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We investigate the phenomenology of a model based on the SU(3)c × SU(3)L ×

U(1)X gauge theory, the so-called 331 model. In particular, we focus on the Higgs

sector of the model which is composed of three SU(3)L triplet Higgs fields, and this

corresponds to the minimal form to realize phenomenologically acceptable scenario.

After the spontaneous symmetry breaking SU(3)L × U(1)X → SU(2)L × U(1)Y ,

our Higgs sector effectively becomes that with two SU(2)L doublet scalar fields, in

which the first and the second generation quarks couple to the different Higgs doublet

from that couples to the third generation quarks. This structure causes the flavour

changing neutral current mediated by Higgs bosons at the tree level. By taking an

alignment limit of the mass matrix for the CP-even Higgs bosons, which is naturally

realized in the case with the breaking scale of SU(3)L×U(1)X to be much larger than

that of SU(2)L × U(1)Y , we can avoid current constraints from flavour experiments

such as the B0-B̄0 mixing even for the Higgs bosons masses being O(100) GeV.

In this allowed parameter space, we clarify that a characteristic deviation in quark

Yukawa couplings of the standard model-like Higgs boson is predicted, which has a

different pattern from that seen in two Higgs doublet models with a softly-broken Z2

symmetry. We also find that the flavour violating decay modes of the extra Higgs

boson, e.g., H/A → tc and H± → ts can be dominant, and they yield the important

signature to distinguish our model from the two Higgs doublet models.
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I. INTRODUCTION

The structure of the electroweak symmetry breaking SU(2)L×U(1)Y → U(1)em has been

precisely tested by various collider experiments such as the LEP and SLC. Furthermore,

the discovery of the Higgs boson at the CERN LHC supports the existence of an SU(2)L

doublet scalar field which is required to realize the spontaneous breakdown of the electroweak

symmetry in the minimal way. However, these facts do not necessarily mean that the

SU(2)L × U(1)Y gauge symmetry describes the most fundamental theory. For example,

models based on a larger gauge group containing the SU(2)L × U(1)Y subgroup can also

explain the current experimental results.

Among various possibilities for the extension of the electroweak symmetry, the choice of

the SU(3)L × U(1)X group gives us an interesting consequence that the color triplet and

the three generations for each type of fermions are related with each other due to the gauge

anomaly cancellation [1, 2], while these two matters are irrelevant in the Standard Model

(SM). So far, a variety of models based on SU(3)c × SU(3)L × U(1)X , the so-called 331

models, have been discussed, where there are various ways to identify the electric charge Q

due to the rank two nature of the SU(3) group and various embedding schemes of the SM

fermions. We can classify these 331 models as listed in Table I.

In this paper, we study the phenomenology of a 331 model especially focusing on the

Higgs sector. In our model, the Higgs sector is composed of three SU(3)L triplet scalar

fields, which corresponds to the minimal choice to realize phenomenologically acceptable

scenario1. After the breaking of SU(3)L × U(1)X into SU(2)L × U(1)Y , our model can

effectively be regarded as the two Higgs doublet model (THDM) as it has been shown in

Ref. [5].

The characteristic property of the Higgs sector is particularly seen in the structure of the

Yukawa interactions, where the first and the second generation quarks couple to the different

∗Electronic address: hokada@kias.re.kr
†Electronic address: okadan@ua.edu
‡Electronic address: orikasa@kias.re.kr
§Electronic address: K.Yagyu@soton.ac.uk
1 In fact, two SU(3)L triplets are enough to break the SU(3)L ×U(1)X symmetry into U(1)em, and such a

model has been discussed in Ref. [3]. However in this configuration, the lightest up-type and down-type

quarks become massless [4], so that it is difficult to reproduce the current data from flavour experiments.
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Higgs doublet from that couples to the third generation quarks. Although this inevitably

causes the flavour changing neutral current (FCNC) mediated by Higgs bosons at the tree

level, and it forces to set masses of the Higgs bosons to be typically O(10) TeV or larger.

However, we find that we can avoid the current bound from flavour experiments even if we

take masses of the Higgs bosons to be of the order of 100 GeV by taking an alignment limit

of the mass matrix of the CP-even Higgs bosons, which is naturally obtained in the limit

where the breaking scale of SU(3)L × U(1)X → SU(2)L × U(1)Y to be infinity.

In the allowed parameter regions, we first discuss the deviation in the SM-like Higgs

boson couplings from the SM predictions. We clarify that our model predicts a characteristic

pattern of the deviation in the quark Yukawa couplings which has a dependence on the quark

flavour. This nature cannot be seen in THDMs with a softly-broken Z2 symmetry. Next, we

discuss the decay and production of the extra Higgs bosons at the LHC. We find that the

flavour violating decay modes of the extra CP-even H and CP-odd A and singly-charged

H± Higgs bosons can be dominant, e.g., H/A → tc and H± → ts. Collider signatures from

these decay modes provide us with an important tool to distinguish our model from the

THDMs in addition to the deviation in the SM-like Higgs boson couplings.

This paper is organized as follows. In Sec. II, we define our minimal 331 model. We

first present the particle content and the charge assignment. We then construct the ki-

netic Lagrangian for the scalar fields, the Higgs potential and the Yukawa Lagrangian. In

Sec. III, we take into account the current constraints on the parameter space from the LEP-

II experiments and flavour data. In Sec. IV, we discuss the Higgs phenomenology, i.e., the

deviation in the SM-like Higgs boson couplings and the decay and production of the extra

Higgs bosons. Conclusions are given in Sec. V. In Appendices, we present the explicit ana-

lytic formulae for the Gauge-Gauge-Scalar type interaction terms (App. A), the Higgs boson

couplings to the SM fermions (App. B), and the decay rate of the Higgs bosons (App. C).

II. MODEL

A. Particle contents

We discuss a model based on the gauge group SU(3)c × SU(3)L ×U(1)X . In this frame-

work, there are several ways to identify the electric charge Q, because of the existence of
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ξ Lepton triplet Refs.

+1/
√
3 (3∗,−1/3) ∼ (e−, ν,N) [1, 2, 6]

+
√
3 (3∗, 0) ∼ (e−, ν, e+) [7, 8]

−1/
√
3 (3∗,−2/3) ∼ (e−, ν, E−) [9]

0 (3∗,−1/2) ∼ (e−, ν, E−1/2) [10]

−
√
3 (3, 0) ∼ (ν, e−, e+) [11–17]

−1/
√
3 (3,−1/3) ∼ (ν, e−, N) [18–28]

TABLE I: Variations of the 331 model classified by ξ and the embedding of lepton fields in the

(SU(3)L, U(1)X ) multiplet, where ξ determines the relation between the electric charge Q and the

SU(3) Cartan generators given in Eqs. (II.1) and (II.2).

two Cartan matrices of the SU(3) group. Without loss of generality, Q is defined as

Q = T3 + ξT8 +X, (II.1)

where X is the U(1)X charge, and T3 and T8 are the diagonal Gell-Mann matrices with the

normalization of tr(T aT b) = δab/2:

T3 =
1

2
diag(1,−1, 0), T8 =

1

2
√
3
diag(1, 1,−2). (II.2)

From Eq. (II.1), Q is determined by specifying ξ and X . When the SM left-handed lepton

fields are embedded into the first and second components of a triplet or an anti-triplet

representation of SU(3)L, we have the following equations:

ξ =
√
3(1 + 2X) if lepton triplet is 3∗, ξ = −

√
3(1 + 2X) if lepton triplet is 3. (II.3)

In our model, we choose ξ = 1/
√
3 and assign the left-handed leptons to be anti-triplet,

which corresponds to the case listed in the first row of Table I.

The particle content is given in Table II. In addition to the SU(3)c × SU(3)L × U(1)X

gauge symmetry, we introduce a softly-broken discrete Z2 symmetry which is required to

avoid the mixing between SM quarks and exotic quarks.
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Fermion Fields Scalar Fields

Qa
L Q3

L (uiR, UR) (d
i
R,DR, SR) Li

L eiR Φ1 Φ2 ϕ

SU(3)c 3 3 3 3 1 1 1 1 1

SU(3)L 3 3∗ 1 1 3∗ 1 3∗ 3∗ 3∗

U(1)X 0 +1/3 +2/3 −1/3 −1/3 −1 2/3 −1/3 −1/3

Z2 + + (+,−) (+,−,−) + + + + −

TABLE II: Particle content and its charge assignment under the SU(3)c×SU(3)L×U(1)X symme-

try. The indices i and a represent the flavour of fermions which run over 1-3 and 1-2, respectively.

The fermion fields are parameterized as

Q1
L =











uL

dL

DL











, Q2
L =











cL

sL

SL











, Q3
L =











bL

tL

UL











, Li
L =











eiL

νi
L

(N i
R)

c











, (i = 1-3), (II.4)

where DL and SL (UL) are the left-handed exotic down (up)-type quarks with the electric

charge of−1/3 (2/3). Similarly, DR and SR (UR) are the right-handed exotic down (up)-type

quarks.

The scalar fields are parameterized by

Φ1 =











φ0
1

φ+
1

η+1











, Φ2 =











φ−
2

φ0
2

η02











, ϕ =











η−3

η03

φ0
3











, (II.5)

where the neutral components are expressed by

φ0
1 =

h1 + ia1 + v1√
2

, φ0
2 =

h2 + ia2 + v2√
2

, φ0
3 =

h3 + ia3 + u√
2

, (II.6)

η02 =
ηR2 + iηI2√

2
, η03 =

ηR3 + iηI3√
2

. (II.7)

In Eq. (II.6), v1, v2 and u are the vacuum expectation values (VEVs) for Φ1, Φ2 and ϕ,

respectively. Under v1, v2 ≪ u, v1 and v2 determine the masses of the SM weak gauge bosons,

while u does the masses of extra gauge bosons. We will discuss the gauge boson masses in

the next subsection. We note that the spontaneous symmetry breaking of SU(3)L × U(1)X
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occurs by the following steps:

SU(3)L × U(1)X −→
u

SU(2)L × U(1)Y −−−→
v1,v2

U(1)em, (II.8)

where the hypercharge Y after the first step of the symmetry breaking is defined by X+1/6,

X−1/6 and X for the (originally) SU(3)L triplet, anti-triplet and singlet fields, respectively.

B. Kinetic terms

The kinetic term for the three SU(3)L triplet scalar fields are given by

Lkin = |DµΦ1|2 + |DµΦ2|2 + |Dµϕ|2, (II.9)

where Dµ is the covariant derivative. For a 3∗ field with a U(1)X charge X , Dµ is given by

Dµ = ∂µ − ig(−T a∗)Aa
µ − igXXBµ, (a = 1-8). (II.10)

The eight SU(3)L gauge bosons are expressed by the 3× 3 matrix form as

Aµ ≡ Aa
µT

a =
1

2











A3
µ +

1√
3
A8

µ

√
2W+

µ

√
2W ′+

µ√
2W−

µ −A3
µ +

1√
3
A8

µ A6
µ − iA7

µ√
2W ′−

µ A6
µ + iA7

µ − 2√
3
A8

µ











, (II.11)

where

W±
µ =

1√
2
(A1

µ ∓ iA2
µ), W ′±

µ =
1√
2
(A4

µ ∓ iA5
µ). (II.12)

There are totally nine gauge bosons in this model, and they can be classified into 2 pairs of

massive charged gauge bosons expressed in Eq. (II.12), and one (four) massless (massive)

neutral gauge boson, where the massless gauge boson corresponds to the photon associated

with the unbroken U(1)em symmetry.

The squared masses of the charged gauge bosons W± and W ′± are given by

m2
W =

g2

4
v2, m2

W ′ =
g2

4
(v2 cos2 β + u2), (II.13)

where v =
√

v21 + v22 = (
√
2GF )

−1/2 ≃ 246 GeV with GF being the Fermi constant, and

tan β = v2/v1. From the above formulae, we identify W to be the SM W boson with the

mass of about 80 GeV, and W ′ to be the extra charged gauge boson. In the following, we

use the shorthand notation for an arbitrary angle θ, i.e., sθ = sin θ, cθ = cos θ and tθ = tan θ.
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For the neutral gauge bosons, it is convenient to define a basis where the photon state

Aµ is separated from the other states as




















Aµ
3

Aµ
8

Bµ

Aµ
6

Aµ
7





















=





















√
3
2
s331

√
3
2
c331

1
2

0 0

1
2
s331

1
2
c331 −

√
3
2

0 0

c331 −s331 0 0 0

0 0 0 1 0

0 0 0 0 1









































Aµ

Z̃µ

Z̃ ′µ

Y µ
1

Y µ
2





















, (II.14)

with c331 = cos θ331 and s331 = sin θ331 and tan θ331 = 2gX/(
√
3g). The mass matrix for the

neutral gauge bosons in the basis shown in the right hand side of Eq. (II.14) is given as

M2
N =

g2

4





















0 0 0 0 0

0
v2(1+3c2

β
)+u2

3c2
331

v2s2
β
−u2

√
3c331

0 0

0
v2s2

β
−u2

√
3c331

u2 + v2s2β 0 0

0 0 0 u2 + v2s2β 0

0 0 0 0 u2 + v2s2β





















. (II.15)

As we see Eqs. (II.14) and (II.15), the Z̃µ and Z̃ ′
µ states are still not the mass eigenstates.

We can define the mass eigenstates by introducing the mixing angle θZ as




Z̃

Z̃ ′



 = R(θZ)





Z

Z ′



 , with R(θ) =





cos θ − sin θ

sin θ cos θ



 . (II.16)

The mixing angle θZ is given by

tan 2θZ =
2(M2

N)23
(M2

N)22 − (M2
N)33

=
2
√
3c331(v

2s2β − u2)

4v2c2β + (u2 + v2s2β)(1− 3c2331)
. (II.17)

Thus, the squared masses of all the neutral gauge bosons are expressed as

m2
Z,Z′ =

1

2

[

(M2
N)22 + (M2

N)33 ∓
√

[(M2
N)22 − (M2

N)33]
2
+ 4(M2

N)
2
23

]

, (II.18)

m2
Y1

= m2
Y2

=
g2

4
(u2 + v2s2β). (II.19)

Under v2/u2 ≪ 1, m2
Z , m

2
Z′ and the mixing angle θZ are expanded by the series of v2/u2 as

m2
Z =

g2

1 + 3c2331
v2 +O

(

v4

u4

)

, (II.20)

m2
Z′ =

g2u2

12c2331

[

1 + 3c2331 +

(

4

1 + 3c2331
− 3s2331s

2
β

)

v2

u2

]

+O
(

v4

u4

)

, (II.21)

cos θZ =

√

3

1 + 3c2331
− (1− 3c2331)

2

2(1 + 3c2331)
5/2

v2

u2
+O

(

v4

u4

)

. (II.22)
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In the limit of u → ∞, the expression of m2
Z should be identical to the corresponding one

in the SM, which allows us to identify the weak mixing angle θW in the SM as

cos θW =
1

2

√

1 + 3c2331. (II.23)

Using this expression, we reproduce mZ = gv/(2 cos θW ). The electroweak rho parameter is

given to be unity in this limit:

ρtree ≡
m2

W

m2
Z cos2 θW

= 1. (II.24)

In App. A, we present the Gauge-Gauge-Scalar type interactions in the mass eigenstates

of the Higgs bosons.

C. Higgs Potential

The most general potential under the SU(3)L × U(1)X × Z2 invariance is given by

V (Φ1,Φ2, ϕ) = m2
1|Φ1|2 +m2

2|Φ2|2 +m2
ϕ|ϕ|2 + (m2

2ϕΦ
†
2ϕ− µǫABCΦ

A
1 Φ

B
2 ϕ

C + h.c.)

+
1

2
λ|ϕ|4 + 1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†

1Φ2|2

+ σ1|Φ1|2|ϕ|2 + σ2|Φ†
1ϕ|2 + ρ1|Φ2|2|ϕ|2 + ρ2|Φ†

2ϕ|2 +
1

2
[ρ3(Φ

†
2ϕ)

2 + h.c.],

(II.25)

where the µ and m2
2ϕ terms are the soft breaking terms of the Z2 symmetry. For the µ

term, A, B and C (= 1-3) are the indices of the SU(3)L fundamental space, and ǫABC is the

complete anti-symmetric tensor with ǫ123 = +1. In the above potential, the µ, m2
2ϕ and ρ3

parameters are complex in general, while all the others are real. In the following, we take

all the parameters to be real for simplicity.

The tadpole terms for the neutral scalar states are given by

TX ≡ ∂V

∂X

∣

∣

∣

0
, for X = hα, aα, ηR2, ηR3, ηI2, ηI3 (α = 1, 2, 3), (II.26)

where

Th1
=

v

2
cβ(2m

2
1 + v2c2βλ1 + v2s2βλ3 − u2σ1 +

√
2tβµu), (II.27)

Th2
=

v

2
sβ(2m

2
2 + v2s2βλ2 + v2c2βλ3 − u2ρ1 +

√
2

tβ
µu), (II.28)

Th3
=

u

2
(2m2

ϕ + u2λ+ v2s2βρ1 + v2σ1c
2
β −

√
2µv2

u
cβsβ), (II.29)

Tη
R2

= m2
2ϕu, TηR3

= m2
2ϕvsβ, (II.30)
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and all the other tadpoles are zero. By imposing the tadpole conditions TX = 0 for all X

under the assumption that all the VEVs v1, v2 and u are non-zero, we can eliminate the

parameters m2
1, m

2
2, m

2
ϕ and m2

2ϕ, where the tadpole conditions from TηR2
and TηR3

give only

one independent condition, i.e., m2
2ϕ = 0. Consequently, the Higgs potential is described

by 14 independent parameters, i.e., 5 (dimensionful parameters) plus 3 (VEVs) plus 10

(dimensionless parameters) minus 4 (independent tadpole conditions).

In the following, we discuss the masses of the Higgs bosons. In our model, there are

totally 3× 3× 2 = 18 scalar states, namely, four pairs of singly-charged states, five CP-odd

states and five CP-even states. Among them, two pairs of singly-charged, three CP-odd

states and one CP-even states correspond to the Nambu-Goldstone (NG) bosons which are

absorbed into the longitudinal components of two pairs of charged gauge bosons (W and

W ′) and four neutral gauge bosons (Z, Z ′, Y1 and Y2). Therefore, we have two pairs of

singly-charged Higgs bosons, one CP-odd and three CP-even Higgs bosons as the physical

states. It is important to mention here that the scalar states φ0
1,2,3 (φ±

1,2) do not mix with

η02,3 (η±3 ). This is because a kind of parity is remained after the SU(3)L breaking which is

different from the Z2 parity that is imposed to the Lagrangian. In addition, as we see in

Sec. IID, these η fields do not couple to the SM fermions. Therefore, the lightest neutral

scalar component could be a candidate of dark matter. In this paper, we do not discuss the

property of dark matter in detail, which is not the main target.

We first discuss the masses for the parity even states under the residual symmetry. The

mass eigenstates can be defined by





φ±
1

φ±
2



 = R(−β)





G±

H±



 ,











a1

a2

a3











= Rodd











GZ1

GZ2

A











,











h1

h2

h3











= R











H1

H2

H3











, (II.31)

where R(θ) is defined in Eq. (II.16). Rodd and R are the orthogonal 3 × 3 matrix, and the

explicit form of the former one is given as

Rodd =













− n1√
2
(cβ + sγ)

n2√
2
(cβ − sγ)

sβ√
1+s2

β
t2γ

n1√
2
sβ − n2√

2
sβ

cβ√
1+s2

β
t2γ

n1√
2
cγ

n2√
2
cγ

tγ√
1+s2

β
t2γ













, (II.32)
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where tan γ = vcβ/u, and n1 and n2 are the normalization factors:

n1 = (1 + cβsγ)
−1/2, n2 = (1− cβsγ)

−1/2. (II.33)

The rotation matrix of the CP-even states R is generally expressed by three mixing angles.

In Eq. (II.31), G± and G
′± (GZ1

and GZ2
) are the NG bosons which are absorbed into the

longitudinal components of W and W ′, respectively (the linear combinations of Z and Z ′),

while H±, A and Hα (α = 1-3) are the physical singly-charged, the CP-odd and the CP-even

Higgs bosons, respectively. The squared masses of H± and A are expressed by

m2
H± =

v2

2
λ4 +M2, m2

A = M2
(

1 + c2β t
2
δ

)

, (II.34)

where tan δ = vsβ/u, and M2 = µu/(
√
2sβcβ). The squared masses of Hα are calculated

from the 3× 3 mass matrix M2
H in the basis of (h1, h2, h3):

M2
H =











v2λ1c
2
β +M2s2β (v2λ3 −M2)sβcβ v(uσ1cβ − µ√

2
sβ)

(v2λ3 −M2)sβcβ v2λ2s
2
β +M2c2β v(uρ1sβ − µ√

2
cβ)

v(uσ1cβ − µ√
2
sβ) v(uρ1sβ − µ√

2
cβ) u2λ+ v2µ

u
√
2
sβcβ











. (II.35)

Using R, the mass eigenvalues are expressed by

RT M2
H R = diag(m2

H1
m2

H2
m2

H3
). (II.36)

We here define an alignment limit of the mass matrix for the CP-even Higgs states M2
H

as follows

uσ1 −
µ√
2
tβ = 0, uρ1 −

µ

tβ
√
2
= 0. (II.37)

Under this alignment, the mass matrix M2
H becomes the block-diagonalized form with the

2× 2 and 1× 1 submatrices, and we obtain the following expression:

R(β)T (M2
H)2×2R(β) = M ′2

H , (II.38)

where

(M ′2
H)11 = v2(λ1c

4
β + λ2s

4
β + 2λ3s

2
βc

2
β), (II.39)

(M ′2
H)22 = v2(λ1 + λ2 − 2λ3)s

2
βc

2
β +M2, (II.40)

(M ′2
H)12 = −v2(λ1c

2
β + λ2s

2
β − λ3c2β)sβcβ. (II.41)
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We then obtain the analytic expressions for the mass eigenvalues and mixing angles as

follows:

m2
H1

= (M ′2
H)11c

2
β−α + (M ′2

H )22s
2
β−α − 2(M ′2

H)12sβ−αcβ−α, (II.42)

m2
H2

= (M ′2
H)11s

2
β−α + (M ′2

H )22c
2
β−α + 2(M ′2

H)12sβ−αcβ−α, (II.43)

m2
H3

= u2λ+
µ√
2u

v2sβcβ , (II.44)

where the mixing angle β − α is expressed by

tan 2(β − α) =
2(M ′2

H)12
(M ′2

H)22 − (M ′2
H )11

. (II.45)

The rotation matrix R is then expressed as

R =











cα −sα 0

sα cα 0

0 0 1











. (II.46)

In the following, we use the two symbols for the two CP-even states, namely (H1, H2) and

(H, h), and we identify h as the Higgs boson discovered at the LHC with the mass of about

125 GeV, i.e., mh ≃ 125 GeV. We note that the alignment limit is naturally realized by

taking the limit of v2/u2 → 0. In this limit, the mass matrix given in Eq. (II.35) can be

expressed by the block diagonal form after taking an appropriate orthogonal transformation

as

M2
H →











(M2
H)11 +O(v2) (M2

H)12 +O(v2) 0

(M2
H)21 +O(v2) (M2

H)22 +O(v2) 0

0 0 (M2
H)33 +O(v2)











, (II.47)

where (M2
H)ij are the matrix elements given in (II.35). Because the order v2 corrections in

the above expression can be absorbed by the reparametrization of the λ parameters such as

λ1, λ2, λ3 and λ, we obtain the essentially same result as given in Eqs. (II.38)-(II.44).

Next, let us discuss the masses for the parity odd states. The mass eigenstates of them

are defined as




η±3

η±1



 = R(−γ)





G
′±

η±



 ,





ηI3

ηI2



 = R(δ)





G0
Y1

ηI



 ,





ηR3

ηR1



 = R(−δ)





GY2

ηR



 , (II.48)
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where G′±, GY1
and GY2

are the NG bosons absorbed into the longitudinal components of

W ′, Y1 and Y2. The squared masses are given by

m2
η± =

u2

2c2γ

(

σ2 +

√
2µ

u
tβ

)

, m2
η
I,R

=
u2

2c2δ

(

ρ2 ∓ ρ3 +

√
2µ

utβ

)

. (II.49)

It is important to mention here that in the limit of v2/u2 → 0, in which the alignment

limit is naturally realized as explained in the above, H±, A, H and h are remained in the

low energy spectrum, but H3, η
±, ηI and ηR are decoupled from the theory. As a result, our

model effectively becomes the THDM.

D. Yukawa Lagrangian

The Yukawa Lagrangians for the lepton (LY
L ) and quark (LY

Q) sector are given by

−LY
L =

1

2
(YL)

ij(Li
L)A(L

jc
L )B(Φ

∗
1)Cǫ

ABC + (Ye)
ij(Li

L)Φ1e
j
R + h.c., (II.50)

−LY
Q = (Yu1)

aiQa
LΦ

∗
1u

i
R + (Yu2)

iQ3
LΦ2u

i
R + YUQ3

LϕUR + h.c.

+ (Yd1)
iQ3

LΦ1d
i
R + (Yd2)

aiQa
LΦ

∗
2d

i
R + (YD)

amQa
Lϕ

∗Dm
R + h.c., (II.51)

where Dm=1
R = DR and Dm=2

R = SR, and the YL coupling is the anti-symmetric 3×3 matrix.

This term gives the mixing among the component fields of LL, i.e., νL-N
c
L (see Eq. (II.4)).

Because of the anti-symmetric structure of YL, it is not sufficient to reproduce the current

neutrino oscillation data. However, as discussed in Ref. [6], if we introduce additional SU(3)L

singlet neutral fermions, one-loop induced Majorana neutrino masses appear, and then the

neutrino data can be reproduced. In this paper, we do not discuss the neutrino sector, and

we take YL negligibly small.

The mass matrices for the charged leptons (Me), the up-type quarks (Mu) and the

down-type quarks (Md) are respectively given by the 3× 3, 4× 4 and 5× 5 form as

−Lmass = ~ELMe
~ER + ~ULMu

~UR + ~DLMd
~DR + h.c., (II.52)

where ~EL,R = (e, µ, τ)L,R, ~UL,R = (u, c, t, U)L,R and ~DL,R = (d, s, b,D, S)L,R. The form of

Me is the same as in the SM, i.e., Me = v1Ye/
√
2. On the other hand, Mu and Md take

the block-diagonalized form due to the Z2 symmetry, where the first 3× 3 part corresponds

to the mass matrix for the SM quarks, and the latter part does to that for the exotic quarks
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(1× 1 for up-type and 2× 2 for down-type exotic quarks). Namely,

Mu =
diag(v1, v1, v2, u)√

2





Y SM
u 0

0 YU



 , Md =
diag(v2, v2, v1, u, u)√

2











Y SM
d 0 0

0 Y 11
D Y 12

D

0 Y 21
D Y 22

D











,

(II.53)

where

Y SM
u =











Y 11
u1 Y 12

u1 Y 13
u1

Y 21
u1 Y 22

u1 Y 23
u1

Y 1
u2 Y 2

u2 Y 3
u2











, Y SM
d =











Y 11
d2 Y 12

d2 Y 13
d2

Y 21
d2 Y 22

d2 Y 23
d2

Y 1
d1 Y 2

d1 Y 3
d1











. (II.54)

The 3 × 3 part of the mass matrices for the up-type quarks and the down-type quarks can

be diagonalized by the biunitary transformation of SM quark fields: qL → (V q
L)

† qL and

qR → VR qR (q = d, u), where V q
L,R are the unitary matrices. We then obtan the diagonalized

quark mass matrices as Mdiag
q = V q

LMq(V
u
R )

†, where

Mu =
diag(v1, v1, v2)√

2
Y SM
u , Md =

diag(v2, v2, v1)√
2

Y SM
d . (II.55)

In this notation, the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM is given by

V u
L (V

d
L )

†.

The interaction terms for the SM quarks (Lint
Q ) and those for the SM leptons (Lint

L ) with

a Higgs boson are expressed in their mass eigenbasis as

Lint
Q =

1

v

∑

φ=H1,H2,H3,A

[

diL (Γ
φ
d)

ij djR + ui
L (Γ

φ
u)

ij uj
R

]

φ+ h.c.

+

√
2

v

[

ui
L (Γ

H±

d )ij djR + ui
R (ΓH± †

u )ij djL

]

H+ + h.c. (II.56)

Lint
L =

mei

v
eiLe

j
R





∑

α=1,3

R1α

cβ
Hα + i

tβ
√

1 + s2βt
2
γ

A



+

√
2mei

v
νi
L e

j
RH

+ + h.c., (II.57)

where Γφ
q and ΓH±

q (q = u, d) are the 3 × 3 form of the dimensionful couplings. All the

analytic expressions of them are given in App. B. It is important to mention here that the

Γφ
q couplings generally contain non-zero off-diagonal elements, so that the tree level FCNCs

appear via the Higgs boson mediations. We will see in Sec. IV that by taking the alignment

limit and sin(β−α) = 1, Γh
q become diagonal, and thus the tree level FCNCs mediated by h
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FIG. 1: Deviation in the cross section of e+e− → µ+µ− process as a function of u at the center

of mass energy of 200 GeV. The horizontal dotted line shows the upper bound on the deviation at

95% CL.

disappear. On the other hand, ΓH
q and ΓA

q have non-zero off-diagonal elements even in this

limit. As a result, H and A contribute to FCNC processes. We will discuss the constraint

on the parameter space from neutral meson mixings such as B0-B̄0 in Sec. III-B.

III. CONSTRAINTS

In this section, we discuss constraints on the parameter space from experimental data.

We first take into account the constraint from the LEP-II experiments, and then we consider

that from flavour experiments.

A. LEP-II

The e+e− → f f̄ processes have been precisely measured at the LEP-II experiments by

the center of mass energy of around 200 GeV, which derives a strong bound on the VEV

u describing the breaking scale of SU(3)L × U(1)X → SU(2)L × U(1)Y . In Ref. [29], the

deviations in this cross section from the SM prediction are given at the center of mass energy

to be between 189 GeV and 209 GeV. Among the various final states, the µ+µ− channel is
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most accurately measured whose one standard deviation has been given to be 0.01%.

In our model, the cross section of the e+e− → f f̄ process can be deviated from the

SM prediction by the following sources, (i) the deviation in the Z-f -f̄ coupling, (ii) the

contribution from the Z ′ boson exchange, and (iii) the interference effects between the Z

and γ contributions and the Z ′ contribution. In order to calculate the cross section, we

extract the f̄ fVµ vertex (Vµ = Aµ, Zµ and Z ′
µ, and f being the SM fermion) as

LffV = eQf f̄γ
µfAµ + gZ f̄γ

µ
(

If −Qf sin
2 θW

)

fZµ

− gZ tan θZ f̄γ
µ
(

If −Qf sin
2 θW

)

fZ ′
µ, (III.1)

where If = +1/2 (−1/2) for f = u (d, e), and

e =

√
3

2
gs331 = g sin θW , gZ =

2g√
3c331

cos θZ =
2g√

4 cos2 θW − 1
cos θZ . (III.2)

We note that in the limit of v2/u2 → 0, we reproduce the SM f̄ -f -Zµ coupling, i.e., gZ →
g/ cos θZ by using Eqs. (II.22) and (II.23). From Eq. (III.1), the deviation in the cross

section depends on the angle θZ which is determined by u and tan β as shown in Eq. (II.17).

In Fig. 1, we plot the prediction of the deviation in the cross section of e+e− → µ+µ−

represented by ∆σ as a function of u. We define ∆σ as

∆σ ≡ σ331 Model − σSM, (III.3)

where σ331 Model (σSM) is the cross section of e+e− → µ+µ− in our model (SM). The horizontal

line represents the 95% CL upper limit on the deviation for the cross section. Although the

tan β dependence on ∆σ is negligibly small when v2/u2 ≪ 1, we take tanβ = 1 in this plot.

We use CalCHEP [30] for the numerical evaluation of the cross section. By looking at the

cross point of two curves, we obtain the lower limit of u & 17 TeV at 95% CL.

B. FCNC

As we mentioned in Sec. II-D, there appear the flavour violating Yukawa couplings at

the tree level. Therefore, we expect to get a severe constraint on parameters from data at

flavour experiments.

In this subsection, we calculate the contributions to the mixing in neutral mesons such

as K0-K̄0 via the neutral Higgs boson mediations. The relevant effective Hamiltonian Heff
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to these processes is given by

Heff =
∑

i,j

cijOij, (i, j) = (L,R), (III.4)

where cij and Oij are the Wilson coefficients and dimension 6 operators, respectively. For

the case of the K0 and K̄0 mixing as an example, these operators are expressed by

Oij = (d̄αPis
α)(d̄βPjs

β), (III.5)

where α and β are the color indices, and PL,R are the left- and right-handed projection

operator. The matrix element of Oij for the K0 and K̄0 state is given by [31]

〈K0|OLL|K̄0〉 = 〈K0|ORR|K̄0〉 = − 5

24

(

mK

ms +md

)2

mKf
2
K , (III.6)

〈K0|OLR|K̄0〉 = 〈K0|ORL|K̄0〉 =
[

1

24
+

1

4

(

mK

ms +md

)2
]

mKf
2
K , (III.7)

where md, ms and mK are the masses of the down quark, the strange quark and the K

meson, respectively, and fK is the decay constant of the K meson. The K0-K̄0 mixing

parameter ∆mK is calculated by using the above parameters as:

∆mK = 2Re〈K0|Heff|K̄0〉

=

{

cLR

[

1

6
+

(

mK

ms +md

)2
]

− 5

12
(cLL + cRR)

(

mK

ms +md

)2
}

mKf
2
K . (III.8)

Similarly, we obtain the predictions for the other meson mixings, namely, the B0-B̄0 mix-

ing ∆mB and the D0-D̄0 mixing ∆mD are respectively obtained by the replacement of

(mK , fK , m̄s) → (mB, fB, m̄b) and (mK , fK , m̄s) → (mD, fD, m̄c).

Let us express the coefficients cij in terms of the Lagrangian parameters. These are

expressed for the K0-K̄0 mixing:

cLL =
∑

φ=h,H,A

(Γφ∗
d )221

m2
φv

2
, cRR =

∑

φ=h,H,A

(Γφ
d)

2
12

m2
φv

2
, cLR = cRL =

∑

φ=h,H,A

(Γφ∗
d )21(Γ

φ
d)12

m2
φv

2
, (III.9)

for the B0-B̄0 mixing:

cLL =
∑

φ=h,H,A

(Γφ∗
d )231

m2
φv

2
, cRR =

∑

φ=h,H,A

(Γφ
d)

2
13

m2
φv

2
, cLR = cRL =

∑

φ=h,H,A

(Γφ∗
d )31(Γ

φ
d)13

m2
φv

2
, (III.10)
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and for the D0-D̄0 mixing:

cLL =
∑

φ=h,H,A

(Γφ∗
u )212

m2
φv

2
, cRR =

∑

φ=h,H,A

(Γφ
u)

2
21

m2
φv

2
, cLR = cRL =

∑

φ=h,H,A

(Γφ∗
u )12(Γ

φ
d)21

m2
φv

2
. (III.11)

In order to evaluate ∆mK , ∆mB and ∆mD numerically, we use the following input values

given in MeV as [32, 33]:

mK = 497.611, ∆mK = 3.484× 10−12, fK = 156.3, m̄s(ms) = 95,

mD = 1864.84, ∆mD = 6.25× 10−12, fD = 212.6, m̄c(mc) = 1275,

mB = 5279.61, ∆mB = 3.356× 10−10, fB = 190.5, m̄b(mb) = 4180, (III.12)

As a numerical example to reproduce the observed CKM matrix and quark masses, we adopt

the following inputs:

Mu(Mu)
†

m2
t

=













1.83 × 10−4 6.76 × 10−4 −0.0133

6.76 × 10−4 2.54 × 10−3 −0.0500

−0.0133 −0.0500 0.997













+ i













0 −9.27 × 10−5 1.74 × 10−3

9.27 × 10−5 0 −3.98× 10−4

−1.74× 10−3 3.98× 10−4 0













,

Md(Md)
†

m2
b

=













4.91× 10−5 5.26 × 10−4 −5.58× 10−3

5.26× 10−4 9.43 × 10−3 −0.0937

−5.58 × 10−3 −0.0937 0.991













+ i













0 −3.85 × 10−4 4.07 × 10−3

3.85 × 10−4 0 1.04 × 10−5

−4.07× 10−3 −1.04 × 10−5 0













,

V u
L =













0.975 −0.223 1.86 × 10−3

0.222 0.974 0.0518

−0.01340 −0.0501 0.999













+ i













2.83 × 10−6 1.24 × 10−5 −1.79× 10−3

−1.03 × 10−4 2.35 × 10−5 0

−1.74 × 10−3 3.98 × 10−3 0













,

V d
L =













1.00 2.56 × 10−3 5.87× 10−3

−3.10 × 10−3 0.996 0.0941

−5.61 × 10−3 −0.0942 0.996













− i













0 0 4.11 × 10−3

3.87 × 10−4 9.91 × 10−7 0

4.09 × 10−3 1.05 × 10−5 0













,

(III.13)

where Mq (q = u, d) are the quark mass matrices defined in Eq. (II.55). One can obtain

V u
LMuM

†
u(V

u
L )

† = diag(m2
u, m

2
c , m

2
t ) and V d

LMdM
†
d(V

d
L )

† = diag(m2
d, m

2
s, m

2
b).

In Fig. 2, we show the allowed parameter region from the meson mixing data ∆mK ,

∆mB and ∆mD. In these plot, we take tanβ = 3 (left), 10 (center) and 30 (right). The

value of sin(β − α) is taken to be 1 (upper panels), 0.97 (center panels) and 0.94 (lower

panels), and the sign of cos(β − α) is taken to be positive. We confirm that the case with
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FIG. 2: Constraint from the neutral meson mixings on the parameter space of mA-mH in the

alignment limit defined in Eq. (II.37) with sin(β−α) = 1 (upper panels), sin(β−α) = 0.97 (middle

panels) and sin(β−α) = 0.94 (bottom panels). The sign of cos(β−α) is taken to be positive. The

left, center and right panel show the case for tan β = 3, 10 and 30, respectively. The black and red

shaded regions are excluded by ∆mB and ∆mD, respectively.

cos(β − α) < 0 is almost the same as that with cos(β − α) > 0. The black and red shaded

regions are respectively excluded by ∆mB and ∆mD, where in these regions, the predictions

for ∆mB and ∆mD exceed the measured values given in Eq. (III.12). We note that ∆mK

does not exclude the parameter space shown in this figure. As we can see that ∆mB gives

the strongest constraint, and the excluded region becomes wider when the value of tan β

increases. However, in the case of sin(β−α) = 1, the region with mA ≃ mH is allowed even

for the case with small masses and large tanβ, because the cancellation happens between
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the contributions from A and H . Similar cancellation also happens for sin(β−α) 6= 1 among

h, H and A, but it does in the different regions from mA ≃ mH , and the allowed region

becomes smaller as the deviation in sin(β − α) from unity becomes larger.

Finally, we briefly comment on flavour constraints related to the charged Higgs boson

mediation such as b → sγ [34, 35], B → τν [36], and the leptonic tau decay [37] processes.

Because the third generation fermion couplings to H± have the similar structure as those

in the type-II THDM, we expect that the similar bound on the mass of H± and tan β is

obtained. For example, from the b → sγ data, we obtain the lower bound on mH± at 95%

CL to be about 480 GeV [35] in the type-II THDM with tanβ & 1. The B → τν data also

constrains especially a large tanβ region. For example, tan β & 30 (45) with mH± = 300

(500) GeV is excluded at 95% CL [38]. The comprehensive study on the constraint from

the flavour experiments have been done in Refs. [38–40] in a Z2 symmetric version of the

THDMs.

IV. HIGGS PHENOMENOLOGY

In this section, we discuss the phenomenology of Higgs bosons. We take the limit of

v2/u2 → 0, where the extra gauge bosons and exotic quarks are decoupled from the theory,

and the scalar sector effectively becomes the THDM, i.e., we have h, H , A and H± as the

physical degrees of freedom as mentioned in Sec. II-C. In this case, the alignment limit of

the mass matrix of the CP-even Higgs bosons is naturally realized as seen in Eq. (II.47), so

that we can safely take the masses of the Higgs bosons to be O(100) GeV without conflicting

with the flavour constraints as we discussed in Sec. III-B.

We first consider the phenomenology regarding to the SM-like Higgs boson h, and then

that to the extra Higgs bosons H , A and H±. The relevant trilinear Higgs boson couplings

are given as follows

Lint =
2m2

W

v
(hsβ−α +Hcβ−α)W

+
µ W−µ +

m2
Z

v
(hsβ−α +Hcβ−α)ZµZ

µ

+
1

v
qL Γ

h
q qRh+

1

v
qL Γ

H
q qRH +

√
2

v

[

uL Γ
H±

d dR + uR (ΓH±

u )† dL

]

H+ + h.c.

+
me

v
ēLeR(ξhh+ ξHH + itβA) +

√
2me

v
ν̄LeRH

+ + h.c., (IV.1)
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where

Γh
d = V d

Ldiag(ζh, ζh, ξh)(V
d
L )

†Mdiag
d , Γh

u = V u
L diag(ξh, ξh, ζh)(V

u
L )

†Mdiag
u , (IV.2)

ΓH
d = V d

Ldiag(ζH , ζH, ξH)(V
d
L )

†Mdiag
d , ΓH

u = V u
L diag(ξH , ξH , ζH)(V

u
L )

†Mdiag
u , (IV.3)

with

ζh =
cα
sβ

= sβ−α +
1

tβ
cβ−α, ξh = −sα

cβ
= sβ−α − tβcβ−α, (IV.4)

ζH =
sα
sβ

=
1

tβ
sβ−α + cβ−α, ξH =

cα
cβ

= −tβsβ−α + cβ−α. (IV.5)

In Eq. (IV.1), we omitted the flavour index for the Yukawa interaction. We can see that when

we take sin(β−α) = 1, all the coupling constants of h become the same as the corresponding

SM Higgs boson couplings. On the other hand, the HV V (V = W,Z) couplings vanish in

this limit, but the Yukawa couplings for H do not. Thus, H has a fermiophilic nature in

this case as it is also seen in A.

A. Phenomenology for the SM-like Higgs boson

We focus on the deviation in the h couplings from the SM prediction. In extended Higgs

sectors, in general, the h couplings deviate from the SM predictions, because of the mixing

between h and extra Higgs bosons, and also the mixing among VEVs of Higgs multiplets.

The important point is that the pattern of the deviation strongly depends on the structure

of the Higgs sector. Therefore, we can determine the structure of the Higgs sector by

identifying the pattern of deviation in the h couplings measured at collider experiments.

Precise measurements of the h couplings will be done at future collider experiments such as

High-Luminosity LHC [41, 42] and the International Linear Collider (ILC) [43]. In Refs. [44],

the deviations in the Higgs boson couplings have been discussed at the tree level in various

extended Higgs sectors such as THDMs and models with extra isospin singlets, triplets and

septets which satisfy the electroweak ρ parameter being unity at the tree level. It has been

clarified that these models can be discriminated by using the deviations in hV V and hff

couplings. Radiative corrections to the h couplings have also been studied in THDMs [45],

a model with a singlet [46] and that with a triplet [47].

In our model, the h couplings deviate from the SM prediction in the case of sin(β−α) 6=
1 at the tree level which corresponds to the case with a non-zero deviation in the hV V
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Type κui κdi κei κV

type-I ζh ζh ζh sin(β − α)

type-II ζh ξh ξh sin(β − α)

type-X ζh ζh ξh sin(β − α)

type-Y ζh ξh ζh sin(β − α)

TABLE III: The scaling factors in the THDMs with a softly-broken Z2 symmetry.

couplings as it is seen in Eq. (IV.1). The pattern of the deviation in the Yukawa couplings

for the third generation lepton (quarks) is exactly (almost) the same as that in the type-II

THDM at the tree level. However, the difference in the prediction from the type-II THDM

appears in the correlation between the deviation in the h coupling with the second and the

third generation quarks. In fact, it is seen in Eq. (IV.2) that the (3,3) and (2,2) element of

the coupling matrix Γh
q are almost2 determined by the different valuable ξh or ζh defined in

Eq. (IV.4).

In order to see the correlation between the second and the third quark Yukawa coupling

of h, we define the scaling factor as

κf i ≡
Re[c331 Model

hf if i ]

Re[cSMhf if i ]
, κV ≡ Re[c331 Model

hV V ]

Re[cSMhV V ]
, V = W, Z, (IV.6)

where cSMhf if i and cSMhV V (c331 Model
hf if i and c331 Model

hV V ) are the hf̄ if i and hV V coupling in the SM

(our model), respectively. To clearly show the flavour dependence, we keep the flavour index

i in the above expressions. From Eq. (IV.1), these scaling factors are calculated as

κdi =
(Γh

d)ii,

mdi
, κui =

(Γh
u)ii,

mui

, κei = ξh, κV = sin(β − α). (IV.7)

It is important to comment on the scaling factors in the THDMs with a softly-broken Z2

symmetry, where the type-II THDM is the one which has the same structure of the Yukawa

interaction as that of the minimal supersymmetric SM. In addition to the type-II model, we

can define the other three independent types of the THDMs, the so-called type-I, type-X

and type-Y [48]. The scaling factors for the Yukawa couplings are flavour universal in the

THDMs, and these formulae are given in Table III.

2 The meaning of almost here is that, for instance, the (3,3) element of Γh

d
is not exactly determined by ξh,

i.e., the ζh dependence also enters, due to the small off-diagonal elements of V d

L
.
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FIG. 3: Predictions for the scaling factor of the Yukawa couplings in our model and the THDMs

with a softly-broken Z2 symmetry. The upper (lower)-left and upper (lower)-right panel show the

prediction on the κb-κs and κt-κc plane with cos(β − α) < 0 (cos(β − α) > 0), respectively. The

solid, dashed and dotted curve in each panel show the case with sin(β−α) = 0.995, 0.99 and 0.98,

respectively. The value of tan β is varied from 1 to 10, and the each dot on the curves shows the

prediction with a specific value of tan β.

In Fig. 3, we show the correlation of the scaling factors κb and κs (left panel), and κt and

κc (right panel) in our model and in the THDMs. The upper and lower panels respectively

show the case of cos(β − α) < 0 and cos(β − α) > 0. In each panel, the dots on the curves

show the prediction in the different value of tanβ, where the interval of each dot corresponds
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to the one value difference in tanβ. The solid, dashed and dotted curves show the case for

sin(β−α) = 0.995, 0.99 and 0.98, respectively, where these correspond to the case with 0.5,

1 and 2% deviation in the hV V couplings. For the predictions in the THDMs, we slightly

shift the three curves from their original locations in order to clearly show the three cases.

We can clearly see that the predictions in our model and in the THDMs are given in the

different region on the both κb-κs and the κt-κc plane. Therefore, we can distinguish our

model from the THDMs from the precise measurement of the Yukawa couplings as long

as κV 6= 1 is given. We note that the four types of the THDMs are also distinguished by

looking at the correlation among κb, κτ and κt as shown in Ref. [44].

B. Phenomenology for the extra Higgs bosons

We discuss the phenomenology of the extra Higgs bosons in this subsection, i.e., we first

calculate the decay branching fractions and then evaluate the production cross sections at

the LHC.

Basically, the decay property of H , A and H± is similar to the corresponding extra Higgs

boson in the THDMs in the context that they mainly decay into a fermion pair when we

take sin(β − α) = 1. If there is a non-zero mass difference among the extra Higgs bosons,

the decay associated with a weak boson can also be dominant such as H± → AW±/HW±

if mH± > mA/H . The most important decay property in our model is seen in the flavour

violating decay modes of the extra Higgs bosons which are naturally suppressed in the

THDMs. When sin(β − α) 6= 1 is given, the fermiophilic nature of H is lost, and then

the decay modes with the W+W− and ZZ become important. Besides, the H → hh

decay mode also opens, because the Hhh coupling is proportional to cos(β − α) as given in

Eq. (C.5). These features with sin(β−α) 6= 1 are also seen in the THDMs. From the above

discussion, the characteristic decay mode, i.e., the flavour violating processes, is clearly seen

in sin(β − α) ≃ 1.

In the following, we numerically show the decay branching fractions of H , A and H± in
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FIG. 4: Decay branching fractions of A as a function of tan β. We take mA = mH = mH± = 300

(500) GeV for the left (right) panel.

the case of sin(β − α) = 1. In this analysis, we use the following SM input parameter [32]:

mt = 173.21 GeV, m̄b = 3.0 GeV, m̄c = 0.677 GeV, m̄s = 0.0934 GeV,

mZ = 91.1876 GeV, mW = 80.385 GeV, GF = 1.1663787× 10−5 GeV−2,

mh = 125 GeV, mτ = 1.77684 GeV, αs = 0.1185. (IV.8)

The running quark masses m̄b, m̄c and m̄s are taken at the mZ scale [49]. We use the same

values of the quark mixing matrix elements as given in Eq. (III.13). We note that for the

neutral Higgs decays, the decay rates of A/H → q̄iqj and A/H → q̄jqi (i 6= j) are summed.

All the relevant formulae of the decay rates of the Higgs bosons are presented in App. C.

In Figs. 4 and 5, we show the decay branching fractions of A and H as a function of

tan β, respectively. The left (right) panel shows the case for mA = mH = mH± = 300

(500) GeV. For the left case, we see that the tc and bb modes are dominant in the wide

range of tanβ, where the former and latter mode have the branching fraction of about 80%

and about 20%, respectively. Except for the small difference in the A → gg and H → gg

modes, the branching fractions of A and H are almost the same. For the 500 GeV case

shown in the right panel, the tt̄ channel is kinematically allowed and this can be dominant

in the small tan β region. However, when tan β & 4, the main decay mode is replaced by

the tc mode. We here comment on the one-loop induced decay modes of A/H → γγ and

A/H → Zγ. Typically, the branching fractions of these modes are the order of 10−4-10−5

when mH = mA = 300 GeV. Smaller values of the branching fractions are obtained when
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FIG. 5: Decay branching fractions of H as a function of tan β. We take mA = mH = mH± = 300

(500) GeV for the left (right) panel.
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FIG. 6: Decay branching fractions of H± as a function of tan β. We take mA = mH = mH± = 300

(500) GeV for the left (right) panel.

tan β and/or the masses of A and H increase.

In Fig. 6, we show the decay branching fractions of H+ as a function of tanβ. Similar to

the case for the neutral Higgs bosons, we take mA = mH = mH± = 300 (500) GeV for the

left (right) panel. We see that the main decay mode is changed from the tb̄ mode to the ts̄

mode at tan β ≃ 5 for the both 300 GeV and 500 GeV case. These flavour violating decays

A/H → tc and H± → ts cannot be dominant in the four types of THDMs, so that these

decay processes can be useful to identify our model.

Finally, we calculate the production cross sections of the extra Higgs bosons at the LHC.

The neutral Higgs bosons A and H are mainly produced via the gluon fusion mechanism:
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FIG. 7: (Left) Production cross section of the gluon fusion process for H (black) and A (red) as a

function of tan β. (Right) Production cross section of the bottom quark associated process for H

or A as a function of tan β. For the both panels, the solid (dashed) curves show the case for the

mass of A or H to be 300 (500) GeV, and the collision energy is taken to be 13 TeV.

gg → A/H . The production cross section is calculated by

σ(gg → A/H) = σ(gg → hSM)×
Γ(A/H → gg)

Γ(hSM → gg)
, (IV.9)

where hSM is the SM Higgs boson. The analytic expression for the decay rate Γ(A/H → gg)

into the two gluons is given in Eq. (C.6). σ(gg → hSM) is the gluon fusion cross section

for hSM, where the mass of hSM is taken here to be the same as that of A or H . We

quote the value of σ(gg → hSM) at the next-to-next-to leading order in QCD from [50].

In addition to the gluon fusion process, the bottom quark associated production of A and

H : gg → bb̄A/bb̄H can also be important. This cross section is proportional to |(ΓA/H
b )33|2

which is roughly determined by (mb × tan β)2 when sin(β−α) = 1. Therefore, for the large

tan β region, this production mechanism becomes important.

In Fig. 7, we plot the production cross section for A and H as a function of tan β

from the gluon fusion (left) and the bottom quark associated process (right) at the center

of mass energy of 13 TeV. We use CalcHEP [30] for the calculation of the bottom quark

associated process, and apply to CTEQ6L [51] for the parton distribution functions (PDFs).

We separately show the gluon fusion cross section for A and H , but we do not for the

bottom quark associated process, since the cross section of gg → bb̄A and gg → bb̄H are

almost the same in this configuration. For each process, we show the case with the masses

of A and H to be 300 GeV (solid curve) and 500 GeV (dashed curve). We see that for the
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FIG. 8: Cross section for the gb → tH− process as a function of tan β at the collision energy of 13

TeV. The solid (dahsed) curves show the case for mH± = 300 (500) GeV.

low tanβ region, the gluon fusion process gives the much larger cross section as compared

to the bottom quark associated process, e.g., at tan β ≃ 1, the cross section is about 30 pb

(10 pb) and 1 pb (0.5 pb) for A (H) at mA(mH) = 300 and 500 GeV, respectively. However,

this becomes small as tan β increases, and at around tan β = 10, it takes the minimal value

to be about 1 pb (10 fb) for the case with mA and mH being 300 (500) GeV. This is simply

because the reduction of the top Yukawa coupling (Γ
A/H
t )33 whose magnitude is roughly

determined by mt × cotβ. For tan β & 10, the bottom quark associated process gives the

larger cross section as compared to the gluon fusion process.

Finally, we discuss the production of H± at the LHC. The main production mode has

been known to be the gluon-bottom fusion process, i.e., gb → H−t [52, 53] when the mass of

charged Higgs bosons is larger than the top quark mass. We calculate the production cross

section by using CalcHEP with CTEQ6L for PDFs as it was done in the calculation of the cross

section of the bottom quark associated production. In Fig. 8, we show the cross section of

the gb → H−t process as a function of tanβ in the case of mH± = 300 GeV (solid curve)

and 500 GeV (dashed curve). Similar to the gluon fusion process, the cross section becomes

minimum at around tan β = 10, while it gives large values at the low and high tan β case,

e.g., we obtain 0.9 (0.2) pb at tanβ ≃ 1 for mH± = 300 (500) GeV, and 0.7 (0.15) pb at
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tan β ≃ 50 for mH± = 300 and (500) GeV.

In fact, these results of the cross section of A, H and H± are almost the same as those of

the corresponding Higgs bosons in the type-II THDM. However, we expect that our model

is distinguishable by using the signature of the flavour violating decays of the Higgs bosons.

V. CONCLUSIONS

We have discussed the phenomenology of the model based on the SU(3)c×SU(3)L×U(1)X

gauge theory with the minimal form of the Higgs sector which is composed of the three

SU(3)L triplet scalar fields. We have shown that our Higgs sector effectively becomes

THDMs after the spontaneous symmetry breaking SU(3)L × U(1)X → SU(2)L × U(1)Y .

One of the most important features in our effective THDM originating from the 331 model

is seen in the structure of the quark Yukawa interactions, in which the first and the sec-

ond generation quarks couple to the different Higgs doublet from that couples to the third

generation quarks. This flavour dependent structure inevitably causes FCNC’s at the tree

level via the Higgs boson mediations. In order to avoid the constraint from the flavour

experiments, we have taken the alignment limit on the mass matrix of the CP-even Higgs

bosons, which is naturally realized in the limit of v2/u2 → 0. Under the alignment limit, we

have shown that the Higgs boson masses of O(100) GeV are consistent with the considered

K0-K̄0, B0-B̄0 and D0-D̄0 mixings. In this allowed parameter space, we have considered the

deviation in the SM-like Higgs boson couplings from the SM predictions. We have found

that in the case of sin(β − α) 6= 1, our predictions on the κb-κs and κt-κc plane appear in

the region different from that in the THDMs with a softly-broken Z2 symmetry. We can

thus distinguish our model from the THDMs by looking at the deviations in these quark

Yukawa couplings. We have also investigated the properties of the extra Higgs bosons, i.e.,

the decays and productions at the LHC. We have found that the flavour violating Higgs

boson decay modes, e.g., H/A → tc and H± → ts are dominant in the wide region of the

parameter space. These flavour violating decays of the extra Higgs bosons can be useful to

identify our model, and to discriminate our model from the THDMs in addition to using

the deviation of the SM-like Higgs boson couplings.
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Appendix A: Higgs boson couplings to weak bosons

We give the expressions for the Higgs boson couplings with weak gauge bosons. The

Higgs-Gauge-Gauge type interaction terms are extracted by

Lint =
g2v

2

∑

α=1−3

(cβR1α + sβR2α)HαW
+
µ W−µ +

g2

2

∑

α=1−3

(cβvR1α + uR3α)HαW
′+
µ W ′−µ

+
g2v

3c2331

∑

α=1−3

[

cβc
2
ZR1α +

sβ
4

(

c2Z + 3c2331s
2
Z + 2

√
3cZsZ

)

R2α

+
u

4v

(

c2Z + 3c2331s
2
Z − 2

√
3cZsZ

)

R3α

]

HαZµZ
µ

+
g2v

3c2331

∑

α=1−3

[

{cβs2ZR1α +
sβ
4

(

3c2Zc
2
331 + s2Z − 2

√
3cZsZ

)

R2α

+
u

4v

(

3c2Zc
2
331 + s2Z + 2

√
3cZsZ

)

R3α

]

HαZ
′
µZ

′µ

+
g2v

3c2331

∑

α=1−3

{

− 2cβcZsZR1α +
sβ
4

[

2
√
3(c2Z − s2Z)c331 + 2(3c2331 − 1)cZsZ

]

R2α

+
u

4v

[

−2
√
3(c2Z − s2Z)c331 + 2(3c2331 − 1)cZsZ

]

R3α

}

HαZµZ
′µ

+
g2v

4

∑

α=1−3

(

sβR2α +
u

v
R3α

)

Hα(Y1µY
µ
1 + Y2µY

µ
2 )

+
[ g2v

6c331
cβsβ

(√
3cZ − 3sZc331

)

H+W−
µ Zµ − g2v

6c331
cβsβ

(√
3sZ + 3cZc331

)

H+W−
µ Z ′µ

+
g2

2
vcβsβH

+W ′−
µ (Y µ

1 − iY µ
2 )
]

+ h.c., (A.1)

where cZ = cos θZ and sZ = sin θZ . Notice here that there appears the H±W∓Z coupling,

which vanishes in THDMs at the tree level [54–58]. Therefore, to measure this vertex is

useful to discriminate our model from THDMs. The feasibility study of this vertex has been

discussed at the LHC [59] and at the ILC [60]. In our model, however, we find that the
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coefficient of this vertex is only proportional to v2/u2 (plus the order v4/u4 correction) after

taking the series expansion of the mixing angle θZ under v2/u2 ≪ 1, so that the magnitude

of this vertex is negligibly small.

Appendix B: Higgs boson couplings to fermions

The dimensionful 3× 3 couplings Γφ
q and ΓH±

q given in Eq. (II.56) are expressed as

ΓHα

d = V d
Ldiag

(

R2α

sβ
,
R2α

sβ
,
R1α

cβ

)

(V d
L )

†Mdiag
d , (B.1a)

ΓHα
u = V u

L diag

(

R1α

cβ
,
R1α

cβ
,
R2α

sβ

)

(V u
L )

†Mdiag
u , (B.1b)

ΓA
d =

i
√

1 + s2βt
2
γ

V d
Ldiag

(

− 1

tβ
,− 1

tβ
, tβ

)

(V d
L )

†Mdiag
d , (B.1c)

ΓA
u =

i
√

1 + s2βt
2
γ

V u
L diag

(

−tβ ,−tβ,
1

tβ

)

(V u
L )

†Mdiag
u , (B.1d)

ΓH±

d = V u
L diag

(

1

tβ
,
1

tβ
, tβ

)

(V d
L )

†Mdiag
d , (B.1e)

ΓH±

u = V d
Ldiag

(

tβ , tβ,
1

tβ

)

(V u
L )

†Mdiag
u . (B.1f)

Notice here that in the above expressions, if the diag(x, y, z) part is proportional to the

3 × 3 identity matrix, we then obtain the same form of the Yukawa interaction as that in

a Z2 symmetric version of THDMs (see, e.g., [48]), where the V q
L dependence disappears in

the neutral Higgs boson couplings, and the CKM matrix VCKM appears in the charged Higgs

boson couplings. Consequently, the flavour violating quark Yukawa couplings to neutral

Higgs boson do not appear at the tree level in the THDMs. However, this is not the case

in our model, because at least the diag(x, y, z) part for A is not proportional to the identity

matrix. As a result, the flavour violating couplings to the neutral Higgs bosons inevitably

appear at the tree level, which is one of the most important consequences of the structure

of our Yukawa interaction.

Appendix C: Decay rates of the Higgs bosons

We present the analytic expressions for the decay rates of the extra Higgs bosons which

are used to calculate the decay branching fractions as shown in Sec. IV-B.
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The decay rates for the neutral Higgs bosons φ = A,H, h with a fermion pair in the final

state are given as

Γ(φ → qiq̄j) = Nc

mφ

32πv2

{

(1− x2
qi
− x2

qj
)
(

∣

∣(Γφ
q )ij + (Γφ

q )
∗
ji

∣

∣

2
+
∣

∣(Γφ
q )ij − (Γφ

q )
∗
ji

∣

∣

2
)

− 2xqixqj

(

∣

∣(Γφ
q )ij + (Γφ

q )
∗
ji

∣

∣

2 −
∣

∣(Γφ
q )ij − (Γφ

q )
∗
ji

∣

∣

2
)}

λ1/2(x2
qi
, x2

qj
), (C.1)

Γ(φ → qq̄) = Nc

mφ

8πv2

{

(1− 2x2
q)
[

Re(Γφ
q )

2 + Im(Γφ
q )

2
]

− 2x2
q

[

Re(Γφ
q )

2 − Im(Γφ
q )

2
]

}

β(x2
q), (C.2)

Γ(φ → ℓ+ℓ−) =
mφ

8πv2
m2

ℓ t
2
β β

pφ(x2
ℓ), (C.3)

where the two body phase space function λ(x, y) is given by λ(x, y) = 1 + x2 + y2 − 2x −
2y − 2xy, and β(x) =

√

λ(x, x) =
√
1− 4x2. In the above expressions, we also introduced

xa = ma/mφ, pφ = 3 (1) for φ = H (A), and the color factor Nc. For the expression of

φ → qiq̄j mode given in Eq. (C.1), the flavour index must not be identical, i.e., i 6= j. If the

mass of H is larger than 2×mh ≃ 250 GeV, the H → hh decay channel also opens, and its

decay rate is given by

Γ(H → hh) =
1

8π

|λHhh|2
mH

√

1− 4m2
h

m2
H

, (C.4)

where λHhh is the coefficient of the Hhh vertex in the Lagrangian. In the limit of v/u → 0,

we have

λHhh = −cβ−α

2v

[

m2
h +m2

A −m2
H + 3(m2

H −m2
A)

s2α
s2β

]

. (C.5)

The decay rate of the one-loop induced φ → gg mode is given by

Γ(φ → gg) =

√
2GFα

2
sm

3
φ

128π3





∣

∣

∣

∣

∣

∑

i

Re(Γφ
q )ii

mqi
F φ
1 (mqi)

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

i

Im(Γφ
q )ii

mqi
F φ
2 (mqi)

∣

∣

∣

∣

∣

2


 , (C.6)

where the loop functions are given by

F φ
1 (m) = −4m2

m2
φ

[

2−m2
φ

(

1− 4m2

m2
φ

)

C0(0, 0, m
2
φ, m,m,m)

]

,

FA
2 (m) = −4m2C0(0, 0, m

2
A, m,m,m), (C.7)

with C0 being the Passarino-Veltman three point scalar function [61].
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Finally, the decay rates for the charged Higgs boson H± into a pair of fermion is given

by

Γ(H+ → ui d̄j) = Nc
mH±

16πv2

{

(1− y2ui
− y2dj )

(

∣

∣

∣
(ΓH±

d )ij + (ΓH±

u )∗ji

∣

∣

∣

2

+
∣

∣

∣
(ΓH±

d )ij − (ΓH±

u )∗ji

∣

∣

∣

2
)

− 2yui
ydj

(

∣

∣

∣
(ΓH±

d )ij + (ΓH±

u )∗ji

∣

∣

∣

2

−
∣

∣

∣
(ΓH±

d )ij − (ΓH±

u )∗ji

∣

∣

∣

2
)

}

λ1/2(y2ui
, y2dj), (C.8)

Γ(H+ → ℓ+ ν) =
mH±

8πv2
m2

ℓ t
2
β (1− y2ℓ )

2, (C.9)

where ya = ma/mH± .
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