yielding χq = 0.857(16)T 2 at T = 1.1Tc and

χq = 0.897(17)T 2 at T = 1.3Tc [37].
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Figure 2: We show χ2/d.o.f. (top) and DeffT (bottom; cf. eq. (5.2)) as a function of the matching

point ω0 for nmax = 0. In the right panel, the upper curves are for T = 1.2Tc and the lower curves

for T = 1.3Tc on the perturbative side (the lattice data is fixed but it is not known precisely to which

temperature it corresponds, cf. table 1). A local minimum of χ2/d.o.f. is generally found close to the

point where ω0 =
√

k2 + (πT )2; it is very shallow for the smallest k.

5. Fit results

Having discussed the spectral function on one side (sec. 3) and the imaginary-time correlator

on the other (sec. 4), the remaining task is to compare the two. The relation is given by

G
V
(τ,k) =

∫ ∞

0

dω

π
ρ
V
(ω,k)

cosh[ω(β2 − τ)]

sinh[ωβ2 ]
, β ≡ 1

T
. (5.1)

Inserting into eq. (5.1) the best available perturbative estimate for ρ
V
, based on an interpo-

lation between the results of refs. [17, 18, 20],3 a visible discrepancy is observed between the

perturbative and lattice results at τT >∼ 0.3 (cf. fig. 1). In general the lattice results are below

3The data is available through ref. [38]. More precisely, for very large time-like frequencies it is given by

the large-M results of ref. [20] which go over into the N4LO vacuum result for ω ≫ πT [21–23]. For ω<
∼
10T it

is given by the interpolation of the large-M result and the LO LPM-resummed small-M result, as presented in

ref. [18], summed together with the NLO small-M result of ref. [17] (switched off exponentially with growing

M to avoid OPE-violating contributions [21] proportional to T
2). In this way, the value at the real photon

point ω = k agrees with the NLO photon calculation [11]. In the space-like region the spectral function is the

largest between the Born one with vacuum corrections [20] and the NLO small-M result [17]. In practice, this

implies that at the smallest ω we have the Born-like spectral function, whereas close to the light-cone we have

the small-M one, ensuring continuity across the light-cone.
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k 
= 

5.
49
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Figure 3: The spectral functions corresponding to fig. 1 (nmax = 0). The vertical bars locate the

light cone. The “best estimate from pQCD” is based on refs. [17, 18, 20], and has been constructed

as explained in footnote 3. The AdS/CFT result comes from ref. [28], and has been rescaled to agree

with the non-interacting QCD result at large ω/T . (This rescaling choice is rather arbitrary.)

the perturbative ones. The goal now is to test whether the discrepancy could be explained

by modifications of ρ
V
in the domain of small frequencies, as explained in sec. 3.

With the ansatz of eq. (3.2), a good representation of the data can indeed be obtained.

This is illustrated in fig. 1 and more quantitatively in fig. 2, which shows the dependence of

χ2 on the matching point ω0. In the following, we fix ω0 =
√

k2 + (πT )2, which is close to

the local minimum of χ2. Similarly small χ2 could be obtained with ω0 = k, where the curves

start, but we prefer to use the minimum that is deeper in the perturbative domain, because

then we have more reasons to trust the perturbative prediction.

The corresponding results for the spectral function are illustrated in fig. 3. Barring the

possibility of large non-perturbative effects at M >∼πT , it appears plausible from fig. 3 that

the pQCD spectral functions have too much weight in the spacelike domain. This is in

qualitative agreement with the discussion in secs. 2.3 and 2.4, and suggests the gradual onset

of hydrodynamics-like behaviour. That the fit lies below the perturbative curves at k <∼ 3T

is also consistent with the expectation that the diffusion coefficient D of a strongly coupled

system should be smaller than the result of a leading-order weak-coupling analysis [39].

The value of the spectral function at the photon point, normalized as ρ
V
(k,k)T/(2χqk), is

shown in fig. 2 (lower panels) and in fig. 4. More precisely, in order to accommodate data
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0.0
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0.3

0.4
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D
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T = 1.3 T
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Figure 4: Lattice results for Deff defined in eq. (5.2) (data points), compared with the NLO pertur-

bative prediction from ref. [17] (continuous curves). The lattice errors have been obtained by carrying

out fits with nmax = 1 to the bootstrap ensemble. The data points at k = 0 (cf. appendix A) have been

slightly displaced for better visibility. For comparison note that the heavy-quark diffusion coefficient,

determined with different methods, has been estimated as DT ∼ 0.6...1.1 at T ∼ 1.5Tc [40], and the

light-quark value as DT ∼ 0.2...0.8 at T = 1.1Tc and DT ∼ 0.2...0.5 at T = 1.3Tc [37]. The predic-

tions of ref. [17] are only reliable for k ≫ gT , but LO perturbative values at k = 0 can be obtained

by dividing the results of ref. [39] through the lattice susceptibility according to eq. (2.9), yielding

DT ≈ 2.9 at T = 1.1Tc and DT ≈ 3.1 at T = 1.3Tc. The AdS/CFT value is DT = 1/(2π) [27].

both at k = 0 and at k > 0, we define

Deff(k) ≡















ρ
V
(k,k)

2χqk
, k > 0

lim
ω→0+

ρii(ω,0)

3χqω
, k = 0

. (5.2)

According to eqs. (2.9) and (2.11), limk→0Deff(k) = D. Even though the evidence for a

continuous behaviour is not overwhelming in fig. 4 due to the large systematic uncertainties

at small k <∼ 3T , it is not excluded either. We recall that according to the discussion in

sec. 2.4, hydrodynamic behaviour is expected to set in for k <∼ 1/D, which according to the

k = 0 results in fig. 4 roughly speaking corresponds to k <∼ 2T .

As already alluded to, our analysis contains systematic as well as statistical uncertainties.

In order get an impression about their magnitudes, the following tests have been carried out:

• We have tested the dependence of the results on the order of the fitted polynomial,

parametrized by nmax in eq. (3.2). Obviously, given the ill-posed nature of the inversion
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T/Tc k/T α/T β/T 2 γ/T TDeff|nmax = 0 TDeff|nmax = 1

1.1 2.094 0.028(15) 2.072 1.611 0.108(4) 0.019(153)

4.189 0.091(8) 2.325 1.963 0.130(1) 0.066(45)

6.283 0.105(4) 2.498 2.331 0.109(1) 0.102(8)

1.3 1.833 0.024(17) 2.038 1.558 0.093(5) 0.153(119)

3.665 0.112(10) 2.229 1.984 0.119(1) 0.111(59)

5.498 0.141(6) 2.367 2.438 0.094(1) 0.097(13)

Table 2: Fit results for the coefficients in eq. (3.2), with α = δ
0
/ω

0
, and for the effective diffusion

coefficient Deff of eq. (5.2), from fits with nmax = 0. For Deff the results from the bootstrap analysis

with nmax = 1 are also shown; the latter constitute our final results and are illustrated in fig. 4.

problem, the results are quite sensitive to nmax. The difference of the results obtained

with nmax = 0 and nmax = 1 can be employed as one indication of systematic errors, cf.

table 2. The resulting errors are of the same order of magnitude but somewhat smaller

than those obtained from the bootstrap sample with nmax = 1, cf. table 2 and the

discussion below. Therefore we display the latter as our uncertainties in fig. 4. Stable

results (i.e. results with errors below 100%) could only be obtained for k >∼ 3T .

• On the lattice side, uncertainties related to scale fixing imply a certain uncertainty of the

value of T/Tc simulated, cf. table 1. On the perturbative side, there is an uncertainty

from higher orders in the perturbative expansion, which can partly be estimated through

the dependence of the results on the renormalization scale. Our experience suggests

that the latter scale uncertainty (which is a higher-order effect) is of a similar magnitude

as the former (which is a leading-order effect but with a smaller variation). We show

results from a variation of the former type in the right panel of fig. 2, concluding that

this uncertainty is negligible compared with the dependence on nmax.

• As mentioned above, our continuum extrapolations were carried out for the ratios

T 2G
V
/[χqGV,free], and the continuum value of χq/T

2 was determined through a sep-

arate extrapolation. For a matching to perturbative results in the ultraviolet regime,

we need the value of G
V
/T 3. In other words, the errors related to the two separate

continuum extrapolations need to be combined. We have done this by fixing χq/T
2 to

its central, minimal, and maximal value within the error band, and repeating the boot-

strap analysis in each case. The resulting variations of DeffT are subleading compared

with systematic uncertainties, and can be omitted in practice.

• In figs. 1 and 5, the errors shown for the lattice data correspond to diagonal entries of

the covariance matrix. However, we have carried out a full-fledged bootstrap analysis.
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Bootstrap samples were used for constructing a covariance matrix in the τ -regime where

the continuum extrapolation was judged to be reliable. The inverse of the covariance

matrix was employed in order to determine the χ2-value of a fit of any individual

configuration to our ansatz. The resulting distribution was used for obtaining errors

for Deff, shown in fig. 4. The results obtained with nmax = 0 and nmax = 1 are given in

table 2. The errors of the nmax = 1 results encompass in general the central values of

the nmax = 0 results, and constitute our best estimate of uncertainties.

6. Conclusions

We have shown how a combination of lattice and perturbative results allows us to obtain

non-trivial information about the vector channel spectral function close to the photon point.

The results are conveniently displayed in terms of the function Deff(k), defined in eq. (5.2).

The observed small difference between the fit and the perturbative result at k >∼ 3T , cf. fig. 4,

is consistent with the smallness of the NLO correction [11,17], as well as with indirect cross-

checks concerning the convergence of the weak-coupling expansion for light-cone observables

at k >∼ 2πT , based on measuring screening masses at non-zero Matsubara frequencies [41].

We have demonstrated that, even though not constrained to do so a priori, the fit result

reproduces some qualitative features expected from the soft domain, namely a reduced (and

possibly even negative) spectral weight in the spacelike domain, cf. fig. 3. Basically, the best

fit result lies between the pQCD and the strong-coupling AdS/CFT predictions.

As has been illustrated in fig. 4, measurements at non-zero momenta may offer for an al-

ternative way to estimate the diffusion coefficient, avoiding possible problems of the standard

approach [36,37,42–46] which have to deal with a very narrow transport peak at zero momen-

tum [47]. However, for a quantitative study, much smaller values of k should be reached with

controlled errors. It would be interesting to test whether the analytic improvement program

of ref. [48] could help in this. Conceivably, a similar methodology could also be employed for

estimating other transport coefficients, such as the shear viscosity of the QCD plasma.

Our analysis made use of continuum-extrapolated lattice data for quenched QCD (Nf = 0).

However, the qualitative lessons are expected to remain valid also for unquenched QCD.

In terms of the quantity Deff(k) defined in eq. (5.2) and shown in fig. 4, the physical photon

rate from eq. (2.3) can be expressed as (for Nf = 3)

dΓγ(k)

d3k
=

2αemχq

3π2
nB(k)Deff(k) . (6.1)

Here χq<∼T 2 is a light quark number susceptibility, and nB is the Bose distribution. The

parametrization in eq. (6.1) should be useful for phenomenological analyses as well. In par-

ticular, given that Deff is a decreasing function of k, the soft photon production rate increases

at small k even faster than the naive estimate dΓγ/d
3k ∼ αemTnB(k).
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To summarize, the present results support the program of implementing pQCD results into

hydrodynamical codes [49–51]. The theoretical uncertainties could be as low as ∼ 20%, save

for soft k <∼ 2T where the pQCD results represent an overestimate (cf. fig. 4). It is remarkable

that such an overshooting is in apparent qualitative agreement with phenomenology [50]. In

light of the photon v2 puzzle, it would be interesting to extend the investigation down to lower

temperatures, even though this is well justified only in the presence of dynamical quarks and

even though at low temperatures the spectral function ansatz should include the possibility

of vector resonance contributions.
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Appendix A. Results for zero momentum

The extraction of transport coefficients at vanishing momentum, k = 0, is faced with several

challenges. One is that the transport peak could be very narrow [47] and therefore difficult to

resolve from an imaginary-time measurement. A separate problem is related to the domain of

large frequencies, whose insufficient treatment may “contaminate” the extraction of spectral

features at low frequencies [24]. The latter problem can be alleviated by making use of

similar methods as discussed in the main body of our paper. Numerical “best estimate from

pQCD” spectral functions that can be used for this purpose, based on refs. [24, 47,52], have

been tabulated in ref. [38].4 In this appendix we show the results that we obtain if the

small-frequency domain is subsequently modelled through eq. (3.2).

4More precisely, these results have been obtained by combining the Born result with N4LO vacuum cor-

rections [22, 23], valid for ω ≫ πT [21], with the NLO result valid for ω ∼ πT [52], and then taking the

largest between this combination and the ω ∼ α
2
sT result [47], featuring a perturbative transport peak. In this

way at small ω we obtain a transport peak, at intermediate ω the LO+NLO sum, and at large ω the N4LO

asymptotics. We have checked that the results of ref. [52] agree with the k → 0 limit of the NLO correction in

ref. [20], once the partial resummation of the thermal mass performed in ref. [52] is undone, being unjustified

for ω>
∼
πT . For what concerns the transport peak, we have “quenched” the calculation of ref. [47] by removing

2 ↔ 2 processes with more than 2 external fermion lines from the collision operator and by fixing the Debye

mass to its Nf = 0 value.
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Figure 5: Like in fig. 1 but at zero momentum. Only the spatial components of the vector current

have been included here. The “best estimate from pQCD” is based on refs. [24, 47, 52], and has been

constructed as explained in footnote 4.

Like at non-zero momentum, the procedure described leads to a reasonably good description

of the imaginary-time correlators at τT >∼ 0.2 (χ2/d.o.f. >∼ 1.4). This is illustrated in fig. 5,

with the corresponding spectral functions shown in fig. 6. The diffusion coefficient, defined

through eq. (2.9), is displayed in fig. 4, as obtained from the bootstrap sample with nmax = 1.

It must be stressed, however, that our results at k = 0 suffer from substantial systematic

uncertainties. Indeed, if we fix nmax = 0 and vary the fitting point, like in fig. 2, then χ2/d.o.f.

does not show a minimum but rather increases as a function of ω0. It is rather flat for ω0<∼T ,
however then the transport peak is narrower than shown in fig. 6 and correspondingly the

value of the intercept at ω = 0 is larger (the area under the transport peak remains roughly

constant). More quantitatively, values up to ρii/(ωT )<∼ 4.5 can be obtained with χ2/d.o.f.

∼ 1.4 for ω0<∼T ; this corresponds to DT <∼ 1.8. We conclude that the narrowness of the

transport peak at k = 0 poses a formidable challenge which is not solved by our approach.

Finally we remark that in a companion paper [37] different ansätze led to the estimates

ρii/(ωT ) ∼ 0.6...2.1 at T = 1.1Tc and ρii/(ωT ) ∼ 0.6...1.2 at T = 1.3Tc, which are quite

consistent with fig. 6 (note that the normalization of ρii in ref. [37] differs by a factor 2 from

the present paper).

14



0.0 2.0 4.0 6.0 8.0
ω / T

0.0

2.0

4.0

6.0

ρ ii
 / 

ω
T

best estimate from pQCD

polynomial interpolation

AdS/CFT

T = 1.1T
c
, k = 0T

0.0 2.0 4.0 6.0 8.0
ω / T

0.0

2.0

4.0

6.0

ρ ii
 / 

ω
T

best estimate from pQCD

polynomial interpolation

AdS/CFT

T = 1.3T
c
, k = 0T

Figure 6: The spectral functions corresponding to fig. 5 from fits with nmax = 0. The “best estimate

from pQCD” is based on refs. [24, 47, 52], and has been constructed as explained in footnote 4. The

AdS/CFT result comes from ref. [28], and has been rescaled to agree with the non-interacting QCD

result at large ω/T (cf. caption of fig. 3). As discussed in appendix A and illustrated with the arrows,

the intercepts at ω = 0 are lower bounds, and the widths of the transport peaks are upper bounds.
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