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Abstract

Higgs boson mass measurement at ∼ 125 GeV points to a high scale for SUSY specifically the scalar masses. If all

the scalars are heavy, supersymmetric contribution to the leptonic g − 2 moments will be significantly reduced. On

the other hand the Brookhaven experiment indicates a ∼ 3σ deviation from the standard model prediction. Here we

analyze the leptonic g − 2 moments in an extended MSSM model with inclusion of a vector like leptonic generation

which brings in new sources of CP violation. In this work we consider the contributions to the leptonic g−2 moments

arising from the exchange of charginos and neutralinos, sleptons and mirror sleptons, and from the exchange of W

and Z bosons and of leptons and mirror leptons. We focus specifically on the g − 2 moments for the muon and the

electron where sensitive measurements exist. Here it is shown that one can get consistency with the current data on

g − 2 under the Higgs boson mass constraint. Dependence of the moments on CP phases from the extended sector

are analyzed and it is shown that they are sensitively dependent on the phases from the new sector. It is shown that

the corrections to the leptonic moments arising from the extended MSSM sector will be non-vanishing even if the

SUSY scale extends into the PeV region.
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I. 1. INTRODUCTION

The observation by ATLAS [1] and by CMS [2] of the Higgs boson with a mass of ∼ 125 GeV has put very

stringent constraints on low scale supersymmetry. Since the tree level mass of the Higgs boson lies below MZ , a

large loop correction from the supersymmetric sector is needed which in turn implies a high scale for the weak scale

supersymmetry and specifically for the scalar masses. A large SUSY scale also has direct implications for the gµ − 2

of the muon. Thus the current experimental result gives for the muon g − 2 [3]

∆aµ = aexpµ − aSMµ = (26.2± 8.5)× 10−10, (1)

which is about a three sigma deviation from the standard model prediction. Similarly for the electron the experimental

determination of ge − 2 is very accurate and the uncertainty is rather small, i.e., one has [4]

∆ae = aexpe − aSMe = −10.5(8.1)× 10−13. (2)

This result relies on a QED calculation up to four loops. Thus along with Eq. (1), Eq. (2) also acts as a constraint

on the standard model extensions. Supersymmetric theories with low weak scale mass can make corrections to gµ− 2

which could be as large as the standard model electroweak corrections and even larger and have strong CP phase

dependence [5–7] (for early work see [8]). These arise largely from the chargino and sneutrino exchange diagram with

the neutralino and smuon exchange diagram making a relatively small contribution. However, if the scalar masses are

large, the supersymmetric exchange contributions will be small due to the largeness of the sneutrino and the smuon

masses.

In this work we give an analysis of the g − 2 for the muon and for the electron in an extended MSSM model with

a vector like leptonic generation. We note that vector like multiplets are anomaly free and they appear in a variety

of settings which include grand unified models, strings and D brane models [9–13]. Further, it is known that g − 2

has a sharp dependence on CP phases [5–7]. For this reason we investigate also the dependence of the muon and the

electron g− 2 on the CP phases in the extended MSSM model. Here we are particularly interested in the dependence

on the CP phases that arise from the new sector involving vector like leptons. We note that the CP phases are

constrained in this case by the electric dipole moment of the electron which currently has the value |de| < 8.7× 10−29

ecm [34] while the upper limit on the muon EDM is |dµ| < 1.9 × 10−19ecm [3] and is rather weak. As discussed

in several works even with large phases the EDMs can be suppressed either by mass suppression [14, 15] or via the

cancellation mechanism [16, 16–19, 22]. Several analyses of the vector like extensions of MSSM already exist in the

literature [20, 21, 23–32].

The outline of the rest of the paper is as follows: In section 2 we give an analytical computation for the contribution

of the vectorlike lepton generation to g − 2 of the muon and of the electron. In section (3) we give a numerical

analysis of the contributions arising from MSSM and from the extended MSSM with a vector like leptonic generation.

Conclusions are given in section 4. Details of the extended MSSM model with a vector like leptonic generation are

given in the Appendix. The explanation of the muon anomaly with vector like leptons was considered previously in

[30] within a non-supersymmetric framework. Our analysis is within a supersymmetric framework where we carry out

a simultaneous fit to both the muon as well as the electron anomaly. Further, we explore the implications of the CP
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phases arising from the new sector.

II. 2. ANALYSIS OF gµ − 2 AND ge − 2 WITH EXCHANGE OF VECTOR LIKE LEPTONS

The extended MSSM with a vector like leptonic generation is discussed in detail in the Appendix. Using the

formalism described there we compute the contribution to the anomalous magnetic moment of a charged lepton `α.

We discuss now in detail the various contributions. The contribution arising from the exchange of the charginos,

sneutrinos and mirror sneutrinos as shown in the left diagram in Fig. 1 is given by

aχ
+

α = −
2∑
i=1

10∑
j=1

mτα

16π2mχ−i

Re(CLαijC
R∗
αij)F3

(
m2
ν̃j

m2
χ−i

)

+

2∑
i=1

10∑
j=1

m2
τα

96π2m2
χ−i

[
|CLαij |2 + |CRαij |2

]
F4

(
m2
ν̃j

m2
χ−i

)
, (3)

where mχ−i
is the mass of chargino χ−i and mν̃j is the mass of sneutrino ν̃j and where the form factors F3 and F4 are

given by

F3(x) =
1

(x− 1)3
[
3x2 − 4x+ 1− 2x2 lnx

]
, (4)

and

F4(x) =
1

(x− 1)4
[
2x3 + 3x2 − 6x+ 1− 6x2 lnx

]
. (5)

The couplings appearing in Eq. (3) are given by

CLαij =g(−κτU∗i2Dτ∗
R1αD̃

ν
1j − κµU∗i2Dτ∗

R3αD̃
ν
5j − κeU∗i2Dτ∗

R4αD̃
ν
7j

− κ4`U∗i2Dτ∗
R5αD̃

ν
9j + U∗i1D

τ∗
R2αD̃

ν
4j − κNU∗i2Dτ∗

R2αD̃
ν
2j),

(6)

CRαij =g(−κντVi2Dτ∗
L1αD̃

ν
3j − κνµVi2Dτ∗

L3αD̃
ν
6j − κνeVi2Dτ∗

L4αD̃
ν
8j + Vi1D

τ∗
L1αD̃

ν
1j + Vi1D

τ∗
L3αD̃

ν
5j

− κν4Vi2Dτ∗
L5αD̃

ν
10j + Vi1D

τ∗
L4αD̃

ν
7j − κEVi2Dτ∗

L2αD̃
ν
4j),

(7)

where Dτ
L,R and D̃ν are the charged lepton and sneutrino diagonalizing matrices and are defined by Eq. (47) and

Eq.(57) and U and V are the matrices that diagonalize the chargino mass matrix MC so that [33]

U∗MCV
−1 = diag(mχ±1

mχ±2
) . (8)

Further,

(κN , κτ , κµ, κe, κ4`) =
(mN ,mτ ,mµ,me,m4`)√

2mW cosβ
, (9)

(κE , κντ , κνµ , κνe , κν4) =
(mE ,mντ ,mνµ ,mνe ,mν4)√

2mW sinβ
, (10)
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FIG. 1: The diagrams that contribute to the leptonic (τα) magnetic dipole moment via exchange of charginos (χ−i ), sneutrinos
and mirror sneutrinos (ν̃j) (left diagram) inside the loop and from the exchange of neutralinos (χ0

i ), sleptons and mirror sleptons
(τ̃j) (right diagram) inside the loop.

FIG. 2: The W loop (the left diagram) involving the exchange of sequential and vectorlike neutrinos ψi and the Z loop (the
right diagram) involving the exchange of sequential and vectorlike charged leptons τβ that contribute to the magnetic dipole
moment of the charged lepton τα.

where mW is the mass of the W boson and tanβ =< H2
2 > / < H1

1 > where H1, H2 are the two Higgs doublets of

MSSM.

The contribution arising from the exchange of neutralinos, charged sleptons and charged mirror sleptons as shown

in the right diagram in Fig. 1 is given by

aχ
0

α =

4∑
i=1

10∑
j=1

mτα

16π2mχ0
i

Re(C
′L
αijC

′R∗
αij )F1

(
m2
τ̃j

m2
χ0
i

)

+

4∑
i=1

10∑
j=1

m2
τα

96π2m2
χ0
i

[
|C ′Lαij |2 + |C ′Rαij |2

]
F2

(
m2
τ̃j

m2
χ0
i

)
, (11)

where the form factors are

F1(x) =
1

(x− 1)3
[
1− x2 + 2x lnx

]
, (12)

and

F2(x) =
1

(x− 1)4
[
−x3 + 6x2 − 3x− 2− 6x lnx

]
. (13)

The couplings that enter in Eq. 11 are given by

C
′L
αij =

√
2(ατiD

τ∗
R1αD̃

τ
1j − δEiDτ∗

R2αD̃
τ
2j − γτiDτ∗

R1αD̃
τ
3j + βEiD

τ∗
R2αD̃

τ
4j + αµiD

τ∗
R3αD̃

τ
5j − γµiDτ∗

R3αD̃
τ
6j

+ αeiD
τ∗
R4αD̃

τ
7j − γeiDτ∗

R4αD̃
τ
8j + α4`iD

τ∗
R5αD̃

τ
9j − γ4`iDτ∗

R5αD̃
τ
10j), (14)
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C
′R
αij =

√
2(βτiD

τ∗
L1αD̃

τ
1j − γEiDτ∗

L2αD̃
τ
2j − δτiDτ∗

L1αD̃
τ
3j + αEiD

τ∗
L2αD̃

τ
4j + βµiD

τ∗
L3αD̃

τ
5j − δµiDτ∗

L3αD̃
τ
6j

+ βeiD
τ∗
L4αD̃

τ
7j − δeiDτ∗

L4αD̃
τ
8j + β4`iD

τ∗
L5αD̃

τ
9j − δ4`iDτ∗

L5αD̃
τ
10j), (15)

where

αEi =
gmEX

∗
4i

2mW sinβ
; βEi = eX ′1i +

g

cos θW
X ′2i

(
1

2
− sin2 θW

)
(16)

γEi = eX
′∗
1i −

g sin2 θW
cos θW

X
′∗
2i ; δEi = − gmEX4i

2mW sinβ
, (17)

and

ατi =
gmτX3i

2mW cosβ
; αµi =

gmµX3i

2mW cosβ
; αei =

gmeX3i

2mW cosβ
; α4`i =

gm4`X3i

2mW cosβ
(18)

δτi = − gmτX
∗
3i

2mW cosβ
; δµi = − gmµX

∗
3i

2mW cosβ
; δei = − gmeX

∗
3i

2mW cosβ
; δ4`i = − gm4`X

∗
3i

2mW cosβ
, (19)

and where

βτi = βµi = βei = β4`i = −eX ′∗1i +
g

cos θW
X
′∗
2i

(
−1

2
+ sin2 θW

)
, (20)

γτi = γµi = γei = γ4`i = −eX ′1i +
g sin2 θW
cos θW

X ′2i. (21)

Here X ′ are defined by

X ′1i = X1i cos θW +X2i sin θW , (22)

X ′2i = −X1i sin θW +X2i cos θW , (23)

where X diagonalizes the neutralino mass matrix, i.e.,

XTMχ0X = diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
). (24)

Further, D̃τ that enter in Eqs. (14) and (15) is a matrix which diagonalizes the charged slepton mass squared matrix

and is defined in Eq. (53).

Next we compute the contribution from the exchange of the W and Z bosons. Thus the exchange of the W and

the exchange of neutrinos and mirror neutrinos as shown in the left diagram of Fig. 2 gives

aWτα =
m2
τα

16π2m2
W

5∑
i=1

[|CWLiα|2 + |CWRiα|2]FW

(
m2
ψi

m2
W

)
+
mψi

mτα

Re(CWLiαC
W∗
Riα)GW

(
m2
ψi

m2
W

)
, (25)

where the form factors are given by

FW (x) =
1

6(x− 1)4
[
4x4 − 49x3 + 18x3 lnx+ 78x2 − 43x+ 10

]
, (26)

and

GW (x) =
1

(x− 1)3
[
4− 15x+ 12x2 − x3 − 6x2 lnx

]
. (27)
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The couplings that enter in Eq. (25) are given by

CWLiα =
g√
2

[Dν∗
L1iD

τ
L1α +Dν∗

L3iD
τ
L3α +Dν∗

L4iD
τ
L4α +Dν∗

L5iD
τ
L5α], (28)

CWRiα =
g√
2

[Dν∗
R2iD

τ
R2α]. (29)

Here Dν
L,R are matrices of a bi-unitary transformation that diagonalizes the neutrino mass matrix and are defined in

Eq. (43).

Finally the exchange of the Z and the exchange of leptons and mirror leptons as shown in the right diagram of Fig.

2 gives

aZτα =
m2
τα

32π2m2
Z

5∑
β=1

[|CZLβα|2 + |CZRβα|2]FZ

(
m2
τβ

m2
Z

)
+
mτβ

mτα

Re(CZLβαC
Z∗
Rβα)GZ

(
m2
τβ

m2
Z

)
, (30)

where

FZ(x) =
1

3(x− 1)4
[
−5x4 + 14x3 − 39x2 + 18x2 lnx+ 38x− 8

]
, (31)

and

GZ(x) =
2

(x− 1)3
[
x3 + 3x− 6x lnx− 4

]
, (32)

and mZ is the Z boson mass. The couplings that enter in Eq. (30) are given by

CZLαβ =
g

cos θW
[x(Dτ†

Lα1D
τ
L1β +Dτ†

Lα2D
τ
L2β +Dτ†

Lα3D
τ
L3β +Dτ†

Lα4D
τ
L4β +Dτ†

Lα5D
τ
L5β)

−1

2
(Dτ†

Lα1D
τ
L1β +Dτ†

Lα3D
τ
L3β +Dτ†

Lα4D
τ
L4β +Dτ†

Lα5D
τ
L5β)], (33)

and

CZRαβ =
g

cos θW
[x(Dτ†

Rα1D
τ
R1β +Dτ†

Rα2D
τ
R2β +Dτ†

Rα3D
τ
R3β +Dτ†

Rα4D
τ
R4β +Dτ†

Rα5D
τ
R5β)

−1

2
(Dτ†

Rα2D
τ
R2β)] . (34)

III. 3. ESTIMATES OF ∆aµ AND ∆ae

We begin by discussing the prediction for ∆aµ and ∆ae for MSSM when the scalar masses are large lying in the

several TeV region. In Tables I and II we exhibit the results for two benchmark points where we assume universality

and take the scalar masses and the trilinear couplings to be all equal. Table I exhibits the result of the computation

for ∆aµ where individual contributions arising from the chargino exchange, neutralino exchange, W exchange and Z

exchange are listed. The entries exhibit the contributions over and above what one expects from the standard model

and so the entries for the W and Z exchanges show a null value. Thus the entire contribution in this case arises from

the chargino and the neutralino exchange and their sum gives a value O(10−11) which is two orders of magnitude

smaller than the experimental result of Eq. (1). A very similar analysis is given in Table II for ∆ae where again the
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contribution to ∆ae arises from the exchange of charginos and neutralinos and their sum is O(10−16) which is three

orders of magnitude smaller than the result of Eq. (2). Thus with a high scale of the scalar masses one cannot explain

the results of Eq. (1) and Eq. (2).

We turn now to the analysis within the extended MSSM with a vector like leptonic generation. As in the analysis

within MSSM here also we assume the universality of the soft parameters so that we set m2
0 = M̃2

τL = M̃2
E = M̃2

τ =

M̃2
χ = M̃2

µL = M̃2
µ = M̃2

eL = M̃2
e = M̃2

4L = M̃2
4 and A0 = Aτ = AE = Aµ = Ae = A4` in the computation of the

charged slepton mass squared matrix. Similarly we assume mν̃2

0 = M̃2
N = M̃2

ντ = M̃2
νµ = M̃2

νe = M̃2
4L = M̃2

ν4 and

Aντ = Aνµ = Aνe = AN = A4ν = Aν̃0 for the computation of the sneutrino mass squared matrix (see Appendix).

The contributions from the chargino exchange, the neutralino exchange, and the W and Z exchange are listed in

Table I and Table II for two benchmark points. In this case the W boson and the Z boson exchange contributions

are non-vanishing and the contributions listed are those over and above what one expects in the standard model. As

in the MSSM case here also one finds that the contributions from the chargino exchange and from the neutralino

exchange fall significantly below the experimental results of Eq. (1) and Eq. (2). However, in this case including the

contributions from the W exchange and from the Z boson exchange one finds that consistency with Eq. (1) and Eq.

(2) is achieved. At the same time one has the Higgs boson mass in the model for both benchmarks (a) and (b) at

∼ 125 GeV consistent with the experimental measurements by ATLAS [1] and by CMS [2]. Here the loop correction

that gives mass to the Higgs boson comes from the MSSM sector while the extra vector like leptonic generation makes

a negligible contribution.

In the analysis of ∆aµ and ∆ae the exchange of both the sequential leptons and the mirrors play a role with

the mirror exchange being the more dominant. The analysis requires diagonalization of a 5 × 5 mass matrix in

the charged lepton-charged mirror lepton sector and diagonalization of a 5 × 5 mass matrix in the neutrino-mirror

neutrino sector. Parameter choices are made to ensure that the eigenvalues in the charged lepton sector give the

desired experimental values for e, µ and τ along with two additional masses, one for the sequential fourth generation

lepton and the other for the mirror charged lepton. Their values are listed in Table III for the case of two benchmark

points (a) and (b). A similar analysis holds for the neutrino-mirror neutrino sector where we get two additional

eigenvalues, one for the fourth generation neutrino and the other for the mirror neutrino. Their values are also listed

in Table III for two benchmark points. The analysis also requires diagonalization of a 10× 10 matrix in the charged

slepton and charged mirror slepton sector, as well as diagonalization of a 10 × 10 matrix in the sneutrino and the

mirror sneutrino sector.
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(a) (b)
Contribution MSSM Vectorlike MSSM Vectorlike

Chargino aχ
±
µ +1.68× 10−11 +1.07× 10−11 +1.68× 10−11 −8.54× 10−11

Neutralino aχ
0

µ −3.09× 10−13 −1.50× 10−12 −3.09× 10−13 −6.58× 10−13

W Boson aWµ 0 +1.53× 10−9 0 +2.56× 10−9

Z Boson aZµ 0 +5.12× 10−10 0 +8.76× 10−10

Total ∆aµ +1.65× 10−11 +2.05× 10−9 +1.65× 10−11 +3.35× 10−9

TABLE I: The contribution of the vectorlike multiplet vs the contribution from the MSSM sector to the anomalous magnetic
moments of the muon for two illustrative benchmark points (a) and (b). They are: (a) mN = 5, m4` = 450, |f ′3| = 0.62,
|f ′′3 | = 6.62× 10−3, |f ′4| = 20, |h6| = 230, |h8| = 730 and (b) mN = 200, m4` = 250, |f ′3| = 0.73, |f ′′3 | = 5.23× 10−3, |f ′4| = 30,
|h6| = 66, |h8| = 180 . Other parameters have the values tanβ = 15, m0 = mν̃

0 = 5000, |Aν̃0 | = |A0| = 6000, |m1| = 224,
|m2| = 407, |µ| = 2124, mE = 320, mν4 = 350, mh0 = 124.66, |f3| = 1 × 10−4, |f4| = 1 × 10−5, |f ′′4 | = 38, |f5| = 1 × 10−4,
|f ′5| = 5.0× 10−4, |f ′′5 | = 3.0× 10−3, |h7| = 34, αA0 = π, αAν̃0

= π, ξ1 = ξ2 = θµ = χ3 = χ′3 = χ′′3 = χ4 = χ′4 = χ′′4 = χ5 = χ′5 =

χ′′5 = χ6 = χ7 = χ8 = 0. For the MSSM analysis the following parameters were used for both cases (a) and (b): The scalar
masses are taken to be universal with m0 = 5000 and the trilinear coupling is taken to be universal A0 = −6000. Other inputs
are: χ±1 = 439, χ0

1 = 223, χ±2 = 2144, χ0
2 = 439, −χ0

3 = 2142, χ0
4 = 2143, µ = 2124. All masses are in GeV and phases in rad.

(a) (b)
Contribution MSSM Vectorlike MSSM Vectorlike

Chargino aχ
±
e +3.92× 10−16 −2.88× 10−16 +3.92× 10−16 −6.31× 10−15

Neutralino aχ
0

e −7.25× 10−18 −1.69× 10−16 −7.25× 10−18 −3.12× 10−17

W Boson aWe 0 +1.99× 10−13 0 +1.71× 10−13

Z Boson aZe 0 +5.89× 10−14 0 +5.11× 10−14

Total ∆ae +3.85× 10−16 +2.58× 10−13 +3.85× 10−16 +2.16× 10−13

TABLE II: The contribution of the vectorlike multiplet vs the contribution from the MSSM sector to the anomalous magnetic
moments of the electron for two illustrative benchmark points (a) and (b) as given in table I.

Mass Spectrum (GeV)
Particles (a) (b)
Mirror Neutrino 208 207
Fourth Sequential Neutrino 816 395
Mirror Lepton 253 349
Fourth Sequential Lepton 545 226

TABLE III: The mass of the heavy particles obtained after diagonalizing the lepton and neutrino mass matrices for benchmark
points (a) and (b) of Table I.

We discuss now some further features of the analysis which includes the vector like leptonic generation. In Figure 3

we show the variation of ∆aµ as a function of mE the mass of the mirror lepton as given by Eq. (45), for four tanβ

values. A remarkable feature of this graph is the dependence on tanβ it exhibits. Notice that for a fixed mE , ∆aµ

decreases for increasing values of tanβ as tanβ varies from 20 to 35. Now we recall that the Yukawa coupling of

a charged lepton has a 1/ cosβ dependence and as a consequence the contribution of the charged lepton to ∆aµ

becomes larger for larger tanβ which is a well known result. However, the Yukawa coupling of the mirror lepton goes

like 1/ sinβ [9] and so ∆aµ decreases for larger values of tanβ. This feature explains the tanβ dependence in Figure

3. It also shows that the W and Z exchange contributions in this case are being controlled by exchange of the mirror

particles. A very similar dependence on tanβ is exhibited by ∆ae.
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The anomalous magnetic moments are quite sensitive to CP phases as first demonstrated in the analysis of [5–7] for

the case of CP phases that arise in N = 1 supergravity [5, 7] and more generally for the case of MSSM [6]. In those

analyses it was also found that large CP phases could be made consistent with the experimental constraints on the

EDMs by the cancellation mechanism [16–19, 22]. In the present analysis the contribution from the MSSM sector is

suppressed and the dominant contribution arises from the W and Z exchanges. For the case of three generations this

sector does not have any CP phases in the leptonic sector. However, the extended MSSM with a vector like leptonic

multiplet allows for CP phases which cannot be removed by field redefinitions. It is of interest then to discuss the

dependence of ∆aµ and ∆ae on the CP phases that arise in the extended MSSM. We discuss now the dependence of

∆aµ and ∆ae on such phases. In Fig. (4) we exhibit the dependence of ∆aµ and ∆ae on χ′3, which is the phase of

f ′3 (see Appendix). A sharp dependence on χ′3 is seen for both ∆aµ and for ∆ae. A very similar sensitivity to the

CP phase χ6 which is the phase of h6 (see Appendix) is exhibited in Fig. (5). To explore further the sensitivity of

∆aµ and of ∆ae to parameters in the vector like sector we exhibit in Fig. (6) the dependence of ∆aµ and ∆ae on h6

which is the co-efficient of the term εijχ̂
ciψ̂j4L in the superpotential (see Eq. (37)). One can see in Fig. (6) the strong

dependence of ∆aµ and ∆ae on h6. In the analyses given so far both ∆aµ and ∆ae have very significant dependence

on the parameters arising from inclusion of the vector like sector. However, there are parameters which affect ∆ae

and ∆aµ differently. This is the case for |f ′′3 |. Here as seen in the left panel of Fig. (7) ∆ae is a sensitive function of

|f ′′3 | but not so for the case for ∆aµ (not exhibited) because of its much larger size. Finally we note that even if the

SUSY scale lies in the PeV region, the contributions from the W and Z exchange arising from Fig. (2) survive while

the diagrams of Fig. (1) give a vanishingly small contribution. This is illustrated in the right panel of Fig. (7).
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FIG. 3: ∆aµ as a function of mE when tanβ = 20, 25, 30, 35. Other parameters are m0 = mν̃
0 = 5000, |Aν̃0 | = |A0| = 6000,

|m1| = 224, |m2| = 407, |µ| = 2124, m4` = 250, mN = 300, mν4 = 350, mh0 = 124.66, |f3| = 1 × 10−5, |f ′3| = 8.18,
|f ′′3 | = 4.32 × 10−2, |f4| = 1 × 10−3, |f ′4| = 3.61, |f ′′4 | = 3.85, |f5| = 1 × 10−4, |f ′5| = 5.0 × 10−4, |f ′′5 | = 3.0 × 10−6, |h6| = 10,
|h7| = 19, |h8| = 10, αA0 = π, αAν̃0

= π, ξ1 = ξ2 = θµ = χ3 = χ′3 = χ′′3 = χ4 = χ′4 = χ′′4 = χ5 = χ′5 = χ′′5 = χ6 = χ7 = χ8 = 0.

All masses are in GeV and phases in rad.
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FIG. 4: ∆aµ (left panel) and ∆ae (right panel) as a function of χ′3 in the range [−π,+π] when χ′4 = −3.14,−2.14,+0.36,+2.26.
Other parameters are tanβ = 15, m0 = mν̃

0 = 5000, |Aν̃0 | = |A0| = 6000, |m1| = 224, |m2| = 407, |µ| = 2124, mN = 5,
mν4 = 350, mE = 320, m4` = 450, mh0 = 124.66, |f3| = 1 × 10−4, |f ′3| = 0.62, |f ′′3 | = 6.62 × 10−3, |f4| = 1 × 10−5, |f ′4| = 20,
|f ′′4 | = 38, |f5| = 1 × 10−4, |f ′5| = 5.0 × 10−4, |f ′′5 | = 3.0 × 10−6, |h6| = 230, |h7| = 34, |h8| = 730, αA0 = π, αAν̃0

= π,

ξ1 = ξ2 = θµ = χ3 = χ′′3 = χ4 = χ′′4 = χ5 = χ′5 = χ′′5 = χ6 = χ7 = χ8 = 0. All masses are in GeV and phases in rad.

χ6 (rad)

M
u
o
n
A
M
M
,
∆
a
µ

 

 

−3 −2 −1 0 1 2 3

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−9

|f ′
4| = 20 GeV

|f ′
4| = 25 GeV

|f ′
4| = 30 GeV

|f ′
4| = 35 GeV

χ6 (rad)

E
le
ct
ro
n
A
M
M
,
∆
a
e

 

 

−3 −2 −1 0 1 2 3

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

x 10
−13

|f ′
4| = 20 GeV

|f ′
4| = 25 GeV

|f ′
4| = 30 GeV

|f ′
4| = 35 GeV

FIG. 5: ∆aµ (left panel) and ∆ae (right panel) as a function of χ6 in the range [−π,+π] when |f ′4| = 20, 25, 30, 35. Other
parameters are tanβ = 15, m0 = mν̃

0 = 5000, |Aν̃0 | = |A0| = 6000, |m1| = 224, |m2| = 407, |µ| = 2124, mN = 5, mν4 = 350,
mE = 320, m4` = 450, mh0 = 124.66, |f3| = 1 × 10−4, |f ′3| = 0.627, |f ′′3 | = 6.605 × 10−3, |f4| = 1 × 10−3, |f ′′4 | = 38,
|f5| = 1 × 10−4, |f ′5| = 5.0 × 10−4, |f ′′5 | = 3.0 × 10−6, |h6| = 230, |h7| = 34, |h8| = 730, αA0 = π, αAν̃0

= π, ξ1 = ξ2 = θµ =

χ3 = χ4 = χ5 = χ′5 = χ′′5 = 0, χ′3 = 2.96, χ′′3 = −1.54, χ′4 = 2.86, χ′′4 = 1.46, χ7 = −2.94, χ8 = 0.6. All masses are in GeV and
phases in rad.
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FIG. 6: ∆aµ (left panel) and ∆ae (right panel) as a function of |h6| when mN = 100, 150, 200, 250. Other parameters are
tanβ = 15, m0 = mν̃

0 = 5000, |Aν̃0 | = |A0| = 6000, |m1| = 224, |m2| = 407, |µ| = 2124, mν4 = 350, mE = 320, m4` = 250,
mh0 = 124.66, |f3| = 1 × 10−5, |f ′3| = 0.73, |f ′′3 | = 5.23 × 10−3, |f4| = 1 × 10−3, |f ′4| = 20, |f ′′4 | = 38, |f5| = 1 × 10−4,
|f ′5| = 5.0 × 10−4, |f ′′5 | = 3.0 × 10−6, |h7| = 34, |h8| = 180, αA0 = π, αAν̃0

= π, ξ1 = ξ2 = θµ = χ3 = χ4 = χ5 = χ′5 = χ′′5 = 0,

χ′3 = 2.96, χ′′3 = −1.54, χ′4 = 2.86, χ′′4 = 1.46, χ6 = 3.06, χ7 = −2.94, χ8 = 0.6. All masses are in GeV and phases in rad.
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FIG. 7: Left panel: Variation of ∆ae as a function of |f ′′3 | for four values of |h7| when |h7| = 50, 100, 200, 300. Other parameters
are tanβ = 15, m0 = mν̃

0 = 5000, |Aν̃0 | = |A0| = 6000, |m1| = 224, |m2| = 407, |µ| = 2124, mN = 200, mν4 = 350, mE = 320,
m4` = 250, mh0 = 124.66, |f3| = 1× 10−5, |f ′3| = 0.73, |f4| = 1× 10−3, |f ′4| = 20, |f ′′4 | = 38, |f5| = 1× 10−4, |f ′5| = 5.0× 10−4,
|f ′′5 | = 3.0 × 10−6, |h6| = 66, |h8| = 180, αA0 = π, αAν̃0

= π, ξ1 = ξ2 = θµ = χ3 = χ4 = χ5 = χ′5 = χ′′5 = 0, χ′3 = 2.96,

χ′′3 = −1.54, χ′4 = 2.86, χ′′4 = 1.46, χ6 = 3.06, χ7 = −2.94, χ8 = 0.6. All masses are in GeV and phases in rad. Right panel:
A plot of ∆aµ as a function of the common scalar mass m0 exhibiting a residual correction ∆aµ even when m0 lies in the PeV
region. The parameters used in the plot are for benchmark (a) in Table (I).

IV. 4. CONCLUSION

The Higgs boson mass measurement at 126 GeV indicates a high SUSY scale, and specifically a high scale for

the scalar masses. If the scalar masses are all heavy, the contribution to the leptonic moments and specifically to

∆a` = aexp` − aSM` becomes negligible in this case. In this work we have investigated leptonic g − 2 moments within

an extended MSSM model with an extra vector like generation and CP phase dependent couplings. It is found that

one can achieve consistency with the experimental measurements of ∆aµ and ∆ae under the constraint of the Higgs

boson mass. The dependence of the moments on CP phases from the new sector are also investigated and shown to

have a very sensitive dependence. Further, it is shown that ∆aµ and ∆ae will be non-vanishing even when the SUSY

scale lies in the PeV region. The model presented here can be made UV complete by including a full generation of
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vector like matter including both quarks and leptons. Finally we note that the work presented here has some overlap

with [35] which appeared after this work was finished. For another recent work on this topic see [36].

Acknowledgments: This research was supported in part by the NSF Grant PHY-1314774.

V. APPENDIX ON THE EXTENDED MSSM WITH A VECTOR LIKE LEPTONIC GENERATION

In this Appendix we define the notation for the vector generation and their properties under SU(3)C × SU(2)L ×
U(1)Y . For the four sequential families we use the notation

ψiL ≡
(
νiL
`iL

)
∼ (1, 2,−1

2
), `ciL ∼ (1, 1, 1), νciL ∼ (1, 1, 0), (35)

where the last entry on the right hand side of each ∼ is the value of the hypercharge Y defined so that Q = T3 + Y

and we have included in our analysis the singlet field νci , where i runs from 1− 4. For the mirrors we use the notation

χc ≡
(
EcµL
N c
L

)
∼ (1, 2,

1

2
), EµL ∼ (1, 1,−1), NL ∼ (1, 1, 0). (36)

The main difference between the leptons and the mirrors is that while the leptons have V − A type interactions

with SU(2)L × U(1)Y gauge bosons the mirrors have V + A type interactions. In the analysis we assume R parity

conservation. All of the neutral scalar fields in the new sector carry odd R parity and giving them a VEV will violate

R parity conservation. For that reason only the Higgs fields are given VEVs. Further, in MSSM one can make field

redefinitions to make the VEVs of both of the neutral Higgs fields to be real. One of these can become complex at the

loop level leading to mixing of CP even-CP odd neutral Higgs. The induced phases are, however, small. An analysis

including the CP even-CP odd Higgs mixing requires a separate treatment (see, e.g., [32]). We do not include loop

induced CP phases in our analysis. Their effects of the analysis would in any case be negligible.

We assume that the mirrors of the vector like generation escape acquiring mass at the GUT scale and remain light

down to the electroweak scale where the superpotential of the model for the lepton part may be written in the form

W = −µεijĤi
1Ĥ

j
2 + εij [f1Ĥ

i
1ψ̂

j
Lτ̂

c
L + f ′1Ĥ

j
2 ψ̂

i
Lν̂

c
τL + f2Ĥ

i
1χ̂

cjN̂L + f ′2Ĥ
j
2 χ̂

ciÊL

+ h1Ĥ
i
1ψ̂

j
µLµ̂

c
L + h′1Ĥ

j
2 ψ̂

i
µLν̂

c
µL + h2Ĥ

i
1ψ̂

j
eLê

c
L + h′2Ĥ

j
2 ψ̂

i
eLν̂

c
eL + y5Ĥ

i
1ψ̂

j
4L

ˆ̀c
4L + y′5Ĥ

j
2 ψ̂

i
4Lν̂

c
4L]

+ f3εijχ̂
ciψ̂jL + f ′3εijχ̂

ciψ̂jµL + f4τ̂
c
LÊL + f5ν̂

c
τLN̂L + f ′4µ̂

c
LÊL + f ′5ν̂

c
µLN̂L

+ f ′′3 εijχ̂
ciψ̂jeLx+ f ′′4 ê

c
LÊL + f ′′5 ν̂

c
eLN̂L + h6εijχ̂

ciψ̂j4L + h7 ˆ̀c
4LÊL + h8ν̂

c
4LN̂L, (37)

where ˆ implies superfields, ψ̂L stands for ψ̂3L, ψ̂µL stands for ψ̂2L and ψ̂eL stands for ψ̂1L.

The mass terms for the neutrinos, mirror neutrinos, leptons and mirror leptons arise from the term

L = −1

2

∂2W

∂Ai∂Aj
ψiψj + H.c., (38)

where ψ and A stand for generic two-component fermion and scalar fields. After spontaneous breaking of the elec-

troweak symmetry, (〈H1
1 〉 = v1/

√
2 and 〈H2

2 〉 = v2/
√

2), we have the following set of mass terms written in the
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4-component spinor notation so that

−Lm = ξ̄TR(Mf )ξL + η̄TR(M`)ηL + H.c., (39)

where the basis vectors in which the mass matrix is written is given by

ξ̄TR =
(
ν̄τR N̄R ν̄µR ν̄eR ν̄4R

)
,

ξTL =
(
ντL NL νµL νeL ν4L

)
,

η̄TR =
(
τ̄R ĒR µ̄R ēR ¯̀

4R

)
,

ηTL =
(
τL EL µL eL `4L

)
, (40)

and the mass matrix Mf of neutrinos is given by

Mf =


f ′1v2/

√
2 f5 0 0 0

−f3 f2v1/
√

2 −f ′3 −f ′′3 −h6
0 f ′5 h′1v2/

√
2 0 0

0 f ′′5 0 h′2v2/
√

2 0

0 h8 0 0 y′5v2/
√

2

 . (41)

We define the matrix element (22) of the mass matrix as mN so that

mN = f2v1/
√

2. (42)

The mass matrix is not hermitian and thus one needs bi-unitary transformations to diagonalize it. We define the

bi-unitary transformation so that

Dν†
R (Mf )Dν

L = diag(mψ1
,mψ2

,mψ3
,mψ4

,mψ5
). (43)

where ψ1, ψ2, ψ3, ψ4, ψ5 are the mass eigenstates for the neutrinos. In the limit of no mixing we identify ψ1 as the

light tau neutrino, ψ2 as the heavier mass mirror eigen state, ψ3 as the muon neutrino, ψ4 as the electron neutrino

and ψ5 as the other heavy 4-sequential generation neutrino. A similar analysis goes to the lepton mass matrix M`

where

M` =


f1v1/

√
2 f4 0 0 0

f3 f ′2v2/
√

2 f ′3 f ′′3 h6
0 f ′4 h1v1/

√
2 0 0

0 f ′′4 0 h2v1/
√

2 0

0 h7 0 0 y5v1/
√

2

 . (44)

We introduce now the mass parameter mE for the (22) element of the mass matrix above so that

mE = f ′2v2/
√

2. (45)

CP phases that arise from the new sector are defined so that

fi = |fi|eiχi , f ′i = |f ′i |eiχ
′
i , f

′′

i = |f ′′i |eiχ
′′
i (i = 3, 4, 5)

hk = |hk|eiχk , k = 6, 7, 8 . (46)
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As in the neutrino mass matrix case, the charged slepton mass matrix is not hermitian and thus one needs again a

bi-unitary transformations to diagonalize it. We define the bi-unitary transformation so that

Dτ†
R (M`)D

τ
L = diag(mτ1 ,mτ2 ,mτ3 ,mτ4 ,mτ5), (47)

where τα (α = 1− 5) are the mass eigenstates for the charged lepton matrix.

The mass squared matrices of the slepton-mirror slepton and sneutrino-mirror sneutrino sectors come from three

sources: the F term, the D term of the potential and the soft SUSY breaking terms. After spontaneous breaking of

the electroweak symmetry the Lagrangian is given by

L = LF + LD + Lsoft , (48)

where LF is deduced from −LF = FiF
∗
i , while the LD is given by

−LD =
1

2
m2
Z cos2 θW cos 2β{ν̃τLν̃∗τL − τ̃Lτ̃∗L + ν̃µLν̃

∗
µL − µ̃Lµ̃∗L + ν̃eLν̃

∗
eL − ẽLẽ∗L

+ ẼRẼ
∗
R − ÑRÑ∗R + ν̃4Lν̃

∗
4L − ˜̀

4L
˜̀∗
4L}+

1

2
m2
Z sin2 θW cos 2β{ν̃τLν̃∗τL + τ̃Lτ̃

∗
L + ν̃µLν̃

∗
µL + µ̃Lµ̃

∗
L

+ ν̃eLν̃
∗
eL + ẽLẽ

∗
L + ν̃4Lν̃

∗
4L + ˜̀

4L
˜̀∗
4L

− ẼRẼ∗R − ÑRÑ∗R + 2ẼLẼ
∗
L − 2τ̃Rτ̃

∗
R − 2µ̃Rµ̃

∗
R − 2ẽRẽ

∗
R − 2˜̀

4R
˜̀∗
4R}. (49)

For Lsoft we assume the following form

−Lsoft = M̃2
τLψ̃

i∗
τLψ̃

i
τL + M̃2

χχ̃
ci∗χ̃ci + M̃2

µLψ̃
i∗
µLψ̃

i
µL

+ M̃2
eLψ̃

i∗
eLψ̃

i
eL + M̃2

ντ ν̃
c∗
τLν̃

c
τL + M̃2

νµ ν̃
c∗
µLν̃

c
µL

+ M̃2
4Lψ̃

i∗
4Lψ̃

i
4L + M̃2

ν4 ν̃
c∗
4Lν̃

c
4L + M̃2

νe ν̃
c∗
eLν̃

c
eL + M̃2

τ τ̃
c∗
L τ̃

c
L + M̃2

µµ̃
c∗
L µ̃

c
L

+ M̃2
e ẽ
c∗
L ẽ

c
L + M̃2

EẼ
∗
LẼL + M̃2

N Ñ
∗
LÑL + M̃2

4
˜̀c∗
4L

˜̀c
4L

+ εij{f1AτHi
1ψ̃

j
τLτ̃

c
L − f ′1AντHi

2ψ̃
j
τLν̃

c
τL + h1AµH

i
1ψ̃

j
µLµ̃

c
L − h′1AνµHi

2ψ̃
j
µLν̃

c
µL

+ h2AeH
i
1ψ̃

j
eLẽ

c
L − h′2AνeHi

2ψ̃
j
eLν̃

c
eL + f2ANH

i
1χ̃

cjÑL − f ′2AEHi
2χ̃

cjẼL

+ y5A4`H
i
1ψ̃

j
4L

˜̀c
4L − y′5A4νH

i
2ψ̃

j
4Lν̃

c
4L + H.c.} . (50)

We define the scalar mass squared matrix M2
τ̃ in the basis

(τ̃L, ẼL, τ̃R, ẼR, µ̃L, µ̃R, ẽL, ẽR, ˜̀
4L, ˜̀

4R). (51)
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We label the matrix elements of these as (M2
τ̃ )ij = M2

ij where the elements of the matrix are given by

M2
11 = M̃2

τL +
v21 |f1|2

2
+ |f3|2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
22 = M̃2

E +
v22 |f ′2|2

2
+ |f4|2 + |f ′4|2 + |f ′′4 |2 + |h7|2 +m2

Z cos 2β sin2 θW ,

M2
33 = M̃2

τ +
v21 |f1|2

2
+ |f4|2 −m2

Z cos 2β sin2 θW ,

M2
44 = M̃2

χ +
v22 |f ′2|2

2
+ |f3|2 + |f ′3|2 + |f ′′3 |2 + |h6|2 +m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
55 = M̃2

µL +
v21 |h1|2

2
+ |f ′3|2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
66 = M̃2

µ +
v21 |h1|2

2
+ |f ′4|2 −m2

Z cos 2β sin2 θW ,
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M2
77 = M̃2

eL +
v21 |h2|2

2
+ |f ′′3 |2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
88 = M̃2

e +
v21 |h2|2

2
+ |f ′′4 |2 −m2

Z cos 2β sin2 θW ,

M2
99 = M̃2

4L +
v21 |y5|2

2
+ |h6|2 −m2

Z cos 2β

(
1

2
− sin2 θW

)
,

M2
1010 = M̃2

4 +
v21 |y5|2

2
+ |h7|2 −m2

Z cos 2β sin2 θW ,

M2
12 = M2∗

21 =
v2f
′
2f
∗
3√

2
+
v1f4f

∗
1√

2
,

M2
13 = M2∗

31 =
f∗1√

2
(v1A

∗
τ − µv2),

M2
14 = M2∗

41 = 0,M2
15 = M2∗

51 = f ′3f
∗
3 ,

M2
16 = M2∗

61 = 0,M2
17 = M2∗

71 = f ′′3 f
∗
3 ,M

2
18 = M2∗

81 = 0,M2
23 = M2∗

32 = 0,

M2
24 = M2∗

42 =
f ′∗2√

2
(v2A

∗
E − µv1),M2

25 = M2∗
52 =

v2f
′
3f
′∗
2√

2
+
v1h1f

∗
4√

2
,

M2
26 = M2∗

62 = 0,M2
27 = M2∗

72 =
v2f
′′
3 f
′∗
2√

2
+
v1h1f

′∗
4√

2
,M2

28 = M2∗
82 = 0,

M2
34 = M2∗

43 =
v2f4f

′∗
2√

2
+
v1f1f

∗
3√

2
,M2

35 = M2∗
53 = 0,M2

36 = M2∗
63 = f4f

′∗
4 ,

M2
37 = M2∗

73 = 0,M2
38 = M2∗

83 = f4f
′′∗
4 ,M2

45 = M2∗
54 = 0,M2

46 = M2∗
64 =

v2f
′
2f
′∗
4√

2
+
v1f
′
3h
∗
1√

2
,

M2
47 = M2∗

74 = 0,M2
48 = M2∗

84 =
v2f
′
2f
′′∗
4√

2
+
v1f
′′
3 h
∗
2√

2
,

M2
56 = M2∗

65 =
h∗1√

2
(v1A

∗
µ − µv2),M2

57 = M2∗
75 = f ′′3 f

′∗
3 ,M

2
58 = M2∗

85 = 0,M2
67 = M2∗

76 = 0,

M2
68 = M2∗

86 = f ′4f
′′∗
4 ,M2

78 = M2∗
87 =

h∗2√
2

(v1A
∗
e − µv2)

M2
19 = M2∗

91 = f∗3h6,M
2
110 = M2∗

101 = 0,

M2
29 = M2∗

92 =
v1y5h

∗
7√

2
+
v2h6f

′∗
2√

2
,M2

210 = M2∗
102 = 0,

M2
39 = M2∗

93 = 0,M2
310 = M2∗

103 = f4h
∗
7,

M2
49 = M2∗

94 = 0,M2
410 = M2∗

104 =
v2f
′
2h
∗
7√

2
+
v1h6y

∗
5√

2
,

M2
59 = M2∗

95 = f ′∗3 h6,M
2
510 = M2∗

105 = 0,

M2
69 = M2∗

96 = 0,M2
610 = M2∗

106 = f ′4h
∗
7,

M2
79 = M2∗

97 = f ′′∗3 h6,M
2
710 = M2∗

107 = 0,

M2
89 = M2∗

98 = 0,M2
810 = M2∗

108 = f ′′5 h
∗
7,

M2
910 = M2∗

109 =
y∗5√

2
(v1A

∗
4` − µv2). (52)

We assume that the masses that enter the mass squared matrix for the scalars are all of electroweak size. This mass

squared matrix is hermitian and can be diagonalized with a unitary transformation

D̃τ†M2
τ̃ D̃

τ = diag(M2
τ̃1 ,M

2
τ̃2 ,M

2
τ̃3 ,M

2
τ̃4 ,M

2
τ̃5 ,M

2
τ̃6 ,M

2
τ̃7 ,M

2
τ̃8M2

τ̃9 ,M
2
τ̃10). (53)
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The mass squared matrix in the sneutrino sector has a similar structure. In the basis

(ν̃τL, ÑL, ν̃τR, ÑR, ν̃µL, ν̃µR, ν̃eL, ν̃eR, ν̃4L, ν̃4R), (54)

the sneutrino mass squared matrix (M2
ν̃ )ij = m2

ij has elements given by

m2
11 = M̃2

τL +
v22
2
|f ′1|2 + |f3|2 +

1

2
m2
Z cos 2β,

m2
22 = M̃2

N +
v21
2
|f2|2 + |f5|2 + |f ′5|2 + |f ′′5 |2 + |h8|2,

m2
33 = M̃2

ντ +
v22
2
|f ′1|2 + |f5|2,

m2
44 = M̃2

χ +
v21
2
|f2|2 + |f3|2 + |f ′3|2 + |f ′′3 |2 + |h6|2 −

1

2
m2
Z cos 2β,

m2
55 = M̃2

µL +
v22
2
|h′1|2 + |f ′3|2 +

1

2
m2
Z cos 2β,

m2
66 = M̃2

νµ +
v22
2
|h′1|2 + |f ′5|2,

m2
77 = M̃2

eL +
v22
2
|h′2|2 + |f ′′3 |2 +

1

2
m2
Z cos 2β,

m2
88 = M̃2

νe +
v22
2
|h′2|2 + |f ′′5 |2,

m2
99 = M̃2

4L +
v22
2
|y′5|2 + |h6|2 +

1

2
m2
Z cos 2β,

m2
1010 = M̃2

ν4 + |h8|2 +
v22
2
|y′5|2,

m2
12 = m2∗

21 =
v2f5f

′∗
1√

2
− v1f2f

∗
3√

2
,

m2
13 = m2∗

31 =
f ′∗1√

2
(v2A

∗
ντ − µv1),m2

14 = m2∗
41 = 0,

m2
15 = m2∗

51 = f ′3f
∗
3 ,m

2
16 = m2∗

61 = 0,

m2
17 = m2∗

71 = f ′′3 f
∗
3 ,m

2
18 = m2∗

81 = 0,

m2
23 = m2∗

32 = 0,m2
24 = m2∗

42 =
f∗2√

2
(v1A

∗
N − µv2),m2

25 = m2∗
52 = −v1f

∗
2 f
′
3√

2
+
h′1v2f

′∗
5√

2
,

m2
26 = m2∗

62 = 0,m2
27 = m2∗

72 = −v1f
∗
2 f
′′
3√

2
+
h′2v2f

′′∗
5√

2
, (55)
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m2
28 = m2∗

82 = 0,m2
34 = m2∗

43 =
v1f
∗
2 f5√
2
− v2f

′
1f
∗
3√

2
,

m2
35 = m2∗

53 = 0,m2
36 = m2∗

63 = f5f
′∗
5 ,m

2
37 = m2∗

73 = 0,m2
38 = m2∗

83 = f5f
′′∗
5 ,m2

45 = m2∗
54 = 0,

m2
46 = m2∗

64 = −h
′∗
1 v2f

′
3√

2
+
v1f2f

′∗
5√

2
,m2

47 = m2∗
74 = 0,

m2
48 = m2∗

84 =
v1f2f

′′∗
5√

2
− v2h

′∗
2 f
′′
3√

2
,m2

56 = m2∗
65 =

h′∗1√
2

(v2A
∗
νµ − µv1),

m2
57 = m2∗

75 = f ′′3 f
′∗
3 ,m

2
58 = m2∗

85 = 0,m2
67 = m2∗

76 = 0,

m2
68 = m2∗

86 = f ′5f
′′∗
5 ,m2

78 = m2∗
87 =

h′∗2√
2

(v2A
∗
νe − µv1),

m2
19 = m2∗

91 = h6f
∗
3 ,m

2
110 = m2∗

101 = 0,

m2
29 = m2∗

92 = −f2v1h6√
2

+
v2h8y

∗
5√

2
,m2

210 = m2∗
102 = 0,

m2
39 = m2∗

93 = 0,m2
310 = m2∗

103 = f5h
∗
8,

m2
49 = m2∗

94 = 0,m2
410 = m2∗

104 = −v2y
′
5h6√
2

+
v1h
∗
8f2√
2

,

m2
59 = m2∗

95 = h6f
′∗
3 ,m

2
510 = m2∗

105 = 0,

m2
69 = m2∗

96 = 0,m2
610 = m2∗

106 = f ′5h
∗
8,

m2
79 = m2∗

97 = h6f
′′∗
3 ,m2

710 = m2∗
107 = 0,

m2
89 = m2∗

98 = 0,m2
810 = m2∗

108 = f ′′5 h
∗
8,

m2
910 = m2∗

109 =
y′5√

2
(v2A

∗
4ν − µv1). (56)

Again as in the charged lepton sector we assume that all the masses are of the electroweak size so all the terms enter

in the mass squared matrix. This mass squared matrix can be diagonalized by the unitary transformation

D̃ν†M2
ν̃ D̃

ν = diag(M2
ν̃1 ,M

2
ν̃2 ,M

2
ν̃3 ,M

2
ν̃4 ,M

2
ν̃5 ,M

2
ν̃6 ,M

2
ν̃7 ,M

2
ν̃8 ,M

2
ν̃9 ,M

2
ν̃10). (57)
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