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Abstract

We present a new class of unified models based on SO(10) symmetry which provides
insights into the masses and mixings of quarks and leptons, including the neutrinos.
The key feature of our proposal is the absence of Higgs boson 10H belonging to the
fundamental representation that is normally employed. Flavor mixing is induced via
vector-like fermions in the 16 + 16 representation. A variety of scenarios, both super-
symmetric and otherwise, are analyzed involving a 126H along with either a 45H or a
210H of Higgs boson employed for symmetry breaking. It is shown that this framework,
with only a limited number of parameters, provides an excellent fit to the full fermion
spectrum, utilizing either type-I or type-II seesaw mechanism. These flavor models can
be potentially tested and distinguished in their predictions for proton decay branching
ratios, which are analyzed.
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1 Introduction

Grand unified theories [1–3] based on SO(10) gauge symmetry [4] are attractive candidates
for physics beyond the Standard Model (SM). These theories predict the existence of right-
handed neutrinos needed for the seesaw mechanism, and unify all fermions of a given family
into a single irreducible multiplet, the 16–dimensional spinor representation. Quarks and
leptons are thus unified, as are the three gauge interactions of the SM. The unification of
fermions into multiplets suggests that SO(10) may serve as a fertile ground for understanding
the flavor puzzle. There are challenges involved, since in particular, large neutrino mixing
angles should emerge from the same underlying Yukawa structure that allows for small quark
mixing angles. This indeed has been realized in a class of SO(10) models with a minimal
set of Yukawa coupling matrices [5–13], and we shall provide a new class of models that
achieves this in this paper. Since SO(10) admits an intermediate symmetry, the Pati-Salam
symmetry SU(4)c×SU(2)L×SU(2)R or one of its subgroups, unification of gauge couplings
can occur consistently even without low energy supersymmetry. Of course, SO(10) may be
realized in the supersymmetric context as well, in which case the intermediate symmetry
breaking scale may be the same as the unification scale. As far as the Yukawa sector of the
theory is concerned, the two scenarios (non-SUSY versus SUSY) are not all that different.
In this paper we shall study a new class of SO(10) models addressing the flavor puzzle both
in the non-supersymmetric and in the SUSY contexts.

One of our motivations for the present study is the difficulty faced by a widely studied
minimal renormalizable supersymmetric SO(10) [14–16] grand unified theory. This theory
has attracted much attention in the past due to several attractive features which include:

• natural generation of neutrino masses and mixings through type I [17] and type II [18]
seesaw mechanism;

• relation between neutrino and charged fermion mass matrices [5];

• good fit of fermion masses and mixings with an economic Yukawa sector with only
two symmetric Yukawa matrices [5–13];

• automatic and exact low energy R-parity conservation leading to a compelling dark
matter candidate [19–23];

• connection of the b − τ Yukawa unification and large atmospheric mixing angle in
scenarios with dominant type II seesaw mechanism [24–26].

The Yukawa sector of this theory has only two symmetric matrices (in flavor space),
involving a 10H and a 126H of Higgs bosons. It is natural to include a 210H for completing the
symmetry breaking. In such a scenario, unfortunately, once the constraints from the Higgs
sector are properly taken into account, the model can be ruled out [27–30], assuming that the
low energy supersymmetric threshold corrections to the fermion masses are negligible. With
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the relatively large Higgs mass mH = 125 GeV, the split supersymmetric scenario [31,32] of
the minimal SO(10) model [33] is also found to be inconsistent [34,35]4.

One should not abandon the whole elegant grand unified program simply because the
simplest supersymmetric realization does not work perfectly. The usual way to rule in
a theory that was ruled out is to increase the particle content and thus the number of
model parameters. This was the approach of [36], where a new 120-dimensional Higgs
representation has been added to the minimal model.5 In this way the Yukawa sector
increases by one antisymmetric matrix, which gives sufficient freedom to fit the data.

In this paper we will go, surprisingly, in the opposite direction, and ask ourselves, if it
is possible to fit the data with less, not more, Yukawa matrices. This paradoxical question
has obviously a hidden proviso, otherwise we would get no mixing at all. To account for the
correct low energy mass spectrum, mixings, and CP violation we will thus make use of an
extra vector-like generation 16 + 16, similar to the one used in [37]. The difference with [37]
is that we will assume the bilinear spinors 16a to be coupled with 126H instead of 10H . In
this way we may hope to describe neutrino masses and mixings in a pattern similar to the
charged fermions, which is one of the great achievements of the SO(10) framework.

We shall see that this decreasing of the number of Yukawa matrices at the expense of an
extra vector-like family can be successful and we will show several examples where it works.
Although we will consider different possible Higgs sectors and take some of their constraints
seriously, we will not consider a combined fit of the Higgs and Yukawa parameters, which
can obviously pose extra restrictions. This more modest approach nevertheless shows that
SO(10) Yukawa sectors with a single Yukawa matrix can be realistic.

The rest of the paper is organized as follows. In Sec. II we present the key features of
the new class of SO(10) models. In Sec. III we set up the framework and the formalism.
In Sec. IV we adopt a specific basis that removes redundancies, which is well suited for
numerical analysis of the flavor observables. Sec. V discusses the constraints imposed on
the SUSY models from the minimization of the Higgs potential. Sec. VI has our numerical
fits to the fermion masses and mixings for the six models analyzed. Finally, in Sec. VII we
conclude. In Appendices A and B some useful relations used for the fermion mass fits are
given. Appendix C contains the numerical Yukawa matrices for various cases that result
from the fits.

2 New class of SO(10) models

The key feature of the new proposed models is the absence of 10H . In its place we introduce
a 16 + 16 vector-like fermions. In addition to a 126H , we employ either a 45H or a 210H

for symmetry breaking. These fields have non-trivial couplings to the vector-like fermions,
4BB thanks Ketan Patel for pointing this out.
5Another possibility, not yet fully explored, is to increase the Higgs sector parameters, for example with

a 54H , see Ref [7] for fermion fits.
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which is needed to avoid certain unwanted relations among down-type quark and charged
lepton masses. Additional Higgs fields (e.g. 54H) are needed for consistent GUT symmetry
breaking, but these fields do not enter into the Yukawa sector. The Yukawa Lagrangian of
our models has a very simple form,

LYuk = 16 (ma + ηa45H) 16a + 16a Yab 126H 16b + 16 ȳ 126H 16 + h.c. (2.1)

corresponding to the use of 45H as the symmetry breaking field (in addition to the 126H

field). Here a, b = 1− 4 are the generation indices which include a 16 from the vector-like
family. We thus see that the Yukawa sector has one 4× 4 matrix Yab, and two four-vectors
ma and ηa. Since Yab can be chosen to be diagonal and real, this amounts to 4 + 4 + 4

flavor mixing parameters. The Yukawa coupling 16 ȳ 126H does not have any effect on the
light fermion masses and mixings. While in the diagonal and real basis for Yab the vectors
ma and ηa are in general complex, these being related to GUT scale masses, one complex
combination disappears from low energy masses and mixings. One should add to this set two
(real) VEV ratios (one from the two SM singlets of 45H and one for the up-type and down-
type Higgs doublet VEV ratio from the 126H), and an overall scale for the right-handed
neutrino masses. We thus see that the model has 14 real parameters and 7 phases to fit
18 observed values among quark masses, quark mixings and CP violation, charged fermion
masses, neutrino mass-squard differences and mixing angles. Thus these models are rather
constrained, yet we show that excellent fits are obtained. It may be noted that the minimal
supersymmetric SO(10) models with two symmetric Yukawa coupling matrices involving
10H and 126H have 12 real parameters and 7 phases that enter into the flavor sector.

The basic structure of Eq. (2.1) can be realized in several other ways. We study all
such SO(10) models in this paper. The Higgs field 45H in Eq. (2.1) may be replaced by a
210H . In this case, since the 210H contains three SM singlet fields, there are two ratios of
VEVs from the 210H , which would increase the number of parameters by one. These models
may be realized with or without low energy supersymmetry. In the non-SUSY models, the
VEVs of 45H and 210H are real, while in SUSY models they are in general complex (thus
increasing the phase parameters to 8). In the SUSY models we find that although the
210H has two associated VEV ratios, only one of the two is independent, due to symmetry
breaking constraints arising from the superpotential. In SUSY versions, additional fields
other than 126H and 210H used in the Yukawa sector are often required, in order to avoid
new chiral supermultiplets that remain light and spoil unification of gauge couplings. A
summary of the models that fit into this classification and studied here is given below. All
models contain a 126H (plus a 126H in the case of SUSY), in addition to the Higgs fields
shown below.

A. Non-SUSY Model with 45H + 54H

B. Non-SUSY Model with 210H + 54H or 210H + 16H

C. SUSY Model with 45H + 54H + 16H + 16H
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D. SUSY Model with 210H + 54H

E. SUSY Model with 210H + 16H + 16H

F. SUSY Model with 210H + 54H + 16H + 16H

The VEV of the SM singlet in 126H will be found a posteriori to be around 1013 − 1014

GeV in all models. This has an effect on the choice of Higgs fields, especially in the SUSY
models: Very simple Higgs systems used for GUT symmetry breaking would lead to certain
sub-multiplets having mass of order 1011 GeV, which would spoil perturbative unification
of gauge couplings in SUSY SO(10). The choice of “other Higgs fields" shown above are in
part guided by this not happening. Furthermore, in some simplistic SUSY cases, the Higgs
doublet mass matrix becomes proportional to other color sector mass matrix. Making a
pair of Higgs doublets light would then lead to making a pair of colored states light as well,
which affects perturbative unification. Such cases are avoided in the scenarios shown above.
In each of the models listed above, seesaw mechanism may be realized via either type-I or
type-II chain. Such sub-classes will be denoted by a label I or II when needed. Thus AI
would refer to type-I seesaw in Model A, and likewise AII for type-II seesaw in the same
model.

Models A and B are nonsupersymmetric, while models C–F are supersymmetric. For
model A, in addition to 45H , a 54H is needed to break SO(10) down to the SM without
going through an intermediate SU(5)-symmetric limit. In Model B which uses a 210H , an
additional field, either a 54H or a 16H is needed for the following reason. As noted already,
126H acquires a VEV of order 1013− 1014 GeV, which can be ignored for the study of GUT
symmetry breaking at around 1016 GeV. A single 210H would break SO(10) down to one
of its maximal little groups, such as SU(5) × U(1), SU(4)C × SU(2)L × SU(2)R etc. The
fermion mass matrix would then reflect this unbroken symmetry, which is not realistic in
the light fermion spectrum. Addition of a 54H (or a 16H) with a GUT VEV would reduce
the surviving symmetry and help with realistic fermion masses. For SUSY SO(10), it is not
a viable model if the symmetry is only broken by 45H + 54H , since in this case, the Higgs
doublet (1,2,1/2) and the Higgs octet (8,2,1/2) mass matrices become identical. So one
cannot make the MSSM doublet fields light without also making the octet fields light. To
break this degeneracy one needs to extend the Higgs sector. For this purpose in model C, we
enlarge the Higgs sector by adding 16H+16H . SUSY SO(10) model with 210H+126H+126H

is also not a consistent model, because with the requirement vR ∼ 1013−14 GeV, the octet
(8, 3, 0) Higgs field becomes light with a mass of order ∼ 1010−11 GeV, so the theory does
not remain perturbative up to the GUT scale. Thus, in order to avoid this, in model D, we
include 54H Higgs and in model E, we include a 16H + 16H . It will be shown later in Sec. V
that, in all these SUSY SO(10) models with a 210H , there is only one independent VEV ratio
involving the 210H field, owing to symmetry breaking constraints. Including more Higgs
multiplets, one can break such relationships among VEVs which can lead to two independent
VEV ratios for 210H . We also consider this general case which is labeled as model F, where
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in addition to 210H , one has both 54H and 16H + 16H (or some unspecified) multiplets. It
is to be mentioned that, we do not consider any model where both the 45H and 210H are
present simultaneously, which would lead to more parameters and thus less predictions in
the fermion sector. Details of the symmetry breaking schemes will be explained further in
Sec. V.

3 The set-up and formalism

All models we study have one vector like 16+16 pair plus 3 generations of chiral 16’s. Their
mass terms and couplings to a 45H given in Eq. (2.1) can be expanded to yield

16 (ma + ηa45H) 16a = L̄ (ma + ηa(3v1))La + Q̄ (ma + ηa(−v1))Qa

+ eca (ma + ηa(−3v1 − v2)) ēc + νca (ma + ηa(−3v1 + v2)) ν̄c

+ dca (ma + ηa(v1 − v2)) d̄c + uca (ma + ηa(v1 + v2)) ūc, (3.2)

where a = 1, . . . , 4 and

v1 = 〈45H〉(1,1,15) , v2 = 〈45H〉(1,3,1). (3.3)

These are the SM singlet components of 45H which acquire GUT scale VEVs denoted here
as v1,2.

The mass terms are of the general form

ψ̄Maψa. (3.4)

Although by redefining the phases of ψa we can make all these Ma real, we will keep them
complex in general. Then we project to the heavy states as usual by

ψa → Uabψb, (3.5)

with

U =

(
Λ Λx∗

−xTΛ Λ̄

)
(U † = U−1) (3.6)

Λ = 1− x∗xT√
1 + |x|2(

√
1 + |x|2 + 1)

(Λ† = Λ) (3.7)

xT =
1

M4

(M1,M2,M3) , Λ̄ =
1√

1 + |x|2
. (3.8)

To this we add the Yukawa couplings to 126H . Although we are free to choose this 4× 4

Yukawa matrix to be diagonal and real (in the original basis, i.e. before (3.5)), we will keep
it to be complex symmetric and choose a convenient basis later on. The 16 has coupling to
the 126H , but this will turn out to not affect light fermion masses. The relevant Yukawa
couplings are (see Eq. (2.1))

16a Yab 126H 16b + 16 ȳ 126H 16. (3.9)
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In this original basis we put all together:(
dca d

)( Yabvd ma + ηa(v1 − v2)

mb + ηb(−v1) ȳvd

)(
db

d̄c

)

+
(
uca u

)( Yabvu ma + ηa(v1 + v2)

mb + ηb(−v1) ȳvu

)(
ub

ūc

)

+
(
eca e

)( −3Yabvd ma + ηa(−3v1 − v2)

mb + ηb(3v1) −3ȳvd

)(
eb

ēc

)
(3.10)

+
(
νca ν

)( −3Yabvu ma + ηa(−3v1 + v2)

mb + ηb(3v1) −3ȳvu

)(
νb

ν̄c

)

+
1

2

(
νca ν̄

)(YabvR 0

0 ȳv̄L

)(
νcb
ν̄

)
+

1

2

(
νa ν̄c

)(YabvL 0

0 ȳv̄R

)(
νb

ν̄c

)
,

where
vR = 〈126H〉(1,3,10) , vL = 〈126H〉(3,1,10)

v̄R = 〈126H〉(1,3,10) , v̄L = 〈126H〉(3,1,10) (3.11)

vu = 〈126H〉(2,2,15)u , vd = 〈126H〉(2,2,15)d .

Here vR and v̄R are close to, but somewhat below the GUT scale, while vu,d are the VEVs
of the electroweak Higgs doublets arising from the 126H . vL and v̄L denote the induced
VEVs of the SU(2)L triplets from 126H and 126H . In non-supersymmetric models, we have
v̄R = v∗R, vd = v∗u and v̄L = v∗L.

After the transformation given in Eq. (3.5) the matrices Eq. (3.10) become

→
(
dca d

)((UT
dc)aeYefvd(UQ)fb Mdcδa4

MQδb4 ȳvd

)(
db

d̄c

)

+
(
uca u

)((UT
uc)aeYefvu(UQ)fb Mucδa4

MQδb4 ȳvu

)(
ub

ūc

)

+
(
eca e

)((UT
ec)ae(−3)Yefvd(UL)fb Mecδa4

MLδb4 −3ȳvd

)(
eb

ēc

)
(3.12)

+
(
νca ν

)((UT
νc)ae(−3)Yefvu(UL)fb Mνcδa4

MLδb4 −3ȳvu

)(
νb

ν̄c

)

+
1

2

(
νca ν̄

)((UT
νc)aeYefvR(Uνc)fb 0

0 ȳv̄L

)(
νcb
ν̄

)

+
1

2

(
νa ν̄c

)((UT
L )aeYefvL(UL)fb 0

0 ȳv̄R

)(
νb

ν̄c

)
.

To get the light fermion mass matrices defined as

L = dcTMDd+ ucTMUu+ ecTMEe+
1

2
νTMNν + h.c. (3.13)
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we have to project to the light generations. In doing so we need to evaluate (Y is a 4 × 4

matrix, while Y is its 3× 3 submatrix)

UT
1 YU2 =

(
ΛT

1 −ΛT
1 x1

x†1ΛT
1 Λ̄1

)(
Y y

yT y4

)(
Λ2 Λ2x

∗
2

−xT2 Λ2 Λ̄2

)
(3.14)

=

(
ΛT

1 (Y − yxT2 − x1y
T + y4x1x

T
2 )Λ2 ΛT

1 (Y x∗2 + y − x1y
Tx∗2 − y4x1)Λ̄2

Λ̄1(x†1Y + yT − x†1yxT2 − y4x
T
2 )Λ2 Λ̄1(x†1Y x

∗
2 + yTx∗2 + x†1Y + y4)Λ̄2

)
,

where we used Λx∗ = Λ̄x∗.
For charged fermions this is enough, and we get (mass matrices are defined as ψcMΨψ)

MD = vdΛ
T
dc

(
Y − yxTQ − xdcyT + y4xdcx

T
Q

)
ΛQ (3.15)

MU = vuΛ
T
uc

(
Y − yxTQ − xucyT + y4xucx

T
Q

)
ΛQ (3.16)

ME = −3vdΛ
T
ec

(
Y − yxTL − xecyT + y4xecx

T
L

)
ΛL. (3.17)

For neutrinos things are slightly more involved, since there are two kinds of heavy neutrinos,
the usual right-handed ones, plus the new vector-like ones. The full symmetric Majorana
mass matrix is 10×10. However, in the leading order in yvR/ML,νc (ML,νc denote the masses
of vector-like leptons), the situation returns to ordinary with

MνD = −3vuΛ
T
νc(Y − yxTL − xνcyT + y4xνcx

T
L)ΛL (3.18)

MνR = vRΛT
νc(Y − yxTνc − xνcyT + y4xνcx

T
νc)Λνc (3.19)

MνL = vLΛT
L(Y − yxTL − xLyT + y4xLx

T
L)ΛL, (3.20)

so that as usual by using the seesaw [17] formula we arrive at the 3× 3 light neutrino mass
matrix as

MN = MνL −MT
νD
M−1

νR
MνD . (3.21)

If the approximation yvR/ML,νc � 1 is not good, we write the full symmetric matrix for
(νi, ν

c
i , ν4, ν̄

c, νc4, ν̄):

(UT
L (vLY)UL)ij (UT

L (−3vuY)Uνc)ij (UT
L (vLY)UL)i4 0 (UT

L (−3vuY)Uνc)i4 0

(UT
νc(−3vuY)UL)ij (UT

νc(vRY)Uνc)ij (UT
νc(−3vuY)UL)i4 0 (UT

νc(vRY)Uνc)i4 0

(UT
L (vLY)UL)4j (UT

L (−3vuY)Uνc)4j (UT
L (vLY)UL)44 0 (UT

L (−3vuY)Uνc)44 ML

0 0 0 v̄Ry Mνc −3vuy

(UT
νc(−3vuY)UL)4j (UT

νc(vRY)Uνc)4j (UT
νc(−3vuY)UL)44 Mνc (UT

νc(vRY)Uνc)44 0

0 0 ML −3vuy 0 v̄Ly


.

(3.22)
One can integrate out ν4 and ν̄ without any trace, since they mix through a large ML, but
otherwise feel just the small VEVs. What remains is for (νi, ν

c
i , ν̄

c, νc4):


(UT

L (vLY)UL)ij (UT
L (−3vuY)Uνc)ij 0 (UT

L (−3vuY)Uνc)i4

(UT
νc(−3vuY)UL)ij (UT

νc(vRY)Uνc)ij 0 (UT
νc(vRY)Uνc)i4

0 0 v̄Ry Mνc

(UT
νc(−3vuY)UL)4j (UT

νc(vRY)Uνc)4j Mνc (UT
νc(vRY)Uνc)44

 . (3.23)
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This has again the form (
MνL MT

νD

MνD MνR

)
. (3.24)

and thus Eq. (3.21) applies with MνL given by Eq. (3.20), but now for 5 right-handed
neutrinos with a 5× 3 matrix MνD and a 5× 5 symmetric matrix MνR :

MνD = (−3vu)

Λνc(Y − yxTL − xνcyT + y4xνcx
T
L)ΛL

0

Λ̄νc(x
T
νcY + yT − xTνcyxTL − xTLy4)ΛL

 (3.25)

MνR =

vRΛνc(Y − yxTνc − xνcyT + y4xνcx
T
νc)Λνc 0 vRΛνc(Y xνc + y − xνcyTxνc − y4xνc)Λ̄νc

0 v̄Ry Mνc

vRΛ̄νc(x
T
νcY + yT − xTνcyxTνc − y4x

T
νc)Λνc Mνc vRΛ̄νc(x

T
νcY xνc + yTxνc + xTνcy + y4)Λ̄νc

 .

(3.26)

To conclude, let’s write down explicitly the various ~x’s:

~xL =
~m+ ~η(3v1)

m4 + η4(3v1)
, ~xQ =

~m+ ~η(−v1)

m4 + η4(−v1)
, (3.27)

~xec =
~m+ ~η(−3v1 − v2)

m4 + η4(−3v1 − v2)
, ~xνc =

~m+ ~η(−3v1 + v2)

m4 + η4(−3v1 + v2)
, (3.28)

~xdc =
~m+ ~η(v1 − v2)

m4 + η4(v1 − v2)
, ~xuc =

~m+ ~η(v1 + v2)

m4 + η4(v1 + v2)
. (3.29)

Defining
~x =

~m

m4

, u1,2 = η4
v1,2

m4

, ~z =
~η

η4

, (3.30)

we can rewrite the above as

~xL =
~x+ ~z(3u1)

1 + (3u1)
, ~xQ =

~x+ ~z(−u1)

1 + (−u1)
,

~xec =
~x+ ~z(−3u1 − u2)

1 + (−3u1 − u2)
, ~xνc =

~x+ ~z(−3u1 + u2)

1 + (−3u1 + u2)
, (3.31)

~xdc =
~x+ ~z(u1 − u2)

1 + (u1 − u2)
, ~xuc =

~x+ ~z(u1 + u2)

1 + (u1 + u2)
.

To get the masses and mixings we change the basis

x→ XLx , xc → X∗Rx
c (3.32)

for x = d, u, e, ν and X = D,U,E,N . This means that (for X = N , XR = X∗L)

MX = XRM
d
XX

†
L (3.33)

so that the CKM and PMNS matrices are defined as

VCKM = U †LDL (3.34)

VPMNS = E†LNL. (3.35)
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So far we have been very general. However, there are redundancies that are present,
which should be removed for an efficient numerical fitting algorithm. In the next section
we shall choose a specific basis, which may appear at first to be less intuitive but which is
well-suited for our numerical minimization. There are two obvious basis choices, one where
Yab is diagonal, and a second one where the vectors ma and ηa have simple forms. It is
the second one that is used in the next section. For further use we give here the relations
between the two sets of parameters.

~x = (0, 0, tan θe−iφ) (3.36)

~z = (0, 0, 0) (3.37)

Yij = aij (3.38)

y = (a41, a42, a43) (3.39)

y4 = a44 (3.40)

and

u1 = −Te
−iφ

cos θ

ε

5
(3.41)

u2 = −Te
−iφ

cos θ

(
1 +

3ε

5

)
. (3.42)

3.1 210H instead of 45H

If the 45H is replaced by a 210H , we simply change Eq. (3.2) into:

16 (ma + ηa210) 16a = L̄ (ma + ηa(φ1 − 3φ2))La

+ Q̄ (ma + ηa(φ1 + φ2))Qa

+ eca (ma + ηa(−φ1 − 3φ2 + 3φ3)) ēc (3.43)

+ νca (ma + ηa(−φ1 − 3φ2 − 3φ3)) ν̄c

+ dca (ma + ηa(−φ1 + φ2 − φ3)) d̄c

+ uca (ma + ηa(−φ1 + φ2 + φ3)) ūc

where
φ1 = 〈210H〉(1,1,1) , φ2 = 〈210H〉(1,1,15) , φ3 = 〈210H〉(1,3,15) (3.44)

are the VEVs of the three SM singlets of 210H .
This then changes Eq. (3.31) into

~xL =
~x+ ~z(u1 − 3u2)

1 + (u1 − 3u2)
, ~xQ =

~x+ ~z(u1 + u2)

1 + (u1 + u2)
,

~xec =
~x+ ~z(−u1 − 3u2 + 3u3)

1 + (−u1 − 3u2 + 3u3)
, ~xνc =

~x+ ~z(−u1 − 3u2 − 3u3)

1 + (−u1 − 3u2 − 3u3)
, (3.45)

~xdc =
~x+ ~z(−u1 + u2 − u3)

1 + (−u1 + u2 − u3)
, ~xuc =

~x+ ~z(−u1 + u2 + u3)

1 + (−u1 + u2 + u3)
,
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where now
u1,2,3 = η4

φ1,2,3

m4

. (3.46)

For correspondence with the specific basis chosen in the next section, we still have Eqs.
(3.36)- (3.40), but Eqs. (3.41)-(3.42) are replaced by

u1 =
Te−iφ

cos θ
(3.47)

u2 =
Te−iφ

cos θ

ε1√
3

(3.48)

u3 =
Te−iφ

cos θ
ε2

√
2

3
. (3.49)

4 Analysis in a specific basis

The general formulas given in the previous section for the light fermion mass matrices have
built-in redundancies. Here we choose a specific basis where these redundancies are removed.
We choose a basis where the four-vectors in Eq. (2.1) have simple forms:

ηa = (0, 0, 0, 1) b, ma = (0, 0, sin θ, eiφ cos θ)M . (4.50)

These simple forms are achieved by 4× 4 family rotation, which makes the vector ~η to have
the form shown, and a subsequent 3 × 3 family rotation that brings the vector ~m to this
form. A further rotation in the first two family space can be made, we choose this rotation
to make the 4× 4 Yukawa matrix, denoted as aij in this specific basis, to be diagonal in the
1-2 subspace, i.e., a12 = a21 = 0. The correspondence given in Eqs. (3.36)- (3.40) as well
as Eqs. (3.41)-(3.42) for the case of 45H arise from this choice of basis. (The parameters
T and ε will be defined shortly.) Let us denote Φ = 45H or 210H and the VEV of Φ to be
〈Φ〉 = Ω which has two components (for Φ = 45H) or three components (for Φ = 210H).
The Yukawa Lagrangian in this specific basis takes the form:

LYuk =
4∑

i,j=1

aij 16i 16j 126H + ȳ 16 16 126H + b 16 164 Φ +M 16 (sin θ 163 + eiφ cos θ 164).

(4.51)
The effective mass terms that arise after the VEV of Φ is inserted would depend on the
VEV ratio of the two SM singlets in 45H and on two VEV ratios of the three SM singlets
in the case of 210H . For the former, we can define an unbroken charge Q, which is not the
electric charge, but a linear combination of hypercharge Y and the U(1)X charge contained
in SO(10)→ SU(5)× U(1)X – the 45H leaves this charge Q unbroken. A parameter ε can
be introduced in terms of which the unbroken charge Q can be defined for each of the SM
fermions [37]:

Q = −1

5
X +

6(ε+ 1)

5

Y

2
= 2I3R +

6ε

5

Y

2
, (4.52)

where X is normalized so that X10∈16 = 1, X5∈16 = −3 and X1∈16 = 5. Thus the charges of
fermions ∈ 16 of SO(10) for the case of 45H are:
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Qu,d =
1

5
ε; Quc = −1− 4

5
ε; Qdc = 1 +

2

5
ε;

Qe,ν = −3

5
ε; Qec = 1 +

6

5
ε; Qνc = −1.

(4.53)

For 210H case the fermion charges are given in terms of two parameters ε1,2:

Qu,d = 1 +
ε1√

3
; Quc = −1 +

ε1√
3

+

√
2

3
ε2; Qdc = −1 +

ε1√
3
−
√

2

3
ε2;

Qe,ν = 1−
√

3ε1; Qec = −1−
√

3ε1 +
√

6ε2; Qνc = −1−
√

3ε1 −
√

6ε2.

(4.54)

These charges are obtained from Eq. (3.43) by setting φ1 = 1, φ2 = ε1/
√

3 and φ3 =√
2/3 ε2.
For non-SUSY case, Qf = Q∗f as Φ is a real field in this case, while Qf is complex in the

case of SUSY. Now, writing b 16 164 〈Φ〉 = bΩ(fQff4 + f
c
Qfcf

c
4), the last two terms of the

Yukawa Lagrangian in Eq. (4.51) can be written as

LYuk ⊇ f [(M sin θ)f3 + (Meiφ cos θ + bΩQf )f4] + f
c
[(M sin θ)f c3 + (Meiφ cos θ + bΩQfc)f

c
4 ].

(4.55)
Then defining

T ≡ bΩ/M ; Nf,fc ≡
√

1 + T 2|Qf,fc |2 + T cos θ(e−iφQf,fc + eiφQ∗f,fc), (4.56)

the heavy (GUT scale) fields (f̂4, f̂
c
4) and the light SM fields (f̂3, f̂

c
3) can be identified as

(sin θ)f3 + (eiφ cos θ + TQf )f4

Nf

≡ f̂4 ;
(e−iφ cos θ+TQ∗

f )f3−(sin θ)f4

Nf
≡ f̂3; (4.57)

(sin θ)f c3 + (eiφ cos θ + TQfc)f
c
4

Nfc
≡ f̂ c4 ;

(e−iφ cos θ+TQ∗
fc )fc3−(sin θ)fc4

Nfc
≡ f̂ c3 . (4.58)

These expressions are valid for f = u, d, e, ν and f c = uc, dc, ec, νc. Then from the full
Yukawa Lagrangian one can compute the charged fermion and Dirac neutrino mass matrices
for the light fermions written as f cMff as:

MT
f = vfkf

a
f
11 0 af13

0 af22 af23

af31 af32 af33

 , (4.59)

where f = U,D,E, νD, ve = vd, vν = vu, ku,d = 1 and ke,ν = −3. We define the ratio
vu/vd ≡ r. Note that this ratio is not exactly equal to tan β of MSSM, but is closely related
to it. If we ignore the mixing of the up and down-type Higgs doublets from 126H with other
doublets present in the theory, r would be equal to tan β in MSSM. The following relations
are then readily obtained:
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af11 = a11 , (4.60)

af13 =
a13(eiφ cos θ + TQfc)− a14 sin θ

Nfc
, (4.61)

af22 = a22 , (4.62)

af23 =
a23(eiφ cos θ + TQfc)− a24 sin θ

Nfc
, (4.63)

af31 =
a13(eiφ cos θ + TQf )− a14 sin θ

Nf

, (4.64)

af32 =
a23(eiφ cos θ + TQf )− a24 sin θ

Nf

, (4.65)

af33 =
a33(eiφ cos θ + TQf )(e

iφ cos θ + TQfc) + a44 sin2 θ − a34 sin θ[2eiφ cos θ + T (Qf +Qfc)]

NfNfc
.

(4.66)

Note that a rotation in the 1-2 sector has been made which makes af12 = af21 = a12 = 0.
These mass matrices are not symmetric, since afij 6= afji, although the original matrix obeyes
aij = aji. These four mass matrices for f = U,D,D, νD are given in terms of the parameters
ε, T, θ, φ and aij (with i, j = 1 − 4 and a12 = a21 = 0). We choose to take elements of ME

to be independent. One can then solve for a13 and a14 in terms of ae13 and ae31; similarly a23

and a24 in terms of ae23 and ae32. From Eqs.(4.61), (4.63), (4.64), (4.65) and (4.53) one sees
that this is a valid choice provided that ε 6= −5/9 for Φ = 45H . (If ε = −5/9, ae13 = ae31

and ae23 = ae32, which does not lead to realistic fermion masses.) Similarly for the case of
Φ = 210H , the restriction is ε2 6= 0 is required as can be seen from Eq. (4.54). All these
mass matrices have the same 1-2 sector and one can choose a11 = ae11 and a22 = ae22. In
addition, ae33, a

u
33, a

d
33 depend on 3 independent parameters a33, a34, a44 that appear only in

the (3,3) sector of the light mass matrices. Since this linear system is invertible, one can
treat ae33, a

u
33, a

d
33 as independent parameters. The (3,3) element of the right-handed neutrino

Majorana matrix is then not free, and is determined in terms of ae33, a
u
33, a

d
33. Expressions

for aij in terms of the independent parameters chosen are given in Appendix A .
The elements of ME are independent parameters. We can express MU and MD in terms

of T, θ, φ, au33, a
d
33, a

e
ij and ε (or ε1,2) for the case of 45H (or 210H), so in this basis the charged

fermion mass matrices are:

MT
E = −3vd

ae11 0 ae13

0 ae22 ae23

ae31 ae32 ae33

 ; (4.67)

MT
U = vu

 ae11 0
ae13Nec (Qe−Quc )+ae31Ne(−Qec+Quc )

Nuc (Qe−Qec )

0 ae22
ae23Nec (Qe−Quc )+ae32Ne(−Qec+Quc )

Nuc (Qe−Qec )
ae13Nec (Qe−Qu)+ae31Ne(−Qec+Qu)

Nu(Qe−Qec )

ae23Nec (Qe−Qu)+ae32Ne(−Qec+Qu)

Nu(Qe−Qec )
au33

 ;

(4.68)

13



MT
D = vd

 ae11 0
ae13Nec (Qe−Qdc )+ae31Ne(−Qec+Qdc )

Ndc (Qe−Qec )

0 ae22
ae23Nec (Qe−Qdc )+ae32Ne(−Qec+Qdc )

Ndc (Qe−Qec )
ae13Nec (Qe−Qu)+ae31Ne(−Qec+Qu)

Nu(Qe−Qec )

ae23Nec (Qe−Qu)+ae32Ne(−Qec+Qu)

Nu(Qe−Qec )
ad33

 .

(4.69)
Since Qu = Qd, we have ad31 = au31 and ad32 = au32, see Eqs. (4.64) and (4.65).

Now, the rotation that was made in the 1-2 sector to set a12 = 0 simultaneously can
make ae11 and ae22 real. This rotation will alter the column {(ME)13, (ME)23}T and the row
{(ME)31, (ME)32} in such a way that the forms of MU Eq. (4.68) and MD Eq. (4.69) are
preserved. All parameters are complex, except that one among au,d,e33 can be made real (we
choose ad33 to be real), and that T can be chosen real. So the parameter set is

{ε, r, T, θ, φ, ae11, a
e
22, a

e
13, a

e
31, a

e
23, a

e
32, a

e
33, a

u
33, a

d
33} for 45H or

{ε1, ε2, r, T, θ, φ, ae11, a
e
22, a

e
13, a

e
31, a

e
23, a

e
32, a

e
33, a

u
33, a

d
33} for 210H.

Of these sets, {ae13, a
e
31, a

e
23, a

e
32, a

e
33, a

u
33} are complex (with ad33 chosen to be real). For

Φ = 45H , there are 13 magnitudes and 7 phases (in total 20 parameters) for non-SUSY
case. In the case of SUSY, ε is complex, so one additional phase enters (for a total 21
parameters). For Φ = 210H in the SUSY context with minimal Higgs content, ε1 and ε2 are
not independent of each other (see later), so there are again 13 magnitudes and 8 phases (in
total 21 parameters). Later we will also consider a case with non-minimal Higgs sector where
both these VEV ratios ε1,2 can be in general independent of each other. In the neutrino
sector (discussed in the next subsection) the mass matrix is given by these same parameters
except for an overall scale (vR,L for type-I and type-II seesaw scenarios respectively) that
adds one new parameter.

4.1 The neutrino sector

4.1.1 Type-I seesaw

To write down the mass matrix in the neutrino sector, we make the assumption thatM, bΩ�
vR, which is a valid approximation provided that M, bΩ ∼MGUT ∼ 1016 GeV. Note that in
order to generate light neutrino masses by using the seesaw mechanism, one roughly needs
vR ∼ 1012−14 GeV. In this approximation, no new parameter comes into play in the neutrino
mass matrix except the scale vR. For type-I seesaw mechanism the Dirac neutrino mass
matrix can be read off from Eq. (4.59):

MT
νD

= −3vu

a
e
11 0

ae13Nec (Qe−Qνc )+ae31Ne(−Qec+Qνc )

Nνc (Qe−Qec )

0 ae22
ae23Nec (Qe−Qνc )+ae32Ne(−Qec+Qνc )

Nνc (Qe−Qec )

ae31 ae32 aν33

 . (4.70)

Since Qe = Qν , aν31 = ae31 and aν32 = ae32. The expressions for aν33 are given in Eqs. (B.131)
and (B.132) for Φ = 45H and 210H respectively in Appendix B . One can derive the right-
handed neutrino Majorana mass matrix to be
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MνR

vR
=

 ae11 0
ae13Nec (Qe−Qνc )+ae31Ne(−Qec+Qνc )

Nνc (Qe−Qec )

0 ae22
ae23Nec (Qe−Qνc )+ae32Ne(−Qec+Qνc )

Nνc (Qe−Qec )
ae13Nec (Qe−Qνc )+ae31Ne(−Qec+Qνc )

Nνc (Qe−Qec )

ae23Nec (Qe−Qνc )+ae32Ne(−Qec+Qνc )

Nνc (Qe−Qec )
aR33

 ,
(4.71)

The expressions for aR33 are given in Eqs. (B.137) and (B.138) for Φ = 45H and 210H

respectively in Appendix B. Then, the light neutrino mass matrix in the type-I seesaw
scenario is given by

MN = −MT
νD
M−1

νR
MνD . (4.72)

4.1.2 Type-II seesaw

In analogy to the the analysis done in Sec. 4.1.1 one can derive the type-II seesaw contri-
butions to the the neutrino mass matrix by replacing vR → vL and νc → ν. In this type-II
seesaw scenario the neutrino mass matrix is then given by

MνL = vL

ae11 0 ae31

0 ae22 ae32

ae31 ae32 aL33

 . (4.73)

The expressions for aL33 are given in Eqs. (B.143) and (B.144) for Φ = 45H and 210H

respectively in Appendix B.

5 Symmetry breaking constraints

In all models studied here, there is no 10H Higgs and matter fields couple to 126H + 126H

and 45H or 210H scalars. There are considerations as outlined in Sec. II that would require
additional Higgs fields to be present for consistent symmetry breaking. While there are
no constraints on the VEV ratios when a 210H is employed in the non-SUSY framework,
these ratios are determined in the case of SUSY. We consider the various constraints on the
symmetry breaking sector in this section.

5.1 Non-SUSY SO(10) models A and B

Model A employs 126H , 45H and a 54H . Breaking of SO(10) down to SM via SU(5) channel
is not viable due to gauge coupling unification and proton decay limits. If only 45H and
126H (or 16H) Higgs multiplets are used to break SO(10), breaking takes place through the
SU(5)-symmetric channel [38–40]. The other two breaking channels SO(10) → SU(3)c ×
SU(2)L × SU(2)R × U(1)B−L → SM and SO(10)→ SU(4)c × SU(2)L × U(1)R → SM do
not have stable vacuum at the tree-level. Recently quantum corrections to the tree-level
potential have been taken into account [41, 42] and the validity of such breaking channels
has been shown. However, we do not rely on quantum corrections in this paper. This is why
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the Higgs sector needs to be extended with a 54H for consistent SO(10) breaking down to
SM [43,44]. Note that a Higgs system consisting of 126H and 54H is sufficient for symmetry
breaking purposes if also a 10H is used [45], but without the 10H as in our case, a 45H is
necessary.

Since the SM Higgs doublet is part of the 126H in this model, a question arises as
to the negativity of its squared mass. Consistency of the GUT scale symmetry breaking
would require all physical scalar squared masses to be positive, which includes the SM Higgs
doublet. There must then be a source that turns this positive mass to negative value. It
has been shown in Ref. [46] that indeed such a turn-around is possible, provided that some
scalar from any GUT multiplet remains light and has non-negligible couplings to the SM
Higgs doublet. The context in Ref. [46] is similar to our present case, where a 144H of
SO(10) is used to break the GUT symmetry as well as the electroweak symmetry. Since
our present non-SUSY model has an intermediate scale, we expect some of the scalars to
survive down to the intermediate scale, which would enable turning the Higgs mass-squared
to negative value so as to trigger electroweak symmetry breaking.

In Model B we employ a 210H in addition to the 126H . This is not however sufficient
for our purpose. Since the VEV of 126H is much smaller than the GUT scale, a single 210H

would break the GUT symmetry to one of its maximal little groups, such as SU(5)× U(1)

or SU(4)c × SU(2)L × SU(2)R [47]. The fermion mass matrices will then carry traces of
this unbroken symmetry, which would lead to unwanted mass relations. This is why we
extend the scalar sector by adding a 54H or 16H . For non-SUSY SO(10) model with Higgs
multiplets 210H + 54H , since 542 3 1s + 54s + 770s and 2102 3 1s + 54s + 770s, the scalar
potential contains 2 non-trivial quartic couplings between 210H−54H . In addition, 210H has
3 non-trivial quartic couplings and 54H has one cubic and one non-trivial quartic couplings.
This counting of non-trivial couplings dictates that in general the two VEV ratios ε1,2 from
the 210H are free parameters. Similar argument can be provided if 54H is replaced by 16H

Higgs.

5.2 SUSY SO(10) Models C–F

The Higgs sector of Model D consists of 210H +54H +126H +126H . This system is a subset
of the SUSY SO(10) models studied in Ref. [48]. The relevant part of the superpotential
with only 210H , 54H and 126H + 126H is:

W =
1

2
m1Φ2 +m2∆∆ +

1

2
m5E

2 + λ1Φ3 + λ8E
3

+ λ2Φ∆∆ + λ10Φ2E + λ11∆2E + λ12∆
2
E.

(5.74)

Since the VEV of 126H is required to be in the intermediate scale ∼ 1013−14 GeV range
from a fit to light neutrino masses arising via the seesaw mechanism, in this analysis of the
superpotential one can neglect the contribution coming from this field as the other scalars
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210H+54H will get much larger VEVs of order the GUT scale ∼ 1016 GeV. Then the relevant
stationary equations are

0 = m1V1 +
λ1

2
√

6
V 2

3 +

√
3

5
V1VE,

0 = m1V2 +
λ1

3
√

2
(V 2

2 + V 2
3 )− 2λ10√

15
V2VE,

0 = m1V3 +
λ1√

6
V1V3 +

√
2λ1

3
V2V3 +

λ10

2
√

15
V3VE,

0 = m5VE +

√
3λ8

2
√

5
V 2
E +

√
3λ10

2
√

5
V 2

1 −
λ10√

15
V 2

2 +
λ10

4
√

15
V 2

3 .

(5.75)

Here the V1 = 〈(1, 1, 1)〉, V2 = 〈(1, 1, 15)〉 and V3 = 〈(1, 3, 15)〉 are the VEVs of Φ(210H) and
the 54H VEV is VE = 〈(1, 1, 1)〉 under the Pati-Salam group SU(2)L × SU(2)R × SU(4)C

decomposition. Compared to Eqs. (3.44), here a different normalization is used and one
can make the identifications V1 = φ1, V2 =

√
3φ2, V3 =

√
3/2φ3.

The last relation in Eq. (5.75) can be solved for the free mass parameter m5. Taking
differences of the other three twice, we obtain two independent solutions,

V1 = −
√

3V2

2
or, V1 =

V2
3

2
√

3V2

. (5.76)

These correspond to the VEV ratios (ε1 = V2/V1, ε2 = V3/V1) given as

ε1 = − 2√
3

or, ε1 =
ε22

2
√

3
. (5.77)

While studing the fermions masses and mixing numerically, we will consider both these
cases. These models are labelled as Da for the solution ε1 = − 2√

3
and Db for solution

ε1 =
ε22

2
√

3
.

In Model E, we use a 210H along with a 16H + 16H for symmetry breaking purpose.
These fields are in addition to the 126H + 126H fields present. Just like the previous case,
since the SO(10) breaking VEV of the Higgs scalars 210H and 16H + 16H are ∼MGUT , one
can neglect the terms involving the scalar 126H which has a much lower VEV. The form of
the superpotantial is identical to Eq. (5.74) with the 126H(126H) replaced by 16H(16H). De-
noting the 16H(16H) VEV as Vψ(V ψ) and its mass by mψ, the relevant stationary equations
in this case are

0 = m1V1 +
λ1

2
√

6
V 2

3 +
λ2

10
√

6
VψV ψ,

0 = m1V2 +
λ1

3
√

2
(V 2

2 + V 2
3 ) +

λ2

10
√

2
VψV ψ,

0 = m1V3 +
λ1√

6
V1V3 +

√
2λ1

3
V2V3 +

λ2

10
VψV ψ,

0 = VψV ψ[mψ +
λ2

10
√

6
V1 +

λ2

10
√

2
V2 +

λ2

10
V3].

(5.78)
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There are two different solutions of this system of stationary equations

V1 =
V3√

6
, V2 =

V3√
2

;

or, V1 =
−36m2

1V3 + 5V 3
3 λ

2
1√

6(−6m1 + V3λ1)2
, V2 = −−36m2

1 + 12m1V3λ1 + V 2
3 λ

2
1√

2λ1(−6m1 + V3λ1)
.

(5.79)

So the VEV ratios are given by

ε1 =
√

3, ε2 =
√

6;

or, ε1 =

√
3(−6 + ε)(−36 + 12ε+ ε2)

ε(36− 5ε2)
, ε2 =

√
6(−6 + ε)2

−36 + 5ε2
; with ε ≡ V3

λ1

m1

,
(5.80)

where ε is a free parameter. We discard the first solution since this corresponds to SU(5)-
symmetric case. The surviving model will be labeled E.

By adding more Higgs multiplets in either of the modelsD or E, as for example 16H+16H

or adding another 54H to model D, these relations for VEV ratios can be made invalid and
ε1,2 can be made independent parameters. We will also study this general case. We choose
to add 16H + 16H in model D and 54H in model E and label these classes of model as F.
Finally, for SUSY model C, consisting of 126H + 126H + 45H + 54H + 16H + 16H , we stress
that the 16H + 16H are needed for successfully tuning the MSSM doublets light without
making simultaneously any other submultiplet light. The parameter ε is arbitrary in this
case.

6 Numerical analysis of fermion masses and mixings

In this section we show our fit results of fermion masses and mixings for different SO(10)

models described in Sections II and V. We do the fitting for both non-SUSY and SUSY
cases, each with type-I and type-II seesaw scenarios. For optimization purpose we do a
χ2-analysis. The pull and χ2-function are defined as:

Pi =
Oi th − Ei exp

σi
, (6.81)

χ2 =
∑
i

P 2
i , (6.82)

where σi represent experimental 1σ uncertainty and Oi th, Ei exp and Pi represent the theo-
retical prediction, experimental central value and pull of observable i. We fit the values of
the observables at the GUT scale,MGUT = 2×1016 GeV. To get the GUT scale values of the
observables, for non-SUSY case, we take the central values at the MZ scale from Table-1
of Ref. [49] and use the renormalization group equation (RGE) running factors given in
Ref. [50] to get the GUT scale inputs. For the associated one sigma uncertainties of the
observables at the GUT scale, we keep the same percentage uncertainty with respect to
the central value of each quantity as that at the MZ scale. For SUSY case, the low scale
values of the observables are taken from Table-2 of [49] at µ = 1 TeV where the values are
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converted to the DR scheme and then using the renormalization group equation running for
MSSM [51,52] we get the GUT scale inputs. For all different SUSY SO(10) models, we do
the fitting for tan β = 10. For the charged lepton masses, a relative uncertainty of 0.1% is
assumed in order to take into account the theoretical uncertainties arising for example from
threshold effects. The inputs in the neutrino sector are taken from Ref. [53]. For neutrino
observables, we do not run the RGE from low scale to the GUT scale, which is a relatively
small effect, except for an overall rescaling on the neutrino masses that can be absorbed in
the corresponding scale vR or vL. In the case of inverted hierarchical neutrino mass spec-
trum, RGE effects can be important, whereas for all our cases the spectrum turns out to be
normal hierarchical. Since the right-handed neutrino masses are extremely heavy, threshold
corrections might also have effects on the neutrino observables if the Dirac neutrino matrix
elements are of order one, but in our case the elements are much smaller than one. All
these inputs are shown in the tables where the fit results are presented. Below we present
our best fit results and the corresponding parameters for different SO(10) GUT models as
discussed above.

Model A: Non-SUSY SO(10): 45H + 54H + 126H

Masses (in GeV) and
Mixing parameters

Inputs
(at µ = MGUT )

Fitted values (AI)
(at µ = MGUT )

pulls
(AI)

Fitted values (AII)
(at µ = MGUT )

pulls
(AII)

mu/10−3 0.437±0.147 0.441 0.03 0.469 0.21
mc 0.236±0.007 0.236 0.003 0.236 0.02
mt 73.82±0.64 73.82 0.01 73.81 -0.01

md/10−3 1.12±0.11 1.14 0.16 1.12 -0.01
ms/10−3 21.93±1.07 21.82 -0.10 21.98 0.04
mb 0.987±0.008 0.987 -0.003 0.987 -0.003

me/10−3 0.469658±0.000469 0.469649 -0.01 0.469757 0.21
mµ/10−3 99.1474±0.0991 99.1555 0.08 99.0913 -0.56

mτ 1.68551±0.00168 1.68542 -0.05 1.68602 0.29
|Vus|/10−2 22.54±0.06 22.53 -0.01 22.54 0.005
|Vcb|/10−2 4.856±0.06 4.856 0.001 4.853 -0.03
|Vub|/10−2 0.420±0.013 0.420 0.07 0.420 0.02
δCKM 1.207±0.054 1.205 -0.03 1.205 -0.03

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.01 7.54 -0.06

∆m2
atm/10−3(eV2) 2.41±0.08 2.40 -0.004 2.41 0.05
sin2 θPMNS

12 0.308±0.017 0.308 0.01 0.302 -0.29
sin2 θPMNS

23 0.387±0.0225 0.388 0.03 0.396 0.42
sin2 θPMNS

13 0.0241±0.0025 0.0238 -0.11 0.0239 -0.04

Table 1: Fitted values of the observables correspond to χ2 = 7 · 10−2 and 0.78 for models
AI and AII respectively. These fittings correspond to |aij|max = |a44| =1.9 and 3.3 for the
type-I and type-II cases respectively (see text for details). For the charged lepton masses,
a relative uncertainty of 0.1% is assumed in order to take into account the theoretical
uncertainties arising for example from threshold effects.
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Quantity Predicted Value (AI) Predicted Value (AII)

{m1,m2,m3} (in eV) {3.72 · 10−3, 9.45 · 10−3, 4.99 · 10−2} {4.38 · 10−3, 9.72 · 10−3, 5.00 · 10−2}
{δPMNS , αPMNS

21 , αPMNS
31 } {120.03◦, 144.92◦,−168.49◦} {104.80◦, 159.32◦, 95.05◦}

{mcos,mβ ,mββ} (in eV) {6.31 · 10−2, 6.55 · 10−3, 1.22 · 10−3} {6.42 · 10−2, 7.05 · 10−3, 2.24 · 10−4}
{M1,M2,M3} (in GeV) {8.65 · 107, 2.66 · 1010, 6.99 · 1011} -

Table 2: Predictions of the models A. mi are the light neutrino masses, Mi are the right-
handed neutrino masses, α21,31 are the Majorana phases following the PDG parametrization,
mcos =

∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and mββ =

|
∑

i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

The fit results and the predictions for model A are shown in Table 1 and 2 respectively. For
model AI (Model A with type-I seesaw) the parameter set is:

{au33, a
d
33, ε, T, θ, φ, vR, r} ={0.415986 + 0.0944114i, 0.0246549,−1.24753, 8.68487,

0.560999,−0.0127783, 1.58339 · 1013GeV, 6.76689}

and

aeij = 10−2

 0.0959072 0 −1.47328− 0.508307i

0 −0.00693205 −0.302045− 0.119282i

0.149467 + 0.0128315i 0.0534903 − 0.0345252i 0.461306 − 1.4512i

 .

(6.83)
For model AII (Model A with type-II seesaw) the parameter set is:

{au33, a
d
33, ε, T, θ, φ, vL, r} ={0.152744 + 0.399269i,−0.0244755,−0.393925, 11.4001, 0.560999,

0.105066, 1.69937 · 10−8GeV, 6.75824}

and

aeij = 10−2

 0.127684 0 −0.0742479 + 0.0532305i

0 −0.00055042 0.0264824 + 0.0152045i

0.136072 + 0.0070994i 0.0582979 + 0.00164043i −0.398502− 2.1619i

 .

(6.84)
In performing such optimization, solutions with lower values of χ2 exist but we are only

interested in the solutions for which the original couplings aij are also in the perturbative
range. In the optimization process we restrict ourselves to the case of (aij)max . 2. For all
the solutions that are presented, we did find good fits with this cut-off except for model AII
where |a44| = 3.3 as can be seen from Eq. C.150 . The original coupling matrices aij can be
computed with the parameter sets that result due to the minimization process. For all the
fits to the different models presented in this work, these matrices are shown in Appendix C.

In Table 2, the predicted quantities correspond to the best fit values. For example, for
model AI, the predicted value of the Dirac type CP violating phase in the neutrino sector
is δPMNS = 2π/3. The fit result presented in this case is very good since χ2 = 7 · 10−2.
We have investigated the robustness of the predicted value of δPMNS and found it to be not
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very robust. Since the χ2 for the best fit is extremely small, it is quite fine to deviate from
the minimum χ2 are still find acceptable fits. We find that the variation of δPMNS from
the predicted value can be quite large. In Fig. 1, we show the variation of δPMNS with
χ2/nobs. Most of the fit results presented in this work have small total χ2, so this conclusion
on the robustness of δPMNS prediction is valid for the other models as well. We present the
variation plot only for model AI.

Figure 1: Variation of δPMNS with χ2/nobs for the model AI. In plotting this, we restrict to
the regime for which χ2 ≤ 10.

Model B: Non-SUSY SO(10): 210H + 54H + 126H (or 210H + 16H + 126H)
The fit results and the predictions for models B are shown in Table 3 and 4 respectively.
The parameter set for model BI is:

{au33, a
d
33, ε1, ε2, T, θ, φ, vR, r} ={−0.0380751− 0.424441i, 0.0244949, 1.61753, 1.67225, 0.764487,

0.541654,−2.91319, 2.23915 · 1013GeV, 6.74578}

and

aeij = 10−2

 −0.122115 0 0.899426 + 1.16951i

0 0.00569753 −0.104101− 0.15069i

−0.175821− 0.103765i 0.0325028 + 0.0638096i 1.46544 + 0.663581i

 .

(6.85)
The parameter set for model BII is:

{au33, a
d
33, ε1, ε2, T, θ, φ, vR, r} ={0.174446 + 0.389832i, 0.0244585, 1.07061, 0.666248, 0.526787,

0.713998, 0.295856, 1.32386 · 10−8GeV, 6.74635}

and

aeij = 10−2

 0.00424453 0 0.130198 − 0.0532261i

0 0.0963929 −0.386912− 0.75915i

−0.0711623− 0.0235054i 0.0531238 + 0.181145i −1.64856− 1.16034i

 .

(6.86)
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Masses (in GeV) and
Mixing parameters

Inputs
(at µ = MGUT )

Fitted values (B I)
(at µ = MGUT )

pulls
(B I)

Fitted values (B II)
(at µ = MGUT )

pulls
(B II)

mu/10−3 0.437±0.147 0.436 -0.0007 0.437 0.0002
mc 0.236±0.007 0.236 0.006 0.236 -0.00009
mt 73.82±0.64 73.82 0.003 73.82 -0.00005

md/10−3 1.12±0.11 1.12 0.0 1.12 -0.0005
ms/10−3 21.93±1.07 21.95 0.01 21.93 -0.0003
mb 0.987±0.008 0.987 0.005 0.987 0.0003

me/10−3 0.469658±0.000469 0.469654 -0.008 0.469658 -0.0004
mµ/10−3 99.1474±0.0991 99.1412 -0.06 99.1476 0.002

mτ 1.68551±0.00168 1.68555 0.02 1.68551 -0.002
|Vus|/10−2 22.54±0.06 22.54 0.0009 22.54 -0.00004
|Vcb|/10−2 4.856±0.06 4.856 0.0001 4.856 0.0002
|Vub|/10−2 0.420±0.013 0.419 -0.001 0.419 -0.0001
δCKM 1.207±0.054 1.207 0.003 1.207 0.0005

∆m2
sol/10−5(eV2) 7.56±0.24 7.55 -0.001 7.56 0.00005

∆m2
atm/10−3(eV2) 2.41±0.08 2.40 0.004 2.41 0.0001
sin2 θPMNS

12 0.308±0.017 0.307 -0.004 0.307 -0.0003
sin2 θPMNS

23 0.387±0.0225 0.387 -0.002 0.387 0.00004
sin2 θPMNS

13 0.0241±0.0025 0.0241 0.01 0.0241 0.00009

Table 3: Best fit values of the observables correspond to χ2 = 5 ·10−3 and 1 ·10−5 for models
BI and BII respectively. These fittings correspond to |aij|max = |a44| =0.56 and 0.26 for the
type-I and type-II cases respectively. For the charged lepton masses, a relative uncertainty
of 0.1% is assumed in order to take into account the theoretical uncertainties arising for
example from threshold effects.

Quantity Predicted Value (BI) Predicted Value (BII)

{m1,m2,m3} (in eV) {2.58 · 10−3, 9.07 · 10−3, 4.99 · 10−2} {2.61 · 10−3, 9.07 · 10−3, 4.99 · 10−2}
{δPMNS , αPMNS

21 , αPMNS
31 } {−38.38◦, 175.84◦,−131.48◦} {−65.38◦,−158.28◦,−96.19◦}

{mcos,mβ ,mββ} (in eV) {6.15 · 10−2, 5.67 · 10−3, 8.33 · 10−4} {6.16 · 10−2, 5.69 · 10−3, 3.93 · 10−4}
{M1,M2,M3} (in GeV) {5.47 · 108, 3.48 · 1010, 5.73 · 1011} -

Table 4: Predictions of models B. mi are the light neutrino masses, Mi are the right
handed neutrino masses, α21,31 are the Majorana phases following the PDG parametriza-
tion, mcos =

∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and

mββ = |
∑

i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

Model C: SUSY SO(10): 45H + 54H + 16H + 16H + 126H + 126H

The fit results and the predictions for models C are shown in Table 5 and 6 respectively.
The parameter set for model CI is:

{au33, a
d
33, ε, T, θ, φ, vR, r} ={−0.22531 + 0.467722i, 0.0317632,−1.10245 + 0.269791i,

5.51352, 0.560999, 0.448339, 1.39544 · 1013GeV, 9.14437}

and
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aeij = 10−2

 0.113952 0 −1.52545− 0.861024i

0 0.0066433 0.103718 − 0.25156i

0.103242 − 0.07705i 0.0528824 + 0.0275714i −0.300714− 1.23388i

 .

(6.87)
The parameter set for model CII is:

{au33, a
d
33, ε, T, θ, φ, vL, r} ={0.0307775 + 0.518792i,−0.0317378,−0.75526− 0.237386i,

4.66699, 0.713998,−0.0578946, 1.55237 · 10−8GeV, 9.1424}

and

aeij = 10−2

 −0.104302 0 0.88437 − 0.647303i

0 0.00422339 0.0628707 − 0.166004i

−0.0805026− 0.140317i −0.0449238− 0.0524454i −0.793384 + 1.69782i

 .

(6.88)

Masses (in GeV) and
Mixing parameters

Inputs
(at µ = MGUT )

Fitted values (CI)
(at µ = MGUT )

pulls
(CI)

Fitted values (CII)
(at µ = MGUT )

pulls
(CII)

mu/10−3 0.502±0.155 0.502 0.001 0.501 -0.0005
mc 0.245±0.007 0.245 0.002 0.245 0.001
mt 90.28±0.90 90.28 -0.0005 90.28 -0.002

md/10−3 0.839±0.084 0.838 -0.006 0.839 -0.001
ms/10−3 16.62±0.90 16.62 -0.00005 16.62 0.002
mb 0.938±0.009 0.938 -0.001 0.938 -0.001

me/10−3 0.344021±0.000344 0.344021 0.0001 0.344018 -0.008
mµ/10−3 72.6256±0.0726 72.6273 0.02 72.6240 -0.02

mτ 1.24038±0.00124 1.24036 -0.01 1.24038 -0.001
|Vus|/10−2 22.53±0.07 22.53 0.002 22.53 0.001
|Vcb|/10−2 3.934±0.06 3.933 -0.001 3.934 0.001
|Vub|/10−2 0.340±0.011 0.340 -0.001 0.340 -0.004
δCKM 1.208±0.054 1.208 0.004 1.208 0.001

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.001 7.55 -0.001

∆m2
atm/10−3(eV2) 2.41±0.08 2.41 0.001 2.40 -0.0006
sin2 θPMNS

12 0.308±0.017 0.308 0.005 0.308 0.003
sin2 θPMNS

23 0.387±0.0225 0.387 -0.0001 0.387 -0.002
sin2 θPMNS

13 0.0241±0.0025 0.0240 -0.002 0.0240 -0.003

Table 5: Best fit result for models C with inputs correspond to tan β = 10. The fitted
values correspond to χ2 = 7 · 10−4 for model CI and 6 · 10−4 for model CII. These fittings
correspond to |aij|max = |a44| =1.5 and 1.03 for the type-I and type-II cases respectively.
For the charged lepton masses, a relative uncertainty of 0.1% is assumed in order to take
into account the theoretical uncertainties arising for example from threshold effects.
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Quantity Predicted Value (CI) Predicted Value (CII)

{m1,m2,m3} (in eV) {5.36 · 10−3, 1.02 · 10−2, 5.01 · 10−2} {3.68 · 10−3, 9.44 · 10−3, 4.99 · 10−2}
{δPMNS , αPMNS

21 , αPMNS
31 } {157.92◦, 158.41◦,−104.87◦} {85.15◦, 165.93◦, 138.22◦}

{mcos,mβ ,mββ} (in eV) {6.57 · 10−2, 7.90 · 10−3, 1.35 · 10−3} {6.31 · 10−2, 6.53 · 10−3, 7.55 · 10−4}
{M1,M2,M3} (in GeV) {1.91 · 108, 1.63 · 1010, 1.33 · 1012} -

Table 6: Predictions of the models C. mi are the light neutrino masses, Mi are the right
handed neutrino masses, α21,31 are the Majorana phases following the PDG parametrization,
mcos =

∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and mββ =

|
∑

i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

Model D: SUSY SO(10): 210H + 54H + 126H + 126H

The fit results and the predictions for model DaI are shown in Table 7 and 8 respectively.
The parameter set for this fit of model DaI is:

{au33, a
d
33, ε2, T, θ, φ, vR, r} ={−0.343904 + 0.38917i, 0.0318629,−5.89976− 0.158839i, 0.77736,

0.532473, 2.76646, 1.95768 · 1013GeV, 9.15103}

and

aeij = 10−10

 −0.00696426 0 0.289526 − 0.387539i

0 −0.0703536 1.4192 + 0.447705i

0.00893467 − 0.0548221i 0.11474 + 0.140445i 1.06975 − 1.07627i

 .

(6.89)
The fit results and the predictions for models Db are shown in Table 9 and 10 respectively.
The parameter set for DbI is:

{au33, a
d
33, ε2, T, θ, φ, vR, r} ={−0.416619− 0.310425i,−0.0317247, 3.76592 + 0.0145385i, 0.310345,

2.84818, 0.132797, 2.21257 · 1013GeV, 9.14124}

and

aeij = 10−2

 0.0964978 0 −0.0230964 + 1.18352i

0 −0.00493562 0.00684639− 0.202567i

−0.0394903− 0.200904i 0.055507 + 0.0481135i 0.753644 + 1.64867i

 .

(6.90)
And the parameter set for model DbII is:

{au33, a
d
33, ε2, T, θ, φ, vL, r} ={−0.365477− 0.36971i, 0.0316996, 3.53671− 0.311658i, 0.343597,

− 2.95969,−0.131357, 1.58947 · 10−8GeV, 9.14446}

and

aeij = 10−2

 0.00324628 0 −0.026757 + 0.083972i

0 −0.148375 0.450875 + 0.843973i

−0.0190056− 0.0577497i −0.129264− 0.0587799i 1.86523 + 0.58344i

 .

(6.91)
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Masses (in GeV) and
Mixing parameters

Inputs
(at µ = MGUT )

Fitted values (DaI)
(at µ = MGUT )

pulls
(DaI)

mu/10−3 0.502±0.155 0.520 0.12
mc 0.245±0.007 0.243 -0.20
mt 90.28±0.90 90.17 -0.11

md/10−3 0.839±0.084 0.967 1.51
ms/10−3 16.62±0.90 16.49 -0.14
mb 0.938±0.009 0.939 0.14

me/10−3 0.344021±0.000344 0.343834 -0.54
mµ/10−3 72.6256±0.0726 72.4978 -1.75

mτ 1.24038±0.00124 1.23997 -0.32
|Vus|/10−2 22.53±0.07 22.53 -0.09
|Vcb|/10−2 3.934±0.06 3.920 -0.22
|Vub|/10−2 0.340±0.011 0.341 0.10
δCKM 1.208±0.054 1.192 -0.28

∆m2
sol/10−5(eV2) 7.56±0.24 7.52 -0.15

∆m2
atm/10−3(eV2) 2.41±0.08 2.42 0.13
sin2 θPMNS

12 0.308±0.017 0.290 -1.00
sin2 θPMNS

23 0.387±0.0225 0.399 0.55
sin2 θPMNS

13 0.0241±0.0025 0.0235 -0.20

Table 7: Fitting result for model DaI with inputs correspond to tan β = 10. The fitted
values correspond to χ2 = 7.4 for type-I. It should be mentioned that, among all the fit
results presented in this work, this specific fit has the largest value of χ2 which is 7.4 for 18
observables. This fit correspond to |aij|max = |a44| =1.55. For the charged lepton masses, a
relative uncertainty of 0.1% is assumed in order to take into account theoretical uncertainties
arising for example from threshold effects. We did not find any acceptable fit within the
perturbative range for model DaII.

Quantity Predicted Value (DaI)

{m1,m2,m3} (in eV) {1.58 · 10−3, 8.81 · 10−3, 4.99 · 10−2}
{δPMNS , αPMNS

21 , αPMNS
31 } {85.64◦, 139.76◦, 149.60◦}

{mcos,mβ ,mββ} (in eV) {6.03 · 10−2, 4.78 · 10−3, 1.21 · 10−3}
{M1,M2,M3} (in GeV) {8.89 · 107, 2.14 · 1010, 2.63 · 1012}

Table 8: Predictions of the model DaI. mi are the light neutrino masses, Mi are the right
handed neutrino masses, α21,31 are the Majorana phases following the PDG parametrization,
mcos =

∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and mββ =

|
∑

i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

Model E: SUSY SO(10): 210H + 16H + 16H + 126H + 126H

The fit results and the predictions for models E are shown in Table 11 and 12 respectively.
For model EI, the parameter set is:

25



Masses (in GeV) and
Mixing parameters

Inputs
(at µ = MGUT )

Fitted values (DbI)
(at µ = MGUT )

pulls
(DbI)

Fitted values (DbII)
(at µ = MGUT )

pulls
(DbII)

mu/10−3 0.502±0.155 0.501 -0.0006 0.502 0.001
mc 0.245±0.007 0.245 -0.004 0.245 0.003
mt 90.28±0.90 90.28 0.002 90.28 -0.00009

md/10−3 0.839±0.084 0.839 0.001 0.838 -0.004
ms/10−3 16.62±0.90 16.62 -0.001 16.62 -0.0001
mb 0.938±0.009 0.938 -0.001 0.938 0.001

me/10−3 0.344021±0.000344 0.344016 -0.01 0.344019 -0.007
mµ/10−3 72.6256±0.0726 72.6279 0.03 72.62249 -0.01

mτ 1.24038±0.00124 1.24035 -0.02 1.24039 0.004
|Vus|/10−2 22.53±0.07 22.53 0.0004 22.53 -0.0003
|Vcb|/10−2 3.934±0.06 3.934 0.002 3.933 -0.0005
|Vub|/10−2 0.340±0.011 0.340 -0.001 0.340 -0.0005
δCKM 1.208±0.054 1.208 0.002 1.208 -0.001

∆m2
sol/10−5(eV2) 7.55±0.24 7.56 -0.0004 7.55 -0.0003

∆m2
atm/10−3(eV2) 2.41±0.08 2.41 0.0008 2.40 -0.0003
sin2 θPMNS

12 0.308±0.017 0.308 -0.001 0.308 -0.0003
sin2 θPMNS

23 0.387±0.0225 0.387 0.0007 0.387 0.001
sin2 θPMNS

13 0.0241±0.0025 0.0241 0.001 0.02409 -0.001

Table 9: Fitting result for model Db with inputs correspond to tan β = 10. The fitted
values correspond to χ2 = 1.9 · 10−3 and 2 · 10−4 for models DbI and DbII respectively.
These fits correspond to |aij|max = |a44| = 0.81 and 0.99 for the two cases respectively. For
the charged lepton masses, a relative uncertainty of 0.1% is assumed in order to take into
account theoretical uncertainties arising for example from threshold effects.

Quantity Predicted Value (DbI) Predicted Value (DbII)

{m1,m2,m3} (in eV) {2.20 · 10−3, 8.96 · 10−3, 4.99 · 10−2} {4.72 · 10−3, 9.89 · 10−3, 5.00 · 10−2}
{δPMNS , αPMNS

21 , αPMNS
31 } {50.24◦, 169.13◦, 111.61◦} {66.63◦, 161.63◦, 0.41◦}

{mcos,mβ ,mββ} (in eV) {6.10 · 10−2, 5.38 · 10−3, 7.40 · 10−4} {6.47 · 10−2, 7.37 · 10−3, 4.54 · 10−4}
{M1,M2,M3} (in GeV) {9.40 · 108, 3.13 · 1010, 2.44 · 1011} -

Table 10: Predictions of models Db. mi are the light neutrino masses, Mi are the right
handed neutrino masses, α21,31 are the Majorana phases following the PDG parametrization,
mcos =

∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and mββ =

|
∑

i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

{au33, a
d
33, ε, T, θ, φ, vR, r} ={0.0873809 + 0.511807i, 0.0316596, 3.21783 + 0.31637i, 0.762371,

0.747998, 2.38528, 2.26917 · 1013GeV, 9.13917}

and

aeij = 10−2

 0.00565532 0 0.0242668 + 0.230491i

0 0.10865 1.42287 − 0.445238i

−0.0636824− 0.00136495i −0.154896 + 0.137372i −1.56252 + 0.079592i

 .

(6.92)
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For model EII, the parameter set is:

{au33, a
d
33, ε, T, θ, φ, vL, r} ={−0.43609 + 0.282193i,−0.0316974, 3.21172 + 0.154721i, 0.54795,

0.682955, 2.41863, 1.26299 · 10−8GeV, 9.1442}

and

aeij = 10−2

 −0.00491523 0 0.0991935 + 0.158945i

0 −0.0989956 1.00507 − 0.775818i

−0.0677936− 0.0254017i 0.0688011 + 0.186132i −1.33307 + 1.14438i

 .

(6.93)

Masses (in GeV) and
Mixing parameters

Inputs
(at µ = MGUT )

Fitted values (EI)
(at µ = MGUT )

pulls
(EI)

Fitted values (EII)
(at µ = MGUT )

pulls
(EII)

mu/10−3 0.502±0.155 0.501 -0.001 0.502 0.0005
mc 0.245±0.007 0.245 -0.007 0.245 0.001
mt 90.28±0.90 90.28 0.001 90.28 -0.002

md/10−3 0.839±0.084 0.839 0.001 0.839 -0.0005
ms/10−3 16.62±0.90 16.62 0.00009 16.62 -0.0001
mb 0.938±0.009 0.938 -0.0002 0.938 -0.001

me/10−3 0.344021±0.000344 0.344022 0.004 0.344023 0.005
mµ/10−3 72.6256±0.0726 72.6250 -0.007 72.62641 0.01

mτ 1.24038±0.00124 1.24036 -0.01 1.24037 -0.009
|Vus|/10−2 22.53±0.07 22.53 0.001 22.53 -0.0001
|Vcb|/10−2 3.934±0.06 3.934 0.005 3.933 -0.0003
|Vub|/10−2 0.340±0.011 0.340 -0.007 0.340 0.0006
δCKM 1.208±0.054 1.208 0.007 1.208 0.004

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.001 7.55 -0.0002

∆m2
atm/10−3(eV2) 2.41±0.08 2.409 -0.0007 2.41 0.0003
sin2 θPMNS

12 0.308±0.017 0.308 0.006 0.307 -0.002
sin2 θPMNS

23 0.387±0.0225 0.387 0.002 0.387 0.0008
sin2 θPMNS

13 0.0241±0.0025 0.0240 0.0001 0.0241 0.001

Table 11: Fitting result for models E with inputs correspond to tan β = 10. The fitted
values correspond to χ2 = 4 · 10−4 for model EI and 2 · 10−4 for model EII respectively.
These fittings correspond to |aij|max = |a44| =0.76 and 0.89 for the type-I and type-II
cases respectively. For the charged lepton masses, a relative uncertainty of 0.1% is assumed
in order to take into account theoretical uncertainties arising for example from threshold
effects.

Model F: SUSY SO(10): 210H + 54H + 16H + 16H + 126H + 126H

The fit results and the predictions for models F are shown in Table 14 and 13 respectively.
The parameter set for model FI is:

{au33, a
d
33, ε1, ε2, T, θ, φ, vR, r} ={−0.508413 + 0.106596i, 0.0317542, 1.21369 + 0.393457i, 1.11752

+ 1.12726i, 0.652924, 0.682955,−2.69221, 2.17249 · 1013GeV, 9.14433}

and
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Quantity Predicted Value (EI) Predicted Value (EII)

{m1,m2,m3} (in eV) {2.06 · 10−3, 8.93 · 10−3, 4.98 · 10−2} {2.46 · 10−3, 9.03 · 10−3, 4.99 · 10−2}
{δPMNS , αPMNS

21 , αPMNS
31 } {46.84◦,−178.55◦, 141.46◦} {−53.69◦,−172.46◦,−123.70◦}

{mcos,mβ ,mββ} (in eV) {6.08 · 10−2, 5.28 · 10−3, 9.54 · 10−4} {6.14 · 10−2, 5.58 · 10−3, 7.05 · 10−4}
{M1,M2,M3} (in GeV) {2.79 · 108, 2.15 · 1010, 1.82 · 1012} -

Table 12: Predictions of models E. mi are the light neutrino masses, Mi are the right
handed neutrino masses, α21,31 are the Majorana phases following the PDG parametrization,
mcos =

∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and mββ =

|
∑

i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

aeij = 10−2

 −0.101322 0 1.50945 + 0.641937i

0 0.00628798 −0.311418− 0.017807i

−0.0659206− 0.186996i −0.0254875 + 0.0490826i 0.979206 + 0.994616i

 .

(6.94)
And the parameter set for model FII is:

{au33, a
d
33, ε1, ε2, T, θ,φ, vL, r} = {−0.0175831− 0.518919i,−0.0317748, 1.13488− 0.537296i,

0.934779− 0.810325i, 0.577852, 0.541654, 2.37836, 1.17202 · 10−8GeV, 9.14329}

and

aeij = 10−2

 0.00631171 0 −0.244096− 0.0355119i

0 −0.106855 1.42499 − 0.0405503i

−0.00203514− 0.0627216i −0.159398 + 0.138939i 1.56233 + 0.439752i

 .

(6.95)

Quantity Predicted Value (FI) Predicted Value (FII)

{m1,m2,m3} (in eV) {1.84 · 10−3, 8.88 · 10−3, 4.98 · 10−2} {2.00 · 10−3, 8.92 · 10−3, 4.98 · 10−2}
{δPMNS , αPMNS

21 , αPMNS
31 } {−60.72◦,−175.43◦,−164.89◦} {44.97◦, 179.45◦, 133.12◦}

{mcos,mβ ,mββ} (in eV) {6.06 · 10−2, 5.11 · 10−3, 1.17 · 10−3} {6.08 · 10−2, 5.23 · 10−3, 9.61 · 10−4}
{M1,M2,M3} (in GeV) {3.92 · 108, 1.97 · 1010, 1.27 · 1012} -

Table 13: Predictions of models F. mi are the light neutrino masses, Mi are the right
handed neutrino masses, α21,31 are the Majorana phases following the PDG parametrization,
mcos =

∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and mββ =

|
∑

i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

7 d = 5 proton decay

Since the flavor dynamics occurs at the GUT scale in this class of models, the best hope for
testing this idea is by studying proton decay, in particular, its branching ratios into different
modes. While such an analysis can be done for both non-SUSY and SUSY models, here we
confine our discussion to the more dominant d = 5 decay modes in SUSY mediated by the
color-triplet Higgsinos.
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Masses (in GeV) and
Mixing parameters

Inputs
(at µ = MGUT )

Fitted values (FI)
(at µ = MGUT )

pulls
(FI)

Fitted values (FII)
(at µ = MGUT )

pulls
(FII)

mu/10−3 0.502±0.155 0.501 -0.003 0.501 -0.0005
mc 0.245±0.007 0.245 0.006 0.245 0.001
mt 90.28±0.90 90.28 0.003 90.28 0.001

md/10−3 0.839±0.084 0.839 0.004 0.839 0.001
ms/10−3 16.62±0.90 16.62 -0.001 16.62 0.001
mb 0.938±0.009 0.938 0.0001 0.938 -0.0001

me/10−3 0.344021±0.000344 0.344022 0.001 0.344022 0.002
mµ/10−3 72.6256±0.0726 72.6237 -0.02 72.62539 -0.002

mτ 1.24038±0.00124 1.24039 0.007 1.24038 0.0003
|Vus|/10−2 22.53±0.07 22.53 0.0002 22.53 0.0001
|Vcb|/10−2 3.934±0.06 3.933 -0.001 3.934 0.0001
|Vub|/10−2 0.340±0.011 0.340 -0.007 0.340 -0.001
δCKM 1.208±0.054 1.208 0.001 1.208 0.004

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.00003 7.55 -0.0002

∆m2
atm/10−3(eV2) 2.41±0.08 2.41 0.0005 2.41 0.0001
sin2 θPMNS

12 0.308±0.017 0.308 0.0004 0.308 0.0004
sin2 θPMNS

23 0.387±0.0225 0.387 -0.001 0.387 0.001
sin2 θPMNS

13 0.0241±0.0025 0.0240 -0.0009 0.02409 -0.002

Table 14: Fitting result for models F with inputs correspond to tan β = 10. The fitted values
correspond to χ2 = 9 · 10−4 and 3 · 10−5 for models FI and FII respectively. These fittings
correspond to |aij|max = |a44| =0.67 and 1.08 for the type-I and type-II cases respectively.
For the charged lepton masses, a relative uncertainty of 0.1% is assumed in order to take
into account theoretical uncertainties arising for example from threshold effects.

We will bound ourselves to the (presumably) dominant d = 5 (charged) wino mediated
mode, so that only SU(2)L non-singlets will appear in the effective operators:

W ∝ (YQQ)ij (YQL)kl (QiQj) (QkLl) (7.96)

with
YQQ = ΛT

Q

(
Y − yxTQ − xQyT + y4xQx

T
Q

)
ΛQ (7.97)

YQL = ΛT
Q

(
Y − yxTL − xQyT + y4xQx

T
L

)
ΛL (7.98)

We have to project them to the mass eigenstates defined by the unitary matrices X =

U,D,E,N which diagonalize the mass matrices as

MX = XRM
d
XX

†
L (7.99)

We will use the notation (X = U,D)

YXZ = XT
LYQQZL (for Z = U,D) (7.100)

= XT
LYQLZL (for Z = E,N) (7.101)

After 1-loop w̃± dressing and assuming degeneracy and negligible left-right sfermion
mixing the normalized amplitudes for different channels [54] are, in the mass eigenbasis,
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A(K+ν̄l) = 〈K+| (ud)L sL|p〉 [(YUD)11 (YDN)2l − (YDD)21 (YUN)1l]

+ 〈K+| (us)L dL|p〉 [(YUD)12 (YDN)1l − (YDD)12 (YUN)1l] (7.102)

A(π+ν̄l) = 〈π+| (ud)L dL|p〉 [(YUD)11 (YDN)1l − (YDD)11 (YUN)1l] (7.103)

A(K0e+
l ) = 〈K0| (us)L uL|p〉 [(YUU)11 (YDE)2l − (YUD)12 (YUE)1l] (7.104)

A(π0e+
l ) = 〈π0| (ud)L uL|p〉 [(YUU)11 (YDE)1l − (YUD)11 (YUE)1l] (7.105)

A(ηe+
l ) = 〈η| (ud)L uL|p〉 [(YUU)11 (YDE)1l − (YUD)11 (YUE)1l] (7.106)

where the numerical values (with maximal error around 30%) of the hadron matrix elements
can be found in [55].

The unitary matrices X and the Yukawa matrix elements YQQ,QL are outputs of each
successful fit done. As an example, for model DaI we find

YQQ =

 −0.0000696426 0 −0.0105713 + 0.00524935i

0 −0.000703536 −0.0237115− 0.0274144i

−0.0105713 + 0.00524935i −0.0237115− 0.0274144i −1.05171− 0.204611i


(7.107)

YQL =

 −0.0000696426 0 −0.0000232394− 0.000554968i

0 −0.000703536 0.00140745 + 0.00114372i

−0.0105713 + 0.00524935i −0.0237115− 0.0274144i 0.00550524 − 0.00420826i


(7.108)

UL =

 0.947932 + 0.154511i 0.0250533 − 0.277159i −0.00483953− 0.00916537i

0.0236485 + 0.277423i −0.948101 + 0.150221i −0.0314764 + 0.00505612i

−0.00438488− 0.00319527i 0.0288651 + 0.0161593i −0.895175− 0.444452i


(7.109)

DL =

 0.44376 + 0.785783i −0.114306− 0.415343i −0.00683343 + 0.0000682437i

−0.135958 + 0.408742i −0.484535 + 0.761308i 0.00448262 − 0.00785931i

−0.00402935− 0.00717747i −0.00772054− 0.00109752i −0.895597− 0.444722i


(7.110)

EL =

 −0.914868 + 0.192948i −0.182083− 0.209497i −0.00368156 + 0.220751i

0.16774 − 0.285354i −0.612359− 0.228437i 0.639383 + 0.233362i

−0.0189384− 0.125958i −0.00319539 + 0.704116i −0.0568573 + 0.696242i


(7.111)

NL =

 −0.502397 + 0.721475i −0.139083− 0.437348i 0.047407 + 0.119192i

−0.43546 + 0.122682i −0.243261 + 0.682259i 0.24818 − 0.45725i

−0.0953668 + 0.115327i 0.0333823 + 0.513435i −0.0502508 + 0.842822i


(7.112)

After squaring (7.102)-(7.106) and multiplying by the appropriate phase space factor
(mP , mL, mp are the pseudo-scalar, lepton and proton mass, respectively)
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(
1− 2

(
m2
P +m2

L

m2
p

)
+

(
m2
P −m2

L

m2
p

)2
)

(7.113)

one can calculate the branching fractions for different channels (for neutrino final states we
sum over all 3 flavors), the results are given for the different models in table 15. While as
expected, the K+ν mode dominates, other sub-leading modes, notably p → π+ν, can be
used to test and distinguish various models.

CI CII Da I DbI DbII EI EII FI FII

K+ν̄ 88.39 94.36 50.39 92.71 75.26 89.03 77.91 94.78 90.65
π+ν̄ 10.85 5.55 48.33 7.12 24.62 10.48 21.58 4.95 9.17
K0e+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K0µ+ 0.35 0.04 0.49 0.08 0.05 0.23 0.21 0.13 0.09
π0e+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
π0µ+ 0.34 0.04 0.66 0.08 0.06 0.21 0.25 0.12 0.08
ηe+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ηµ+ 0.06 0.01 0.12 0.01 0.01 0.04 0.05 0.02 0.01

Table 15: Branching ratios for the main decay modes of the proton mediated by colored
Higgsinos in SUSY SO(10) models with successful fermion fits.

8 Conclusion

We have presented in this paper a new class of SO(10) models that can successfully address
the flavor puzzle. The key ingredient of our models is the absence of 10H that is conven-
tionally used in most SO(10) models. Its absence is compensated by the introduction of
a vector-like family in the 16 + 16 representation. The Yukawa sector of these models has
just a single 4× 4 matrix, along with two four-vectors. As a consequence, there are only 14
flavor parameters and 7 phases to fit all fermion masses and mixings, including the neutrino
sector.

While the Yukawa system is highly nonlinear, by numerical optimization we have found
excellent fits to the fermion observables in a variety of models. A 126H is present in all
models, to generate large right-handed neutrino Majorana masses as well as to provide the
SM Higgs doublet. The vector-like fermions have couplings to either a 45H or a 210H that
is used to complete the symmetry breaking. A total of six models, four supersymmetric and
two non-supersymmetric, have been studied. In each case type-I or type-II seesaw mecha-
nism was analyzed. In one case (Model D) with SUSY, minimization of the Higgs potential
led to a two-fold solution set, with each providing an excellent fit to flavor observables.

While this class of high scale models cannot be easily tested at collider experiments,
proton decay provides an avenue to probe such models. We have investigate the branching
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ratios for proton decay in the SUSY models, with the results presented in Table 15. While
it is an ambitious goal to test flavor models in proton decay discovery, even without such a
discovery it is heartening to learn that a large class of models can shed light on the various
puzzles of fermion masses observed in nature. In particular, starting from a highly symmet-
rical quark and lepton sector these models produce large neutrino mixing simultaneously
with small quark mixing, a highly nontrivial achievement.
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Appendices

A Expressions for aij

In this Appendix we give expressions for aij used in the numerical analysis.

a13 =
Neca

e
13 −Nea

e
31

T (Qec −Qe)
, (A.114)

a14 =
Neca

e
13(eiφ cos θ + TQe)−Nea

e
31(eiφ cos θ + TQec)

sin θT (Qec −Qe)
, (A.115)

a23 =
Neca

e
23 −Nea

e
32

T (Qec −Qe)
, (A.116)

a24 =
Neca

e
23(eiφ cos θ + TQe)−Nea

e
32(eiφ cos θ + TQec)

sin θT (Qec −Qe)
, (A.117)

a33 = (au33NuNucC1 + ad33NdNdcC2 + ae33NeNecC3)/(T 2D1) , (A.118)

a34 = (au33NuNucC4 + ad33NdNdcC5 − ae33NeNecC6)/(T 2D1) , (A.119)

a44 = (au33NuNucC7 + ad33NdNdcC8 − ae33NeNecC9)/(T 2D1) , (A.120)

with
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C1 = Qdc −Qec +Qd −Qe; (A.121)

C2 = Qec −Quc +Qe −Qu; (A.122)

C3 = −Qdc +Quc −Qd +Qu; (A.123)

C4 = csc θ
(
eiφ cos θ (Qdc −Qec) +Qd

(
TQdc + eiφ cos θ

)
−Qe

(
TQec + eiφ cos θ

))
;

(A.124)

C5 = csc θ
(
Qe

(
TQec + eiφ cos θ

)
+ eiφ cos θ (Qec −Quc)−Qu

(
TQuc + eiφ cos θ

))
;

(A.125)

C6 = csc θ
(
Qd

(
TQdc + eiφ cos θ

)
+ eiφ cos θ (Qdc −Quc)−Qu

(
TQuc + eiφ cos θ

))
;

(A.126)

C7 = T 2QdQe csc2 θQdc − T 2QdQe csc2 θQec + T 2Qd csc2 θQdcQec − T 2Qe csc2 θQdcQec

+ e2iφ cot2 θQdc + 2TeiφQd cot θ csc θQdc − e2iφ cot2 θQec

− 2TeiφQe cot θ csc θQec + e2iφQd cot2 θ − e2iφQe cot2 θ; (A.127)

C8 = e2iφ cot2 θQec + T 2Qe csc2 θQuQec − T 2Qe csc2 θQuQuc + T 2Qe csc2 θQecQuc

− T 2 csc2 θQuQecQuc + 2TeiφQe cot θ csc θQec − 2Teiφ cot θ csc θQuQuc

− e2iφ cot2 θQuc + e2iφQe cot2 θ − e2iφ cot2 θQu; (A.128)

C9 = e2iφ cot2 θQdc + T 2Qd csc2 θQuQdc − T 2Qd csc2 θQuQuc + T 2Qd csc2 θQdcQuc

− T 2 csc2 θQuQdcQuc + 2TeiφQd cot θ csc θQdc − 2Teiφ cot θ csc θQuQuc

− e2iφ cot2 θQuc + e2iφQd cot2 θ − e2iφ cot2 θQu; (A.129)

D1 = QdQeQdc +QdQdcQec −QeQdcQec −QdQeQec −QdQuQdc −QdQdcQuc

+QuQdcQuc +QdQuQuc +QeQuQec −QeQuQuc +QeQecQuc −QuQecQuc . (A.130)

B Expressions for aν33, a
R
33 and aL33

In this appendix, we give the expressions for aν33, a
R
33, a

L
33 for both the Φ = 45H and 210H

cases. Using Eqs.(4.66), (A.118), (A.119) and (A.120) it is straightforward to find for the
45H-case:

aν33 = au33

NuNuc

NνNνc
+ ad33

NdNdc

NνNνc

1 + ε/5

1 + ε
− ae33

NeNec

NνNνc

1 + ε/5

1 + ε
. (B.131)

And for the case of 210H we find:

aν33 = au33

NuNuc

NνNνc

C10

D2

+ ad33

NdNdc

NνNνc

C11

D2

+ ae33

NeNec

NνNνc

C12

D2

, (B.132)

with
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C10 = 3
(

8
√

6ε21 − 4
(

2
√

3ε2 + 3
√

2
)
ε1 + ε2

(√
6ε2 + 6

))
, (B.133)

C11 = 3
(
−8
√

6ε21 + 12
√

2ε1 + ε2

(√
6ε2 − 6

))
, (B.134)

C12 = 8
√

6ε21 + 4
(

2
√

3ε2 + 3
√

2
)
ε1 − 3ε2

(√
6ε2 + 2

)
, (B.135)

D2 =
(

4ε1 −
√

2ε2

)(
2
√

6ε1 − 3
√

3ε2 + 3
√

2
)
. (B.136)

Using Eqs. (A.118), (A.119) and (A.120) for the 45H-case we have:

aR33 =
3

2
au33

NuNuc

N2
νc

1 + ε/5

1 + 3ε/5
− 5

4
ae33

NeNec

N2
νc

(1 + ε/5)2

ε(1 + ε)
+

5

4
ad33

NdNdc

N2
νc

1 + 3
5
ε+ 3

25
ε2 + 33

125
ε3

ε(1 + ε)(1 + 3ε/5)
.

(B.137)
And for 210H-case we have:

aR33 = au33

NuNuc

N2
νc

C13

D3

− ad33

NdNdc

N2
νc

C14

D3

+ ae33

NeNec

N2
νc

C15

D3

, (B.138)

with
C13 = 18

√
3ε42 + 36

√
2ε32 − 45

√
6ε1ε

3
2 + 12

√
3ε22 − 156ε1ε

2
2 + 72

√
6ε31ε2 + 12

√
2ε21ε2 − 30

√
6ε1ε2

+ 48ε31 + 24
√

3ε21, (B.139)

C14 = 9
√
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√
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√

6ε1ε
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√
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√
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√
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C15 = 16
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D3 = 2ε1
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√
2ε2

)(
2
√

6ε1 − 3
√
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√

2
)
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For the case of 45H we have:

aL33 =
−4

5
ae33

Nec

Nν

ε

1 + ε
+

1

2
au33

NuNuc

N2
ν

5 + 9ε

5 + 3ε
+

1

10
ad33

NdNdc

N2
ν

25 + 50ε+ 9ε2

(1 + ε)(5 + 3ε)
. (B.143)

And for the case of 210H we have:

aL33 = au33

NuNuc

N2
ν
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+ ad33
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N2
ν

C17
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+ ae33
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with
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C17 = 3
(
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C18 = 8
√
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D4 = 2ε2
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2ε2 − 4ε1

)(
−2
√

6ε1 + 3
√

3ε2 − 3
√

2
)
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34



C Numerical values of the original Yukawa couplings aij

In this appendix we present the original coupling matrices aij for all the different models.
aij matrices are calculated from the fitted parameter sets.
Model AI:

aij = 10−2


0.0959072 0 0.579907 + 0.173698i 5.94255 + 2.20933i

0 −0.00693205 0.134449 + 0.0151987i 1.11642 + 0.685207i

0.579907 + 0.173698i 0.134449 + 0.0151987i 0.343854 + 2.01413i 16.4068 + 0.693589i

5.94255 + 2.20933i 1.11642 + 0.685207i 16.4068 + 0.693589i 192.42 + 53.2691i

 .

(C.149)
Model AII:

aij = 10−2


0.127684 0 −0.300661 + 0.102672i −2.93065 + 0.584561i

0 −0.00055042 −0.00799172 + 0.0297446i −0.450085 + 0.185354i

−0.300661 + 0.102672i −0.00799172 + 0.0297446i 0.164493 − 2.14188i 8.08605 + 16.5832i

−2.93065 + 0.584561i −0.450085 + 0.185354i 8.08605 + 16.5832i 96.688 + 321.511i

 .

(C.150)
Model BI:

aij = 10−2


−0.122115 0 0.711183 + 0.747142i −1.99272− 3.01439i

0 0.00569753 −0.0996008− 0.168017i 0.22039 + 0.476214i

0.711183 + 0.747142i −0.0996008− 0.168017i −1.6329− 3.89159i 2.08313 + 14.9094i

−1.99272− 3.01439i 0.22039 + 0.476214i 2.08313 + 14.9094i 10.1819 − 55.9358i

 .

(C.151)
Model BII:

aij = 10−2


0.00424453 0 −0.739696 + 0.100859i −0.261416− 0.180202i

0 0.0963929 1.59142 + 3.41719i −0.546982 + 1.75381i

−0.739696 + 0.100859i 1.59142 + 3.41719i 35.6473 + 92.8117i −22.3139 + 45.2696i

−0.261416− 0.180202i −0.546982 + 1.75381i −22.3139 + 45.2696i −25.416 + 7.30749i

 .

(C.152)
Model CI:

aij = 10−2


0.113952 0 0.491463 + 0.565896i 3.76471 + 4.85316i

0 0.0066433 −0.0563066 + 0.107998i −0.804669 + 0.719013i

0.491463 + 0.565896i −0.0563066 + 0.107998i −1.4383 + 2.14192i −6.53535 + 21.208i

3.76471 + 4.85316i −0.804669 + 0.719013i −6.53535 + 21.208i −59.2957 + 144.035i

 .

(C.153)
Model CII:

aij = 10−2


−0.104302 0 −0.23862 + 0.777714i −1.41328 + 3.82589i

0 0.00422339 −0.0155148 + 0.115636i 0.0287095 + 0.732858i

−0.23862 + 0.777714i −0.0155148 + 0.115636i −0.0699652 + 2.31316i 0.347507 + 16.8414i

−1.41328 + 3.82589i 0.0287095 + 0.732858i 0.347507 + 16.8414i −5.81915 + 103.489i

 .

(C.154)
Model DaI:
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aij = 10−10


−0.00696426 0 −0.245942 + 0.340282i −0.981934 + 1.05034i

0 −0.0703536 −1.2441− 0.347061i −3.9061− 2.2744i

−0.245942 + 0.340282i −1.2441− 0.347061i −11.3476 + 13.1125i −38.737 + 28.5679i

−0.981934 + 1.05034i −3.9061− 2.2744i −38.737 + 28.5679i −137.986 + 71.4185i

 .

(C.155)
Model DbI:

aij = 10−2


0.0964978 0 0.0463804 + 0.612925i 0.23948− 4.0549i

0 −0.00493562 −0.0692766− 0.122098i 0.0709726 + 0.757652i

0.0463804 + 0.612925i −0.0692766− 0.122098i −1.50677− 1.28146i 9.26908 + 9.93996i

0.23948− 4.0549i 0.0709726 + 0.757652i 9.26908 + 9.93996i −60.1029− 54.8455i

 .

(C.156)
Model DbII:

aij = 10−2


0.00324628 0 0.00619872 + 0.0924098i 0.0581533 + 0.495523i

0 −0.148375 0.234817 + 0.306995i 2.43678 + 3.11641i

0.00619872 + 0.0924098i 0.234817 + 0.306995i −0.940024− 1.19953i −10.2704− 9.213i

0.0581533 + 0.495523i 2.43678 + 3.11641i −10.2704− 9.213i −63.9596− 76.7709i

 .

(C.157)
Model EI:

aij = 10−2


0.00565532 0 −0.266188 + 0.0701303i 0.518805 − 0.533918i

0 0.10865 0.425618 + 1.82085i −3.18677− 2.87341i

−0.266188 + 0.0701303i 0.425618 + 1.82085i −14.7905 + 7.46579i 14.094 − 32.9412i

0.518805 − 0.533918i −3.18677− 2.87341i 14.094 − 32.9412i 19.4372 + 73.7643i

 .

(C.158)
Model EII:

aij = 10−2


−0.00491523 0 −0.113267 + 0.379235i −0.0710291− 0.772947i

0 −0.0989956 1.91708 + 0.433922i −4.21969 + 0.992353i

−0.113267 + 0.379235i 1.91708 + 0.433922i −14.9942 + 2.32607i 31.5765 − 18.8751i

−0.0710291− 0.772947i −4.21969 + 0.992353i 31.5765 − 18.8751i −50.6035 + 73.4838i

 .

(C.159)
Model FI:

aij = 10−2


−0.101322 0 1.00796 − 1.0692i −3.40853 + 1.66912i

0 0.00628798 −0.117644 + 0.20702i 0.5911 − 0.454689i

1.00796 − 1.0692i −0.117644 + 0.20702i −3.59013 + 11.2045i 20.5757 − 20.2831i

−3.40853 + 1.66912i 0.5911 − 0.454689i 20.5757 − 20.2831i −63.553 + 23.8071i

 .

(C.160)
Model FII:

aij = 10−2


0.00631171 0 −0.0913116− 0.224948i 0.708328 + 0.52168i

0 −0.106855 0.477564 + 1.57686i −4.01776− 3.01492i

−0.0913116− 0.224948i 0.477564 + 1.57686i 12.5721 − 5.02818i −18.1583 + 34.5582i

0.708328 + 0.52168i −4.01776− 3.01492i −18.1583 + 34.5582i −22.102− 106.709i

 .

(C.161)
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