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Abstract

We extend the standard model to a scalar-assisted vector-like fermion model to realize electroweak

baryogenesis. The extended Cabbibo-Kobayashi-Maskawa matrix, due to the mixing among the vector-

like quark and the standard model quarks, provides additional sources of the CP violation. Together

with the enhancement from large vector-like quark mass, a large enough baryon-to-photon ratio could

be obtained. The strongly first-order phase transition could be realized via the potential barrier which

separate the broken minimum and the symmetric minimum in the scalar potential. We investigate in

detail the one-loop temperature-dependent effective potential, and perform a random parameter scan to

study the allowed parameter region that satisfies the strongly first order phase transition criteria vc ≥ Tc.
Several distinct patterns of phase transition are classified and discussed. Among these patterns, large

trilinear mass term between the Higgs boson and the scalar is preferred, for it controls the width of the

potential barrier. Our results indicate large quartic scalar couplings, and moderate mixing angle between

the Higgs boson and the new scalar. This parameter region could be further explored at the Run 2 LHC.
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1 Introduction

The baryonic matter that remains after the baryon-antibaryon annihilation, makes up around 5% of the

total energy density of the universe. It is puzzling that the universe does not have equal amounts of matter

and antimatter. We can characterize the asymmetry between matter and antimatter in terms of the baryon-

to-photon ratio

η ≡ nB
nγ

, (1.1)

where nB = nb − nb̄ is the difference between the number density of baryons and antibaryons, and nγ is

the number density of photon. The nγ is introduced to prevent the parameters η from diluting during

the expansion of the universe after nucleosynthesis. The baryonic matter desity nB at present time has

been consistently measured by the big bang nucleosynthesis and the fluctuations of the cosmic microwave

background. The Planck result for the cosmological density parameter [1]

ΩBh
2 = 0.02226± 0.00016, (1.2)

translates to the baryon-to-photon ratio

η = (6.05± 0.07)× 10−10. (1.3)

Explaining the observed baryon asymmetry has been one of the greatest challenges of particle physics

and cosmology. As the entropy production during inflation could greatly dilute and thus wash out any

existing baryon asymmetry, it is reasonable to assume a zero baryon number density after the inflation.

Later, the asymmetry is generated dynamically through the so-called ”baryogenesis”. It has been suggested

by Sakharov [2] long time ago that the general baryogenesis has three necessary conditions: baryon number

violation, sufficient C and CP violation, and departure from thermal equilibrium. Hence, we look forward to

a mechanism in which these three conditions are satisfied and could provide the observed baryon asymmetry.

Electroweak baryogenesis [3–5] (EWBG) offers a theoretically attractive and experimentally testable

mechanism to realize baryogenesis. The great attraction of this mechanism is that the baryogenesis took

place at or near the electroweak scale, suggesting that it might be probed in the near future by experiments

at the accelerators. The EWBG proceeds as follows (see [6–11] for reviews). At temperatures far above

the electroweak scale, the electroweak symmetry is manifest, which implied a high sphaleron rate that

preserves baryon symmetry in thermal equilibrium. As the universe cools down to near the electroweak

phase transition scale, bubbles of the symmetry-broken vacuum began to emerge and grow. CP violating

processes involving the electroweak sector were triggered at the expanding wall of the bubbles, leaving baryons

inside the bubbles and antibaryons outside. Through the rapid sphaleron transitions in the unbroken phase,

the excess of antibaryons are washed out. Meanwhile, if the sphaleron rate in the broken phase could be

suppressed enough, the excess of baryons inside the bubbles could survive. We can easily realize a Boltzmann

suppression of the sphaleron rate, because the sphaleron has an excitation energy Esph that is related to the

Higgs vacuum expectation value (vev) v. It has been shown [12] that the suppression is strong enough when

Esph/Tc ≥ 45, (1.4)

which serves as the condition for a strong first-order phase transition (SFOPT) in the context of electroweak

baryogenesis.
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The standard model (SM) contains all the necessary ingredients to realize electroweak baryogenesis:

baryon number is violated by sphaleron processes; CP violation comes from the Cabbibo-Kobayashi-Maskawa

(CKM) matrix; departure from equilibrium is realized by the bubble nucleation and expansion during the

first-order electroweak phase transition (EWPT). However, given the observed Higgs boson mass MH = 125

GeV, the EWPT is not strong enough to suppress the sphaleron rate inside the bubbles [13]. Also, the CP

violation in the CKM matrix is not large enough to generate the expected asymmetry. Therefore a successful

electroweak baryogenesis needs new physics beyond the Standard Model. The new physics should provide

new sources of CP violation that can be manifested by the advancing bubble walls, and also provide strong

enough first order EWPT. Both conditions require the existence of new physics at around the electroweak

scale that directly couples to the SM Higgs sector. A simple and economic way to realize the strong first order

EWPT is to add a new scalar which couples to the Higgs boson, such as the singlet extended standard model,

etc [14–22]. Moreover, if the scalar is a real singlet [18, 22], the cubic terms could exist in the potential at

tree-level, and therefore the phase transition gets stronger without the need of the thermally induced barrier.

We consider the electroweak baryogenesis in a scalar-assisted vectorlike fermion model [23], in which a

singlet scalar and vectorlike fermions are added to the SM particle content. Originally, the model is motivated

by the possible instability of the vacuum structure in the vector-like fermion model. The singlet scalar is

added to the scalar sector and couples to the vector-like fermion. This model solves the vacuum stability

problem in vectorlike fermion model and possible perturbativity issues in singlet scalar extended standard

model. Recently this model attracts lots of attentions because it could naturally explain the diphoton excess

observed at both ATLAS and CMS [24, 25]. The diphoton signature of this model and its extensions has

been considered in Ref. [26]. Due to constraints from other WW and ZZ channels, a 750 GeV scalar singlet

could accommodate the observed diphoton excess more readily than the SU(2)L × U(1)Y scalar multiplets.

The diphoton signature is produced via the gluon fusion and subsequent diphoton decay with vector-like

fermion running in the loop.

In this work, we consider that this model realize the ectroweak baryogenesis. The vector-like fermion

mixes with the SM quarks, extending the 3 × 3 CKM matrix to a 3 × 4 matrix, which provides additional

sources of CP violation. Due to the coupling between Higgs and the new scalar, the phase transition happens

in an extended scalar space, which leads to more possibilities on phase transition. We will discuss the scalar

potential in detail, perform numerial calculations, and investigate how the extended scalar sector provides us

the SFOPT. Furthermore, we classify the phase transition patterns and explore the parameter preferences

in each pattern using the shape of the derivatives of the scalar potential. Finally, we explore the discovery

potential of the parameter space favored by SFOPT at the LHC.

The organization of presentation is as follows. We begin with the description of the new physics model.

In Sec. 3, we discuss the CP violation in this model. In Sec. 4, we present the effective potential and the

shape of the scalar potential. In Sec. 5, we discuss the phase transition pattern and explain our numerical

results. In sec. 6, the LHC discovery potential of the favored parameter region is discussed. We then make

our conclusion.
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2 Scalar-assisted Vectorlike Fermion Model

In our setup, we consider an extension of the SM in which a vector-like fermion U and a real singlet scalar s

are added to the particle content [23]. The vector-like fermion U transforms as (3, 1) 2
3

under the SM gauge

symmetry SU(3)C×SU(2)L×U(1)Y . Due to the same quantum number, its right-handed component mixes

with the SM right-handed up-type quarks. As is known [23], the vector-like fermion model encounters the

vacuum instability problem. To have a stabilized scalar potential, a singlet scalar s is introduced. The scalar

mixes with the SM Higgs boson and couples to the vector-like fermion. Here, we assume no Z2 symmetry for

the new scalar, so that it has a non-zero vev in general. We refer this model as the scalar-assisted vector-like

fermion model. Let us discuss the quark sector and the scalar sector in detail.

In the quark sector, a SM family contains a doublet QL = (uL, dL)T ∼ (3, 2)1/6 and two singlets uR ∼
(3, 1)2/3 and dR ∼ (3, 1)−1/3 that couple to each other via the Higgs doublet Φ ∼ (1, 2)1/2 . Due to the

flavor experiment constraints, we only allow the new vector-like fermion to have significant mixing with the

third generation quarks, so it’s also called a top partner. Vector-like top partner is well motivated in the

little Higgs [27], composite Higgs [28], and extra dimension models [29], etc. Let us first write down the

Lagrangian for one flavor mixing between the new fermion and the third generation quarks, and then extend

to the three flavor mixing. We could write down the following new Yukawa couplings:

LYuk = ytQL3Φ̃uR3 − y′QL3Φ̃UR − yssULUR −MULUR + h.c., (2.1)

where QL3 and uR3 are the left-handed quark doublet and the right-handed up-type quark in the third

generation. The vacuum expectation values of the two scalars are denoted as

v ≡ 〈φ〉, u ≡ 〈s〉. (2.2)

The mass term becomes

Lmass = −
(
uL3 UL

)(vyt vy′

0 M + ysu

)(
uR

UR

)
+ h.c.. (2.3)

To get the mass eigenstates (t, T ), we diagonalize the fermion mass matrix(
vyt vy′

0 M + ysu

)
=

(
cos θL sin θL

− sin θL cos θL

)(
mt 0

0 mT

)(
cos θR − sin θR

sin θR cos θR

)
. (2.4)

Note that the two mixing angles are not independent parameters,

tan θR =
mt

mT
tan θL. (2.5)

Despite the tight constraints on the flavor mixing between the new vector-like fermion and the first two

generations, these mixings are still essential for the new CP violation. If we consider the three families of

the quarks in the SM, the Yukawa couplings yt and y′ in Eq. 2.1 becomes matrix Y uij and vector Y ′i in the

flavor space. With explicit flavor indices, the Yukawa Lagrangian becomes

LYuk = −Y dijQLiΦ dRj − Y uijQLiΦ̃uRj

− Y ′iQLiΦ̃UR − yssULUR −MULUR + h.c. (2.6)
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The mass term of the fermion sector is

Lmass = −
(
uLi UL

)(vY uij vY ′i

0 M + ysu

)(
ujR

UR

)
− vY dijdLid

j
R + h.c.. (2.7)

Hereafter we identify

Mu
IJ =

(
vY uij vY ′i

0 M + ysu

)
, Md

ij = vY dij , (2.8)

where I and J run over 1 to 4. Using bidiagonalisation, the mass matrix transforms as

U†LM
uUR = Diag(mu,mc,mt,mT ), (2.9)

D†LM
dDR = Diag(md,ms,mb), (2.10)

through rotations of the quark flavor basis

uIL = UIJuJL, diL = Dijd
j
L, (2.11)

where UIJ and Dij are 4× 4 unitary matrix, and 3× 3 unitary matrix, respectively.

The new CKM matrix V ′CKM is obtained from the charged current. In weak eigenstates

LCC =
g2√

2
uLiγ

µdiLWµ + h.c.. (2.12)

Rotating into the mass eigenstates, we get

LCC =
g2√

2
uLIγ

µ
(
U†L
)I
i
(DL)

i
j d

j
LWµ + h.c.. (2.13)

V ′CKM is defined as a 4× 3 matrix

V ′CKM =
(
U†L
)I
i
(DL)

i
j ≡ U

†ED, (2.14)

where the explicit form of the new CKM matrix are expressed as

E =


1 0 0

0 1 0

0 0 1

0 0 0

 , V ′CKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

VTd VTs VTb

 . (2.15)

The unitarity of the transformation matrices U and D implies

V ′†CKMV
′
CKM = D†E†UU†ED = 13×3, (2.16)

which means that the 3 columns of V ′CKM are orthonormal to each other. For future use, we can complement

one column to make up a unitary 4× 4 matrix expressed as

V̄CKM =


Vud Vus Vub Vu4

Vcd Vcs Vcb Vc4

Vtd Vts Vtb Vt4

VTd VTs VTb VT4

 . (2.17)

5



In the scalar sector, the new scalar couples to the SM Higgs boson. The general scalar potential is

Vtree = −1

2
µ2
φφ

2 +
1

4
λφφ

4 − 1

2
µ2
ss

2 + µ3
1s+

1

3
µ3s

3 +
1

4
λss

4 +
1

2
µsφφ

2s+
1

4
λsφφ

2s2.

(2.18)

The parameter µ1 can be eliminated by a redefinition of the scalar field s→ s+ σ.

The minimization conditions at the vacuum (v, u) are used to eliminate the quadratic coefficients

µ2
φ = λφv

2 + µsφu+
1

2
λsφu

2, (2.19)

µ2
s = λsu

2 + µ3u+
1

2
λsφv

2 +
µsφv

2

2u
, (2.20)

The second derivatives of the tree-level potential describe the mass squared matrix of φ and s:

M2
scalar ≡

(
m2
φφ m2

φs

m2
sφ m2

ss

)
=

(
2λφv

2 µsφv + λsφuv

µsφv + λsφuv 2λsu
2 + µ3u− µsφv

2

2u

)
. (2.21)

Diagonalizing the above matrix, we obtain the mass squared eigenvalues

m2
h,S =

1

2

(
m2
φφ +m2

ss

)
∓ 1

2

√(
m2
φφ −m2

ss

)2

+ 4m4
sφ, (2.22)

and the eigenvectors (
h

S

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
φ

s

)
, (2.23)

where the mixing angle ϕ is given by

tan 2ϕ =
2m2

sφ

m2
ss −m2

φφ

. (2.24)

3 Sources of CP Violation

In the SM, the CP violation is characterized by the quark-rephasing invariant quantity, the Jarlskog invari-

ant [30]

JCP = (m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)A, (3.1)

where

A = ImVudVcbV
∗
ubV

∗
cd (3.2)

is twice the area of the unitarity triangle of the CKM matrix. As the SM CKM matrix only has 1 independent

CP phase, the three unitarity conditions give the same area, which is the only CP violating source. This

quantity can also be written as [31]

JCP = − i
2

det[Hu, Hd], (3.3)

where Hu = MuM
†
u and Hd = MdM

†
d are the building blocks of rephasing invariants. In the picture of

electroweak baryogenesis, this quantity provides a dimensionless CP violation strength JCP /T
12
c ∼ 10−20,

which is too small compared to the typical strength of Baryogenesis η ∼ 10−10. We observe that both the

fermion masses and the unitarity triangle A suppress the CP violation. Thus we expect that adding heavy
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quarks could enhance the CP violating effect via the large fermion mass. In general, this heavy quark can

be chiral or vector-like. A lot of efforts were performed for both the model of 4th generation quarks [32] and

vector-like bottom quark [33,34], among which was the study of the enhancement of CP violation. However,

the simplest 4th generation model was ruled out by the experiment data [35, 36]. On the other hand, the

vector-like quark is still alive and provides enhancement of CP violation in a similar way.

Let us discuss the CP violation strength in our model. First, let’s count how many independent CP

phases are there in the model. The unitary condition Eq. 2.16 sets 9 constraints to the CKM elements.

There are also 6 rephasing redundencies, coming from the 7 involved quark fields modular the total baryon

phase. Finally, the number of independent matrix elements in the CKM matrix is

12× 2− 9− 6 = 9, (3.4)

among which 6 degrees of freedom attribute to real rotations, and the other 3 are independent CP phases.

The 3 phases can be parameterized as the following 3 rephrasing invariants

B1 = ImVcbV
∗
TbVT4V

∗
c4, (3.5)

B2 = ImVtbV
∗
TbVT4V

∗
t4, (3.6)

B3 = ImVcbV
∗
tbVt4V

∗
c4, (3.7)

all of which represents the area of a subtriangle of the unitarity quadrangle formed by the complex numbers

V ∗TbVT4, V ∗tbVt4, V ∗cbVc4, V ∗ubVu4. In the chiral limit where u and c are supposed to be massless, mu = mc = 0,

the B’s that involve c and u are not observable, hence we only care about the quantity B2.

Similar to the SM case, those unitarity areas are not the only quantities which appear in the CP violation

processes. In the case that we are interested in, where CP violation occurs simply via the evolution described

by the Dirac equation [9], the mass matrices also play the game. Therefore, dimensionful quantities like

Eq. 3.3 should be used to characterize the CP violation strength. In the gauge basis, the mass terms are

− Lmass = ūLIMu
IJuRJ + d̄LiMd

ijdRj . (3.8)

We decompose the up-type mass matrix as

Mu =

(
Mu

mu

)
, (3.9)

where Mu and mu are submatrices with dimension 3 × 4 and 1 × 4, respectively. Then we can define

Hu = MuM
†
u and Hd = MdM

†
d as before. We can also define another building block of rephasing invariants

hu = Mumu†.

It was investigated that in the vector-like bottom partner model [33], the CP violation is characterized

by 7 Jarlskog-like invariants (J-invariants). The top partner model should be similar. In the simple case of

chiral limit mu = md = ms = mc = 0, only one of them is independent:

J = Im trHdHuhuh
†
u

= m2
bm

2
Tm

2
t (m

2
T −m2

t )B2,
(3.10)

In this work, we only estimate the CP asymmetry using the Jarlskog-like invariants, and leave more

detailed study via transport equation for future work. To estimate the strength of CP violation in our
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model, we need to look at the experimental constraints on the heavy fermion mass and the extended CKM

matrix elements. Current experiments on flavor physics, such as K and B decay and B − B̄ mixing were

analyzed in the literature [37, 38] by performing a global fitting on the 4 × 3 CKM matrix elements using

68 flavor physics observables [38]. The analysis includes the direct measurements of the CKM elements,

CP violation in KL → ππ, branching fraction of the decay K+ → π+νν̄, branching fraction of the decay

KL → µ+µ−, Z → bb̄ decay, B0
q − B̄0

q mixing (q = d, s), indirect CP violation in B0
d → J/ψKS and

B0
s → J/ψφ, CKM angle γ, branching ratio of B → Xs`

+`− (` = e, µ), branching ratio of B → Xsγ,

branching ratio of B → Kµ+µ−, constraints from B → K∗µ+µ−, branching ratio of B+ → π+µ+µ−,

branching ratio of Bq → µ+µ− (q = s, d), branching ratio of B → τ ν̄, like-sign dimuon charge asymmetry

AbSL, and finally the oblique parameters S and T . The results of the global fitting are shown in Table 5

and 6 of Ref. [38] for mT = 800 GeV and 1200 GeV. The results suggest that B2 could be as large as 10−6

for a TeV top partner 1. More importantly, the enhancement from the heavy top quark mass implies a

J-invariant of order J . 1011GeV8. Assuming that the typical energy scale during the baryogenesis is the

critical temperature of EW phase transition Tc, the dimensionless CP violation strength formulated as J/T 8
c

needs to be greater than the observed baryon number asymmetry.

J

T 8
c

≥ η ∼ 10−10, (3.11)

which sets an upper bound for the critical temperature Tc . 420TeV.

Given the possible large CP violation effects, we also need to check the current constraints from the

non-observation of the electric dipole moment (EDM) of the electron and neutron. The electroweak sector

of the Standard Model gives an EDM for the neutron of size |dn| ∼ 10−32 − 10−31ecm. The model with

an extended quark sector typically gives rise to a quark EDM at the two loop level, thus contributes to the

neutron EDM. The current experimental limit on the EDM of the neutron is |dn| < 2.9 × 10−26ecm (90%

CL) [39]. It is shown in the literature [40] that the EDM in the model with an extra down-type singlet quark

and found that the induced neutron EDM is of order 10−29ecm. Ref. [40] also comments that in the model

with an extra up-type singlet quark, the down-type quark EDM’s vanish identically at two loop order. Since

all down-type quarks are light in this case, the leading terms for the ue EDM is proportional to muem
2
di

.

The contributions from the vector-like up-type quark to the neutron EDM are thus even smaller compared

to the extra down-type quark.

4 The Scalar Potential

4.1 A Brief Review of Effective Scalar Potential

To study the phase transition, we consider the potential of the two scalar fields at finite temperature (see

Ref. [8] for review). At the one-loop order, the zero-temperature effective potential in the Landau gauge 2

1 Using the results in table 6 of Ref. [38] where the moduli of the V †V elements are estimated by mixing and decay of B

and K mesons, the Bi quantities can be estimated by Bi . |V †V | × |V †V |. Taking imaginary parts might introduce one or two

orders of magnitude smaller, but would not ruin the estimation.
2While the effective potential in the Landau gauge is not gauge invariant, the potential at its minimum is well-defined. For

concerns about the gauge invariance and a treatment of the gauge invariant effective potential, see Ref. [41].
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has the form

VCW(φ, s) = Vtree(φ, s) +
∑
i

ni
64π2

m4
i (φ, s)

(
log

m2
i (φ, s)

Q2
− ci

)
, (4.1)

where ni is the number of degrees of freedom of the particle i running in the loop, with negative sign

for fermions, and m2
i (φ, s) is the corresponding field-dependent squared mass, defined in Appendix A.3.

Here ci are constants that depend on the renormalization scheme, and Q is the renormalization scale. For

convenience, counter-terms VCT are chosen to preserve the input parameters, like the vacuum expectation

values (vev) and the masses, from loop; corrections:

∂(VCW + VCT)

∂φi

∣∣∣
φi=〈φi〉

= 0, (4.2)

∂2(VCW + VCT)

∂φi∂φj

∣∣∣
φi=〈φi〉

= m2
ij , (4.3)

where 〈φi〉 = v, u and m2
ij are tree level vev and mass squared matrix defined in Sec. 2. This naive treatment

fails when we consider the Goldstone contribution. The Goldstone boson contribution to the scalar masses

in Eq. 4.3 is infrared log-divergent due to its zero pole mass. This indicates that renormalizing the scalar

potential at zero external momenta, as is done in the effective potential calculation, is not a well-defined

procedure when Goldstone bosons are involved. An alternative on-shell renormalization procedure was

proposed [15, 45, 46] to cure the problem, as described in Appendix A.1 and A.2 in detail. We extend the

results of the Ref. [46] to the effective potential with mixture of the Higgs boson and new scalar. Here we

list the final expression of the zero temperature one-loop effective potential:

V on−shell
CW (φ, s) = Vtree(φ, s) +

∑
i 6=G

ni
64π2

[
m4
i (φ, s)

(
log

m2
i (φ, s)

m2
i (v, u)

− 2

3

)
+ 2m2

i (v, u)m2
i (φ, s)

]

+
3

64π2
m4
G(φ, s) ln

m2
G(v, u)

m2
H

. (4.4)

The one-loop thermal corrections to the effective potential at finite temperature T is

Vthermal(φ, s, T ) =
∑
i

niT
4

2π2
JB,F

(
m2
i (φ, s)

T 2

)
, (4.5)

where

JB,F(y) =

∫ ∞
0

dx x2 log
[
1∓ e−

√
x2+y

]
. (4.6)

with the sign − for bosons and + for fermions.

The finite-temperature potential needs to be corrected, due to the infrared divergences, generated by

bosonic long-range fluctuations called Matsubara zero modes. This can be solved schematically by resumming

over all diagrams with bubbles attached to the big loop [42–44], which are called the ”ring diagrams”. This

leads to a shift of the bosonic field-dependent masses m2
i (φ, s) to the thermal field-dependent masses

m2
i (φ, s, T ) ≡ m2

i (φ, s) + Πi(T ), (4.7)

where the thermal shifts Πi are defined in Appendix A.3. After resummation, the ring-diagram contribution

to the effective potential reads

Vring = − T

12π

∑
i=B

ni

([
m2
i (φ, s, T )

]3/2 − [m2
i (φ, s)

]3/2)
. (4.8)
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In the SM, this cubic term from the Matsubara zero mode is the only source to induce a thermal barrier

between a symmetric minimum and a symmetry-broken minimum in the effective potential. It was because

that all the other terms in SM Higgs sector are quadratic or quartic, which can’t create such degenerate

minima in one-dimensional scalar space. However, in our model, as shown later, the new dimension in the

scalar space greatly enriches the possibility, and hence the ring diagram contribution is much less important.

The total effective potential at finite temperature is the sum of the above terms

Veff(φ, s, T ) = V on−shell
CW (φ, s) + Vthermal(φ, s, T ) + Vring(φ, s, T ). (4.9)

For part of the field space, the field-dependent masses of the scalars and the Goldstone bosons can be

negative, and the non-convexity of the potential would induce an imaginary part that indicates a vacuum

decay rate per unit volume. However, the real part can still be interpreted as the expectation value of the

energy density. Therefore we only take the real part of the potential to do the numerical analysis.

4.2 Approximate Analysis of the Scalar Potential

In the next section, we perform a numerical study on the full effective potential based on eq. (4.9), and scan

the parameter space for strong first order phase transition. But to understand the numerical results, we need

some approximate methods to analyse the complicated potential function. In the high temperature limit,

the effective potential can be simplified as

Veff(φ, s, T ) ' Vtree +
T

12π

∑
i=B

ni
[
m2
i (φ, s, T )

]3/2
+
∑
i=B,F

|ni|
24(1 + δiF)

m2
i (φ, s)T

2

−
∑
i=B,F

ni
64π2

(
m4
i (φ, s) ln

m2
i (v, u)

a′iT
2
− 2m2

i (v, u)m2
i (φ, s)

)
+ ρ(T ), (4.10)

where a′B = 16π2 exp(−2γE) for bosons and a′F = π2 exp(−2γE) for fermions. ρ(T ) = π2

90nρT
4 is the Stefan-

Boltzmann contributions with nρ = nB + 7
8nF , which is field-independent and can be drop out for our

purpose. If we series expand the second term in m2
i (φ, s)/T

2, the remaining relevant term is another m2T 2,

which, combined with the third term here, gives the main temperature dependence of the full potential.

The log terms can be absorbed into the running parameters that vary little within the energy scope of our

discussion. Now the effective potential is simplified as

Veff(φ, s, T ) ' Ṽtree(T ) +
∑
i=B

nic
1/2
i

8π
m2
i (φ, s)T

2 +
∑
i=B,F

|ni|
24(1 + δiF)

m2
i (φ, s)T

2 + Vct + ρ(T ), (4.11)

where Ṽtree(T ) is the tree-level potential with all its couplings running with T , and Vct =
∑
i
ni

32π2m
2
i (v, u)m2

i (φ, s)

are the counterterms in On-Shell scheme. Taking the approximation c
1/2
i /8π ∼ 1/24 for all bosons, we obtain

the temperature-dependent terms

Veff(φ, s, T ) ' Ṽtree(T ) + T 2
[
Λss+ ηφφ

2 + ηss
2
]

+ Vct, (4.12)

where the coefficients are

Λs =
1

12
[4µsφ + 2µ3 + 6ysM ] , (4.13)

ηφ =
1

12

[
(6λφ + λsφ/2) +

1

4
(3g2 + g

′2) +
2

3
(y2
t + y′2)

]
, (4.14)
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ηs =
1

12

[
(3λs + 2λsφ)− 3y2

s

]
. (4.15)

Note that the fermion Yukawa couplings are also contributed to the configuration of the scalar potential.

This simplification results in a polynomial form of the potential, which is convenient for our analysis. There

are sometimes significant errors for this simplification, but we will show that the qualitative analyses based

on this polynomial potential explain many key features of the numerical results we obtained.

We will analyse the scalar potential at the moment of the phase transition. More specifically, we are only

interested in the stable vacuum, i.e. the global minima of the potential, which is degenerate at the critical

temperature of phase transition. They are defined as (0, us) and (vc, ub), representing the symmetric vauum

and symmetry breaking vacuum respectively. In the following, we introduce two kinds of method to estimate

the properties of these vacuum configurations.

4.2.1 Barrier Width Estimation

We used to express the potential in the cartetian coordinates of the field space (φ, s). For the analysis of the

phase transition, it is also convenient to utilize the polar coordinates (ρ, α) [18,22,47]

ρ =
√
φ2 + (s− u)2, cosα =

φ√
φ2 + (s− u)2

, (4.16)

from some shifted center (0, u). When u = us and

cosα0 =
vc√

v2
c + (ub − us)2 (4.17)

The potential has degenerate minima along the ρ axis, ρ = 0 being the symmetric one, and ρ = ρ̄ being the

symmetry breaking one. Hereafter we will use the notation cα ≡ cosα0 and sα ≡ sinα0 for short. Similar

to the SM, we can employ the following form of parameterization of potential

Veff(ρ, T ) ' 1

2
D(T 2 − T 2

0 )ρ2 + Eρ3 +
λ̄

4
ρ4, (4.18)

where the coefficients are constant for a simplified polinomial potential. The coefficients D, E and λ̄ are

functions of the model parameters and us, sα, cα. We impose the following condition

Veff(ρ, Tc) = λ̄
4 ρ

2(ρ− ρ̄)2, (4.19)

and obtain the non-zero vacuum value

ρ̄ = −2E
λ̄
. (4.20)

If we neglect the zero-temperature loop corrections, they can be expressed as

E = sα
[
(µsφ + λsφus)c

2
α/2 + (µ3/3 + λsus)s

2
α

]
, (4.21)

λ̄ = λφc
4
α + λss

4
α + λsφc

2
αs

2
α. (4.22)

The ρ̄ determines the width of the barrier in the scalar potential, which is what we finally concern. But this

analysis does not give estimations of us, sα, cα, which brings us to the next tool.
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4.2.2 Stationary Point Search

Although the shape of scalar potential has been studied in Ref. [19], we provide a detailed and systematical

recipe to describe the shape of the 2-dim potential. We summarize our results in Table 1, which could be

used to understand the numerical studies of the phase transition in the next section.

First, let’s write the potential 4.12 as the following

Veff(φ, s, T ) =
λ̃φφ

4

4
+

1

2

(
λ̃sφ
2
s2 + µ̃sφs− µ̃2

φ

)
φ2 (4.23)

+
λ̃s
4
s4 +

µ̃3

3
s3 − µ̃2

s

2
s2 + χ̃3s (4.24)

where all the tilded couplings are supposed to depend on temperature, logarithmically or quadratically. Since

the former are negligible within the energy scope that we are interested in, we only need to focus on the

quadratic temperature dependencies

χ̃3 = ΛsT
2, (4.25)

µ̃2
φ = µ2

φ − ηφT 2, (4.26)

µ̃2
s = µ2

s − ηsT 2, (4.27)

while the other couplings are mainly their zero temperature values. We learn that a temperature around

100 ∼ 150 GeV is usually smaller than the other massive parameters, therefore even the quadratic temper-

ature dependencies are still insignificant at this range of temperature. As a result, the coefficients roughly

satisfy

|χ̃| � |µ̃s| ∼ |µs|. (4.28)

Neglecting the linear term further implies a useful corollary, that there is always a stationary point sitting

around the original (0, 0), even until the temperature reaches 100 ∼ 150 GeV, the typical values of the critical

temperature in our model. Only at higher temperature when χ̃ becomes important, will this stationary point

gradually move away. This corollary is verified by the parameter scan, and is essential for the explanation

of some of the transition patterns.

Now let’s do a thorough search of the possible stationary points in the potential. First we notice that

the condition for extrema consist of the following two curves:

∂Veff(φ, s, T )

∂φ
= 0,

∂Veff(φ, s, T )

∂s
= 0, (4.29)

and the vacuum must be at one of the intersections between the two curves. Let us call them the φ curve

and the s curve respectively. We will describe the shape of these two curves, and try to find some rules that

the possible degenerate vacuum points should follow.

The φ curve consists of a trivial line φ = 0 and a quadratic curve

λ̃φφ
2 +

1

2
λ̃sφ

(
s+

µ̃sφ

λ̃sφ

)2

= µ̃2
φ +

µ̃2
sφ

2λ̃sφ
. (4.30)

Obviously, symmetry-broken minimum, if there is any, must be on the quadratic curve.
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For the case of λ̃sφ > 0, the quadratic curve is an ellipse, centered at point (0, s∗ ≡ −µ̃sφ/λ̃sφ), with

size decreasing as −T 2 due to the µ̃2
φ term. At some high temperature, the ellipse shrinks to zero, and no

non-zero vacuum is allowed, hence the symmetry must be restored. If λ̃sφ < 0, the quadratic curve is a

hyperbola also centered at (0, s∗). At high temperature, the curve will move away to infinity. As long as the

potential is still bounded from below, the minimum cannot be on the hyperbola, so the symmetry must be

restored.

The equation for s curve is a cubic polynomial of s

λ̃ss
3 + µ̃3s

2 −
(
µ̃2
s −

1

2
λ̃sφφ

2

)
s+

(
χ̃3 +

µ̃sφ
2
φ2

)
= 0 (4.31)

The discriminant of this polynomial turns out to be a polynomial of the φ field:

∆(φ) = aφ6 + bφ4 + cφ2 + d (4.32)

where the coefficients are

a = −1

2
λ̃sλ̃

3
sφ,

b =
1

4
λ̃2
sφµ̃

2
3 + 3λ̃sλ̃

2
sφµ̃

2
s +

9

2
λ̃sλ̃sφµ̃3µ̃sφ −

27

4
λ̃2
sµ̃

2
sφ,

c = −λ̃sφµ̃2
3µ̃

2
s − 6λ̃sλ̃sφµ̃

4
s − 2µ̃3

3µ̃sφ − 9λ̃sµ̃3µ̃
2
sµ̃sφ

d = (µ̃2
3 + 4λ̃sµ̃

2
s)µ̃

4
s.

(4.33)

The insignificant χ̃ has been taken to be zero as an approximation. This polynomial shows the number of

points on the s curve at a specific φ value: if the polynomial is positive, then there are three points at this

φ; if the polynomial vanishes, two of the points are degenerate; if the polynomial is negative, there is only

one point at this φ. Therefore, the variation of the sign of this discriminant with respect to φ could give the

key features of the shape of the s curve. A systematic classification is provided in Table 1.

In the table, the middle column shows how the sign of ∆(φ) varies with φ (red indicates a possitive

discriminant while blue indicates a negative one). The typical shape of the corresponding s curve is given

in the last column. The first colume shows the condition for these types – when the ∆′ = b2c2 − 4ac3 −
27a2d2 + 18abcd is positive, all the signs of a, b, c, d should be specified; when ∆′ < 0, only a, d need to be

specified.

The upper half of the types (A,B,C,D) have positive coefficient a, and 3 asymptotic values at large φ. For

the lower half (E,F,G,H), where a < 0, there is only one asymptotic value at large φ. Also note that the left

half of the types (A,C,E,G) have positive coefficient d, which leads to multiple branches (a branch is defined

by a topologically connected part of the curve) in the small φ region. The right half, however, have negative

d and only one such branch. We name the branches present at small φ as ”relevant branches”. Usually, the

”irrelevant branches”, which only appear in large φ region like in type (B,C,D), are not important in our

analysis. This reduces the set of types by identification B ∼ H, C ∼ E and D ∼ F .

From the point of view of Lagrangian parameters, we find that the most important coefficients a and

d are controlled by λ̃sφ and µ̃2
3 + 4λ̃sµ̃

2
s. The latter changes with temperature mainly through Eq. 4.25.

Moreover, the asymptotic value of the s curve at large φ (the middle one when a > 0) coincides with the

center of φ curve s∗.

In the next section, we will show how the analysis of the φ curve and s curve could help classify the phase

transition patterns.
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Table 1: The s curve shows the first derivative of the scalar potential along the s direction ∂V
∂s = 0. ∆′ is

defined to be the discriminant of ∆(φ) as a cubic polynomial of φ2. It is positive unless specified.
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5 Strong First Order Phase Transition

Once we obtain the full effective potential, we could investigate how the vacuum state evolves with temper-

ature. At each temperature, we find the true vacuum by looking for the global minimum of the potential in

the (φ, s) field space. It is known that at zero temperature, the global minimum of the scalar potential is at

(v0, u0), with v0 = 246 GeV and u0 as an input parameter. After we turn on and increase the temperature,

we track the position of the global minimum, seeking the sign of a phase transition. In the context of effective

potential, the fields are defined to be the first derivative of the free energy with respect to the corresponding

particle source, and thus acts like an order parameter of the phase transition. If the transition of the field

values between the two phases is continuous, it is a second order phase transition. Otherwise, if there is

a discontinuous variation of the fields, it is a first order phase transition. The first order phase transition

proceeds by bubble nucleation of the broken phase at around the critical temperature. The bubbles grow

and coalesce, and finally turn the whole universe into the broken phase.

As discussed in the introduction, to have successful baryogenesis, it is essential to have a strong enough

first order phase transition, so that Esph(Tc)/Tc ≥ 45 inside the bubbles. It has been shown in literature [17]

that for a singlet extended model the sphaleron energy is approximately proportional to the φ vev: Esph(Tc) ∼
vc. Moreoever, the bubble expansion and wall velocity in the singlet extended model have been discussed in

Ref. [48]. In our model there is a similar scalar sector. Thus the discussions about the bubble expansion and

sphaleron process in literatures are also applied to our model. Therefore, similar to singlet extended model,

we add the following criterion to our scan to pick out the events of successful baryogenesis:

ξ =
vc
Tc
≥ 1. (5.1)

We also perform a consistent check by calculating the sphaleron profiles and the sphaleron energy at the

critical temperature numerically.

To determine the parameter region in which the strong first order phase transition could happen, we

perform a random scan over the parameter space. The procedure is the following. We have quite a few

independent parameters

λs, λsφ, µ3, µsφ, M, y′, ys, (5.2)

in addition to the singlet vev u0 in the zero temperature. The parameters λφ and yt are determined by

the Higgs mass and the top quark mass that are already known. We choose the input parameters from the

ranges 3

|λsφ| ≤ 1.5, 0 < λs ≤ 2, |y′| ≤ 1.5, |ys| ≤ 1.5, (5.3)

|u0| ≤ 600, |µ3| ≤ 800, |µsφ| ≤ 1000, 0 ≤M ≤ 1200. (5.4)

Given the input parameters, the full effective potential in the field space is calculated. Then for each

temperature, we utilize the MINUIT subroutine [49] to find the global minimum of the effective potential.

As the temperature increases, we track the change of the global minimum at each step in our numerical

3 When the singlet vev u0 was chosen to be larger than 600GeV, the data with critical temperature larger than 200GeV, and

a vc even larger, accumulates. They are mostly the case IIIB as introduced later, and are not our focus in this paper. That’s

why we chose a smaller range for u0.
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scan. Additional care should be taken: if the minimum moves to very large field values, it may indicates the

vacuum instability. If the global minimum becomes the symmetric one (0, 〈s〉) at certain temperature, we

perform a fine scan near the temperature until we find the critical temperature Tc and the corresponding

vevs (vc, ub) in the broken phase. After obtaining the Tc and vc, we use the washout condition to pick

out the strong first order phase transition, eliminating the data points that has ξ < 1. We randomly scan

106 parameter points, among which 25818 parameter points pass all the requirements. Figure 1 shows

the distribution of the successive data points in the Tc − vc plane. From the figure we notice that for the

parameter region we scanned, the critical temperature is typically less than 200 GeV, while vc is smaller than

its zero-temperature value v0 = 246 GeV. As expected, the higher the critical temperature is, the smaller

the φ vev gets to before the transition, and this correlation is clearly shown in the figure. Furthermore, this

range of critical temperature is quite safe from the bound of the CP violation strength that we discussed in

Sec.3.
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Figure 1: The allowed value of the critical temperature Tc versus the φ vev vc at the critical temperature from a

random scan over the parameter space. The scatter points are selected to satisfy the SFOPT in our random numerical

scan. The color palette on the right shows the density of the scatter points in one GeV interval.

5.1 Phase Transition Patterns

The patterns of phase transition are described by the critical values of the scalar fields during the transition,

defined as (0, us) and (vc, ub) in the previous section. In the left panel of Figure 2, we show the correlation

between ub and us, indicating the s value jump during the phase transition. We notice that there are several

distinct allowed regions: Region I: the vev us is very close to zero while ub is non-zero; Region II: the vev us

is non-zero linearly correlated with the ub; Region III: both the vev us and ub are scattered over the second

and fourth quadrants. The Region III can be further classified by the correlation between us and u0, which

characterizes the evolution of s value before the transition. This is shown in the right panel of the Figure 2.

Typically, the vev u0 and ub are strongly correlated, because there is not much time for s to move very far

without jumping. However, there are also cases where u0 and ub are quite uncorrelated. This indicates that

between the zero temperature and the critical temperature, there should be another phase transition, during
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Figure 2: The allowed value of the contour (us, ub) (left) and (ub, u0) (right) from a random scan over the parameter

space. The color palette on the right shows the density of the scatter points in one GeV interval.

which the Z2 symmetry is not restored. Further analysis shows that the region that the u0 and ub are not

linearly correlated only appear in Region III. So we classify the Region III into two subregions: one-step

phase transition (IIIa) and multi-step phase transition (IIIb). Hopefully, these four regions of parameters

correspond to four different phase transition patterns.

In order to estimate the parameter preferences, we also utilize the polar coordinates of the scalar fields as

in Eq. 4.18. In terms of the non-zero vacuum value ρ̄, we obtain the φ value for the approximate potential:

v̄c = ρ̄cα = −2E
λ̄
cα. (5.5)

A necessary condition of having strong first order phase transition is that v̄c is positive and large. However,

the expressions of the E and λ̄ cannot be expressed as functions of only the model input parameters. They

also involve the information of the features of the phase transition, such as the angle α and the symmetric

minimum us. Therefore, we would like to further utilize the classification of the transition patterns to get

more information on these features.

Several approximations can be made here, according to the correlations between the parameters that we

found. First, in the Region II and Region I, where us and ub differ only a little, we assume that α� 1. For

Region I, us is very small in comparison with all the other massive parameters. After these approximations,

the relations between v̄c and the couplings will be more manifest. In Figure 3 we plot the comparison between

the v̄c and the true vc that we obtain from the scan (left), and the correlation between E and µsφ + λsφus

(middle). The left panel tells us that in most cases v̄c is a good approximation to the true value. The middle

panel shows the correlation between E and its main contributions under the assumption of α� 1. We think

that the rough linearity here suggests that the assumption works well for a large portion of the data. Finally,

the right panel shows the correlation between E and λ̄, whose ratio gives the ρ̄.

In order to analyze the four regions in detail, we also have to rely on the shape of the scalar potential.

The φ curve and s curve at the critical temperature help us understand the origins of the different patterns,

as they determine the distribution of the potential minima. The s curve could have one, two or three relevant

17



0

10

20

30

40

50

60

 [GeV]cv
0 100 200 300

 [
G

eV
]

cv

0

50

100

150

200

250

300

0

2

4

6

8

10

12

14

16

 [GeV]Ε
-300 -200 -100 0

s
 u φsλ+ φsµ

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0

5

10

15

20

25

 [GeV]Ε
-300 -200 -100 0

λ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
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branches, depending on the types as shown in Table 1. Therefore, it could have one or three intersections

with the line φ = 0. We call the minima along the line φ = 0 ”symmetric minima”, while others are

called ”broken minima”. Next, we notice that the broken minimum must be the intersection between the

quadratic branch of the φ curve and one of the s curve branches. This s branch must have an intersection

with the s axis, which may be a symmetric minimum. We would like to define the barrier between the

broken minimum and this symmetric minimum as a ”single-branch barrier”, while those between minima

on different branches are called ”inter-branch barrier”. We discovered that the single-branch barrier usually

has much smaller width along s direction than the inter-branch barriers, due to the limited stretch of the s

curve along the s direction. It implies that a transition through the single-branch barrier should have closely

related us and ub. Finally, in terms of the above features of the shape of potential, let us discuss the four

phase transition patterns in detail.

5.1.1 Pattern I: Single-branch barrier transition, with us ∼ 0

According to the discussion in Sec.4, there are three cases for the small φ behavior of the s curve, one of

which is usually negligible. In the other two significant cases, the one with three roots will be discussed in

the next part. Let’s focus on the other case, which has only one relevant branch that intersects φ = 0 at

around (0, 0). It indicates that this case mainly corresponds to the Region I of the parameter scan.

In Figure 4, we show the allowed values of the broken minimum (vc, ub) in this case, while the symmetric

minimum is always at (0, us ∼ 0). The value of vc is upper-bounded by its zero-temperature value v0 = 246

GeV, implying a decrease of φ before the transition, and is also lower-bounded at about 100 GeV by the

condition ξ > 1. The distribution of the broken minimum clearly sketches the shape of the s curve.

Let’s see what can be inferred for the model parameters. Without loss of generality, we choose the

benchmark points with only positive u0, to investigate the sign preferences of other parameters. Here are

the observations:

• As shown above, the s curve is a single branch curve across the point (0, 0), which indicates that the

zero-temperature vev u0, which is on the same branch, should also be small, but not zero due to the

bend of the curve.
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Figure 4: The allowed values of the broken minimum (vc, ub) in pattern I. Here the phase transition happens between

the symmetric minimum (0, 0) and the broken minimum. The color palette on the right shows the density of the

scatter points in one GeV interval.

• In the light of the previous discussions, there are several approximations we can employ for E : us ≈ 0

and α� 1. As a result, the only important term in E is the µsφ term:

E ≈ 1

2
µsφsαc

2
α. (5.6)

In order to get a large and negative E , large and negative µsφ should be favored.

• We would like to argue that positive λ̃sφ leads to shapes of the curves that are much more favored by

the strong first order phase transition. One may notice that for negative λ̃sφ, both φ curve and s curve

are hyperbola-like. Two hyperbolas could not make the twisting intersection needed for the existence

of degenerate minima. Although the parameter µ̃sφ causes a deviation from perfect hyperbola of the s

curve, it’s still harder for such case to have first order phase transition. Therefore, positive λsφ should

be strongly preferred.

• The one-branch condition for s curve requires that the coefficient d in the polynomial ∆(φ) is negative,

thus µ̃2
s < −

µ̃2
3

4λ̃s
. Large µ̃2

3 would compress the parameter region that satisfies this condition. Thus in

this pattern, we expect that small µ̃2
3 is favored.

Fortunately, our numerical results from the scan do exhibit the above features, as shown in Figure 5.

Figure 6 and Figure 7 show the variations of the φ curve and s curve with temperature. In both

figure, the first diagram represents the configuration at zero temperature. The second, third and fourth

diagrams represent the configuration below, at and above the critical temperature. In the diagram at critical

temperature, an arrow was drawn to show how the phase transition happened, in the point of view of

increasing temperature. Similar figures will be given for other patterns of phase transition later.

The difference between the two figures is whether the barrier exists or not at zero temperature. In

Figure 6, only broken minimum exists at zero temperature, then the symmetric one is developed during the

heating. In Figure 7, the symmetric minimum already exists at zero temperature, but with higher potential
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Figure 5: In the pattern I with u0 > 0, the allowed values of the model parameters u0, µsφ, λsφ and µ3 are shown.

The color palette on the right shows the density of the scatter points in one GeV interval.

than the broken one. The existence of the barrier at the zero temperature is a new feature for the singlet-

assisted electroweak phase transition, which does not happen in the traditional electroweak phase transition

where the barrier must be thermally induced. This could be attributed to the existence of the term µsφ, as

shown in the expression of E where only the µsφ is important in pattern I. In other patterns, other terms

in E could also contribute to the barrier. Unlike the SM, these contributions to E don’t require a non-zero

temperature, hence zero-temperature barrier can exist.

5.1.2 Pattern II: Single-branch barrier transition, with us separated from 0

Suppose the s curve has at least two relevant branches. Assuming µ3 is small, we only consider the case when

µ2
s > 0. As mentioned earlier, there are two symmetric minima, one positive and the other negative, while

the stationary point around (0, 0) must be a saddle point. Let’s focus on the single-branch transition for

now, which means that the symmetric minimum (0, uinter
s ) on a different branch from the broken minimum

has higher potential than (0, usingle
s ) on the same branch as the broken minimum. The other case will be

discussed later.

Now that the symmetric minimum chosen by the phase transition is other than (0, 0), we are convinced

that us = usingle
s can’t be close to 0. That being said, the gap in Figure 8 is well understood. Meanwhile, us

is still strongly correlated with ub because they are on the same branch. It is precisely the characteristic of

the transition pattern II.

Let’s investigate the parameter preferences in this pattern. As the whole branch of s curve under consid-
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Figure 6: In the phase transition pattern I, the s curve (dashed blue) and φ curve (solid green) in the different

temperatures: zero temperature, below critical temperature, at the critical temperature, and above critical tempera-

ture. A thermal barrier is developed during phase transition. The color palette on the right shows the density of the

scatter points in one GeV interval.
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Figure 7: In the phase transition pattern I, same as the Figure 6, but a tree-level barrier is developed.

eration is apart from s = 0, it is natural to have u0 also apart from 0. Actually, all of the u0, ub and us are

similar, which means that s field is seemingly irrelevant with the phase transition, although it contributes

a crucial coupling µsφ that plays important role. The preference of the µsφ is similar as pattern I. A big

difference from pattern I is that positive λsφ is strongly suppressed. One can understand it by looking at
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Figure 8: The allowed values of the broken minimum (vc, ub) in pattern II. The color palette on the right shows the

density of the scatter points in one GeV interval.
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Figure 9: In the pattern II with u0 > 0, the allowed values of the model parameters u0, µsφ, λsφ and µ3 are shown.

The color palette on the right shows the density of the scatter points in one GeV interval.

E , which in this case has two significant terms: µsφ and λsφus, the latter becoming significant due to the

non-zero us. As we need a large negative E , negative λsφ is preferred. Therefore, the advantage of positive

λsφ is much weakened in pattern II. Another interesting feature is that µ3 is mostly negative. This is essential

to guarantee that among the two symmetric minima, the one with positive s value has a lower potential,
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and tends to be the one chosen as the vacuum state at high temperature. Otherwise, inter-branch transition

should happen.
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Figure 10: In the phase transition pattern II, the curves are same as the Figure 6.

The procedure of the phase transition is outlined in Figure 10. The only difference from pattern I is

the existence of the symmetric minimum on the other branch. This minimum must already exist at zero

temperature in this pattern, which induces a barrier that is impossible in traditional electroweak phase

transition. As for the single-branch barrier, similar to the pattern I, it can be thermally induced, or already

present at zero temperature.

5.1.3 Pattern IIIa: Inter-branch barrier transition

The setup in this case is similar to the pattern II, except that the phase transition occurs across the inter-

branch barrier.

As discussed in pattern II, µ3 determines the relative height between the potential at the two symmetric

stationary points (0, usingle
s ) and (0, uinter

s ), where usingle
s and uinter

s are the scalar s vev in single branch and

inter-branch. It tends to be negative when we want a single-branch transition towards (0, usingle
s ), and for

the same reason, it prefers positive values when we require an inter-branch transition towards (0, uinter
s ).

However, if µ3 is too large, it would be harder for us to get a large and negative E , as in this case sα is

not small, and hence the µ3s
3
α term in E is not suppressed any more. In sum, we should have a small and

positive µ3 in pattern IIIa, which is justified by the Figure 11.

The phase transition is shown in Figure 12, by exhibiting the variations of the φ curve and s curve with

temperature. The only difference from pattern II is that the phase transition happens across the inter-

branche barrier. Nevertheless, as the (0, usingle
s ) need not be a minimum, no twisting intersection is required

for the two curves, and hence there is no strong preference for λsφ.
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Figure 11: In the case IIIa with u0 > 0, the allowed values of the model parameters u0, µsφ, λsφ and µ3 are shown.

The color palette on the right shows the density of the scatter points in one GeV interval.
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Figure 12: In the phase transition pattern IIIa, the curves are same as the Figure 6.
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5.1.4 Pattern IIIb: multi-step transitions

In our investigation of the phase transition, we focused on looking for the critical temperature when the φ vev

jumps from a non-zero value to 0. We didn’t investigate whether there was a jump below this temperature.

Nevertheless, we learn from the correlation between the zero temperature vev u0 and the critical temperature

vev ub: if there was any big difference between them, we would expect another phase transition. In our scan,

we find a rough linear relation between u0 and us (shown in Figure 13), implying that the zero temperature

vacuum and the above-critical temperature vacuum are on the same branch.
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Figure 13: In the case IIIb with u0 > 0, the allowed values of the model parameters (u0, ub), vc, µsφ, and µ3 are

shown. The color palette on the right shows the density of the scatter points in one GeV interval.

There are many possible ways of realizing this. One of them would be that a elliptical φ curve is placed

across multiple branches of the s curve, forming several broken minima, as shown in Figure 14. The global

minimum may transit from one branch to another, and jump back later, causing the u0, ub, us correlation

previously described.

Unlike other cases, one could find more events with small values of µsφ in this pattern, indicating a small

s∗ and thus a φ curve centered near (0, 0), which may be more likely to intersect with multiple branches

of the s curve. The signs of the parameters can be inferred from the comparison of potentials among the

three points: negative µ3 is preferred for a final minimum at (0, us > 0), and positive µsφ is preferred for a

minimum at (vc, ub < 0). Figure 13 precisely shows these features.

As the Figure 1 shows, events concentrate at the region Tc < vc < 246, with Tc typically around 100GeV.

In this pattern IIIb, however, we found that the critical temperature tends to be large, and vc is even larger,

which is very different from the other patterns. Large critical temperature leaves sufficient space for a second
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Figure 14: In the phase transition pattern IIIb, the curves are same as the Figure 6.

phase transition below it, but may be harmful for a strong enough CP violation strength because it appears

in the denominator of the strength with 8 powers. Our estimation of the upper bound for Tc pretty much

rule out this pattern as candidate of EW baryogenesis. Another interesting feature is that this pattern

becomes more and more likely as u0 becomes larger. Test scans showed that a larger range of u0 would

lead to dramatically more events with pattern IIIb. In order to evade the interference from these ”complex”

situations, we chose a smaller range of u0 for the scan.

In summary, the above four cases are the typical patterns in our results of the parameter scan. The first

two cases are the most concerned when u0 is within the typical range of energy scale for new physics, in that

they account for 90% of the data from our scan. The pattern IIIa is overall very rare, but the pattern IIIb

would become favored at large u0.

5.2 Numerical Results

Given the analysis about the transition patterns, we would like to present our numerical results on physical

parameters. Since we performed a random scan on the parameter space with flat prior, the distributions of

the parameters should reflect the preference in the model to have the strong first order phase transition.

Figure 15 shows the allowed values of the broken minimum (vc, ub) and all eight input parameters. This

is basically a summary of the detailed discussion in the previous subsection. To complete our discussion,

Figure 15 also shows the parameters in the fermion sector. We learned that the fermion sector is almost

irrelavent to the strong first order phase transition.

We also show the allowed region for the derived parameters in Figure 16. We found that the value of the

λφ is bounded from a minimum value of about 0.1, and peaks at around 0.5. This indicates that a Higgs

self-coupling stronger than that in the SM is expected in the singlet scalar extended model. The µ2
s, as

a controller of the intersection between the s curve and the s axis, has been discussed in the last section.

Obviously, for patterns I and II, it tends to be negative and positive respectively. Interestingly, Figure 16
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Figure 15: The allowed values of the broken minimum (vc, ub), and all eight input parameters allowed by the strongly

first order phase transition.

shows that it has no specific sign preference over all. The µ2
φ parameter characterize the intersection between

the φ curve and the φ axis. There are non-zero intersecions only when µ2
φ > 0. The high peak in Figure 16

represents the pattern I in which φ curve roughly go across the origin (0, 0). The large tail on the negative

side represents pattern II, in which the φ curve is usually far away from the φ axis.

Besides the input parameters in the model, we also obtain the favored region of the physical observables,

like the masses and mixing angles of the new particles, in light of the strong first order phase transition.

In Figure 17, we present the two dimensional contours of the physical parameters (mS , sinα) in the scalar

sector, and those of (mT , sin θ) and (M,mT ) in the fermion sector. It is shown that the scalar with its mass

around 500 - 1000 GeV and a medium mixing angle is favored. We recognized the feature that small mixing

angle are disfavored, as expected from the fact that the scalar needs to couple with the Higgs boson to render

strong first order phase transition. This favored region is compatible with that allowed by vacuum stability
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Figure 16: The allowed values of the derived parameters λφ, µ2
s and µ2
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Figure 17: The allowed values of the contours of the physical mass and couplings (mS , sinϕ) in the scalar sector,

and (mT , sin θL) and (M,mT ) in the fermion sector.

criteria [23]. Unlike the scalar mixing angle, the fermionic mixing angle can be very small, which indicates

the decoupling between the new fermion and the phase transition criteria. We expect that the precision data

and the Higgs data will put stronger constraints on the fermion sector. Finally, the strong correlation in

the last panel implies that the mass of the new fermion is mainly controlled by the Dirac mass term, thus

M + ysu0 ≈M , which may result from a relatively small region of u0 that we chose.

6 Implications at the LHC

From the numerical results, we found that different transition patterns exist, among which parameter pref-

erence are different. Regarding to the physical parameters, we note that a new scalar boson with 500 ∼ 800

GeV mass and medium mixing angle are favored.

In this section, we check whether the strongly FOPT parameter region is still allowed by the current

experimental constraints, such as the oblique corrections S, T , Higgs coupling measurements, and direct

collider searches.

The oblique corrections S, T put the tightest constraints on the fermion mass and mixing angle. For a

singlet vector-like fermion, the Zbb̄ measurement is less stringent than the oblique correction T . Here we
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collect the results [23] on the oblique parameters into boson-loop contributions TS , SS and fermion-loop

contributions TF , SF . For the fermion-loop contributions, the NP effect is only involved in the vacuum

polarization amplitudes where the top quark and heavy top quark are in the loop. Subtracting the SM

contributions due to the third generation quarks

T SM
F =

3m2
t

4πe2v2
, (6.1)

SSM
F =

1

2π

(
1− 1

3
log

m2
t

m2
b

)
, (6.2)

we arrive at the expressions from the fermion contributions

∆TF = T SMs2
L

[
− (1 + c2L) + s2

L

m2
T

m2
t

+ c2L
2m2

T
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]
, (6.3)

∆SF = −s
2
L

6π
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t )
2

(2m2
T

m2
t

− 3m2
T −m2

t

m2
T −m2

t

ln
m2
T

m2
t

)]
, (6.4)

Similarly the contributions from the Higgs and scalar loop are

∆TS = s2
ϕ

[
Ts(m

2
S)− Ts(m2

h)
]
, (6.5)

∆SS = s2
ϕ

[
Ss(m

2
S)− Ss(m2

h)
]
, (6.6)

where the functions are defined as

Ts(m) = − 3

16πc2W

[
1

(m2 −m2
Z)(m2 −m2

W )

(
m4 lnm2 − s−2

W (m2 −m2
W )m2

Z lnm2
Z

+s−2
W c2W (m2 −m2

Z)m2
W lnm2

W

)
− 5

6

]
, (6.7)

Ss(m) =
1

12π

[
lnm2 − (4m2 + 6m2

Z)m2
Z

(m2 −m2
Z)2

+
(9m2 +m2

Z)m4
Z

(m2 −m2
Z)3

ln
m2

m2
Z

− 5

6

]
. (6.8)

We note that the scalar contributions are much smaller than the fermion contributions. Thus the constraints

from S, T on the scalar mass and mixing angle are quite weak.

On the other hand, the Higgs coupling measurements at the LHC put the tightest constraints on the

scalar mixing angle. In our model, due to mixing between the Higgs boson and the heavy scalar, all the

tree-level Higgs couplings are modified as

gNP

hff = cosϕgSM

hff , gNP

hV V = cosϕgSM

hV V . (6.9)

At the same time, the loop-induced Higgs couplings to the photon and the gluon are also modified by the

new contribution from the vector-like fermion loop. So the Higgs couplings to the photon and the gluon are

gNP

hgg =
g2
s

16π2

∑
f

ghff
mf

A1/2(τf ) +
ghTT
mT

A1/2(τT )

 , (6.10)

gNP

hγγ =
e2

16π2

ghWW

m2
W

A1(τW ) +
∑
f

2Nf
c Q

2
f

ghff
mf

A1/2(τf ) +
8

3

ghTT
mT

A1/2(τT )

 , (6.11)

where τT =
4m2

T

m2
h

, and ghtt, ghTT are the Higgs couplings to the fermions, given in Ref. [23]. In the Higgs to

photon and gluon process, there is almost no fermion mass dependence if the heavy vector-like fermion is
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much heavier than the top quark. Therefore, the Higgs coupling measurements put constraints on the scalar

and fermion mixing angles.

The direct searches on the new fermion and new scalar boson at the LHC also put tight constraints

on their masses and couplings. At the LHC, the vector-like quark can be produced in pair through QCD

production pp → T T̄ , or be singly produced via electroweak process pp → T b̄. In our paper, the up-type

vector-like quark predominantly couple to the third-generation quarks through T → tZ, th,Wb. From an

updated CMS analysis [50] which uses the 8 TeV data collected up to integrated luminosity of 19.5 fb−1,

the lower limits on the mass mT are set to be around 687− 782 GeV.

The heavy scalar S is CP-even and has the same quantum number as the SM Higgs boson. The search

limits on the high mass Higgs boson at the LHC could be recasted to put constraints on the mass and

the coupling of the heavy scalar. The production mechanism is quite similar to the SM Higgs boson. The

dominant channel is the gluon fusion channel gg → S. The decay channels of the S boson include

S →WW, S → ZZ, S → hh, S → tt̄, (6.12)

and S → tT only if the heavy top is much lighter than the scalar S. Other decay channels, such as S → γγ/gg,

S → ff̄ , where f is the fermion other than the top quark, are negligible. There are existing LHC searches

for heavy resonances decaying to the WW,ZZ final states [51–54], the Higgs pair final state [55], and the

top-pair final state [56]. Based on the formulae in Appendix D of Ref. [23], the total production and decay

rates in these channels are related by the ratios

σpp→S→ZZ : σpp→S→WW : σpp→S→hh : σpp→S→tt̄ ' 1 : 2 : 1 :
6m2

t

m2
S

. (6.13)

On the other hand, the current upper limits in the WW,ZZ final states [51–54], the Higgs pair final state [55],

and the top-pair final state [56] tell us

σpp→S→ZZ : σpp→S→WW : σpp→S→hh : σpp→S→tt̄ '

(8 ∼ 50 fb) : (20 ∼ 200 fb) : (10 ∼ 150 fb) : (300 ∼ 2000 fb), (6.14)

for the mass region MS ∼ (500, 1000) GeV. We can see that the constraint from the tt̄ is much weaker than

the one from the WW/ZZ channel, and the constraint from the hh channel is slightly weaker than the one

from the ZZ channel. Thus we use the exclusion limit from the searches in the WW/ZZ final states. Both

the ATLAS and CMS investigate the scalar resonance searches in the S → WW and S → ZZ decay final

states [51–54] and obtain the upper exclusion limits for the scalar resonance with the mass range between

200 GeV and 1000 GeV. In our model, assuming the same cut efficiency, we recast the upper limits of the

total cross section to the constraints on the scalar mass MS and mixing angle sinϕ. Our result is shown in

Figure 18 as the direct LHC search limit.

The numerical results on the constraints from the S, T parameters, Higgs coupling measurements, and

direct LHC searches are shown in Figure 18. From the Figure 18 (left), the parameter region with the

mixing angle sinα greater than 0.43 has been ruled out by the current Higgs coupling measurements. The

direct LHC searches also exclude the scalar boson with mass less than 500 GeV. We expect that the future

Higgs coupling data put more stringent constraints on the mixing angle sinϕ, and thus put stronger limit

on the favored region by the strong first order phase transition. On the right panel of the Figure 18, we

note that the S, T parameters can only exclude very small region which is favored by the strong first order
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Figure 18: The allowed parameter contour (mS , sinϕ) (left) and (mT , sin θL) (right) in light of the strong first order

phase transition. The constraints from the S, T parameters, Higgs coupling measurements, and direct LHC searches

are shown as the exclusion lines.

phase transition. The direct LHC searches could exclude the top partner with mass less than 700 GeV.

There are large available parameter regions in the fermion sector. Therefore, the CP violation rate from

the fermion sector is adequate to generate the needed baryon number asymmetry. Let us comment on the

possible explanation of the diphoton excess in this model. From the left panel of Figure 18, we learned that

the singlet scalar could be 750 GeV diphoton resonance and still realize the first order phase transition. On

the other hand, the vectorlike fermions needs to be heavier than 800 GeV to avoid the LHC constraints as

shown in the right panel of Figure 18. To obtain the diphoton rate (which is around 2 ∼ 8 fb at 13 TeV

LHC), such heavy vectorlike top requires the value of the Yukawa coupling to be around 4. Furthermore,

just like all other vectorlike fermion explanations [26], the width of the 750 GeV scalar is very narrow, which

is favored by the CMS diphoton searches, while the ATLAS diphoton excess prefers a broad width. These

two concerns tell us that this minimal model setup needs to be extended to accomdate both the electroweak

baryogenesis and the 750 GeV diphoton excess.

Finally, we expect that the future Higgs data could explore the parameter region on the (mS , sinϕ)

contour. Furthermore, from the Figures 15 and 16, we note that the large scalar coupling λsφ and moderate

λφ is strongly favored. We should be able to explore the scalar trilinear coupling λsφ and λφ at the high

luminosity LHC. If the trilinear couplings are enhanced compared to the SM Higgs self-coupling, the Higgs

pair production cross section should be larger than the SM value. Through the Higgs pair production

process pp → h/S → hh, we could extract out the trilinear couplings from the production cross section

measurements.
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7 Conclusions

We investigated the necessary conditions to realize the electroweak baryogenesis in a scalar-assisted vector-

like fermion model. In the fermion sector, the extended CKM matrix provides additional sources of the CP

violation effects, parametrized by Jarlskog-like invariant. We found that the CP violation rate is greatly

enhanced by the heavy mass of the new fermion. With the flavor constraints on the extended 4 × 3 CKM

matrix considered, we estimated the CP violation strength, which turns out to be adequate for the baryon

number asymmetry.

We focused on the one-loop, finite-temperature effective potential in our model and its implications on

the electroweak phase transition. Unlike the case of the SM, the new scalar extends the field space in which

the phase transition occurs. In the two-dimensional field space, we have more possible ways of constructing

barriers between minima. We utilized the shape of the derivative of the potential: s curve and the φ curve,

as a tool to analyse the two-dimensional effective potential.

The first order phase transition occurs in the form of bubble nucleation of the symmetry broken phase.

The sphaleron decoupling criteria ξ = vc
Tc
≥ 1 is used in this model, to prevent the baryon asymmetry

generated in the symmetry broken phase from being washed out by sphalerons. We performed a parameter

scan over the 8 independent model parameters, and obtained the allowed parameter region which could have

strong first order phase transition.

According to the different regions in the (ub, us) contour at the critical temperature, transition patterns

are classified into four patterns: single-branch barrier transition (pattern I or II, with or without the existence

of multiple relevant branches in the s curve), inter-branch barrier transition (pattern IIIa) and multi-step

transition (pattern IIIb). For the single-branch barrier transition, the large trilinear mass term µsφ is favored

because the width of the barrier is strongly related to it. However, small µsφ is preferred in the patterns

IIIa and IIIb. The preferences of parameters we have got from the scan results can be justified by analysing

the shapes of the s curve and the φ curve and the intersections between the two curves in different patterns.

We also note that all the patterns prefer large quartic scalar couplings and moderate mixing angle between

the Higgs and the scalar.

Finally we combine the constraints from strong first order phase transition and the experimental limits

on the S, T parameters, Higgs coupling measurements, and direct LHC searches. We found that there is still

a significant amount of parameter region for the fermion mass and couplings to satisfy all the constraints,

and have adequate CP violation strength to realize the baryon asymmetry at the same time. The new scalar

with mass around 500 - 1100 GeV and mixing angle sinϕ around 0.25− 0.42 are still allowed and favored by

the strong first order phase transition. The future Higgs coupling measurements and the Higgs boson pair

production cross section will be able to further explore the allowed parameter space.
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A Details of The Effective Potential

A.1 The Effective Potential in the On-shell Scheme

In this appendix, we first review how the effective potential is written in on-shell scheme. Then we extend

the discussion on SM Higgs boson in Ref. [45, 46] to the Higgs-new scalar mixing case.

We start from the one-loop effective potential in the Landau gauge, with the dimensional-regularization

applied,

Veff(T = 0) = Vtree + VCW

= Vtree +
1

64π2
STrM4

ϕ(φ, s)
(

log
M2
ϕ(φ, s)

µ2
− 3

2
− CUV

ϕ

)
, (A.1)

where the super-trace is taken among all the dynamical fields ϕ that have (φ, s) dependent masses Mϕ. The

UV divergent piece CUV
ϕ are defined as

CUV
ϕ =


1

2−n2
− γE + log4π ϕ = scalar and fermion

(n− 1)
(

1
2−n2

− γE + log4π
)

ϕ = gauge boson
(A.2)

The UV divergence has to be absorbed by the counterterms. We introduce the following counterterms

∆V = A(φ2 − v2) +B(φ2 − v2)2 + C(s− u) +D(s− u)2 + E(φ2 − v2)(s− u)

+F (s− u)3 +G(s− u)4 +H(φ2 − v2)(s− u)2. (A.3)

The renormalization conditions are needed to fix the above counterterms. In the MS renormalization scheme,

the renormalization conditions consists in subtracting the term proportional to 1
2−n2

− γE + log4π in the

regularized potential. We will choose the on-shell renormalization scheme. The effective potential can be

expanded using the one-particle irreducible (IPI) Green function Γ(n) at zero external momentum:

Veff(Φ) = −
∞∑
n=0

(Φ− ΦVAC)nΓ(n)(p = 0), (A.4)

where Φ denotes the scalar fields (φ, s) and ΦVAC denotes the vacuum (v, u). Therefore, we define the

renormalized mass of the scalar field as the negative inverse propagator at zero momentum

M2
ij = −Γ(2)(p = 0) =

∂2Veff

∂Φi∂Φj

∣∣∣∣
φ=v,s=u

. (A.5)

Of course, we could also define the renormalized couplings as the four-point IPI Green function Γ(4). However,

the renormalization conditions on the couplings are not unique. Since we want to keep our discussion as

general as possible, we only impose the tadpole conditions and mass conditions, as follows

∂

∂Φi
(VCW + ∆V )

∣∣∣∣
φ=v,s=u

= 0,

∂2

∂Φi∂Φj
(VCW + ∆V )

∣∣∣∣
φ=v,s=u

= 0,

Φi = φ, s.

(A.6)
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The five conditions fixes the tree level VEVs and scalar masses to be the physical ones, regardless of the

couplings. As all the renormalization conditions are evaluated at point φ = v and s = u, the only relevant

variables here are only A,B,C,D,E, which can be uniquely determined, while the other three are totally

arbitrary 4.

Although we can solve for these 5 coefficients using the 5 equations, but we found an easy way to do it

systematically. The trick is to make use of the following function [45]:

Ṽ OSCW =
1

64π2
STr

[
M4
ϕ,m

(
ln

M2
ϕ,m

M2
ϕ,phy

− 3

2

)
+ 2M2

ϕ,phyM
2
ϕ,m

]
(A.8)

where the mass matrices M2
ϕ,m are supposed to be diagonal, in the basis of mass eigenstates, and M2

ϕ,phy

are M2
ϕ,m evaluated at the vacuum point φ = v, s = u. It’s easy to verify that the function satisfies all the

5 renormalization conditions that we apply, regardless of the details of the mass matrices5.

The problem is that whether it can be achieved from the original Coleman-Weinberg potential through

adding counterterms like Eq. A.3. The answer is, luckily, yes for theories without mixing particles, but is no

for the model we are dealing with, where both scalar sector and top quark sector may have large mixing.

To see this, let’s take the difference

∆Ṽ = Ṽ OSCW − VCW =
1

64π2
STr

[
M4
ϕ ln

µ2

M2
ϕ,phy

+ 2M2
ϕ,phyM

2
ϕ

]
. (A.10)

For mixed fields, though the mass matrix elements in gauge eigenbasis are usually polynomials of the scalar

fields, which are allowed in the counterterms, in the mass eigenbasis they are typically irrational expressions.

Specifically, TrM2
ϕ,m and TrM4

ϕ,m can still be expressed in terms of the coefficients of the characteristic poly-

nomial of the mass matrix, and hence are polynomial of the scalar fields, but TrDM4
ϕ,m and TrDM2

ϕ,m are

not, where D is a diagonal matrix with non-degenerate eigenvalues. The two terms in the above expressions

are exactly in this form.

What we do is to expand ∆Ṽ at the vacuum point like in Eq. A.3, and truncate the expression at

the order as we like. For instance, we can retain the terms of A′, B′, E′, F ′, H ′, and throw away all the

other terms, so that the 5 renormalization conditions are still satisfied. The coefficients we get this way

are unambiguous, which must be the same as what people get by any other methods. In our calculation,

we retained all the 8 terms that are allowed in the counterterms, thus recover the full form of ∆V , and

4 One may use the following counterterms

∆V = As+Bs2 + Cs3 +Ds4 + Eφ2 + Fφ2s+Gφ2s2 +Hφ4. (A.7)

However, in this parametrization, if we only apply the five conditions, it is not enough to determine certain counterterms.

One has to use three renormalization conditions on the couplings to determine them uniquely. Due to the arbitrariness on the

renormalization conditions on the couplings, the counterterms could be quite different.
5 By adding higher powers of M2

ϕ,m −M2
ϕ,phy with appropriate coefficients, one can construct functions that satisfy higher-

order on-shell conditions. For instance, if we want to have all the Lagrangian couplings to be the on-shell values, we simply

add terms up to the 4th power of M2
ϕ,m −M2

ϕ,phy to it:

Ṽ OSCW =
1

64π2
STr

[
M4
ϕ,m

(
ln

M2
ϕ,m

M2
ϕ,phy

−
3

2

)
+ 2M2

ϕ,phyM
2
ϕ,m

−
1

2M2
ϕ,m

(M2
ϕ,m −M2

ϕ,phy)3 +
1

2M4
ϕ,m

(M2
ϕ,m −M2

ϕ,phy)4
] (A.9)
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throw away the higher order terms. The coefficients C ′, D′, G′, however, are ambiguous, which depend on

the additional renormalization conditions that people may add to the scheme.

Suppose that after truncation, we get ∆V out of ∆Ṽ , therefore the final on-shell potential is

V OSeff = Veff + ∆V (A.11)

in which the coefficients are

A =
∂

∂s
∆Ṽ

∣∣∣
φ=v,s=u

B =
1

2

∂2

∂s2
∆Ṽ

∣∣∣
φ=v,s=u

E =
1

2v

∂

∂φ
∆Ṽ

∣∣∣
φ=v,s=u

F =
1

2v

∂2

∂s∂φ
∆Ṽ

∣∣∣
φ=v,s=u

H =
1

8v2

∂2

∂φ2
∆Ṽ

∣∣∣
φ=v,s=u

(A.12)

A.2 Goldstone Infrared Divergence

There are two problems for the above potential even before the truncation. First, by definition, the potential

is defined at scale p2 = 0, and the second derivatives don’t give pole masses but renormalized masses at scale

µ = 0. Second, in the Goldstone contribution to the Coleman-Weinberg potential, there is IR divergence

from lnm2
G(v, u), since the field-dependent mass of the Goldstone boson

m2
G(φ, s) = λφ(φ2 − v2) +

λsφ
2

(s2 − u2) + µsφ(s− u), (A.13)

is zero at the vacuum point. In this section, we will show that these two effects cancel each other, according

to the discussion in [19].

Let’s find out the relation between the zero momentum parameters appearing in the effective potential

and the physical observables that we need in an OS scheme. In general, we have the vertex functions

Γ(φ1, φ2, · · · , φn; pi) = ΓXr + ΓL(pi) + ΓXct (A.14)

where Γr is the tree-level renormalized coupling, or the inverse propagator in the case of n = 2. ΓL is the

loop contributions, which depends on the external momenta. ΓXct comes from the counter terms defined in

scheme X.

As we are working in the OS scheme, we have

Γ(φ1, φ2, · · · , φn; pi) = Γphy + ΓL(pi) + ΓOSct (A.15)

while

ΓL(OS) + ΓOSct = 0 (A.16)

where the OS inside the parenthesis indicates the on-shell momenta, instead of on-shell scheme, as ΓL is

scheme independent. Thus we have the p2 = 0 values for the vertex functions:

Γ(φ1, φ2, · · · , φn; p2
i = 0) = Γphy + ΓL(p2

i = 0)− ΓL(OS) ≡ Γphy −∆ΓL (A.17)
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where ∆ΓL is defined to be the difference between on-shell loop contribution and zero-momenta loop con-

tributions.

In this spirit, the renormalization conditions Eq. A.6 should be modified as

∂

∂Φi
(V DRCW + ∆V )

∣∣∣∣
φ=v,s=u

= 0

∂2

∂Φi∂Φj
(V DRCW + ∆V )

∣∣∣∣
φ=v,s=u

= −∆Σ

(A.18)

where Σ is the loop contribution to the mass matrix. Tadpole term is not changed because the tadpole loop

does not depend on external momentum. For couplings, we have conditions like

∂4Veff

∂s2∂φ2

∣∣∣
φ=v,s=u

= λsφ +
∂4VCW
∂s2∂φ2

∣∣∣
φ=v,s=u

= λm,phy +
∂4VCW
∂s2∂φ2

∣∣∣
φ=v,s=u

−∆Γm. (A.19)

Note that, unlike the case for masses, the Coleman-Weinberg potential does have contributions to the

couplings (unless we use the more complete form Eq. A.9).

One may notice that the off-diagonal element of Σ is not well-defined in OS scheme. In addition, some

couplings like s3 also don’t have natural on-shell definition. Here we assume that the ∆ΓL’s are not sensitive

to the tricky details of how we define the OS renormalization conditions. Here we only focus on the IR

divergence from the Goldstone loops, for which we use m2
χ = m2

G(v, u) as an IR regulator, and choose a

convenient but inexact form of the IR-finite part.

Thus we only retain the IR divergent terms, and replace all the parameters for physical quantities we

need in an OS scheme. These terms are

VIR =
Σφ(0)

8v2
(φ2 − v2)2 +

Σsφ(0)

2v
(φ2 − v2)(s− u) +

Σs(0)

2
(s− u)2 +

Γ
(m)
L (0)

4
(φ2 − v2)(s− u)2

+
Γ

(3)
L (0)

3!
(s− u)3 +

Γ
(4)
L (0)

4!
(s− u)4

(A.20)

while the lnm2
χ order IR divergences are:

Σφ(0) ∼ 3

2
× (2λφv)2 × 1

16π2
ln
m2
χ

m2
H

, (A.21)

Σs(0) ∼ 3

2
× (λsφu+ µsφ)2 × 1

16π2
ln
m2
χ

m2
H

, (A.22)

Σsφ(0) ∼ 3

2
× 2λφv(λsφu+ µsφ)× 1

16π2
ln
m2
χ

m2
H

, (A.23)

Γ
(m)
L (0) ∼ 3

2
× 2λsφλφ ×

1

16π2
ln
m2
χ

m2
H

+ power-law IR divergence, (A.24)

Γ
(3)
L (0) ∼ 9

2
× λsφ(λsφu+ µsφ)× 1

16π2
ln
m2
χ

m2
H

+ power-law IR divergence, (A.25)

Γ
(4)
L (0) ∼ 9

2
× λ2

sφ ×
1

16π2
ln
m2
χ

m2
H

+ power-law IR divergence, (A.26)

where lnm2
H is for the IR finite contributions which, as already explained, are not exact, but errors are

negligible. The power-law IR divergences in the couplings will be cancelled by the Coleman-Weinberg

contributions (such as the last two term in Eq. A.9, which we don’t prove explicitly here.
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Plugging them into Eq. A.20, together with the knowledge of Eq. A.13, we get

VIR =
3

64π2
m4
G(φ, s) ln

m2
χ

m2
H

, (A.27)

which neatly cancels the IR divergence of the Coleman-Weinberg term. Thus we only need to replace the

Goldstone pole mass in the logarithm in Eq. A.8 with the higgs mass to fix the IR divergence problem.

Again, there are corrections and small subtleties from momentum-shift effect, such as the ∆Σ contribution

to the counterterms B′, E′, H ′, which are computable but we neglected.

A.3 Field-dependent Masses

In effective potential, the particles running in the loop are the particles in the model with the following

degrees of freedom in the Landau gauge:

nW = 6, nZ = 3, nπ = 3, nh = nS = 1, nt = −12, nT = −12. (A.28)

The field-dependent masses of the top quark, gauge bosons and Goldstone bosons at zero temperature are

given by

m2
W (φ) =

g2

4
φ2, m2

Z(φ) =
g2 + g′2

4
φ2, (A.29)

m2
π(φ, s) = λφφ

2 − µ2
φ +

1

2
λsφs

2 + µsφs. (A.30)

The field-dependent masses of the scalars h and S are obtained as

m2
h,S(φ, s) =

1

2

(
m2
φφ(φ, s) +m2

ss(φ, s)
)
∓ 1

2

√(
m2
φφ(φ, s)−m2

ss(φ, s)
)2

+ 4m4
sφ(φ, s), (A.31)

where the field-dependent quantities are

m2
φφ(φ, s) = 3λφφ

2 − µ2
φ +

λsφ
2
s2 + µsφs, (A.32)

m2
sφ(φ, s) = m2

φs(φ, s) = (λsφs+ µsφ)φ, (A.33)

m2
ss(φ, s) = 3λss

2 + 2µ3s− µ2
s +

λsφ
2
φ2. (A.34)

The field-dependent masses of the top quark and heavy vector-like top quark T are obtained as

m2
t,T (φ, s) =

1

2

(
m2
tt(φ, s) +m2

TT (φ, s)
)
∓ 1

2

√
(m2

tt(φ, s)−m2
TT (φ, s))

2
+ 4m4

tT (φ, s), (A.35)

where the field-dependent quantities are

m2
tt(φ, s) =

1

2
(y2
t + y′2)φ2, (A.36)

m2
tT (φ, s) = m2

Tt(φ, s) =
1√
2
y′φ(yss+M), (A.37)

m2
TT (φ, s) = (yss+M)2. (A.38)

The finite-temperature potential needs to be corrected by the thermal field-dependent masses. The ther-

mal field-dependent masses is calculated by adding the Debye masses, calculated from the the quadratically
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divergent bubbles and Daisy resummation. This leads to a shift of the bosonic field-dependent masses

m2
i (φ, s) to the thermal field-dependent masses (Debye masses)

m2
i (φ, s, T ) ≡ m2

i (φ, s) + Πi(φ, s, T ), (A.39)

where Πi(φ, s, T ) is the self-energy of the bosonic field i in the IR limit. In particular, the longitudinal and

transversal polarizations of the gauge bosons have to be taken into account separately: only the longitudinal

components get a thermal mass correction and the transversal ones will not. Since the ring diagrams will

only contribute significantly at high-temperature, only the zero-mode of the Matsubara frequency behave as

a massless degree of freedom and generate IR-divergences at high-temperature, while other modes lead to

subdominant contributions. For the SM bosonic contributions, the gauge boson thermal self energy is

m2
V(φ, s, T ) = m2

V(φ, s) + ΠV, (A.40)

where

m2
V(φ, s) =


g2

4 0 0 0

0 g2

4 0 0

0 0 g2

4 − gg
′

4

0 0 − gg
′

4
g′2

4

φ2 (A.41)

and

ΠV = diag

[
11

6
g2T 2,

11

6
g2T 2,

11

6
g2T 2,

11

6
g′2T 2

]
(A.42)

In the scalar sector, we have

m2
S(φ, s, T ) = m2

S(φ, s) +

(
cφ 0

0 cs

)
T 2, (A.43)

where

cφ =
λφ
2

+
λsφ
24

+
3g2 + g

′2

16
+
y2
t

4
, (A.44)

cs =
λs
4

+
λsφ
6

+
y2
s

4
. (A.45)
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