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Abstract

We consider a simplified model in which Majorana fermion dark matter annihilates to charged

fermions through exchange of charged mediators. We consider the gamma-ray signals arising from

the processes XX → f̄fγ, γγ, and γZ in the most general case, including non-trivial fermion mass

and non-trivial left-right mixing and CP -violating phase for the charged mediators. In particular,

we find the most general spectrum for internal bremsstrahlung, which interpolates between the

regimes dominated by virtual internal bremsstrahlung and by final state radiation. We also examine

the variation in the ratio σ(γγ)/σ(γZ) and the helicity asymmetry in the XX → γγ process, each

as a function of mixing angle and CP -violating phase. As an application, we apply these results

to searches for a class of MSSM models.
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I. INTRODUCTION

The nature of dark matter has long been a puzzle in modern physics. It is suspected to be

a very long-lived massive particle, while currently no evidence shows that it carries electrical

or color charge. Such a particle cannot be described by the Standard Model (SM) of particle

physics. The most recent measurement of the dark matter abundance from the Planck

satellite is Ωh2 = 0.1199 ± 0.0027 [1]. If we assume that dark matter consists of weakly

interacting massive particles (WIMPs) with mass ranging from ∼ 10 GeV to ∼ 10 TeV, the

standard thermal freeze-out mechanism yields the qualitatively correct relic density [2–7].

As a result, the WIMP hypothesis is very attractive, but by no means required. Searches for

the interaction of dark matter with SM matter are ongoing, utilizing a variety of strategies,

including direct, indirect, and collider-based searches.

The main purpose of this paper is to analyze the associated gamma-ray signals that may

be observable in indirect dark matter searches if Majorana fermion dark matter couples to

light SM fermions via charged mediators. Such couplings arise in a variety of dark matter

scenarios, including the Minimal Supersymmetric Standard Model (MSSM), in which the

lightest supersymmetric particle (LSP) is a dark matter candidate, and its bino component

can couple to SM fermions through the t- or u-channel exchange of sfermions. Moreover,

the gamma-ray signals from dark matter annihilation in this scenario are often crucial to

observational strategies, because gamma-ray signals are relatively clean, and because the

direct annihilation process XX → f̄f is often suppressed.

The processes which we will consider are XX → γγ, XX → γZ, and XX → f̄fγ.

All of these processes have been considered in the past [8–11], but either for special cases

or different purposes. Our goal here will be to consider the most general spectra that can

arise for these processes in a simplified model in which a Majorana fermion dark matter

particle couples to a Dirac fermion (which may or may not be a SM fermion) through the

exchange of two charged scalars, with arbitrary left-right mixing angle and CP -violating

phase. Examples of this simplified model exist within the parameters space of the MSSM,

including the “Incredible Bulk” models described in [12], but the applicability is much

broader.

The main new features which we will find are:

• The complete spectrum for the process XX → f̄fγ as a function of mixing an-

2



gle, which interpolates between the hard regime, dominated by virtual internal

bremsstrahlung, and the soft regime, dominated by soft and collinear final state

radiation

• The ratio of the cross sections for XX → γγ and XX → γZ as a function of mixing

angle and CP -violating phase

• The difference in rates for the production of left-circularly and right-circularly polar-

ized photons via the process XX → γγ

This article is organized as follows: In Section (II) we briefly describe the effective model

and the parameter space in which we are interested. We then discuss the general features of

the relevant gamma-ray signals in Section (III). In Section (IV) we describe the monochro-

matic line signals, and their observational impact. In Section (V) we similarly describe the

general internal bremsstrahlung gamma-ray signature. Finally our chief results are summa-

rized in Section (VI).

II. THE MODEL AND ITS GENERAL FEATURES

We consider a simplified model in which the dark matter candidate is a SM gauge singlet

Majorana fermion and the only relevant interaction is

Lint = λLf̃
∗
LXPLf + λRf̃

∗
RXPRf + c.c , (1)

where PL(R) are the chiral projectors. Here, f is a fermion charged1 under U(1)em, and f̃L(R)

are the charged scalar mediators. We also assume that the dark matter is absolutely stable

because it is the lightest particle charged under an unbroken hidden symmetry, and that the

f̃L(R) are also charged under the same symmetry. But the fermion f is uncharged under the

symmetry that stabilizes the dark matter.

The mass eigenstates and chiral eigenstates of the scalar mediators are related by a mixing

angle α, 
 f̃1

f̃2


 =


 cosα − sinα

sinα cosα




 f̃L

f̃R


 . (2)

1 For simplicity, we assume the charge be Q = −1.
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We denote the two mass eigenvalues as mf̃1
and mf̃2

in the following. To ensure that the

dark matter is stable, we assume mf̃1,2
> mX . However, mf can be either larger or smaller

than mX .

We also allow a non-zero CP -violating phase, ϕ, such that the coupling constants may

be expressed as

λL = |λL| eiϕ/2 , λR = |λR| e−iϕ/2 . (3)

We are thus left with seven free parameters for this simplified model:

(mX ,mf̃1
,mf̃2

, λL, λR, α, ϕ) .

In the MSSM framework, if X is a purely bino-like LSP and there is a single generation of

light sfermions, then we have |λL| =
√

2 g|YL| and |λR| =
√

2 g|YR|, where g is the U(1)Y

gauge coupling and YL(R) are the scalar hypercharges. This scenario has been considered

recently in [12–14]. We also briefly consider the possibility of a new heavy fermion, in which

case there is an additional parameter necessary to specify its mass, mf .

Note that only the relative phase between λL and λR is physically significant, since any

overall phase can be removed by a vector-like phase rotation of f̃L,R. Similarly, although the

most general matrix relating the scalar mass and chiral eigenstates contains three complex

phases, they can be absorbed by a phase rotation of the chiral eigenstates, f̃L,R, and the

mass eigenstates, f̃1,2. Having chosen to make the mixing matrix real, one cannot then

use a chiral rotation of the f̃L,R to rotate away the phase ϕ. However, if sin 2α = 0, the

requirement that the mixing matrix be real only fixes two phases; in this case, the phase ϕ

can then be absorbed into a chiral rotation of the f̃L,R. Similarly, if mf = 0, then the phase

ϕ can be removed by a chiral rotation of f . As a result, CP -violating effects must scale as

(mf/mX) sin 2α.

A. General Features

If the cross section for the process XX → f̄f is not suppressed, it will dominate over

processes such as XX → f̄fγ and XX → γγ, γZ, which will be suppressed by factors of

at least αem and α2
em, respectively. In this case, prompt gamma-ray signals are sometimes

considered to be less promising from an observational standpoint, because models that would
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FIG. 1. The Feynman diagrams for 2-body annihilation and IB.

produce prompt gamma-ray signals large enough to be observed with current or near future

experiments can already be probed by searches for cosmic rays produced by the process

XX → f̄f . However, current exclusion limits based on searches for positrons or anti-protons

are subject to large systematic uncertainties related to assumptions about the astrophysical

background and propagation of charged particles in our Galaxy; if these assumptions are

weakened, then the exclusion limits from cosmic ray searches can be similarly weakened,

permitting even the suppressed XX → f̄fγ, γγ, and γZ signals to be relevant. The

Feynman diagrams for the 2-body annihilation XX → f̄f and internal bremsstrahlung

XX → f̄fγ are shown in Fig. 1, while those for the one-loop process XX → γγ are shown

later in Fig. 11 of Appendix A, where a detailed discussion on this process is presented.

But there are two scenarios in which the XX → f̄f annihilation cross section is sup-

pressed:

• If mf > mX , then XX → f̄f is not kinematically allowed.

• If there is minimal flavor violation (MFV), then the cross section for the process

XX → f̄f is suppressed by a factor (mf/mX)2.

In the case where mf/mX > 1, the processes XX → f̄f, f̄fγ are forbidden, allowing the

processes XX → γγ and XX → γZ to be the most important (other processes, such as

XX → ZZ,W+W− may have similar cross sections, but are likely to be less observationally

important compared to a clean gamma ray signal). This scenario is relevant in the case

where dark matter couples to a new, heavy charged fermion.

In the case where mf/mX → 0, the cross section for the process XX → f̄f must scale

with the remaining parameters, which breaks flavor symmetry. The reason is that because
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the dark matter is Majorana and the initial state wavefunction must be anti-symmetric, the

s-wave initial state must have J = 0. The final state f̄ and f must then have the same

helicity, implying that the f and f̄ arise from different Weyl spinors. The final state is thus

not invariant under chiral flavor symmetries, and must vanish in the mf/mX → 0 limit in

the case of MFV .

In the simplified model that we consider here, the only deviation from MFV arises from

the presence of non-trivial mixing of the scalar chiral eigenstates. This requires both a non-

trivial left-right mixing angle α, and non-degeneracy of the mass eigenstates (if the mass

eigenstates are degenerate, then a redefinition of the eigenstates is sufficient to absorb the

mixing angle). In the massless fermion limit, left-right mixing gives XX → f̄f an s-wave

2-body annihilation amplitude of

A2-b = imX
|λLλR|

2
sin(2α)

(
u(k1)γ5v(k2)

2mX

)[
cosϕu(k3)γ5v(k4)− i sinϕu(k3)v(k4)

]

×

(
1

m2
X +m2

f̃1

− 1

m2
X +m2

f̃2

)
, (4)

where we denote the initial state dark matter momenta as k1 = k2 = k and the final

state lepton momenta as k3 and k4; u(ki) and v(ki) are spinor wavefunctions, following the

definition of [15]. This amplitude leads to the cross section

(σv)ff̄
mf=0
−−−→ m2

X

32π
|λLλR|2 sin2(2α)

(
1

m2
f̃1

+m2
X

− 1

m2
f̃2

+m2
X

)2

. (5)

In the mf/mX → 0 scenario, the charged fermion f must necessarily be a SM fermion.

B. Constraints from Colliders and Lepton Dipole Moments

The discovery of the 125 GeV SM-like Higgs boson [16] at the LHC is a triumph of the

SM. Meanwhile, null searches for supersymmetric particles imply a lower limit of 780 GeV for

light degenerate first and second generation squarks [17]. Constraints on squark masses in

the simplest predictive supersymmetric model, the constrained MSSM (CMSSM), are even

more stringent, and exclude squarks below 1.7 TeV for certain benchmark models [17]. If

we relax some unification constraints imposed in the CMSSM at the GUT scale, then it has
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been shown that the MSSM-9 model [18] can contain a ∼ 1 TeV higgsino LSP or a ∼ 3 TeV

wino LSP, which are viable thermal dark matter candidates satisfying the relic density.

On the other hand, the current limit on the mass of any slepton is much weaker. We still

have the possibility that heavy squarks provide the necessary loop corrections to the mass

of the SM-like Higgs while light sleptons provide the main dark matter annihilation channel.

LEP experiments only put a lower limit at ∼ 100 GeV [19], while the LHC 8 TeV run has

excluded left-handed sleptons below 310 GeV and right-handed sleptons below 235 GeV,

assuming a massless bino LSP [20]. For a massive bino LSP with mass mX , a new allowed

region opens up for sleptons lighter than approximately mX +80 GeV [20]. The LHC 14 TeV

run has the potential to push the upper exclusion limit to as high as 900 GeV (for a higgsino

LSP) but cannot move the lower exclusion limit [21].

Although these constraints are phrased as bounds on scalar superpartners, the lesson is

more general: LHC constraints place tight bounds on colored scalars, but weaker bounds on

QCD-neutral scalars. Since the f̃L,R must necessarily be QCD-charged if f is a quark, we

will assume that, if f is a SM fermion, it is a lepton.

A new correction to the electric and magnetic dipole moments of the SM fermions

arises from diagrams with X and the new charged mediator running in the loop; if f is

a SM fermion, then the XX → f̄f can be constrained by bounds on fermion dipole mo-

ments [12, 22] (in the absence of fine-tuned cancelations against other contributions to the

dipole moments from independent new physics). In the case where f is a SM charged lepton,

the constraints can be summarized as follows:

• The XX → e+e− cross section is constrained to be � 1 pb, absent fine-tuning.

• The XX → µ+µ− cross section is constrained to be � 1 pb, absent fine-tuning,

unless CP -violation is close to maximal (ϕ ∼ π/2). This constraint arises because

the muon magnetic dipole moment is much more tightly constrained than its electric

dipole moment. For near-maximal CP -violation, the annihilation cross section must

be less than O(100) pb, absent fine-tuning.

• The XX → τ+τ− cross section can easily be O(1) pb, or larger. For our purposes, it

is unconstrained by dipole moment bounds.

We close this section by noting that although our model fits within the MSSM, it can
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also serve as a simplified model for other scenarios in which a gauge singlet Majorana dark

matter couples only to a fermion and two scalar particles.

III. GAMMA-RAY SIGNALS

In the current era, it is believed that there are potentially-observable excesses of dark

matter particles near our Galactic Center and in nearby dwarf galaxies. The ongoing an-

nihilations of these dark matter particles may result in observable cosmic ray signals, such

as in the cosmic gamma-ray spectrum and/or in the cosmic ray positron and/or antiproton

fraction. Typically, various reactions involving the final state lepton pairs result in an al-

most featureless secondary photon spectrum. In the simplified model we consider, however,

a distinctive feature may be contained in the internal bremsstrahlung (IB) spectrum and

the associated line signals.

The search for line signals of dark matter annihilation has been one of the primary

goals of various ground-based and satellite-based experiments. In general, the ground-based

atmospheric Cherenkov telescopes [23] are most effective for dark matter that is somewhat

heavier than 100 GeV. For example, with 500 hours of observing time, CTA will be sensitive

to cross sections ∼ 10−27cm3/s for dark matter with mass of ∼ 300 GeV annihilating to

τ+τ− in the Galactic Center region [24]. Due to its much lower energy threshold, the Fermi

Gamma-Ray Space Telescope is better suited to study dark matter masses in the range 0.1

to a few hundred GeV, which is the range we are interested in here. For mX . 100 GeV, the

Fermi Large Area Telescope (LAT) has set a limit on the thermally-averaged annihilation

cross section to γγ of 〈σv〉γγ ≈ 10−28 ∼ 10−29cm3/s with the 95% C.L. containment spanning

approximately one order of magnitude using the PASS 8 analysis of 5.8 years of data [25].

However, this limit, as well as any projected sensitivities, are sensitive to the dark matter

profile of the Milky Way halo, and may move up or down by about one order of magnitude for

different profiles. We hope that the sensitivity to 〈σv〉γγ will be improved with additional

data and/or new technology. Future satellite-based experiments GAMMA-400 [26] and

HERD [27] are expected to reach 〈σv〉γγ . 10−28cm3/s for mX = 100 GeV. In addition,

each of these experiments is expected to have energy resolution of ∼ 1%, which is much

better than Fermi-LAT’s (∼ 10% at 100 GeV), making it possible to distinguish between a

sharply peaked IB spectrum and a true line signal.
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Here we present our results for the bremsstrahlung and other prompt photon emissions

arising from dark matter annihilation to fermions, and monochromatic emissions from an-

nihilation to γγ and γZ. By prompt emission, we mean the photons produced directly

at the dark matter annihilation, including, for example, the hadronic decay of the final

state τ±. On the other hand, the photon emission due to inverse Compton scattering and

bremsstrahlung in the Galactic electromagnetic fields (so-called secondary emission), which

depends on modeling of the dark matter distribution and cosmic ray propagation, is not

included.

The photon spectrum is defined as the photon number per annihilation per energy bin,

and can be broken into a continuum spectrum and a contribution from monochromatic

photons:
dN

dx
=

(
dN

dx

)

cont.

+

(
dN

dx

)

line

. (6)

In our case, the continuum spectrum comes mainly from IB and other prompt emission from

the final state particles,

(
dN

dx

)

cont.

=
1

(σv)ann.

[
d(σv)IB

dx
+
∑

i

Ni
d(σv)i
dx

]
, (7)

where Ni is the number of photons produced in a single annihilation process and the sum

over i includes all higher order prompt emissions, and (σv)IB is the IB cross section, which

will be described in Sec. V. Note that the spectrum is normalized by (σv)ann., the total

annihilation cross section. When there is no chiral mixing, its dominant component is the

total IB cross section. As discussed below, the line spectrum consists of the γγ and γZ

peaks,
(
dN

dx

)

line

=
1

(σv)ann.

[
2(σv)γγ δ(x− 1) + (σv)γZ δ(x− xZ)

]
, (8)

where xZ = EγZ/mX as given in Eq. (9). These definitions follow [28].

IV. MONOCHROMATIC GAMMA-RAY LINE SIGNALS

Monochromatic lines in the gamma-ray spectrum arise due to the one-loop annihilation

process XX → γY , where Y = γ, Z, or h0. The photon(s) in the final state has energy

EγY = mX −
m2
Y

4mX

, (9)

9



where mY is the mass of the particle Y . 1% energy resolution is sufficient to differentiate

γγ and γZ lines for mX . 450 GeV. In the Galactic Center, the relative velocity between

dark matter particles is v ∼ 10−3, so the p-wave component of the dark matter annihilation

cross section is suppressed.

The s-wave (L = 0) component must arise from a spin-singlet initial state (S = 0), since

the dark matter particles are Majorana fermions and must be in a totally anti-symmetric

initial state. This state thus necessarily has vanishing total angular momentum (J = 0),

implying that the final state particles must have the same helicity. As a result, only the γγ

and γZ cross sections can develop non-vanishing s-wave components, while the leading γh0

cross section must be p-wave suppressed and thus too small to be observed.

To ensure the accuracy of the results presented here, we perform a scan over the parameter

space, conducted as follows. We first generate the analytic amplitudes for both XX → γγ

and XX → γZ using FeynArts [29], including left-right scalar mixing and a CP -violating

phase (the γγ amplitude is presented in Appendix A). The numerical calculation is performed

using FormCalc [30]. The package LoopTools is internally invoked by FormCalc to calculate

the loop integrals involved in the amplitudes. However, since our initial state particles are at

rest, we have k1 = k2. It is well-known that if two external momenta are collinear, the Gram

matrix becomes singular and the tensor loop integrals fail to be linearly-independent. For

analytic calculation, this is a virtue and essentially the reason why all the four-point loop

integrals that appear in the γγ amplitude can be reduced to three-point scalar loop integrals

(see Appendix A)2. Numerically, FormCalc breaks down for collinear external momenta,

since LoopTools uses precisely the Gram matrix to derive higher-point and higher-rank

integrals.

To circumvent this issue and arrive at a reliable result, we introduce a small relative

velocity, so that the results of LoopTools remain stable. For example, we use a center-of-

mass energy of
√
s = 200.01 GeV for mX = 100 GeV in our numerical calculations. We have

checked that the numerical error in the cross section is . 1% for annihilations to both γγ

and f̄f (with scalar mixing), independent of the model parameters. For p-wave dominant

cross sections, we perform a linear fit with respect to v2 to find the coefficients a and b in

the expansion σv = a+ bv2. We have also checked that the error is . 1% in this scenario.

Analytic MSSM calculations of the annihilation cross section to γγ and γZ have been

2 For a comprehensive review on the calculation techniques of general tensor loop integrals, see [31].
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presented in [8–10] in the limit of no CP -violation, and those expressions are consistent with

the ones presented here. However, if ϕ 6= 0, then the amplitude of (++) photon helicity state

will be different from that of (−−) state, unlike the ϕ = 0 case. As we argued previously,

the difference in the scattering amplitude is chirally suppressed by the fermion mass mf ,

δAAA ∼ αem|λLλR| sin(2α) sinϕ

(
mf

mX

)
, (10)

a term which does not appear previously in the literature. We defer the full analytic ex-

pressions for the γγ cross section, including chiral mixing and CP -violation, to Appendix

A.

In order for CP -violation to yield differing cross sections for the (++) and (−−) final

photon states, it is necessary for mf < mX . If mf > mX , then the CP -violating part of the

amplitude is purely imaginary (as a result of the optical theorem), and CP -conjugation of the

matrix element is equivalent to complex conjugation. But if mf < mX , then the intermediate

states of the one-loop diagram can go on-shell, providing an imaginary component to the

CP -conserving matrix element, which is necessary for a non-trivial asymmetry. On the

other hand, if mf > mX , then the only final states that are kinematically allowed are γγ

and γZ. In this kinematic regime, if the couplings λL,R are large, these final states will be

most easily observable.

We’d like to make a few general comments regarding the sensitivity of the dark matter

annihilation cross sections into γγ and γZ to scalar chiral mixing and CP -violation. First,

both cross sections decrease as the scalar masses increase. Thus to make a sizable line signal,

we need to have at least one scalar mass not too much heavier than the dark matter. If

they are very degenerate, of course, coannihilations, not considered here, would also play

a role in determining the relic density. Secondly, the ratio 2(σv)γγ/(σv)γZ increases as the

difference between the two scalar masses increases. As a very crude estimate, this ratio is

approximately 2 tan−2 θW ∼ 7, which works well at no mixing. However, by varying the

mixing angle and CP -violating phase, we can make it as large as 40 within the MSSM.

In the following discussion, we will focus on several benchmark models, displayed in

Table I. Models A, B, and C are consistent with a supersymmetric implementation of the

Lagrangian in Eq. 1, while models D and E are explicitly non-supersymmetric due to the

couplings λL,R and, in the case of model E, an additional heavy fermion. Note that, for all

of these benchmark points, the new charged particles are fully consistent with constraints
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from LHC and LEP.

Benchmark E presents an interesting case, as it contains a new charged fermion with

mf = 105 GeV. Such a particle is within the energy reach of the LHC, and one must

worry if such a particle would already be excluded by current data. But LHC sensitivity

to new charged particles depends greatly on the particle decay chains; it is easy to choose

a decay scenario for which f would escape current LHC limits. For example, if the new

105 GeV fermion decayed to a SM charged lepton and a new ∼ 100 GeV invisible scalar,

then this charged fermion would escape detection for the same reason that light sfermions

do in the compressed spectrum scenario. The new invisible scalar need not contribute to

dark matter, or even be long-lived, provided its lifetime was long enough to decay outside

the detector. We will not focus further on this particular decay scenario, which we describe

only to demonstrate that Benchmark E can be completely consistent with LHC constraints.

For models where mf is even larger, LHC constraints may be more easily satisfied, without

qualitatively changing the analytic results we obtain.

channel λL λR α ϕ Marker

A µ+µ−

√
2YLg

√
2YRg

π

4

π/2 star

B
τ+τ−

0 circle

C π/2 cross

D
µ+µ−

0.8 0.8 π

6

π

2

square

D′ 0.75 0.75 diamond

E f̄f , mf = 105 GeV 2 2 π/4 3π/4 triangle

TABLE I. We take mX = 100 GeV, m
f̃1

= 120 GeV, and m
f̃2

= 450 GeV for the SUSY (A, B, and

C) and Non-SUSY (D and E) Benchmarks, but m
f̃1

= 102.5 GeV for the Non-SUSY Benchmark

D′. We take |YL| = 1/2, |YR| = 1 for the case of a bino coupling to leptons.

In the following subsections, we examine the line signal strengths in the context of dif-

ferent SUSY and non-SUSY models.
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FIG. 2. (σv)χχ→γγ (left) and (σv)χχ→γZ (right) dependence on α and ϕ for SUSY bino dark matter

with coupling only to τ and τ̃ .

A. SUSY case

We first consider the SUSY case, as in [12], where f and f̃ are SM leptons and MSSM

sleptons, therefore denoted as ` and ˜̀ in this subsection. In Fig. 2 we display the cross

sections (σv)γγ (left) and (σv)γZ (right) as functions of α for ϕ = 0, π/2, and π . Since

(σv)γZ is only mildly sensitive to the CP -violating phase, ϕ, we show the cross section as

function of ϕ for α = π/4 in the inset of the right panel. Turning first to the left panel,

we see an increase of (σv)γγ by a factor of 6 as α ranges from 0 to π/4 at ϕ = π/2 (and

as much as a factor of & 10 over the full range of α shown). For the τ channel, displayed

in Fig. 2, the dependence on ϕ is significant (in contrast to the µ channel): At α ≈ π/4,

(σv)γγ varies by a factor of 2 as ϕ ranges from 0 to π/2. Turning to the right panel, we

see that there is an increase in (σv)γZ by about a factor of 16 for α = π/2 relative to

α = 0. This arises from the fact that YR = 2YL: for α = π/2 (α = 0), the lighter scalar mass

eigenstate consists entirely of the right-handed (left-handed) component, whose contribution

to the cross section is proportional to Y 4
R (Y 4

L ). This enhancement is possible only when

the two-body annihilation cross section is suppressed (α = nπ/2 for n odd), and thus the

relic abundance of binos is too large. If another mechanism, such as coannihilation, helped

to lower the relic abundance, or if dark matter were non-thermal, it may be possible for

the line signal to be much larger than that suggested by the benchmark points. As we see

in the right panel of Fig. 2, the dependence of (σv)γZ on the CP -violating phase is not as

significant as it is for annihilation to γγ, even for the τ channel.
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FIG. 3. The dependence of (σv)γγ on the slepton mixing angle, α, and the CP-violating phase,

ϕ, for the µ channel (left panel) and τ channel (right panel) for the SUSY case λL = 2λR. In each

plot, the blue stripe indicates the region that satisfies 0.11 < Ωh2 < 0.13. In the µ channel plot

(left), the light magenta region of our parameter space leads to 128 × 10−11 < aµ < 448 × 10−11,

which resolves the issue of muon anomalous dipole moment. In the light red region, we have instead

−448 × 10−11 < aµ < 128 × 10−11, which neither solves nor exacerbates the discrepancy between

the observed muon anomalous magnetic moment and the SM expectation. For the τ channel, the

dipole moment measurements do not constrain the parameter space. The red markers (star, circle

and cross) indicate the positions of our benchmark models (A, B, and C, respectively).

In Fig. 3, we display a contour plot of (σv)γγ with respect to the chiral mixing, α, and

CP -violating phase, ϕ. The regions of parameter space in which the dark matter is a thermal

relic are shaded blue, and, for the µ channel, the regions compatible with the measurement

of the muon anomalous magnetic moment are shaded red/magenta (for the τ channel, the

dipole moment measurements do not constrain the parameter space). Benchmarks A, B,

and C are also marked.

Unfortunately for the SUSY case, these monochromatic photon signals lie well below the

current experimental sensitivity. Nonetheless, it is worth considering the possibility of an

eventual detection. As discussed in Sec. IV, once a statistical excess of these line signals are
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observed, and if the dark matter mass lies in the range mZ < mX . 140 GeV (for Fermi-

LAT) or . 450 GeV (for GAMMA-400 or HERD), the ratio of the dark matter annihilation

cross section into γγ and γZ will be of significant interest for determining the nature of the

dark matter particle and the theory of physics beyond the SM in which it resides. Indeed, this

ratio does not suffer from astrophysical uncertainties in the dark matter distribution in our

Galaxy [8]. In Ref. [32], a wide range of MSSM parameter space is examined, and an attempt

is made to use the ratio of 2(σv)γγ/(σv)γZ to distinguish among coannihilation, funnel, and

focus point scenarios in mSUGRA, as well as within more general MSSM scenarios.

Following the same line of analysis, we plot the annihilation cross section to γγ (left)

and the ratio 2(σv)γγ/(σv)γZ (right) as functions of the slepton masses in Fig. 4 for the µ

(top) and τ (middle and bottom) channels for mX = 100 GeV and α = π/4. In the top

panels, we display the µ channel with ϕ = π/2 and in the middle and lower panels, we

display the tau channel with ϕ = 0 and π/2, respectively. In the left panels, we display the

XX → γγ cross sections in units of 10−30 cm3 s−1, while in the right panels we show the

ratio 2(σv)γγ/(σv)γZ . The parameter space that accommodates thermal relic dark matter

lies between the thick dashed contours that cut diagonally across each plane. As expected,

(σv)γγ decreases as the slepton masses increase. Similarly, the ratio 2(σv)γγ/(σv)γZ increases

as the difference between m˜̀
1

and m˜̀
2

increases. 2(σv)γγ/(σv)γZ is larger than 17.0 for ϕ = 0

in the τ channel. Although not presented in Fig. 4, this approximately holds true for the µ

channel as well. In the case of ϕ = π/2, 2(σv)γγ/(σv)γZ is > 26 for the µ channel and > 28

for the τ channel. By contrast, in the coannihilation region in mSUGRA, 2(σv)γγ/(σv)γZ

ranges from 7-12 (see FIG. 5 in Ref. [32]). It is therefore possible that if both the γγ and γZ

lines are observable, the ratio of the signal strengths could be used to distinguish between,

for example, the coannihilation region and a model similar to the Incredible Bulk. Though

these scenarios could, in principle, also be distinguished by the cosmic ray signal arising

from XX → `+`−, such a signal would be subject to astrophysical uncertainties and would

therefore leave much room for doubt.

In summary, the XX → γγ cross sections increase by a factor of ∼ 2 as ϕ varies from

0 to π/2, as does the the ratio 2(σv)γγ/(σv)γZ (since the XX → γZ cross section is in-

sensitive to the value of ϕ). As the slepton masses increase, (σv)γγ becomes smaller, while

2(σv)γγ/(σv)γZ increases as the difference between m˜̀
1

and m˜̀
2

increases.
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FIG. 4. The dependence of the XX → γγ cross section (left) and the ratio 2(σv)γγ/(σv)γZ (right)

on the slepton masses for the SUSY case, λL = 2λR. The black markers in each plane indicate the

positions of our benchmark points. Note that in three of the plots we have used a log-scaled color

function.
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B. Beyond the MSSM

There are two other scenarios we consider, beyond the Incredible Bulk scenario of bino-

like dark matter in the MSSM, in which the monoenergetic gamma-ray line signals are

particularly interesting: f = µ (benchmark D), and mf > mX (benchmark E), each with

arbitrary but perturbative couplings. If mf > mX , as in benchmark E, the processes

XX → f̄f(γ) are kinematically forbidden, and the processes XX → γγ, γZ will be the

most important for indirect detection.

If f = µ, as in benchmark D, then the process XX → µ+µ− produces few photons or anti-

protons through final state decay. As a result, the 2 → 2 cross section is constrained only

by positron searches and dipole moment constraints. Tight constraints on the XX → µ+µ−

cross section have been presented in the literature based on AMS-02 positron searches [33],

which would require (σv)µ+µ− . 1 pb. But these analyses have relatively large systematic

uncertainties arising from assumptions about the sources of astrophysical backgrounds, and

propagation effects. A full discussion of these issues is beyond the scope of this work, but

that it suffices to note that gamma ray signal arising from the process XX → γγ, γZ is

much cleaner than the positron signal arising from the process XX → µ+µ−, particularly

since the gamma ray signal can point back to sources which are well-understood, such as

dwarf spheroidals. As a result, these gamma ray signals are of interest even for large α and

λL,R, where the XX → µ+µ− cross section would be in tension with analyses of AMS-02

electron flux data. Note, however, that this rationale would be less compelling in the case

where f = τ , as in this case, the process XX → τ+τ− can produce gamma ray signals from

dwarf spheroidals, arising from hadronic τ± decay.

In Figure 5, we show the cross section for the process XX → γγ as a function of α and

ϕ for benchmark E. We see that Fermi line searches [25] tend to constrain models with

large left-right mixing and small CP -violation. Note that this is in contrast to the case of

mf < mX , where larger CP -violation tends to lead to a larger σ(γγ) cross section. Future

experiments with a larger effective area and/or energy resolution could improve on these

sensitivities.

In Figure 6 we plot, for the µ channel, the asymmetry ratio

R =
σ(++)− σ(−−)

σ(++) + σ(−−)
, (11)

where σ(±±) is the annihilation cross section with two positive or negative helicity final
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FIG. 5. The cross section for the process XX → γγ with mf > mX . Benchmark E is labeled by

the triangle. Here and in the following figures, the Fermi line constraint is taken as 4×10−28cm3/s

for mX = 100 GeV [25].

state photons. Note that this ratio is independent of the common scaling of λL and λR. As

expected, this asymmetry is maximized at large left-right mixing and maximal CP -violating

phase. At its maximum, the asymmetry is ∼ 2%, which is larger than one might naively

expect from the mf/mX suppression of the CP -violating term in the matrix element. This

arises because the loop integral relevant for the CP -violating term happens to be about an

order of magnitude larger than the integral which is relevant for the CP -conserving term

in the mf � mX limit. If we have mf̃i
> mf > mX , as in Benchmark E, then R is

identically zero, as expected from the optical theorem. The detailed reason is that beyond

the branching point mf = mX , all the loop integrals are real, and the amplitudes of the

(++) and (−−) final states are conjugate with each other and lead to the same cross section.

See the appendix for details.

In Figure 7 we plot the asymmetry ratio R for Benchmark D, except that we instead

take f = τ . In this case, as expected, the asymmetry is about an order of magnitude larger,

because the mf/mX suppression factor is about a factor of 10 larger. Note that the cross

section asymmetry is linear in this suppression factor, since it arises from the interference of

the CP -conserving and CP -violating pieces. Although the asymmetry is more pronounced

in this case than in the case where the fermion is a muon, the couplings λL,R are also more
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tightly constrained in this case due to tight bounds on the process XX → τ+τ− arising

from Fermi searches for the continuum photons from τ -decay via a neutral pion [34].
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V. INTERNAL BREMSSTRAHLUNG

The IB process XX → f̄fγ can in general produce a step-like feature in the photon

spectrum at Eγ ≈ mX . Further study shows that IB can even lead to a significant peak at

the end of the spectrum when the dark matter and f̃1 are nearly degenerate [28]. We can

separate the IB amplitude into two (not gauge invariant) parts as in [11]: virtual internal

bremsstrahlung (VIB) for the photon attached to the internal scalar propagator and final

state radiation (FSR) for the photon attached to the external fermion lines. The full IB

amplitude can then be written

AIB = AVIB +AFSR . (12)

From AIB, the total differential cross section can be calculated by

d(σv)IB

dx
=

x

512π4

√
1−

m2
f

m2
X(1− x)

∫
dΩ34|AIB|2 , (13)

where dΩ34 is the integration over the leptons’ direction in the lepton pair center-of-mass

frame, and |AIB|2 is the squared amplitude with initial spin averaged and final spin summed.

If there is no mixing between the scalars associated with the left- and right-handed

fermions, there may be a hard feature at the end of the IB spectrum that comes from the

VIB. However, in the presence of scalar mixing, FSR will introduce another s-wave amplitude

that dominates over VIB at high energies. In particular, it comes mainly from the collinear

limit of the FSR photon, and the total IB spectrum is fairly flat relative to the case with

no mixing. To illustrate this point, we rewrite the total IB amplitude AIB in terms of three

gauge invariant sub-amplitudes,

AIB =
ie

2

(
u(k1)γ5v(k2)

2mX

)(
Avb +Amix +Amf

)
, (14)

where again k1,2 are the momenta of the two dark matter particles. The first term, Avb, is the

intrinsic s-wave amplitude, which survives in both the massless fermion limit (mf → 0) and

the no-mixing limit (α = 0). This term is the amplitude for the production of a fermion and

anti-fermion with opposite helicities, arising from the same Weyl spinor, with the remaining

angular momentum carried by the vector boson. If we denote the photon momentum and

polarization as k5 and ε5, and the outgoing fermion (anti-fermion) momentum by k3 (k4),
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this amplitude can be written as

Avb = u(k3)O1(|λL|2 cos2 αPL − |λR|2 sin2 αPR)v(k4)

+ u(k3)O2(|λL|2 sin2 αPL − |λR|2 cos2 αPR)v(k4) . (15)

The matrices Oi are given by

Oi ≡ γµ

[
kµ5 (k3 − k4) · ε5 − εµ5(k3 − k4) · k5

(s3 −m2
f̃i

)(s4 −m2
f̃i

)

]
, (16)

with s3 ≡ (k− k3)2 and s4 ≡ (k− k4)2. When mf = 0, the cross section due solely to Avb is

d(σv)vb

dx
=
∑

i=1,2

αemλ
4
i (1− x)

64π2m2
X

×
[

4x

(1 + µi)(1 + µi − 2x)
− 2x

(1 + µi − x)2

−(1 + µi)(1 + µi − 2x)

(1 + µi − x)3
log

1 + µi
1 + µi − 2x

]
, (17)

where

λ2
1 ≡ |λL|2 cos2 α− |λR|2 sin2 α ,

λ2
2 ≡ |λL|2 sin2 α− |λR|2 cos2 α ,

µi ≡ m2
f̃i
/m2

X , and x ≡ Eγ/mX is the photon energy fraction. In the limit α = 0, we have

AIB ∼ Avb, and we recover the well-known result given, for example, in [11, 35]. Note that

if µi ∼ 1, the photon spectrum becomes very hard, due the enhancement as x → 1. This

enhancement arises in the limit where an outgoing fermion becomes soft; if the dark matter

and the scalar are nearly degenerate, then one intermediate scalar propagator goes on-shell.

The total cross section in the α,mf/mX → 0 limit is finite:

(σv)vb =
∑

i=1,2

αemλ
4
i

64π2m2
X

{
(µi + 1)

[
π2

6
− log2

(
µi + 1

2µi

)
− 2Li2

(
µi + 1

2µi

)]

+
4µi + 3

µi + 1
+

4µ2
i − 3µi − 1

2µi
log

(
µi − 1

µi + 1

)}
. (18)

If µi − 1� 1, the combination in the curly brackets approaches a constant, (7/2)− (π2/3);

if µi � 1, it behaves as 4/(15µ4
i ).
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When α 6= 0, there is another contribution to the s-wave amplitude arising from mixing,

Amix = mX |λLλR| sin(2α)

×
[
cosϕu(k3)γ5(V1 + S1 − V2 − S2)v(k4)

−i sinϕu(k3)(V1 + S1 − V2 − S2)v(k4)] , (19)

where the matrices Vi and Si are given by

Vi ≡ −
i

2
σµνk

µ
5 ε
ν

[
1

(k3 · k5)(s4 −m2
f̃i

)
+

1

(k4 · k5)(s3 −m2
f̃i

)

]

Si ≡
(k3 − k4) · ε5

(s3 −m2
f̃i

)(s4 −m2
f̃i

)

+

[
k3 · ε5

(k3 · k5)(s4 −m2
f̃i

)
− k4 · ε5

(k4 · k5)(s3 −m2
f̃i

)

]
. (20)

The last piece, Amf
, is proportional to the fermion mass, mf ,

Amf
= −mf (|λL|2 cos2 α + |λR|2 sin2 α)u(k3)γ5(V1 + S1)v(k4)

−mf (|λL|2 sin2 α + |λR|2 cos2 α)u(k3)γ5(V2 + S2)v(k4) . (21)

Both Amix and Amf
are contributions to the amplitude for producing a fermion and anti-

fermion with the same helicity, where the mixing between Weyl spinors arises from either the

non-vanishing mixing angle or the fermion mass term. Comparing with the separation (12),

we find that Avb contains the entire AVIB and part of AFSR, while Amix and Amf
receive

contributions only from AFSR.

Each term in the matrix element can be written as the contraction of a spinor product,

with some Lorentz structure, and some function of the momenta. Avb contains spinor

products with vector and axial vector Lorentz structure. The CP -conserving parts of Amix

contain spinor products with scalar and tensor Lorentz structures, while the CP -violating

parts contain spinor products with pseudoscalar and tensor Lorentz structures. We do not

present the complete differential scattering cross section because it is quite lengthy. However,

the spinor products can be found, for example, in [36], allowing one to evaluate the entire

expression.

We note also that each of these terms (Avb, Amix, andAmf
) is suppressed at most by sin 2α

or mf/mX , but not by both. Thus, we expect CP -violating contributions to bremsstrahlung
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processes to be subleading, as they are doubly suppressed. Indeed, our explicit calculation

verifies that this effect is small.

There is a well-known enhancement in the cross section for emitting soft or collinear

photons via final state radiation, arising from a nearly on-shell fermion propagator. In both

the soft and collinear limits, we have s3 ≈ s4 ≈ −m2
X , and the only divergent quantity is

Si + Vi → −
(
/ε5
/k5 + 2k3 · ε5

2k3 · k5

−
/k5/ε5 + 2k4 · ε5

2k4 · k5

)
1

m2
X +m2

f̃i

. (22)

In particular, for the soft limit, we can further neglect the /k5 in the numerator and get the

correct factorization behavior,

AIB
soft−−→ −e

(
k3 · ε5
k3 · k5

− k4 · ε5
k4 · k5

)
A2-b . (23)

This leads to the Sudakov log enhancement of the probability for photon emission from final

state radiation:

(σv)IB ∼
αem

π
log

(
s

E2
th

)
log

(
s

m2
f

)
× (σv)ff̄ , (24)

where s = 4m2
X and we have kept only the leading logarithmic enhancement. The first

logarithm is the soft photon enhancement, which is cut off by Eth, the energy threshold of

the photon detector. The second logarithm is the collinear photon enhancement, and is cut

off by the mass of the fermion. More generally, if the photon is collinear but not necessarily

soft, we obtain
d(σv)IB

dx
∼ αem

π

(1− x)2 + 1

x
log

s(1− x)

m2
f

× (σv)ff̄ (25)

from Eq. (23), which agrees with the Weizsäcker-Williams formula for FSR. The soft and

collinear enhancements thus have little effect on the spectrum as mf/mX → 0 and α → 0,

since (σv)ff̄ → 0 in this limit. But if α 6= 0, then the collinear enhancement will have a

large effect; one cannot strictly take mf/mX → 0 limit, as the non-zero fermion mass cuts

off the collinear divergence.

There has been a variety of past work on the spectrum of the XX → f̄fγ process, and

this spectrum is well-known in two limits:

• α = 0, mf/mX → 0: This corresponds to the case where the process XX → f̄f is

suppressed, and the dominant process is XX → f̄fγ, yielding a hard spectrum which

is dominated by Avb. The soft and collinear emission of photons via FSR has little

effect on the spectrum.
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• α = O(1), mf/mX → 0: In this case, the XX → f̄f cross section is unsuppressed, and

the dominant contribution to XX → f̄fγ arises from FSR in the soft and collinear

regimes. Here, the details of the interaction are not very important; provided the

XX → f̄f cross section is unsuppressed, the dominant contribution to XX → f̄fγ

arises from a simple rescaling of the 2→ 2 cross section by the Sudakov log factor.

We will now discuss the regime of intermediate α, which interpolates between these two

limits.

In Fig. 8, we plot the continuum photon spectrum for both µ and τ final states with three

different lightest scalar masses. As expected, the α = 0 case produces a hard spectrum which

falls rapidly at low energies. The peak feature is more prominent for degenerate X and f̃1.

Moreover, the normalization of the spectrum remains stable as mf/mX → 0. Once α is

large enough, the spectrum flattens due to the enhancement in emission of soft photons. If

the lightest scalar mediator (f̃1, without loss of generality) is much lighter than the heavier

scalar, one expects the crossover between these behaviors to occur roughly when

tan2 α× |λR/λL|2(mf̃1
/mX)4 log(m2

X/m
2
f ) ∼ O(1) , (26)

which corresponds to the point where the suppression of soft FSR due to the small mixing

angle is roughly canceled by the enhancement for collinear emission. Note that one expects

the hard IB signal to dominate over 2→ 2 scattering provided

tan2 α× |λR/λL|2(mf̃1
/mX)4 < αem . (27)

We thus see, for example, that if mX ∼ 100 GeV and f = µ, then for a choice of parameters

such that the photon spectrum will interpolate between the hard and FSR regimes, the cross

section for XX → f̄fγ with a hard photon will be O(10%) of the XX → f̄f cross section.

For f = τ , the high energy spectrum behaves in a similar way, but there is an α-independent

bump at the low energy end due to the photons from the hadronic decay of τ±.

To get a better idea of when the peak feature disappears, we plot in Fig. 9 the ratio

of the photon number in the peak to the total photon number (integrated from x = 0.01

to the cutoff). To find out the peak for each α, we integrate the photon number in a bin

whose width is 10% of its central value and slide it from x = 0.6 to the cutoff. The peak

corresponds to the maximum photon number found in this process. For f = µ, we may see

that the transition happens around α ∼ π/100.
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FIG. 8. Dependence of the continuum photon spectrum on α for the process XX → f̄fγ. The left

panels show the µ channel and the right show the τ channel. The three f̃1 masses correspond to

µ1 = 1.01, 1.05 and 1.44. We take λL = (
√

2/2)g, λR =
√

2g.
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FIG. 9. The photon number fraction in the peak of µ+µ−γ final state for three different lightest

scalar masses. The model parameters are the same as in the left panel of Fig. 8

Finally we’d like to clarify the procedure used to obtain the components of the spectra.

As mentioned above, prompt photon emission can also come from the decay of the charged

SM particles produced by dark matter annihilation. The prompt photon spectrum is usually

simulated by event generators such as PYTHIA, which first create the final state phase space

for the decay of a hypothetical boson with various branching ratios into SM particles, then

simulate the prompt evolution of the final state, and finally return the resultant photon

spectrum. In particular, the FSR of the decay, as the leading order contribution, is thus

captured by the simulation. But in our calculation of bremsstrahlung, FSR is necessarily

included in order for the calculation to be gauge-invariant. Thus, as in [11], we must subtract

the FSR from the PYTHIA decay spectrum before adding the bremsstrahlung spectrum.

Finally, in Table II we present, for reference a summary of the dark matter abundance

and relevant annihilation cross sections for the benchmarks discussed here.

A. Constraints from Fermi-LAT

In Figure 10, we plot the Fermi-LAT exclusion contours for f = µ in the (α, ϕ) plane for

Benchmark D with λL = λR = 0.8 and µ1 = 1.44 and Benchmark D′ with λL = λR = 0.75

and µ1 = 1.05. Since the Fermi-LAT analysis searches for photons, and muon decay produces

few photons, this is essentially a search for the XX → f̄fγ (for these parameters, the

monoenergetic photon final states are subdominant). For the parameter range displayed,

the maximum cross section for XX → µ+µ−γ in the (α, ϕ)-plane is ∼ 1.4×10−25cm3/s. For
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Model
(σv)ff̄ (σv)IB Ωh2 (σv)γγ (σv)γZ

×10−26 cm3/s ×10−27 cm3/s (thermal) ×10−28 cm3/s ×10−32 cm3/s

A 2.127 4.917 0.1156 4.256× 10−3 2.89

B 2.010 2.872 0.1212 2.662× 10−3 3.03

C 2.128 3.046 0.1155 4.513× 10−3 2.88

D 46.95 108.5 under-abundant 8.019× 10−2 −

D′ 53.53 124.7 under-abundant 0.1355 −

E forbidden forbidden over-abundant 2.9370 −

TABLE II. Physical quantities derived from our benchmark model A, B and C. (σv)IB is integrated

from x = 0.2. Note that all models satisfy the constraints on the dipole moments of the SM leptons,

with the exception of Benchmark A, which does not exacerbate the problem of the muon anomalous

magnetic moment, but also does not produce the measured value. If ϕ is shifted sightly to 0.49π,

aµ will fall into the 2σ range of current experimental measurement, while all the other quantities

in the table above remain nearly unchanged. See [12] for more details on the magnetic and electric

dipole moments.

µ1 = 1.44, the cross section for process XX → µ+µ− is (20.9 pb)× sin2 2α. The continuum

limit arises from a stacked search of dwarf spheroidals for photons with E > 1 GeV, and

follows the analysis of [37]. Although this is not the most recent analysis and does not

provide the most stringent limit from dwarf spheroidals, it is applicable here because it

makes no assumption about the photon spectrum. Constraints are phrased in terms of a

particle physics factor, ΦPP,

ΦPP =
(σv)ann.

8πm2
X

∫ 1

xth

dx

(
dN

dx

)

cont.

. (28)

We take the constraint on ΦPP from [37],

ΦPP = 5.0+4.3
−4.5 × 10−30cm3 s−1 GeV−2 .

For the µ final state, with small mixing angle, ΦPP can be approximated by

ΦPP ≈
(σv)IB

8πm2
X

, (29)
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FIG. 10. The total IB cross section for (a) µ1 = 1.44 and λL = λR = 0.8 and (b) µ1 = 1.05 and

λL = λR = 0.75. At large mixing, both models are constrained by the Fermi continuum limit; At

α ∼ 0, π/2 and π, the spectrum of (b) is line like so it is also constrained by the Fermi line limit.

The Benchmark D and D′ are labeled by the square and diamond. The Fermi continuum limit is

taken from [37].

such that it can be directly translated into an upper limit for (σv)IB. For small α, the

IB spectrum for µ1 = 1.44 (left panel of Fig. 10) might just marginally display a line like

feature, while for µ1 = 1.05 (right panel of Fig. 10), the spectrum is hard enough that it can

be constrained by the Fermi-LAT line search [25]. The spectral features of both cases can

be understood in light of Fig. 8.

VI. CONCLUSION

In this paper, we have investigated possible gamma-ray signatures from dark matter

annihilation in a class of simplified models in which the dark matter couples to light fermions

via a pair of new charged scalars. In particular, we have studied the effect of chiral mixing

and a CP -violating phase on the gamma-ray signals from dark matter annihilation into

γγ and γZ as well as the internal bremsstrahlung spectrum associated with dark matter

annihilation into a fermion pair.

We have found that varying the mixing angle results in a prompt photon spectrum for the
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process XX → f̄fγ which interpolates between the standard regimes which are dominated

by either virtual internal bremsstrahlung or soft/collinear final state radiation. In some

regions of parameter space, this deviation from the standard spectra will be observable, and

can provide a clue as to the relative strength of deviations from minimal flavor violation in

the underlying theory. For the 2 → 3 annihilation process, although the mixing angle is

very important in determining the spectrum, the CP -violating phase is less so.

On the other hand, the mixing angle and CP -violating phase are both important for

monoenergetic annihilation signals. In particular, varying the mixing angle will change the

relative branching fractions to the final states γγ and γZ. For sufficiently large couplings

in the simplified model, this effect could be observed in future experiments with excellent

energy resolution.

Interestingly, a non-vanishing CP -violating phase can result in an asymmetry in the left-

vs. right-circularly polarized photons arising from dark matter annihilation. Current gamma

ray instruments are not capable of detecting such polarization for the energy range of interest.

Experimental study of this scenario would require a new strategy. Monoenergetic photon

signals from dark matter annihilation are sometimes considered the ultimate “smoking gun”

for indirect detection; it would be interesting to further study the feasibility of observing

the polarization asymmetry in this channel, which is a hallmark of CP -violation.
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Proceedings, 34th International Cosmic Ray Conference (ICRC 2015) (2015) arXiv:1508.05827

[astro-ph.HE].

[35] L. Bergstrom, Phys. Lett. B225, 372 (1989).

[36] J. Kumar and D. Marfatia, Phys. Rev. D88, 014035 (2013), arXiv:1305.1611 [hep-ph].

[37] A. Geringer-Sameth and S. M. Koushiappas, Phys. Rev. Lett. 107, 241303 (2011),

arXiv:1108.2914 [astro-ph.CO].

[38] H. Elvang and Y.-t. Huang, (2013), arXiv:1308.1697 [hep-th].

31

http://inspirehep.net/record/1393231/files/arXiv:1509.04123.pdf
http://inspirehep.net/record/1393231/files/arXiv:1509.04123.pdf
http://arxiv.org/abs/1509.04123
http://dx.doi.org/10.1007/s10686-011-9247-0
http://arxiv.org/abs/1008.3703
http://www.slac.stanford.edu/econf/C1307292/docs/submittedArxivFiles/1305.0302.pdf
http://www.slac.stanford.edu/econf/C1307292/docs/submittedArxivFiles/1305.0302.pdf
http://www.slac.stanford.edu/econf/C1307292/docs/submittedArxivFiles/1305.0302.pdf
http://arxiv.org/abs/1305.0302
http://dx.doi.org/10.1103/PhysRevD.91.122002
http://arxiv.org/abs/1506.00013
http://arxiv.org/abs/1506.00013
http://inspirehep.net/record/1384340/files/arXiv:1507.06246.pdf
http://arxiv.org/abs/1507.06246
http://dx.doi.org/ 10.1016/j.astropartphys.2016.02.003
http://arxiv.org/abs/1509.02672
http://dx.doi.org/10.1103/PhysRevLett.112.071301
http://arxiv.org/abs/1308.1089
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/hep-ph/9807565
http://arxiv.org/abs/hep-ph/9807565
http://dx.doi.org/10.1016/j.physrep.2012.01.008
http://arxiv.org/abs/1105.4319
http://dx.doi.org/10.1103/PhysRevD.80.115002
http://arxiv.org/abs/0909.4181
http://dx.doi.org/ 10.1103/PhysRevLett.111.171101
http://dx.doi.org/ 10.1103/PhysRevLett.111.171101
http://arxiv.org/abs/1306.3983
http://dx.doi.org/10.1103/PhysRevLett.115.231301
http://arxiv.org/abs/1503.02641
http://arxiv.org/abs/1503.02641
https://inspirehep.net/record/1389141/files/arXiv:1508.05827.pdf
http://arxiv.org/abs/1508.05827
http://arxiv.org/abs/1508.05827
http://dx.doi.org/10.1016/0370-2693(89)90585-6
http://dx.doi.org/10.1103/PhysRevD.88.014035
http://arxiv.org/abs/1305.1611
http://dx.doi.org/ 10.1103/PhysRevLett.107.241303
http://arxiv.org/abs/1108.2914
http://arxiv.org/abs/1308.1697


Appendix A: Analytic Two-photon Cross Section

The interaction between the fermion, scalar, and photon is given by

Lqed = ie
(
f̃ ∗1A

µ∂µf̃1 + f̃ ∗2A
µ∂µf̃2 − c.c

)

+ e2AµAµ

(
f̃ ∗1 f̃1 + f̃ ∗2 f̃2

)
+ e fγµAµf . (A1)

We denote the momenta of the two initial state dark matter particles as k1 and k2, and the

momenta of the two final state photons as k3 and k4. Since the annihilation takes place

between two dark matter particles at rest, the momentum configuration is

k1 = k2 = k = (mX , 0, 0, 0) ,

k3 = (mX ,mX n̂) , (A2)

k4 = (mX ,−mX n̂) ,

where the unit vector n̂ gives the direction of the photon momentum. Using the spinor

helicity formalism, we choose the polarization vectors as

εµ3(+) ≡ εµ+ (k3; k4) =
1√
2

[k3 |γµ| k4〉
〈k4k3〉

,

εµ3(−) ≡ εµ− (k3; k4) =
1√
2

〈k3 |γµ| k4]

[k4k3]
,

εµ4(+) ≡ εµ+ (k4; k3) =
1√
2

[k4 |γµ| k3〉
〈k3k4〉

,

εµ4(−) ≡ εµ− (k4; k3) =
1√
2

〈k4 |γµ| k3]

[k3k4]
, (A3)

where the notation follows [38]. The benefit of this choice is that the inner products be-

tween opposite helicity vectors are always zero. Feynman diagrams that contribute to the

amplitude are displayed in Figure (11).

We write the total amplitude AAA as

A =
iαem

2π
(ε3 · ε4)

[
u(k1)γ5v(k2)

2mX

]
AAA (h) , (A4)

where αem is the fine structure constant and h ≡ (h3 + h4)/2 such that h = 1 for the (++)

final and h = −1 for the (−−) final state. The structure (ε3 · ε4) (u1γ
5v2) reflects the s-

wave nature of this amplitude, since this factor is nonzero only for the L = 0 initial state

configuration. Then all the contributions from the loop integrals in Figure (11) are collected

in AAA (h), which we write as
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FIG. 11. Feynman diagrams that contribute to the one-loop process XX → γγ. Diagrams with

initial and final state particles exchanged are not listed.

AAA (h) = I1

(
|λ2
L| cos2 α + |λ2

R| sin2 α
)

+ I2

(
|λ2
L| sin2 α + |λ2

R| cos2 α
)

+ 2|λLλR| sinα cosα

(
mf

mX

)
[(J1 − J2) cosϕ+ ih(K1 −K2) sinϕ] . (A5)

Because of the term ih(K1 − K2) sinϕ, the probabilities of having (++) and (−−) photon

final states are unequal (note that Ii, Ji and Ki are, in general, complex functions), which

is a potentially measurable effect of CP -violation. The coefficients Ii, Ji and Ki are given

by

Ii =
m2
i I2(mi,mf )

m2
i −m2

l

−
2m2

f I1(mf )

m2
i +m2

X −m2
f

+
m2
f (m

2
i −m2

X −m2
f )I3(mi,mf )

(m2
i −m2

f )(m
2
i +m2

X −m2
f )

, (A6)

Ji =
2m2

X [I1(mf )− I3(mi,mf )]

m2
i +m2

X −m2
f

, (A7)

Ki =
2(m2

X −m2
f ) I1(mf )

m2
i +m2

X −m2
f

+
2m2

i I2(mi,mf )

m2
i −m2

f

− 2m2
im

2
X I3(mi,mf )

(m2
i −m2

f )(m
2
i +m2

X −m2
f )
,

− 2m2
i

m2
i −m2

X −m2
f

[I2(mi,mf )− I1(mi)] , (A8)

where mi is the mass for the internal scalars (here we have adopted a simplified notation,

mi ≡ mf̃i
in the main text). We observe that if m1 = m2, we have (I1,J1,K1) = (I2,J2,K2)

such that the amplitude will not vanish but it will depend neither on the mixing angle α

nor on the CP -violation phase ϕ. However, as seen from (5), the s-wave 2→ 2 annihilation

cross section is identically zero in this case. If the integral K1 − K2 is complex (which is

the case for both the µ and τ channels), the amplitudes of the (++) and (−−) final states

do not have the same magnitude, which leads to an asymmetry ratio R as discussed in the
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main text. Here I1 and I2 are the same as 2m2
XI

[1]
3 and 2m2

XI
[2]
3 in [9]. They are related to

the standard three-point scalar loop integrals through

I1(ma)

2m2
X

= C0

[
0, 0, 4m2

X ,m
2
a,m

2
a,m

2
a

]
(A9)

I2(ma,mb)

2m2
X

= C0

[
0,m2

X ,−m2
X ,m

2
a,m

2
a,m

2
b

]
, (A10)

in which we follow the convention of LoopTools [30]. The analytic expressions for I1,2,3 are

I1(ma) =





1
4

[
log

(
1+
√

1−m2
a/m

2
X

1−
√

1−m2
a/m

2
X

)
+ iπ

]2

ma ≤ mX

−
[
arctan

√
1

m2
a/m

2
X−1

]2

ma > mX

, (A11)

I2(ma,mb) =

[
−Li2

(
m2
a −m2

b +m2
X −
√

∆1

2m2
a

)
− Li2

(
m2
a −m2

b +m2
X +
√

∆1

2m2
a

)

+ Li2

(
m2
a −m2

b −m2
X −
√

∆2

2m2
a

)
+ Li2

(
m2
a −m2

b −m2
X +
√

∆2

2m2
a

)]
,

(A12)

I3(ma,mb) ≡ I2(mb,ma) , (A13)

where

∆1 = (m2
a −m2

b −m2
X)2 − 4m2

Xm
2
b ,

∆2 = (m2
a −m2

b +m2
X)2 + 4m2

Xm
2
b . (A14)

We note that both the Ii and Ji terms are contained in the analytic expression in [8, 9], but

the Ki term is missing. Finally, we define the square of the total unpolarized amplitude as

|MMM|2 =
1

4

∑

s1,s2

∑

h3,h4

|AAA|2 =
α2

em

8π2

∑

h=±1

|AAA (h)|2 , (A15)

and the total cross section is

(σv)γγ =
1

2
× |MMM|2

32πm2
X

=
α2

em

512π3m2
X

∑

h=±1

|AAA (h)|2 , (A16)

where the factor 1/2 accounts for the fact that the final state consists of identical particles.
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