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Abstract

Working within the context of the minimal supersymmetric standard model, we compare current bounds

from quark flavor changing processes with current and upcoming bounds on lepton flavor violation. We

assume supersymmetry breaking approximately respects CP invariance. Under the further assumption that

flavor violating insertions in the quark and lepton scalar masses are comparable, we explore when lepton

flavor violation provides the strongest probe of new physics. We quote results both for spectra with all

superpartners near the TeV scale and where scalars are multi-TeV. Constraints from quark flavor changing

neutral currents are in many cases already stronger than those expected from future lepton flavor violation

bounds, but large regions of parameter space remain where the latter could provide a discovery mode for

supersymmetry.
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I. INTRODUCTION

Lepton flavor violation (LFV) and quark flavor changing neutral currents (FCNCs) are powerful

probes of new physics, reaching scales well beyond those accessible at present colliders. A significant

effort is underway to improve sensitivity to rare LFV processes such as µ→ eγ and µ to e conversion

(see Table I). However, for example, the neutral kaon mass difference places strong bounds on flavor

violation in the quark sector, and in some models LFV and quark FCNCs are related to one another.

It is interesting to explore under what conditions new LFV experiments will be the most sensitive

probe of new physics, superseding limits from the quark sector. We discuss this question in the

context of the Minimal Supersymmetric Standard Model (MSSM).

Many studies of flavor violation within the MSSM exist, see e.g. [1–11] for overviews. Indeed,

most of the calculations of the rare processes we explore here have appeared elsewhere in the

literature. Our focus will be a comparison between LFV and quark FCNCs, trying to get a feel for

the relative power of these constraints.

Supersymmetry (SUSY) breaking scalar masses can receive contributions from operators of the

form

K ∼ κij
M2

X†aXaΦ
†
iΦj (1)

in the Kähler potential. Here Φ are MSSM superfields with generation indices i, j, and Xa are

fields associated with the breaking of SUSY with non-vanishing FX , and M is associated with the

mediation scale of SUSY breaking. Such operators can induce off-diagonal terms in the scalar mass

matrices, given by m2
ij = κij〈FXa〉2/M2. These terms are a source of flavor violation beyond the

Standard Model. The size and form of these off-diagonal contributions depend on the particulars

of the UV theory that induces this non-renomalizable operator. It is possible the SUSY breaking

respects a Grand Unified Theory (GUT) structure, in which case the quark and lepton flavor

violation can be related. However, even in this case quark and lepton superfields residing in

different representations may feel SUSY breaking differently. For example, in an SU(5) GUT,

since the left-handed (LH) lepton superfields reside in the 5̄ while the LH quark superfields reside

in the 10, this leads to the possibility of a mismatch between contributions to LFV and quark

FCNCs. (See for example [12] and discussion in [9].)

It is also possible that off-diagonal mass terms for squarks and sleptons are a priori unrelated.

Indeed, even if initial flavor violation is related by a symmetry, a mismatch between squark and

slepton off-diagonal mass terms may arise once neutrino masses are incorporated into the theory.
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Observable Exp. Measurement SM prediction

∆mK (3.484± 0.006)× 10−12 MeV [20] (3.19± 0.41(stat.)±0.96(sys.))× 10−12 MeV [21]

∆mBd (3.337± 0.033)× 10−10 MeV [20] (3.48± 0.52)× 10−10 MeV [22]

sin 2βd 0.682± 0.019 [23] 0.748+0.030
−0.032 [24]

∆mBs (1.1691± 0.0014)× 10−8 MeV [20] (1.2± 0.18)× 10−8 MeV [22]

sin 2βs −0.015± 0.035 [23] −0.03761+0.00073
−0.00082 [24]

Observable Current Limit (90% C.L.) Future sensitivity (90% C.L.)

BR(µ→ eγ) 4.2× 10−13 [25] 6× 10−14 [26]

BR(τ → eγ) 3.3× 10−8 [27] 10−9 [28]

BR(τ → µγ) 4.4× 10−8 [27] 10−9 [28]

BR(µ→ e)Au 7.0× 10−13 [29]

BR(µ→ e)Al 10−16 [30]

BR(µ→ 3e) 1.0× 10−12 [31] 10−16 [32, 33]

TABLE I. The experimental measurements and SM predictions for quark observables and the current and

future sensitivities of lepton flavor violating processes. Long distance effects in ∆mK are difficult to quantify.

The quoted SM ∆mK value is a recent Lattice QCD calculation [21] which uses unphysical values for the

pion, kaon and charm quark masses, and as such should not be taken as precise. So, in our numerical work

we allow the SUSY contribution to fully saturate the experimental value.

The inclusion of neutrino Yukawa couplings may lead to sizeable entries in the left-handed slepton

mass matrix due to Renormalisation Group Equation (RGE) running from the GUT scale down

to the right-handed neutrino scale [13–18]. Such models naturally lead to non-zero LFV while not

contributing to quark FCNCs. This approach has been considered in various contexts, including

SO(10) [14, 19] and SU(5) GUT models [13]. The size of these effects are model dependent, but

can be large. But even in the case where the quark and lepton flavor violation are decoupled, it is

of interest to understand just how different the allowed flavor violation is, consistent with current

and upcoming experiments.

New phases in the SUSY breaking parameters would contribute to CP-violating processes,

such as εK . If the phases are O(1), extremely strong bounds exist, forcing scalars to be in the PeV

regime [9]. It is possible that searches for electric dipole moments (EDMs) could eventually provide

constraints competitive with those from εK , a possibility that has been studied recently in, e.g.

[9, 34–39]. However, it is possible a mechanism renders the phases in SUSY breaking parameters

small. Moreover, LFV measurements such as µ → eγ are CP-conserving, so a true “apples to

apples” comparison is with CP-conserving observables in the quark sector. In this analysis we will
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restrict ourselves to the assumption that all phases are zero (or at least negligibly small). In the

kaon sector, for example, the limits from ∆MK supersede those from εK for phases . 10−2.

In this work we consider two scenarios and discuss the interplay between quark FCNCs and

LFV in each. In the first, we use the observed Higgs boson mass of 125 GeV as motivation to

consider scalar masses that may be (much) heavier than a few TeV, and could fall in the 10’s of

TeV to even a PeV range [40–43]. Additionally, having heavy scalars allows for off-diagonal masses

to be relatively large, potentially up to O(1) of the diagonal masses, thus lessening the need for a

mechanism to suppress flavor violation. At the same time, the observed abundance of dark matter

(DM) indicates either gaugino masses Mi or the Higgsino mass parameter µ should be near the

TeV scale (see, for example, [44–46]). So, in the first scenario, we imagine a modest hierarchy

between the fermionic and scalar superpartners. In the second scenario, we consider the possibility

that all superpartners lie close to the TeV scale.

In Sections II and III, we review the structure of the effective Hamiltonians which contribute

to quark FCNCs and LFV in the MSSM. In the quark sector, our primary focus is on meson

mixing. For LFV we discuss `j → `iγ decays and µ to e conversion. (We comment briefly on the

b → sγ transition in Sec. II C). We discuss the parametric dependencies of the various operators

entering the effective Hamiltonian for each process we consider, and comment on what parameters

are most important in what regimes. We discuss the dependence of both quark FCNCs and LFV

on Left-Left (LL), Right-Right (RR) and LR mixing. A goal of these sections is to highlight which

insertions are most constrained and how this may differ between the quark and lepton sector, an

issue which we quantify further in Section V. In Section IV we analyse in more depth how the

various gaugino masses Mi and the µ-term impact the strength of quark FCNC constraints relative

to LFV bounds. The relative power of LFV and quark FCNCs is summarized in Figs. 7 – 14,

which represent the main results of this paper. Finally, in Section VI we summarise the results of

our analysis, and comment on the implications.

II. ANATOMY OF QUARK FCNC PROCESSES

In this section we review contributions to quark flavor violating observables. In the kaon sector,

since we concentrate on CP-conserving new physics, our focus is on ∆MK . In the B sector, even

if new physics contributions are CP-conserving, measurements of CP-violating quantities such as

sin 2βd are relevant. We review our treatment of B-mixing in Sec. II B. We briefly comment on

∆F = 1 constraints in II C.
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FIG. 1. Typical kaon mixing diagram induced by SUSY. The crosses represent flavor-violating mass inser-

tions.

A. ∆F = 2 transitions

The dominant SUSY contribution to meson oscillations is typically gluino-squark box diagrams.1

In these processes, one may use the mass insertion approximation for sufficiently small off-diagonal

elements in the squark mass matrix, with these insertions appearing on the internal squark lines,

shown as crosses in Fig. 1 for kaon oscillation. We take the squark mass-squared matrix to be

given by

M2
q̃ =

m̃2
q(1 + δijLL) m̃2

q(δ
ij
LR)

m̃2
q(δ

ij
RL) m̃2

q(1 + δijRR)

 , (2)

where the indices i, j = 1, 2, 3 run over generations. An analogous convention is used for sleptons.

The interaction can be described by the corresponding effective Hamiltonian

Heff =

5∑
i=1

CiQi +

3∑
i=1

C̃iQ̃i + h.c. (3)

where the Ci are the Wilson coefficients for the dimension-6 operators Qi

Q1 = (d̄αLγµs
α
L)(d̄βLγµs

β
L), Q2 = (d̄αRs

α
L)(d̄βRs

β
L), Q3 = (d̄αRs

β
L)(d̄βRs

α
L),

Q4 = (d̄αRs
α
L)(d̄βLs

β
R), Q5 = (d̄αRs

β
L)(d̄βLs

α
R) (4)

and Q̃i given by interchanging L ↔ R for i = 1, 2, 3. For the numerical values of the hadronic

matrix elements 〈K̄0|Qi|K0〉 we use the values for the bag factors Bi(2 GeV) from [47], the lattice

result for fK from [48], and the reported kaon mass mK from [20]. Meanwhile for the B-meson

hadronic matrix elements, we use the values for the bag factors Bi(mb) and the lattice results

for fB, fBs from [49], and the reported B-meson masses from [20]. Expressions for the Wilson

coefficients including the Leading Order QCD corrections [50] are reproduced in Appendix A.

1 For large values of the ratio of the vacuum expectation values of the two Higgs doublets tanβ, an additional heavy

Higgs-mediated contribution to meson oscillations (see, e.g., [7]) may be relevant (tanβ ∼ 50 for mA ∼ m̃q).
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FIG. 2. The products Ci(µ)Qi for kaon oscillations, for insertions δLL = δRR = 0.3, δLR = δRL = 0, and

m̃q = 20 TeV (we set µ = mc). Shown here are C1Q1 (blue), C4Q4 (red) and C5Q5 (green), demonstrating

the domination of C4Q4 for all values of xg̃. Not shown are C2Q2 and C3Q3, which depend only on LR

insertions, set to zero here. In any case, these are expected to be subdominant, see text. The numerical

values for the Qi are obtained as described in the text. The relative importance of the CiQi is the same for

B-meson oscillations.

In Fig. 2, we display the contribution to meson mixing assuming that δLL = δRR. δLR is set to

zero – in any case its contribution is expected to be subdominant, see Eq. (6) below. In both the
m2
g̃

m̃2
q
≡ xg̃ � 1 and xg̃ ' 1 regions, for equal sized insertions, the contribution to ∆F = 2 processes

is dominated by the operator Q4 with coefficient C4. Notably, this dominant operator depends on

the product δLL × δRR (rather than δ2
LL or δ2

RR), so can be varied relative to the others. As we

will see, the relative size of δLL and δRR will impact the relative strength of of the quark flavor

violation and LFV probes.

LR insertions are not expected to be relevant for ∆F = 2 transitions for large (& TeV) squark

masses. The LR insertions arise due to off-diagonal terms in the scalar trilinear couplings Aij and

have the form

δijLR ∼
mqA

ij

m̃2
q

. (5)
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The result of the quark mass suppression is that A-terms must be very large to affect meson mixing:

A12

m̃q
& 170

m̃q

TeV

A13

m̃q
& 5

m̃q

TeV

A23

m̃q
& 50

m̃q

TeV
. (6)

Such large A-terms would not be expected unless the SUSY-breaking spurion were charged under

the flavor symmetry, a possibility which we do not consider further.

While LR insertions are unlikely to be relevant for meson mixing as described above, they are

potentially relevant for the ∆F = 1 transition of b→ sγ (which we discuss later in Section II C).

B. Treatment of constraints from B-meson observables

B-meson mixing provides a total of four constraints on the new SUSY contributions. For each of

the Bq mesons (q = d, s) there are the measured mass difference ∆mBq as well as the measurement

of the CP violation in the mixing.

In the Bd sector, the observed CP violation in mixing is given by:

sin 2φd =
sin 2βd + rd sin θd

CBd
, (7)

where rd =
|〈B̄d|HSUSYeff |Bd〉|
|〈B̄d|HSMeff |Bd〉|

, θd is a potential new CP-violating phase, which we take to vanish, and

CBd =
(
1 + r2

d + rd cos(2βd − θd)
)1/2

. (8)

Here, sin 2βd is the SM prediction, for which we take the latest (Summer 2015) CKMfitter col-

laboration global fit [24]2 Similarly in the Bs sector, we use the latest value of sin 2βs from the

CKMfitter collaboration global fit, and an expression for sin 2φs analogous to Eq. (7), with the

expectation that the SM prediction is sin 2φs = sin 2βs. We then calculate the χ2 values of the

combined constraints from the mass difference ∆mBq and sin 2βq to find the excluded regions in

our various plots.

While the experimental precision on both sin 2φd and sin 2φs is expected to improve [51], im-

provements in theoretical precision are less easy to forecast. If the expected experimental improve-

ment is matched by theory, this will result in O(1) modifications of the bounds on the allowed δ.

In our numerical results, we show the expected improvement assuming the theoretical precision

increases by a factor of two.

2 When constraining the SUSY contribution, we use the global fit as the central value for SψKs rather than the

directly experimentally measured value. They agree within 2σ.
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C. Treatment of ∆F = 1 transitions

The ∆F = 1 decay of b→ sγ is known to impose strong constraints on the 2−3 sector for TeV-

scale superpartners (see for example [7, 52–54]). Particularly when imposing constraints on LR

mass insertions, it is necessary to include the results from b→ sγ to obtain the constraints on quark

2− 3 transitions. Constraints on LL and RR insertions can also be derived, and are also relevant.

Our procedure for calculating the branching ratio is the following: we take the leading contributions

to the operators C7, C8, C̃7, C̃8 from heavy Higgs boson and gluino diagrams from [7], and use the

expression in [55, 56] to calculate the branching ratio for generic new physics contributions to the

above listed operators. We assume that the heavy Higgs bosons are degenerate with the squarks

and sleptons. We then impose that the branching ratio be within the 90% confidence interval given

the latest experimental results [23], and the theoretical estimate for the branching ratio at NNLO

in the SM [57, 58]. For simplicity, we assume vanishing flavor violation in the up squark sector

(which affects potential chargino diagrams, which are usually subdominant in any case). For heavy

Higgs boson masses comparable to squark masses, we find the charged Higgs boson diagram to be

smaller than, but not negligibly small compared with the gluino contribution, when δ is near its

experimentally allowed value. We note that the sign of the product Mg̃A
23 which appears in the

gluino diagram is physical.

In the future, sensitivity of the High Luminosity LHC to flavor changing top quark decays,

t → hq (q = u, c), where h is the Higgs boson, is expected to reach BR(t → hq). 2 × 10−4

[59, 60] with 3 ab−1. Recent studies (see for example [61] and references therein) indicate that for

typical regions of SUSY parameter space, the future sensitivity will be insufficient to probe these

rare decays in the MSSM. For this reason we do not compare here the top quark FCNC with the

relevant LFV process, h → τµ. This LFV Higgs boson decay has been studied in the context of

the MSSM in, for example, [62, 63].

III. ANATOMY OF LFV PROCESSES

In this section we review supersymmetric contributions to the processes `i → `jγ and µ → e

conversion in nuclei. We discuss what contributions dominate in what regimes and comment on

the dependence on the gaugino masses and µ.
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A. `i → `jγ

The branching ratio of `i → `jγ is

BR(`i → `jγ) =
48π3αem
G2
F

(
|AL|2 + |AR|2

)
, (9)

where the amplitudes AL,R are the coefficients of higher-dimensional operators in the effective

Hamiltonian

Heff = e
m`i

2

(
AL ¯̀

jσ
µνPL`i +AR ¯̀

jσ
µνPR`i

)
Fµν . (10)

The dominant contribution to AL arises from Wino loops [9]

AW̃L =
α2

4π

1

m̃2
`

δ
`i`j
LL

[
−1

8
g1(xW̃ ) + g2(xW̃ , xµ) + sgn(µM2)

√
xW̃xµtβg3(xW̃ , xµ)

]
, (11)

where the gi are loop functions given in Appendix B, and xW̃ , (xµ) ≡
m2
W̃

m̃2
`
,
(
µ2

m̃2
`

)
. We have abbre-

viated tanβ as tβ. If the sign of µM2 is positive (negative), AW̃L exhibits destructive (constructive)

interference. We will refer to each of these cases in the following analysis.

There are additional contributions to AL and AR due to a Bino loop [7, 64]

AB̃L ⊃
α1

4π

1

m̃2
`

δ
`i`j
LL sgn(µM1)

√
xB̃xµtβ

[
f3n(xB̃) +

f2n(xB̃, xµ)

xµ − xB̃

]
, (12)

AB̃R ⊃
α1

4π

1

m̃2
`

δ
`i`j
RR sgn(µM1)

√
xB̃xµtβ

[
f3n(xB̃)−

2f2n(xB̃, xµ)

xµ − xB̃

]
, (13)

with the f2,3n are loop functions given in Appendix B and xB̃ ≡
m2
B̃

m̃2
`

.

While the above contributions to AR and AL apply to all `i → `jγ processes, there is an

additional diagram which gives an important contribution for µ → eγ only, arising due to a Bino

loop with two flavor changing insertions combined with a flavor-conserving LR insertion on an

internal stau line [9, 64]. The flavor-conserving insertion results in an enhancement of mτ/mµ:

AB̃R ⊃
α1

4π

(
mτ

mµ

)
sgn(µM1)

√
xB̃xµtβ

m̃2
`

f4n(xB̃)δµτLLδ
τe
RR , (14)

where f4n(xB̃) is a loop function that can be found in Appendix B. The analogous expression for

AL is found by taking Eq. (14) and interchanging the LL and RR insertions. This diagram is of

particular interest if a flavor symmetry suppresses 1− 2 insertions, since Eq. (14) only depends on

1− 3 and 2− 3 insertions.

In Section II we saw that meson mixing did not put meaningful constraints on off-diagonal

trilinear terms even for TeV scale scalars. In contrast, the LR mixing contributions to LFV may
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FIG. 3. The relative importance of various operators to the branching ratio, as well as the total branching

ratio scaled up. This shows that for small x (with all being set equal), the loop functions g2 and g3 dominate,

while for larger values the Bino loop functions f2n, f3n, and f4n become important. We set m̃` = 20 TeV,

and we set δµeLL = δµeRR = δµτLLδ
τe
RR = 0.3 so that the effective δµe is the same for each operator. tanβ = 10.

be non-negligible. Consider the contribution to radiative lepton decay arising from a Bino loop,

reproduced below [7, 64]

AB̃L ⊃
α1

2π

δ
`i`j
RL

m̃`

√
xB̃
mµ

f2n(xB̃) , (15)

with AB̃R given by the δLR insertion. For xB̃ ∼ 1, we see that this is only suppressed by one power

of m̃`. Since δijLR arises due to terms of the form

δijLR '
mfA

ij

m̃2
`

, (16)

we can use these expressions to constrain the ratio of Aij/m̃` for a given value of m̃`.

In Fig. 3 we show the relative contributions to µ → eγ (arbitrary units) for comparable

insertions: δµeLL = δµeRR = δµτLLδ
τe
RR = 0.3. The gi and fi correspond to the loop functions introduced

in Eqs. (11)–(14). tanβ is set to 10. The dominant contributions to µ → eγ are from the Wino-

Higgsino mixing diagrams, denoted by g2 and g3, at small xi. Since both of these only depend

on δLL (see Eqn. (11)), at small xi, µ → eγ will place constraints on δLL, but not δRR. As xi

approaches 1, the Bino contributions porportional to fin can become important. The dominant
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operator is that with the LR flavor-conserving insertion, as long as δµτδτe is not too suppressed

relative to the single δµe insertion.

In Fig. 3, we see that the largest branching ratio of µ→ eγ is obtained in the small xW̃ , xµ, xB̃

regime. While the figure shown sets tanβ = 10, since the dominant contributions are proportional

to g3 (small x) and f4n (large x) both of which are also proportional to tanβ, the scaling is

straightforward. The statement was also found to apply for maximising the branching ratios of

τ → µγ and τ → eγ. This is to be contrasted with Fig. 2 where small x did not enhance the meson

mixing. Thus, we expect LFV to be a relatively powerful probe in the small x regime. Given

the non-trivial xi dependence, however, we will give a more detailed study of the dependence on

combinations of xB̃, xW̃ and xµ in Section IV.

B. µ→ e conversion in Nuclei

We decompose the contributions to µ→ e conversion.The branching ratio is given by

BR(µ→ e)N =

{∣∣∣∣14eA∗LD + 2(2guL,V + gdL,V )V (p) + 2(guL,V + 2gdL,V )V (n)

∣∣∣∣2
+

∣∣∣∣14eA∗RD + 2(2guR,V + gdR,V )V (p) + 2(guR,V + 2gdR,V )V (n)

∣∣∣∣2} 1

ωcapture
, (17)

where ωcapture is the muon capture rate of the nucleus. The AL(R) are the same dipole coefficients

that were given in Section III A, and gu,dL(R),V are the penguin- and box-type Wilson coefficients

coupling to up or down-type quarks. The terms D, V (p) and V (n) are overlap integrals calculated

in [65] whose values are presented in Appendix C for convenience.

At xW̃ ∼ 1, the branching ratio for µ→ e conversion is dominated by the dipole contributions

AL,R. In this limit there is a simple relation between the µ→ eγ branching ratio and that of µ→ e

conversion, namely:

BR(µ→ e)N '
G2
FD

2

192π2ωcapture
BR(µ→ eγ) ∼


αem

3 BR(µ→ eγ), when N is Aluminium,

αem
2 BR(µ→ eγ), when N is Gold.

(18)

This will apply to our analysis in the case of TeV scale scalars. Given the future experimental

improvements on measuring both µ→ e conversion and µ→ eγ (see Tab. I), in the case of dipole

domination, conversion can impose limits on LFV insertions comparable to those from µ→ eγ.

The Wilson coefficients gu,dL(R),V can be decomposed into the box-, γ-penguin and Z-penguin

diagram contributions as

gqL(R)V = gq,boxL(R)V + gq,γL(R)V + gq,ZL(R)V . (19)
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Wino loops give the dominant contributions to the the gqLV . Since the operators corresponding to

these coefficients become important relative to the dipole contribution at small xi, we present here

the leading contributions in that regime [9].

5gu,boxLV = gd,boxLV =
g4

2

(4π)2m̃2
q

δµeLL
5

4
f

(
m̃2
`

m̃2
q

)
, (20)

gu,γ−peng.LV = −2gd,γ−peng.LV =
−2e2g2

2

3(4π)2m̃2
`

δµeLLfγ,L(xW̃ ) (21)

' −2e2g2
2

(4π)2m̃2
`

δµeLL

{
1

4
+

1

9
log
(
xW̃
)}

, (22)

where the second line is in the limit of small xB̃, xW̃ � 1.

gu,Z−peng.LV =
−
(
1− 4

3 sin2 θW
)(

1− 8
3 sin2 θW

) gd,Z−peng.LV

=
−g4

2

(4π)2m̃2
`

δµeLL
1

16

(
1− 8

3
sin2 θW

)
×
{

cos2 βf1

(
xW̃ , xµ

)
+ sin2 βf2

(
xW̃ , xµ

)
+ sgn(µM2)

√
xW̃xµ sinβ cosβf3

(
xW̃ , xµ

)}
,

(23)

where f(x), fγ,L(x), f1(x), f2(x) and f3(x) are loop functions given in Appendix C.

The contributions proportional to δµeRR can also be derived, and are presented here in the mass

insertion approximation3, to our knowledge, for the first time. Here, Bino exchange dominates. In

the small xi limit, the box diagrams give

gu,boxRV = gd,boxRV =
g4

1

(4π)2m̃2
q

δµeRR
1

4
f

(
m̃2
`

m̃2
q

)
, (24)

while the γ-penguin diagrams contribute

gu,γ−peng.RV = −2gd,γ−peng.RV =
−2e2g2

1

3(4π)2m̃2
`

δµeRRfγ,R(xB̃) (25)

' −2e2g2
1

(4π)2m̃2
`

δµeRR

(
1

4

)
, (26)

where fγ,R(x) is a loop function given in Appendix C. In the final line we have taken the xB̃ → 0

limit. The Z-penguin diagrams give

gu,Z−peng.RV =
−
(
1− 4

3 sin2 θW
)(

1− 8
3 sin2 θW

) gd,Z−peng.RV =
−g4

1

(4π)2m̃2
`

1

4

(
1− 8

3
sin2 θW

)
δµeRR cos 2βfZ,R(xB̃, xµ).

(27)

where fZ,R(xB̃, xµ) is a loop function given in Appendix C.

In Fig. 4 we show the dependence of non-dipole operators on a common xi. We see the branching

ratio of µ→ e conversion is dominated by the γ/Z-penguin diagrams for small xi.

3 Complete expressions for both LL and RR contributions in the mass eigenstate basis can be found in [18].
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FIG. 4. The relative importance of various non-dipole operators to the branching ratio as a function of

xW̃ , xµ. We have taken m̃` = m̃q = 20 TeV, tβ = 10, and δLL = δRR = 0.3. Not shown are the various RH

non-dipole operators. They achieve a maximum of 8× 10−15 for the Bino d-quark Z-penguin diagrams (at

xi ∼ 10−5) and a maximum of 4× 10−15 for the Bino u-quark γ-penguin diagrams (at xi ∼ 0.1).

1. Interference between dipole and non-dipole operators in µ→ e conversion

We now review interference effects exhibited in µ → e conversion. Most importantly, there is

interference between the dipole operators and the non-dipole operators listed above. The physical

sign sgn(µMi), where i=1, 2 appears in Eqs. (11 – 14) in the dipole operators, and in Eq. (23) in

the non-dipole operators. While in the Wino Z-penguin operator, Eq. (23), it has only a small

effect on the overall size of the contribution, in the dipole operator of Eqs. (11 – 14) it not only

changes the size, but also the sign of these contributions relative to the sum of the non-dipole

operators. The result is that if sgn(µMi) = − (+) the branching ratio of µ→ e conversion exhibits

constructive (destructive) interference.

At large values of xi the dipole operators dominate, and the interference effects are lessened.

At smaller values of xi however, the dipole and non-dipole operators both contribute, and indeed,

there is a region where the LH dipole and LH non-dipole parts cancel exactly. In this case, the

branching ratio for µ → e conversion is given by the RH contributions, which are themselves

dominated by the non-dipole parts in this regime. This is shown in Fig. 5 for m̃` = 20 TeV, but a

similar cancellation is robust for all values of m̃`.
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FIG. 5. The interference of dipole and non-dipole operators as a function of xW̃ , xµ, xB̃ . We have taken

m̃` = m̃q = 20 TeV, tβ = 10, and δLL = δRR = 0.1. The blue (green) dotted line shows the constructive

(destructive) contribution from the dipole operators, while the red dotted line shows the contribution from

the non-dipole operators. The dark blue line shows the constructive branching ratio, while the purple line

shows the destructive branching ratio.

C. Rare `i → 3`j decays

We now examine the operators that contribute to the rare decays of `i → 3`j . In our numerical

analysis we restrict ourselves to the decay µ→ 3e, but analytic results apply to rare tau decays as

well. We concentrate on µ→ 3e because of the expected improvement in sensitivity from the Mu3e

experiment [32, 33], which aims to probe BR(µ → 3e) . 10−16. We do not consider τ → 3e(µ)

decays in our numerical analysis, as the expected future sensitivity is not much greater than that

of τ → e(µ)γ [51].
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The branching ratio of `i → 3`j is given by [3, 5] as

BR(`i → 3`j) '
6π2α2

em

G2
F

{
|ALγ−p.|2 + |ARγ−p.|2 − 2

(
ALγ−p.(A

R
dip.)

∗ +ALdip.(A
R
γ−p.)

∗ + h.c.
)

+

(
16

3
log

mµ

me
− 22

3

)(
|ALdip.|2 + |ARdip.|2

)
+

1

6

(
|BL

1 |2 + |BR
1 |2
)

+
1

3

(
|BL

2 |2 + |BR
2 |2
)

+
1

24

(
|BL

3 |2 + |BR
3 |2
)

+ 6
(
|BL

4 |2 + |BR
4 |2
)

− 1

2

(
BL

3 (BL
4 )∗ +BR

3 (BR
4 )∗ + h.c.

)

+
1

3

(
ALγ−p.(B

L
1 )∗ +ARγ−p.(B

R
1 )∗ +ALγ−p.(B

L
2 )∗ +ARγ−p.(B

L
2 )∗ + h.c.

)
− 2

3

(
ARdip.(B

L
1 )∗ +ALdip.(B

R
1 )∗ +ALdip.(B

R
2 )∗ +ARdip.(B

L
2 )∗ + h.c.

)
+

1

3

[
2
(
|FLL|2 + |FRR|2

)
+ |FLR|2 + |FRL|2

+
(
BL

1 (FLL)∗ +BR
1 (FRR)∗ +BL

2 (FLR)∗ +BR
2 (FRL)∗ + h.c.

)
+ 2

(
ALγ−p.(FLL)∗ +ARγ−p.(FRR)∗ + h.c.

)
+
(
ALγ−p.(FLR)∗ +ARγ−p.(FRL)∗ + h.c.

)
− 4

(
ARdip.(FLL)∗ +ALdip.(FRR)∗ + h.c.

)
− 2

(
ALdip.(FRL)∗ +ALdip.(FLR)∗ + h.c.

) ]}
, (28)

where AL,Rdip. are the dipole operator coefficients from from Eqs. (11) - (14) above, AL,Rγ−p. are the

photo-penguin operator coefficients, the BL,R
i are from box-type operators and the FLL,RR,LR,RL

are from Z-penguin operators, as defined in [5].

Typically at moderate and low tanβ, the µ→ eγ dipole operators dominate the µ→ 3e decay

rate [5, 9], in large part due to the appearance of the logmµ/me in the second line of Eq. (28)

above.4 There exists then a fairly simple relation between the two branching ratios:

BR(µ→ 3e)

BR(µ→ eγ)
' αem

3π

(
2 log

mµ

me
− 11

4

)
' 6.1× 10−3 . (29)

As can be seen in Fig. 6, the dipole operators, enhanced by the phase space factor, greatly

dominate over the other operators that contribute to the branching ratio in all regions of xi pa-

rameter space. In our analysis we include the numerical contributions from the other operators,

which are given in the mass insertion approximation in Appendix D.

4 This logarithm arises due to the phase space integration of the final state fermions– there is a infrared singularity

cutoff by the electron mass.
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FIG. 6. The relative importance of various operators to the branching ratio of µ → 3e, in arbitrary units.

We have scaled each one by the appropriate numerical factor (fPS ≡
(

16
3 log

mµ
me
− 22

3

)
contains the IR

logarithm induced by integration over phase space). This shows that for all values of x (with all being set

equal), the dipole coefficents dominate. We set m̃` = 20 TeV, and we set δµeLL = δµeRR = δµτLLδ
τe
RR = 0.3 so

that the effective δµe is the same for each operator. tanβ = 10.

IV. DEPENDENCE ON FERMIONIC SUPERPARTNER MASSES

In Section III above, we saw that there is non-trivial dependence of LFV observables on

xB̃, xW̃ , xµ and tβ. Additionally, the dependence on xg̃ of quark sector observables was shown

in Fig. 2. In this section we examine in detail how the LFV constraints compare with the quark

FCNC constraints as a function of various combinations of gaugino masses and µ. With this aim

in mind, we show the ratio of squark to slepton mass

Rij ≡ m̃q/m̃`, (30)

for which constraints derived from transitions between generations i and j are equally strong from

the quark and lepton sectors. We investigate this ratio as a function of various xi. Because in

this section we set δLR = 0, the behavior of the various transitions always goes as δ/m̃2. Thus,

our results in terms of Rij with fixed δ can be reinterpreted as ratios of
√
δ`/δq for equal sfermion

masses.

Before discussing the relative power of different measurements, we first want to determine what
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xi affect our observables most. We first examine the dependence of meson oscillation observables

on xg̃. This can be gleaned by studying Fig. 2. There is O(1) variation between small xg̃ and

xg̃ ∼ 1, while for xg̃ � 1 the variation becomes important. Since we restrict ourselves to either the

situation where xg̃ � 1 or xg̃ ∼ 1, the relative power of LFV and quark FCNC observables with

respect to xg̃ is at most O(1). In addition, the dependence of the LFV observables on xB̃ in the

regions we consider (xB̃ � 1→ xB̃ ∼ 1) is only slight. Only if one has large xµ & 1 as well as large

xB̃ & 1 does the variation become appreciable. As such, varying xB̃ does not allow one to change

the relative power of the LFV and quark FCNC observables much. Therefore, we concentrate on

the effect of varying xµ and xW̃ .

We now move to quantify the relative power of quark and LFV constraints by solving for R

in several cases. We first specify xg̃. We then find the squark mass which saturates the bound

from meson mixing. Similarly, once we fix xµ, xB̃ and xW̃ we can find the corresponding slepton

mass which saturates the current limits on the processes µ → eγ, τ → eγ and τ → µγ. We also

consider the combinations which saturate the future sensitivity to µ → eγ, µ → e conversion in

Aluminium and µ → 3e . Combining these two results yields R. Results shown in this section

assume constructive interference as defined for the LFV processes in Section III. Were we to

examine the case of destructive interference, when comparing `i → `jγ with quark FCNCs, we

would find qualitatively similar behavior of Rij for values of xi . 1. R is increased by at most

a factor of 2. For large values of xi, the interference effect is lessened. When comparing µ → e

conversion however, interference effects can be important, as discussed in Section III B 1. If we

were to examine destructive interference, R would become very large near xi ∼ 10−3.

We study two separate regimes, one where we fix xB̃ = xW̃ = xg̃ ∼ 1, which corresponds to TeV-

scale physics, and one where we fix xB̃ = xW̃ = xg̃ ∼ 10−3, corresponding to heavy scalars, but with

O(TeV) gauginos. We then allow only xµ to vary, primarily because its variation captures most of

the important effects. We have already argued that xB̃ and xg̃’s effects are easily understood. In

principle, we could have shown the variation with respect to xW̃ , but it follows approximately the

same pattern as varying xµ. This can be understood by considering Fig. 3. In the small xi regime,

the dominant contribution to the µ → eγ transition arises due to the LH Wino-Higgsino mixing

diagrams with loop functions g2(xW̃ , xµ) and g3(xW̃ , xµ). In the small xi limit, these functions are
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approximately

g2(xW̃ , xµ) ∼
xW̃ log xW̃
xµ − xW̃

+
xµ log xµ
xW̃ − xµ

, (31)

g3(xW̃ , xµ) ∼
log xW̃
xµ − xW̃

+
log xµ
xW̃ − xµ

, (32)

so that the behavior as a function of xµ and xW̃ is the same. Therefore varying one while keeping

the other fixed is enough to illustrate the general behavior.

In the large xi ∼ 1 regime, there is more complicated dependence on various contributions to

the µ → eγ amplitude. We see from both Fig. 3 and Fig. 7a that the region 0.3 . xµ, xW̃ . 3 is

where most variation occurs. This is also true for 1 − 3 and 2 − 3 transitions, as can be seen in

Figs. 8a and 8c. In this regime (the region 0.3 . xµ, xW̃ . 3), we find the following functions

R12 ' 7.2 +
√

0.85xW̃xµ + log xW̃ + log xµ, (33)

R13 ' 54 +
√

2.5xW̃xµ + 7(log xW̃ + log xµ), (34)

R23 ' 2.6 +
√

0.28xW̃xµ + 0.2(log xW̃ + log xµ), (35)

capture this behavior accurately to within . 6%. We choose this particular functional form because

it closely matches the functional form of the full expressions (found in Appendix B), with a small

number of parameters.

The situation where xB̃ ∼ xW̃ ∼ xg̃ ∼ 1 at the low scale could be realized with a GUT-

scale boundary condition such that a universal scalar mass m0 is small compared with high scale

gaugino masses m1/2. In this case, one arrives at a low-energy spectrum where the slepton masses

are dominated by the Wino mass, and the squark masses are dominated by the gluino mass. We

find that with these boundary conditions, the low scale squark to slepton mass ratio is fixed, and is

approximately m̃q/m̃` ∼ 3. This is shown by the dotted red line in Fig. 7a. Given the constraints

from the running on xB̃, xg̃, xW̃ , the only free parameters in this case are µ and tβ. We show in

Fig. 7a how the squark to slepton mass ratio varies as a function of xµ for the 1− 2 sector, and in

Figs. 8a and 8c for the 1− 3 and 2− 3 sectors respectively.

We show the results for the “heavy scalar case” xB̃ = xW̃ = xg̃ ∼ 10−3 in Fig. 7b for the 1− 2

sector, and in Figs. 8b and 8d for the 1 − 3 and 2 − 3 sectors respectively. This situation could

arise for example if the boundary conditions at the GUT-scale are such that a universal gaugino

mass m1/2 is suppressed relative to m0.

We notice that smaller xµ increases the relative strength of the LFV probes for all transitions.

Moreover, R decreases as a function of increasing tβ, i.e. LFV becomes relatively powerful at large
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(b) xB̃ = xW̃ = xg̃ ∼ 10−3.

FIG. 7. These figures show xµ vs. the ratio R12 of squark to slepton mass that saturates the experimental

bounds from kaon oscillations and rare µ decays. We set δLL,RR = 0.1, δLR = 0 and tβ = 10. In the left

figure, xB̃ = xW̃ = 1, while in the right figure xB̃ = xW̃ = 10−3. The solid blue line is the current µ → eγ

constraint, the dashed purple line is the future µ→ eγ sensitivity, the solid green line is the future sensitivity

to µ → e conversion in Aluminium, and the dashed orange line corresponds to future µ → 3e sensitivity .

The dotted blue line corresponds to the function for R12 given in Eq. (33). The dashed red line is the ratio

of m̃q/m̃` obtained by running from the GUT scale to the low scale given initial conditions for a universal

gaugino mass m1/2(MGUT ) = 3 TeV and universal scalar mass m0(MGUT ) = 0.5 TeV.

tβ. For the current constraints from µ → eγ, R12 decreases from R12 ≈ 20 for tβ = 2 to R12 ≈ 6

for tβ = 20 when xi ∼ 1, and from R12 ≈ 1.6 for tβ = 2 to R12 ≈ 0.7 for tβ = 20 when xi ∼ 10−3.

The constraint from µ → e conversion shows a decrease from R12 ≈ 10 for tβ = 2 to R12 ≈ 3

for tβ = 20 for xi ∼ 1, and from R12 ∼ 0.7 for tβ = 2 to R12 ∼ 0.5 for tβ = 20 when xi ∼ 10−3. For

all transitions, being in the small xB̃, xW̃ , xg̃ regime results in significant increases in the relative

strength of LFV observables relative to quark FCNC observables. The increase is a factor of a few

for the 1 − 2 and 1 − 3 transitions, and up to an order of magnitude for the 2 − 3 transitions. In

the 1− 2 and 2− 3 transitions, we see that at small values of xi the ratio drops below 1, meaning

that the LFV constraints become stronger than those from the meson oscillation observables. In

the 1 − 3 sector however, the ratio does not drop below 1, a result that is echoed in Section V,

where we see that Bd meson oscillations are a stronger constraint than τ → eγ in much of the δ

parameter space also. We also observe that in Fig. 7b for small xB̃, xW̃ , xg̃, µ→ e conversion in

the future goes from being a weaker constraint than the future sensitivity of µ → eγ at small xµ,

to being the stronger constraint for xµ & 0.04.

From our results in this section, we can see that having small xi results in a relative strengthening

of the LFV constraints for all transitions. Nevertheless, varying xi over 3 orders of magnitude
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(d) xB̃ = xW̃ = xg̃ ∼ 10−3.

FIG. 8. The upper (lower) figures show xµ vs. the ratioR13 (R23) of squark to slepton mass that saturates the

current experimental bounds from Bd (Bs) meson oscillations and τ → eγ (τ → µγ). We set δLL,RR = 0.1,

δLR = 0 and tβ = 10. In the left figure, xB̃ = xW̃ = 1, while in the right figure xB̃ = xW̃ = 10−3. The solid

blue line is calculated using the current τ → eγ (τ → µγ) constraint, while the dashed purple line uses the

future τ → eγ (τ → µγ) sensitivity. The dotted blue lines corresponds to the functions for R13 (upper left)

and R23 (lower left) given in Eqs. (34) and (35) respectively.

typically only results in variation of R by O(few), and at most an order of magnitude.

V. CONSTRAINTS ON δ

In this section we examine constraints on the flavor off-diagonal mass insertions. We show

results for 1 − 2 transitions (comparing µ → eγ, µ → e conversion and µ → 3e with ∆mK),

and also for 1 − 3 and 2 − 3 transitions (comparing τ → e(µ)γ with Bd(s) meson mixing). These

analyses summarize the relative sensitivity of quark and lepton flavor violation probes now and

into the future.

It is also of interest to connect these results to GUT constructions and or textures. If SUSY
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breaking respects, e.g., an SU(5) GUT symmetry, particles residing within a 5̄ or a 10 may share

a common soft mass. Inspired by this relation, we define

δ
˜̀
i
LL = δd̃iRR ≡ δ5̄, (36)

δ
˜̀
i
RR = δũiRR = δq̃iLL ≡ δ10.

We will comment on how our results can be rephrased in this language below.

In subsection V A we consider the situation where the LR insertions are zero, and all the mass-

squared ratios xi ∼ O(10−2 − 10−3), indicative of a significant but modest hierarchy between

sfermions and fermionic superpartners. In this region of parameter space we are interested in the

possibility that gauginos and the µ parameter are all around the TeV scale, but sfermions are much

heavier, in the tens to hundreds of TeV, akin to models of split or mini-split SUSY [43, 44, 46, 66–

70]. There is strong motivation for such models, and their implications for flavor physics have

been considered before [9, 36, 39, 67, 71, 72]. For even smaller x, for fixed sfermion mass, the

∆F = 2 is essentially unchanged. The LFV BRs increase logarithmically as you go to smaller xi

(see Eq. (32)). However, too small xi will result in too small gaugino masses and µ unless the

sfermion mass is raised.

In subsection V B we consider the case where LR insertions are zero, but the xi = 1. Finally

in subsection V C we analyse the case where LR insertions are non-zero, and the xi = 1. In the

latter two sections with xi = 1, the region of parameter space we consider is one where once again

gauginos and the µ parameter are around the TeV scale, motivated both by naturalness and by

dark matter considerations. Therefore we set the sfermion masses to also be at the TeV scale.

A. δLR = 0, x small

In this subsection we consider xi � 1, corresponding to a scenario where there is a hierarchy

between scalar and fermionic superpartners. In Figs. 9 and 10, we display regions excluded by quark

and lepton FCNC limits in the δLL, δRR plane. Note, meson mixing constraints are symmetric

under δLL ↔ δRR, so these figures can be reinterpreted as δRR ↔ δ10 and δLL ↔ δ5̄. In our

numerical work, we have set δ’s in the up sector to vanish, but flavor violation in the up sector is

in any case subdominant for the meson mixing considered here.

In Fig. 9, which corresponds to 1 − 2 transitions, we have chosen m̃q = m̃` = 20 TeV and

xi = 5 × 10−3, while for the 1 − 3 (Figs. 10a, 10b) and 2 − 3 transitions (Fig. 10c, 10d), we have

chosen m̃q = m̃` = 5 TeV and xi = 0.04. The sfermion masses and value of the common xi for
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FIG. 9. δLL vs δRR plots for 1−2 insertions. These plots compare constraints from ∆mK (red), BR(µ→ eγ)

(current (future) in dark (light) blue), µ → e conversion (green) and BR(µ → 3e) (purple) . All regions

correspond to the measured (projected) limits at 90% C.L. We have set m̃q = m̃` = 20 TeV, xg̃ = xµ =

xW̃ = xB̃ = 5× 10−3, and tβ = 10.

1−2 transitions is chosen so as to avoid falling into the region where the destructive interference in

µ→ e conversion is most important, around xi ∼ 10−3 (see Section III B 1 for further discussion).

The smaller sfermion masses and larger xi for 1− 3 and 2− 3 transitions are chosen so that useful

constraints can be shown, and to comply with limits from Run I of the LHC on gluino masses,

respectively. While we have chosen to show plots for particular sfermion mass assignments, the

corresponding limits on δLL,RR will scale with the masses according to the expressions given in the

quark FCNC/LFV anatomy sections II, III above. We discuss each of these figures now in turn.

In Fig. 9, we display limits from ∆mK , µ → eγ , µ → 3e and µ → e conversion. For muon

conversion we use the future experimental sensitivity in Aluminium, shown in Table I above. We

see from Fig. 9 a) that in the case of constructive interference for the LFV processes (see discussion

below Eqn. 11), µ → eγ is already a stronger constraint than ∆mK . Also in this case, the future

sensitivity of µ → eγ will be superior to that of µ → e conversion. In the case of destructive

interference the current constraint from µ → eγ is stronger than the future sensitivity of µ → e

conversion (see Fig. 9 b)). This is due to µ→ e conversion experiencing large interference between

the dipole and non-dipole operators in the region near xi ∼ 10−3, while the interference in µ→ eγ,

arising only within the dipole operators, is less pronounced. For both constructive and destructive
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interference, the strongest constraint will be from the improvement on µ → eγ, and eventually

from the planned Mu3e experiment.

In Fig. 10 we assume δ12 is negligibly small, and as such only δ13 and δ23 processes will be

relevant. We choose xi = 0.04 in these plots so that the gauginos and µ are all at 1 TeV. We

compare τ → eγ with ∆mBd , βd in Figs. 10a and 10b, and τ → µγ with ∆mBs , βs in Figs. 10c

and 10d. In both sets of plots we also consider the possibility that µ→ eγ can provide a constraint

on δ13δ23 due to the LR flavor-conserving insertion in the mτ/mµ enhanced Bino loop contribution

from Section III A. We compare the possible constraint from µ → eγ under the assumption that

δ13
LL,RR = δ23

RR,LL, but δ12 = 0. In this case the only operator contributing to µ → eγ is the LR

flavor-conserving Bino operator from section III. Presented are results for both constructive and

destructive interference between operators contributing to the rare τ decays.

For the B-meson observables, the central region near δLL = δRR is dominated by the operator

Q4, as defined in Section II, while the extended regions at small δLL and δRR are dominated by the

operators Q1 and Q̃1 respectively. The two regions where constraints from Bd-mesons are weaker

occur due to cancellation between Q1/Q̃1 and Q4.

In Fig. 10a we observe that in the future τ → eγ has the potential to be a stronger constraint

(for constructive interference) on δLL than the current bound from Bd mixing for small δRR .

2 × 10−2. However, if the constraints from Bd mixing improve by a factor of two this will reduce

the region where τ → eγ has the potential to be a stronger constraint to 5 × 10−3 . δRR .

2 × 10−2. If δLL ≥ δRR, the constraints from Bd mixing will remain the strongest. In the case of

destructive interference, the future τ → eγ constraint will only be stronger in a small region where

the contributions from the quark FCNC operators Q1 and Q4 cancel. The current constraints on

δLL from µ → eγ under the assumptions stipulated above are weaker (stronger) than the future

constraints from τ → eγ in the case of constructive (destructive interference).

Meanwhile from Fig. 10c we see that the constraints from Bs mixing are currently stronger

than those from LFV in all regions of δ-space. In the future however, the constraints on δLL from

τ → µγ will become stronger for all values of δRR in the case of constructive interference, and

for δRR . 0.3 in the case of destructive interference. The constraints on δRR from µ → eγ apply

only if δ13
LL,RR = δ23

RR,LL. Under this assumption, the current constraints from µ → eγ are always

stronger than those from Bs meson mixing, and stronger (weaker) than the future constraints from

τ → µγ for constructive (destructive) interference. Additionally, µ → eγ places constraints on

δ23
RR. Limints from τ → µγ one this insertion are very weak (not visible on this plot). For both

constructive and destructive interference, the future sensitivity of µ → eγ under the stipulated
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FIG. 10. δLL vs δRR plots for 1− 3 (upper) and 2− 3 (lower) insertions. These plots compare constraints

from ∆mBd and βd, BR(τ → eγ) for the upper plots, and from ∆mBs and βs, BR(τ → µγ). The dark

red regions are already excluded, and the light red shows the potential future reach with a factor of two

improvement. The light orange region shows the future sensitivity of τ → e/µγ. We have set m̃q = m̃` = 5

TeV, xg̃ = xµ = xW̃ = xB̃ ' 0.04, and tβ = 10. Also shown is a dark blue region excluded by µ → eγ

making the further assumption that δ13LL,RR = δ23RR,LL. The light blue is the future sensitivity given the

same assumption. All regions shown are excluded at 90% C.L.
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assumptions is greater than the future sensitivity of τ → µγ.

Note that µ→ 3e can also constrain both 1−3 and 2−3 transitions in the same way as µ→ eγ,

since the same dipole operators dominate both decays. We do not include these constraints in Fig.

10, as they can be inferred from the relevant constraints in Fig. 9.

To summarize, for small xi � 1 (heavy scalars), LFV observables either currently or will provide

stronger constraints on left-handed flavor violation than the quark sector for both 1− 2 and 2− 3

transitions. In the case of 1 − 3 transitions however, the constraints from Bd meson mixing will

remain comparable to or stronger than those from LFV observables in most of the parameter space.

We also wish to re-emphasize the potential of µ → eγ to provide constraints on 1 − 3 and 2 − 3

transitions due to the LR flavor conserving operator from section III A.

B. δLR = 0, x = 1

In this subsection we consider the situation when xi = 1. We consider a common superpartner

mass MSUSY = 1 TeV in this section.

In Fig. 11 we compare the current and future bounds on δ in the 1 − 2 sector from LFV

processes and ∆mK . We consider both constructive (a) and destructive (b) interference in the LFV

processes. We observe from Fig. 11a that µ → eγ is currently a stronger constraint than ∆mK

when there is constructive interference. The future sensitivity of µ→ eγ will be greater than that

of µ → e conversion for constructive interference. On the other hand, from Fig. 11b (destructive

interference), we see that ∆mK is currently a stronger constraint than µ → eγ if δLL = δRR, and

µ → 3e will become the strongest constraint in the future . The constraints on δRR currently are

strongest from µ → eγ, but in the future will be strongest from µ → 3e. Currently, µ → eγ also

dominates the constraint on δLL for constructive interference. For destructive interference δLL will

be most strongly constrained by µ→ 3e, which is slightly stronger than µ→ e conversion . This is

in contrast with the situation at small xi, where we saw that the constraint from µ→ e conversion

would be weak in the case of destructive interference. As can be understood by examining Fig. 5,

this is due to the interference at large xi ∼ 1 not being as pronounced as at small x ∼ O(few)×10−3.

Turning now to 1−3 transitions, we see from Figs. 12a and 12b that if δ12 = 0, the bound from

Bd mixing will remain a stronger constraint than τ → eγ in a large region of parameter space. This

result is largely independent of whether interference in the leptonic observable is constructive or

destructive, and in the destructive case τ → eγ will not improve on the Bd mixing bound at all. As

in the previous section, we compare the possible constraint from µ→ eγ under the assumption that
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FIG. 11. δLL vs δRR plots for 1 − 2 insertions. These plots compare the current and future constraints

from ∆mK , BR(µ → eγ), BR(µ → 3e) and µ → e conversion. All regions correspond to the measured

(projected) limits at 90% C.L. . We have set m̃q = m̃` = 1 TeV, xg̃ = xµ = xW̃ = xB̃ = 1, and tβ = 10.

δ13
LL,RR = δ23

RR,LL. If this assumption is correct, µ→ eγ is already a stronger probe than the future

sensitivity of τ → eγ in all of the parameter space shown, regardless of interference. However,

despite improvements in µ→ eγ, the sensitivity will not be competitive with the constraints from

Bd meson mixing near the line of δLL = δRR.

Finally, we perform the same analysis for τ → µγ, comparing with bounds from Bs mixing.

From Fig. 12c, there is a region where τ → µγ already provides the strongest constraint on

1 − 3 mixing in the case of constructive interference. In the future, such a region will exist for

destructive interference as well as seen in Fig. 12d. Additionally, we note µ→ eγ (again, with the

added assumption δ13
LL,RR = δ23

RR,LL) is already a stronger probe than both of the other observables

in all of the parameter space, and will remain so into the future. If this assumption does not hold,

then we note that b→ sγ, shown by the purple lines, is currently the strongest constraint on δRR

for small δLL regardless of the sign of the product Mg̃A
23, which appears in the gluino diagrams

contributing to the amplitude. The future sensitivity of τ → µγ will improve on these constraints

on δLL only if there is constructive interference in the τ decay amplitude. It will not however

improve on the constraints on δRR, but rather will have comparable sensitivity.

Note that µ→ 3e can also constrain both 1−3 and 2−3 transitions in the same way as µ→ eγ,

since the same dipole operators dominate both decays. We do not include these constraints in Fig.
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FIG. 12. δLL vs δRR plots for 1 − 3 (upper) and 2 − 3 (lower) insertions. The upper plots compare the

current constraints from ∆mBd , βd, τ → eγ on δ13. The lower plots compare constraints from ∆mBs , βs,

b→ sγ, τ → µγ. The dark red regions are excluded by B meson mixing, the light red is a potential factor of

two improvement. The light orange region shows the future sensitivity of τ → µγ. The purple line shows the

current limits from b→ sγ. Also shown is a dark blue region excluded by µ→ eγ assuming δ13LL,RR = δ23RR,LL.

The light blue is the future sensitivity given the same assumption. We have set m̃q = m̃` = 1 TeV,

xg̃ = xµ = xW̃ = xB̃ ' 1, and tβ = 10.
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(b) Destructive interference for µ→ eγ.

FIG. 13. δLL, δRR vs A12/m̃ plots comparing the constraints from ∆mK (red), the current (future) limit

on BR(µ → eγ) (dark (light) blue), the future sensitivity of µ → e conversion (light green) and the future

sensitivity of BR(µ→ 3e) (purple) , all at the 90% C.L.. We have set m̃q = m̃` = 1 TeV, xg̃ = xµ = xW̃ =

xB̃ = 1, and tβ = 10.

12, as they can be inferred from the relevant constraints in Fig. 11.

C. δLR 6= 0, x = 1

For TeV-scale superpartner masses, the factor mf/m̃ in the LR insertions is small, but not

negligibly so. We cannot assume that δLR = 0 as we had done when the superpartners were of

O(10) TeV. So, in the x ∼ 1 case, given a particular m̃, using the known SM fermion mass, we

relax the δLR = 0 assumption. Indeed, we place limits on the ratio Aij/m̃. In this subsection we

assume δRR = δLL ≡ δ.

We see from Fig. 13 that in the case of constructive interference µ → eγ places stronger

constraints on the size of A12/m̃ than ∆mK in all regions of parameter space, and large regions if

there is destructive interference. Note in the case of constructive interference, µ → eγ is already

constraining A12 . 10−2m̃ for TeV-scale SUSY masses. This is also true when there is destructive

interference except for a sliver of parameter space near the A12/m̃ = δLL,RR line, where the

interference is most pronounced. Eventually, µ → 3e will be the strongest constraint on A12/m̃,

although only slightly improving on the future µ→ eγ constraint.
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(d) Destructive interference for τ → µγ.

FIG. 14. δLL, δRR vs. A13/m̃ (upper) and δLL, δRR vs. A23/m̃ (lower) plots. In the upper plots, we compare

the current and future constraints from ∆mBd , βd, τ → eγ. The lower plots compare the current and future

constraints from ∆mBs , βs, b → sγ, τ → µγ. The dark red region is excluded by meson mixing at 90 %

C.L., and the light red assumes a factor of two improvement. The solid (dashed) purple line shows the limit

from b → sγ in the case of constructive (destructive) interference. The dark (light) orange region shows

the current (future) sensitivity of τ → eγ (top) and τ → µγ (bottom). We have set m̃q = m̃` = 1 TeV,

xg̃ = xµ = xW̃ = xB̃ ' 1, and tβ = 10. In both panels, the dark (light) blue gives a current (future)

exclusion from µ→ eγ assuming δ13 = δ23.
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In the 1−3 sector, we find from Figs. 14a and 14b that Bd mixing imposes a stronger constraint

than τ → eγ in large regions of parameter space. However, for small δLL,RR . 2×10−3, we find that

τ → eγ, both in the case of constructive and destructive interference, provides a stronger constraint

than ∆mBd and SψKs on A13/m̃. We see that while currently the limit is weak: A13 . 4m̃, in the

future τ → eγ will be sensitive up to A13 . 0.6m̃. Additionally we note that under the assumption

that δ13 = δ23, µ→ eγ does not improve the constraints on δLL,RR.

Similarly for the 2 − 3 sector, we see from Figs. 14c and 14d that currently τ → µγ imposes

a stronger constraint on A23/m̃ than Bs for δLL,RR . 3 × 10−2 only. In this region the current

constraint from Bs mixing gives A23/m̃ . 50, improving to A23/m̃ . 40, while the current con-

straint from τ → µγ yields A23/m̃ . 4 for both constructive and destructive interference. The

future sensitivity of τ → µγ will constrain A23/m̃ . 0.6 for δLL,RR . 10−2. However, the strongest

constraint comes from b → sγ, which bounds A23/m̃ . 0.5 for small δLL,RR, both in the case of

constructive (sgn(mg̃A
23 = +) and destructive (sgn(mg̃A

23 = −)) interference. As in Figs. 12c

and 12d, we see that for δLL = δRR, if δ13 = δ23, µ → eγ can provide a stronger constraint than

both τ → µγ and Bs mixing.

Again, µ→ 3e can constrain both 1− 3 and 2− 3 transitions in the same way as µ→ eγ. We

do not include these constraints in Fig. 14, as they can be inferred from the relevant constraints

in Fig. 13.

VI. SUMMARY

We have analysed various quark- and lepton-flavor violating processes in the absence of new CP

violating phases. While the absence of new CP violating phases is a strong assumption, because

LFV measurements are CP conserving, in some ways it provides for the most direct comparison

between the two sectors. In general, relaxing this assumption will strengthen – considerably in the

case of the 1− 2 sector – the bounds on quark flavor violation.

In the case of heavy scalars, a scenario well motivated by the observed Higgs boson mass, LFV is

a particularly powerful probe on LL flavor violation. In the 1− 2 sector, improvements on bounds

on µ → eγ, µ → 3e and µ − e conversion will probe new parameter space, even accounting for

comparable flavor violation in the quark sector. Similarly, again for δLL, τ → µγ is a powerful

probe. τ → eγ, on the other hand, does not represent as strong a constraint as Bd mixing over much

of the parameter space (assuming comparable flavor violation the squark and slepton matrices).

In an SU(5) GUT context, these bounds can be interpreted as probes of flavor violation in the 5̄
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scalar masses.

In the case where all superpartner masses are close to the TeV scale, we obtain similar results on

the LL flavor violation. But in this case, LFV has the opportunity to place limits on RR insertions

as well. These limits can be reinterpreted as probes of flavor violation in the 10 scalar masses in an

SU(5) GUT. Moreover, for TeV scalars, LR insertions are likely to give important contributions

to LFV observables. Significant bounds already exist on off-diagonal trilinear couplings Aij and

these will only strengthen as the experimental sensitivity to LFV improves.

In all, in cases where squark mass matrices are related to slepton mass matrices, quark FCNCs

provide a significant constraint. In some areas of parameter space, even improvement of LFV

bounds will not make them the most sensitive. However, there are large swathes of parameter

space where LFV has the chance to be a discovery tool.
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Appendix A: Wilson coefficients for ∆ = 2 processes

• xg̃ ' 1

At the SUSY scale defined as MSUSY =
√
mg̃m̃q, the squarks and gluinos are integrated out,

and the Wilson coefficients are given by [50]:

C1(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
(24xf6(x) + 66f̃6(x))δ2

LL

]
,

C2(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
204xf6(x)δ2

RL

]
,

C3(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
−36f̃6(x)δ2

RL

]
,

C4(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
(504xf6(x)− 72f̃6(x))δLLδRR − 132f̃6(x)δLRδRL

]
,

C5(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
(24xf6(x) + 120f̃6(x))δLLδRR − 180f̃6(x)δLRδRL

]
(A1)

where the δXY are mass insertions, and the loop functions f6(x) and f̃6(s) are given by
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f6(x) =
6(1 + 3x) log x+ x3 − 9x2 − 9x+ 17

6(x− 1)5
,

f̃6(x) =
6x(1 + x) log x− x3 − 9x2 + 9x+ 1

3(x− 1)5
(A2)

The C̃i are obtained by swapping L ↔ R everywhere for i = 1, 2, 3.

At the hadronic scale, the Wilson coefficients are given by

C1(µhad) = η1C1(MSUSY ),

C2(µhad) = η22C2(MSUSY ) + η23C3(MSUSY ),

C3(µhad) = η32C2(MSUSY ) + η33C3(MSUSY ),

C4(µhad) = η4C4(MSUSY ) +
1

3
(η4 − η5)C5(MSUSY ),

C5(µhad) = η5C5(MSUSY ) (A3)

where

η1 =

(
αs(mc)

αs(µhad)

)6/27(αs(mb)

αs(mc)

)6/25(αs(mt)

αs(mb)

)6/23(αs(MSUSY )

αs(mt)

)6/21

,

η22 = 0.983η2 + 0.017η3, η23 = −0.258η2 + 0.258η3,

η32 = −0.064η2 + 0.064η3, η33 = 0.017η2 + 0.983η3,

η2 = η−2.42
1 , η3 = η2.75

1 , η4 = η−4
1 , η5 = η

1/2
1 (A4)

• xg̃ � 1

In this case one integrates out the squarks at MSUSY = m̃q, then run down to the gluino mass

scale, at which point the gluino is integrated out before running down to the hadronic scale. The

Wilson coefficients at the hadronic scale have been computed to be [50]

C1(µhad) =
α2
s(MSUSY )

216m̃2
q

[
−22δ2

LLκ1

]
,

C̃1(µhad) =
α2
s(MSUSY )

216m̃2
q

[
−22δ2

RRκ1

]
,

C4(µhad) =
α2
s(MSUSY )

216m̃2
q

[
δLLδRR

8

3
(4κ4 + 5κ5) + δLRδRL(64κ4 − 20κ5)

]
,

C5(µhad) =
α2
s(MSUSY )

216m̃2
q

[δLLδRR(−40κ5) + δLRδRL(60κ5)] (A5)
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where

κ1 =

(
αs(mc)

αs(µhad)

)6/27(αs(mb)

αs(mc)

)6/25(αs(mt)

αs(mb)

)6/23(αs(mg̃)

αs(mt)

)6/21(αs(m̃q)

αs(mg̃)

)6/15

,

κ4 = κ−4
1 , κ5 = κ

1/2
1 (A6)

Note the power of
(
αs(m̃q)
αs(mg̃)

)
is 6/15, and not 6/13 as in [50]. This is due to the assumption in

[50] that the third generation of squarks would be of a similar mass as the gluino. Removing this

assumption changes the beta function coefficient.

• xg̃ � 1

Contrary to the case where the gluino is considerably lighter than the squarks, in this case the

gluino is integrated out first at mg̃, then the squarks are integrated out at m̃q before evolving down

to the hadronic scale. The Wilson coefficients at the hadronic scale are given by

C1(µhad) =
α2
s(MSUSY )

216m̃2
q

(
4ε2

3η
′
1

)
δ2
LL,

C2(µhad) =
α2
s(MSUSY )

216m̃2
q

((
2

3
(64ε2

1 − ε2
2)− 8ε2

3

)
η′22 + (2ε2

2 − 8ε2
3)η′23

)
δ2
RL,

C3(µhad) =
α2
s(MSUSY )

216m̃2
q

((
2

3
(64ε2

1 − ε2
2)− 8ε2

3

)
η′32 + (2ε2

2 − 8ε2
3)η′33

)
δ2
RL,

C4(µhad) =
α2
s(MSUSY )

216m̃2
q

(
4

3
(64ε2

1η
′
4 − ε2

2η
′
5)

)
δLLδRR,

C5(µhad) =
α2
s(MSUSY )

216m̃2
q

(
4ε2

2η
′
5

)
δLLδRR (A7)

where η′i are the same as the ηi in the xg̃ ' 1 case, and

ε1 =

(
αs(m̃q)

αs(mg̃)

)−8/5

, ε2 = ε
7/16
1 , ε3 = ε

3/8
1 (A8)

and C̃i are given by interchange of L and R for i = 1, 2, 3.
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Appendix B: Loop functions for `i → `jγ

We reproduce here the loop functions for the calculation of the branching ratio of `i → `jγ.

g1(x) =
1 + 16x+ 7x2

(1− x)4
+

2x(4 + 7x+ x2)

(1− x)5
log x (B1)

g2(x, y) = −11 + 7(x+ y)− 54xy + 11(x2y + y2x) + 7x2y2

4(1− x)3(1− y)3
(B2)

+
x(2 + 6x+ x2)

2(1− x)4(y − x)
log x+

y(2 + 6y + y2)

2(1− y)4(x− y)
log y

g3(x, y) = −40− 33(x+ y) + 11(x2 + y2) + 7(x2y + y2x)− 10xy

4(1− x)3(1− y)3
(B3)

+
2 + 6x+ x2

2(1− x)4(y − x)
log x+

2 + 6y + y2

2(1− y)4(x− y)
log y

f2n(x) =
−5x2 + 4x+ 1 + 2x(x+ 2) log x

4(1− x)4
(B4)

f2n(x, y) = f2n(x)− f2n(y) (B5)

f3n(x) =
1 + 9x− 9x2 − x3 + 6x(x+ 1) log x

3(1− x)5
(B6)

f4n(x) =
−3− 44x+ 36x2 + 12x3 − x4 − 12x(3x+ 2) log x

6(1− x)6
(B7)

Appendix C: Loop functions and overlap integrals for µ→ e conversion in nuclei

We reproduce here the loop functions used for the calculation of µ → e conversion for conve-

nience:

f(x) =
1

8(1− x)
+

x log x

8(1− x)2
, (C1)

f1(x, y) =
x3(3− 9y) + (y − 3)y2 + x2(3y − 1)(1 + 4y) + xy(y(13− 11y)− 4)

2(1− x)2(1− y)2(x− y)2
(C2)

+
x(2x3 + 2y2 + 3xy(1 + y)− x2(1 + 9y))

(1− x)3(x− y)3
log x

+
y2(y + x(7y − 5)− 3x2)

(1− y)3(x− y)3
log y,
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f2(x, y) =
x3(1− 3y) + 3(y − 3)y2 + x(y − 3)y(y + 4) + x2(y(13− 4y)− 11)

2(1− x)2(1− y)2(x− y)2
(C3)

+
x(2x3 + 2y2 + 3x2(1 + y)− xy(9 + y))

(1− x)3(y − x)3
log x

+
y2(x2 + x(7− 5y)− 3y)

(1− y)3(y − x)3
log y,

f3(x, y) = −12(x+ y + x2 + y2 + x2y + y2x− 6xy

(1− x)2(1− y)2(x− y)2
(C4)

+
24x(x2 − y)

(1− x)3(y − x)3
log x+

24y(y2 − x)

(1− y)3(x− y)3
log y,

These loop functions take into account the separation of scale between the gauginos, the µ−term

and the scalar masses. Other loop functions used for the calculation of µ→ e conversion are:

fγ,L(x) =
1− 6x+ 18x2 − 10x3 − 3x4 + 12x3 log x

36(x− 1)5
− 4(7− 18x+ 9x2 + 2x3 + (3− 9x2) log x)

36(x− 1)5

(C5)

fγ,R(x) =
1− 6x+ 18x2 − 10x3 − 3x4 + 12x3 log x

9(x− 1)5
(C6)

fZ,R(x, y) =
x(x(1 + 2x) + 2(x− 1)

√
x
√
y − (2 + x)y)

(x− 1)3(x− y)2
log x (C7)

−
y(y(1 + 2y) + 2(y − 1)

√
x
√
y − (2 + y)x)

(y − 1)3(x− y)2
log y

+
y(5 + y) + x2(1 + 5y) + x(5 + y(5y − 22))− 4

√
x
√
y(y − 1)(1− x)

2(x− 1)2(x− y)(y − 1)2

The overlap integrals which appear in Eq. (17) were calculated in [65], and are given here for

convenience for 27
13Al:

• D = 0.0357(mµ)5/2,

• V (p) = 0.0159(mµ)5/2,

• V (n) = 0.0169(mµ)5/2.

Appendix D: Subdominant operator coefficients and loop functions for `i → 3`j decays

As discussed in Section III C, the dipole operators dominate the decay `i → 3`j . Here we list

the sub-dominant photo-penguin, box-type and Z-penguin contributions.

The photo-penguin operator coefficients are closely related to those for µ → e conversion, and
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are:

ALγ−p. =
−g2

2

(4π)2m̃2
`

δ
`i`j
LL fγ,L(xW̃ ) , (D1)

ARγ−p. =
−g2

2

(4π)2m̃2
`

δ
`i`j
RR fγ,R(xB̃) , (D2)

where the LH contributions arise dominantly from Wino exchange, while the RH contributions

arise from Bino exchange. The loop functions fγ,L(R) can be found in Appendix C, and are the

same that appeared in the µ→ e conversion process.

The box-type operator coefficients arise due to neutralino/chargino and slepton exchange, in

various configurations. The Higgs-mediated diagrams which contribute to B2 and B3 are subdom-

inant in the regime of low to moderate tanβ considered here, and thus the dominant coefficients

are the BL,R
1 , given by

e2BL
1 =

g4
2

(4π)2
δ
`i`j
LL fBox,L(xW̃ ) , (D3)

e2BR
1 =

g4
2

(4π)2
δ
`i`j
RR fBox,R(xW̃ ) , (D4)

where the loop functions fBox,L(R) are given below.

The Z-penguin operator coefficients which give rise to `i → 3`j decays are the following:

FLL =
g2

2

(4π)2

1

4 sin2 θW
δ
`i`j
LL

(
−1

2
+ sin2 θW

)
×
{

cos2 βf1

(
xW̃ , xµ

)
+ sin2 βf2

(
xW̃ , xµ

)
+ sgn(µM2)

√
xW̃xµ sinβ cosβf3

(
xW̃ , xµ

)}
,

(D5)

FLR =FLL ×
sin2 θW(

−1
2 + sin2 θW

) , (D6)

FRR =
g2

1

(4π)2m̃2
`

tan2 θW δ
`i`j
RR cos 2βfZ,R(xB̃, xµ) , (D7)

FRL =FRR ×
(
−1

2 + sin2 θW
)

sin2 θW
, (D8)

where the loop functions f1,2,3, fZ,R are the same loop functions as in µ → e conversion, and are

found in Appendix C.

Loop functions which appear in the calculation for `i → 3`j are:

fBox,L(x) =
5 + (4− 9x)x+ 2x(6 + x) log x

8(x− 1)3
(D9)

fBox,R(x) =
1 + (4− 5x)x+ 2x(2 + x) log x

8(x− 1)3
(D10)
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