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We derive effective Polyakov line actions for SU(3) gauge theories with staggered dynamical fermions, for a

small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. The derivation is

via the method of relative weights, and the theories are solved at finite chemical potential by mean field theory.

We find in some instances that the long-range couplings in the effective action are very important to the phase

structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only

one of these states corresponds to the underlying lattice gauge theory.

I. INTRODUCTION

One approach to understanding the phase structure of QCD

at finite densities is to map the theory onto a simpler the-

ory, described by an effective Polyakov line action, and then

to solve for the phase structure of that theory by whatever

means may be available. At strong couplings and heavy

quark masses the effective theory can be obtained by a strong-

coupling/hopping parameter expansion, and such expansions

have been carried out to rather high orders [1]. These meth-

ods do not seem appropriate for weaker couplings and light

quark masses, and a numerical approach of some kind seems

unavoidable. There are, of course, methods aimed directly at

the lattice gauge theory, bypassing the effective theory. These

include the Langevin equation [2] and Lefshetz thimbles [3].

In this article, however, we are concerned with deriving the

effective Polyakov line action numerically, and solving the re-

sulting theory at non-zero chemical potential by a mean field

technique. In the past we have advocated a “relative weights”

method [4, 5], reviewed below, to obtain the effective theory,

but thus far this method has only been applied to pure gauge

theory, and to gauge theory with scalar matter fields. Here we

would like to report some first results for SU(3) lattice gauge

theory coupled to dynamical staggered fermions.1

II. THE RELATIVE WEIGHTS METHOD

The effective Polyakov line action (henceforth “PLA”)

is the theory obtained by integrating out all degrees of

freedom of the lattice gauge theory, under the constraint

that the Polyakov line holonomies are held fixed. It is

convenient to implement this constraint in temporal gauge

1 For an interesting alternative approach to determining the PLA by numeri-

cal means, so far applied to pure SU(3) gauge theory, see [6].

(U0(x, t 6= 0) = 1), so that

exp
[
SP[Uxxx,U

†
xxx ]
]

=

∫
DU0(xxx,0)DUkDφ

{
∏

xxx

δ [Uxxx −U0(xxx,0)]

}
eSL , (1)

where φ denotes any matter fields, scalar or fermionic, cou-

pled to the gauge field, and SL is the SU(3) lattice action

(note that we adopt a sign convention for the Euclidean action

such that the Boltzman weight is proportional to exp[+S]). To

all orders in a strong-coupling/hopping parameter expansion,

the relationship between the PLA at zero chemical potential

µ = 0, and the PLA corresponding to a lattice gauge theory at

finite chemical potential, is given by

S
µ
P [Uxxx,U

†
xxx ] = S

µ=0
P [eNt µUxxx,e

−Nt µU†
xxx ] . (2)

So the immediate problem is to determine the PLA at µ = 0.

The relative weights method can furnish the following in-

formation about SP: Let U denote the space of all Polyakov

line (i.e. SU(3) spin) configurations Uxxx on the lattice volume.

Consider any path through this configuration space Uxxx(λ )
parametrized by λ . Relative weights enables us to compute

the derivative of the effective action SP along the path

(
dSP

dλ

)

λ=λ0

(3)

at any point {Uxxx(λ0)} ∈ U . The strength of the method is

that it can determine such derivatives along any path, at any

point in configuration space, for any set of lattice couplings

and quark masses where Monte Carlo simulations can be ap-

plied. The drawback is that it is not straightforward to go from

derivatives of the action to the action itself, and in general one

must assume some (in general non-local) form for the effec-

tive action, and use the relative weight results to determine the

parameters that appear in that action.

In practice the procedure is as follows. Let

U ′
xxx =Uxxx(λ0 +

1

2
∆λ ) , U ′′

xxx =Uxxx(λ0 −
1

2
∆λ ) , (4)
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denote two Polyakov line configurations that are nearby in U ,

with S′L,S
′′
L the lattice actions with timelike links U0(xxx,0) on a

t = 0 timeslice held fixed to U0(xxx,0) =U ′
xxx and U0(xxx,0) =U ′′

xxx

respectively. Defining

∆SP = SP[U
′
xxx]− SP[U

′′
xxx ] , (5)

we have from (1),

e∆SP =

∫
DUkDφ eS′L
∫

DUkDφ eS′′L

=

∫
DUkDφ exp[S′L − S′′L]e

S′′L
∫

DUkDφ eS′′L

=
〈

exp[S′L − S′′L]
〉′′

, (6)

where 〈...〉′′ indicates that the expectation value is to be taken

in the probability measure

eS′′L
∫

DUkDφ eS′′L
. (7)

This expectation value is straightforward to compute numeri-

cally, and from the logarithm we determine ∆SP. Then

(
dSP

dλ

)

λ=λ0

≈ ∆SP

∆λ
(8)

is the required derivative.

The PLA inherits, from the underlying lattice gauge theory,

a local symmetry under the transformation Uxxx → gxxxUxxxg−1
xxx ,

which implies that the PLA can depend only on the eigen-

values of the Polyakov line holonomies Uxxx. Let us define the

term “Polyakov line” in an SU(N) theory to refer to the trace

of the Polyakov line holonomy

Pxxx ≡
1

N
Tr[Uxxx] . (9)

The SU(2) and SU(3) groups are special in the sense that Pxxx

contains enough information to determine the eigenvalues of

Uxxx providing, in the SU(3) case, that Pxxx lies in a certain region

of the complex plane. Explicitly, if we denote the eigenvalues

of Uxxx as {eiθ1 ,eiθ2 ,e−i(θ1+θ2)}, then θ1,θ2 are determined by

separating (9) into its real and imaginary parts, and solving

the resulting transcendental equations

cos(θ1)+ cos(θ2)+ cos(θ1 +θ2) = 3Re[Px] ,

sin(θ1)+ sin(θ2)− sin(θ1 +θ2) = 3Im[Px] . (10)

In this sense the PLA for SU(2) and SU(3) lattice gauge theo-

ries is a function of only the Polyakov lines Pxxx.

We therefore compute the derivatives of the effective action,

by the relative weights method, with respect to the Fourier

(“momentum”) components akkk of the Polyakov line configu-

rations

Pxxx = ∑
kkk

akkkeikkk·xxx , (11)

The procedure is to run a standard Monte Carlo simulation,

generate a configuration of Polyakov line holonomies Uxxx, and

compute the Polyakov lines Pxxx. We then set a particular mo-

mentum mode akkk = 0 in this configuration to zero, resulting in

the modified configuration P̃xxx, where, in terms of the original

configuration

P̃xxx = Pxxx − akkkeikkk·xxx

= Pxxx −
(

1

L3 ∑
yyy

Pyyye−ikkk·yyy
)

eikkk·xxx . (12)

Note that kkk is fixed; i.e. there is a different P̃xxx configuration

for each choice of kkk. Then define

P′′
xxx =

(
α − 1

2
∆α
)

eikkk·xxx + f P̃x ,

P′
xxx =

(
α +

1

2
∆α
)

eikkk·xxx + f P̃x , (13)

where f is a constant close to one. We derive the eigenvalues

of the corresponding holonomies U ′′
x and U ′

x, whose traces are

P′′
xxx ,P

′
xxx respectively, by solving (10). The holonomies them-

selves can be taken to be diagonal matrices, without any loss

of generality, thanks to the invariance under Uxxx → gxxxUxxxg−1
xxx

noted above. If we could take f = 1, then in creating P′′
xxx ,P

′
xxx we

are only modifying a single momentum mode of the Polyakov

lines of a thermalized configuration. However, there are two

problems with setting f = 1. The first is that at f = 1 and fi-

nite α there are usually some lattice sites where |P′
xxx|, |P′′

xxx |> 1,

which is not allowed. In SU(3) there is the further problem

that at some sites the transcendental equations (10) have no

solution for real angles θ1,θ2. So we are forced to choose f

somewhat less than one; in practice we have used f = 0.8.

The choice f = 1 is only possible in the large volume, α → 0

limit.

From the holonomy configurations U ′′
x ,U

′
x we compute

derivatives of SP, as described above, with respect to the real

part aR
kkk of the Fourier components akkk.

III. A HEAVY-QUARK ANSATZ FOR SP

The problem is to derive SP from the derivatives ∂SP/∂aR
kkk
.

Unfortunately there is no systematic procedure for doing this,

and an ansatz for the effective action is required. For pure

gauge theories we have assumed a bilinear effective action of

the form

SP = ∑
xxxyyy

PxxxP†
yyy K(xxx− yyy)

= ∑
kkk

aka∗kK̃(kkk) , (14)

where

K(xxx− yyy) =
1

L3 ∑
kkk

K̃(k)e−kkk·(xxx−yyy) . (15)

This non-local coupling can be obtained from derivatives

1

L3

(
∂SP

∂aR
kkk

)

akkk=α

= 2K̃(kkk)α . (16)
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computed by the relative weights method. A test of the

method and the ansatz (14) is to compare the Polyakov line

correlator

G(R) = 〈P(xxx)P†(yyy)〉 , R = |xxx− yyy| (17)

computed in the effective theory with the corresponding cor-

relator computed in the underlying lattice gauge theory. Ex-

cellent agreement was found in SU(2) and SU(3) pure gauge

and gauge-Higgs theories [4, 5, 7].

Now we are interested in adding dynamical fermions,

which break global center symmetry explicitly in the under-

lying lattice gauge theory, and the problem is to determine

their contribution to the effective action. For heavy quarks

the answer is known [8], and if we denote by SF the cen-

ter symmetry-breaking piece of the effective action, then to

leading order in the hopping parameter expansion, at non-zero

chemical potential, we have

exp[SF(µ)] = ∑
xxx

det[1+ heµ/TTrUxxx]
p det[1+ he−µ/TTrU†

xxx ]
p

(18)

where determinants can be expressed entirely in terms of

Polyakov line operators, using the identities

det[1+ heµ/TTrUxxx] = 1+ heµ/TTrUxxx + h2e2µ/T TrU†
xxx + h3e3µ/T ,

det[1+ he−µ/TTrU†
xxx ] = 1+ he−µ/TTrU†

xxx + h2e−2µ/T TrUxxx + h3e−3µ/T , (19)

and where h = (2κ)Nt , with κ the hopping parameter for

Wilson fermions, or κ = 1/2m for staggered fermions, and

Nt is the extension of the lattice in the time direction. The

power is p = 1 for four flavors of staggered fermions, and

p = 2N f for N f flavors of Wilson fermions. It is possible

to compute higher order terms in h in a combined strong-

coupling/hopping parameter expansion [1], and of course

fermion loops which do not wind around the periodic time

direction will also contribute to the center symmetric part of

the effective action.

Our proposal is to fit the relative weights data to an ansatz

for SP based on the massive quark effective action, i.e.

SP[Uxxx] = ∑
xxx,yyy

PxxxK(x− y)Pyyy+ p∑
xxx

{
log(1+ heµ/TTr[Uxxx]+ h2e2µ/T Tr[U†

xxx ]+ h3e3µ/T )

+ log(1+ he−µ/TTr[Uxxx]+ h2e−2µ/T Tr[U†
xxx ]+ h3e−3µ/T )

}
(20)

where both the kernel K(xxx− yyy) and the parameter h are to be

determined by the relative weights method. The full action is

surely more complicated than this ansatz; the assumption is

that these terms in the action are dominant, and the effect of a

lighter quark mass is mainly absorbed into the parameter h and

kernel K(xxx−yyy). We are aware that this is a strong assumption.

There are two modest checks, however. First we can compare,

at µ = 0, the Polyakov line correlators computed in the ef-

fective theory and the underlying gauge theory, and see how

well they agree. Secondly, if it turns out that the h-parameter

is very small even for quark masses which are fairly light in

lattice units, then that is an indication that more complicated

center symmetry-breaking terms are smaller still, and likely to

be unimportant, at least at µ = 0. Finally, we do know quali-

tatively that an ansatz of this form satisfies the Pauli principle,

in that the number density n of quarks per site will saturate,

as µ → ∞, at the correct integer, which is n = 3 for three col-

ors of staggered unrooted (p = 1) fermions. For these reasons

we regard the ansatz (20) as a reasonable starting point for the

relative weights approach, to be modified as necessary.

Components of the wavevector ki = 2πmi/L are specified

by a triplet of integer mode numbers (m1,m2,m3), and in this

work we have used triplets

(000),(100),(110),(200),(210),(300),(311),(400),

(322),(430),(333),(433),(443),(444),(554) (21)

with lattice extension L = 16 in the three space directions.

In calculating the center symmetry-breaking parameter h and

momentum-space kernel K̃(kkk) at kkk = 0, we gain precision

by carrying out the relative weights calculation at imaginary

chemical potential µ/T = iθ . This is achieved by constructing

U ′
xxx,U

′′
xxx as described above, and then making the replacements

U ′(xxx,0) = eiθU ′
xxx , U ′†(xxx,0) = e−iθU ′†

xxx

U ′′(xxx,0) = eiθU ′′
xxx , U ′′†(xxx,0) = e−iθU ′′†

xxx (22)

which are held fixed in the Monte Carlo simulation. The

simulations are carried out for unrooted staggered fermions,

corresponding to p = 1 in the heavy quark ansatz (20). The

derivative of SP in (20) with respect to the real part aR
0 of the

Polyakov line zero mode is then



4

1

L3

(
∂SP

∂aR
0

)µ/T=iθ

a0=α

= 2K̃(0)α +

{
(3heiθ + 3h2e2iθ )

1

L3 ∑
xxx

Q−1
xxx (θ )+ c.c

}
(23)

where

Qx(θ ) = 1+ 3heiθPxxx + 3h2e2iθ P†
xxx + h3e3iθ (24)

If h ≪ 1, so that it is consistent to drop terms of O(h2) and

higher, then the derivative simplifies to

1

L3

(
∂SP

∂aR
0

)µ/T=iθ

a0=α

= 2K̃(0)α + 6hcosθ (25)

The left hand side of this equation is computed numerically,

for a variety of α,θ , by the relative weights technique. Plot-

ting the data vs. α at θ = 0, we can find K̃(0) and h from the

slope and intercept, respectively. However, a more accurate

estimate of h is obtained by plotting the results vs. θ , at fixed

α , and then extrapolating to α → 0.

Having computed h and K̃(0), the next thing to do is to

compute the kernel K̃(kkk) at kkk 6= 0, and for this we can set the

chemical potential to zero. We then have the derivative of the

action with respect to non-zero modes akkk of the Polyakov lines

1

L3

(
∂SP

∂aR
kkk

)

akkk=α

= 2K̃(kkk)α

+
p

L3 ∑
xxx

(
3heikkk·xxx + 3h2e−ikkk·xxx

Qxxx(0)
+ c.c

)
(26)

Again dropping terms of order h2 and higher, this simplifies

to

1

L3

(
∂SP

∂aR
kkk

)

akkk=α

= 2K̃(kkk)α (27)

The left-hand side is computed via relative weights at a variety

of α , and plotting those results vs. α , K(kkk) is determined from

the slope.

To see how this goes, we show in Fig. 1 our results for

1

L3

(
∂SP

∂aR
0

)µ/T=iθ

a0=0.03

vs. θ (28)

together with a best fit of the data to the form

f (θ ) = c0 + c1 cos(θ ) (29)

for a lattice gauge theory on a 163 × 4 lattice volume with

β = 5.2 (Wilson action) and ma = 0.35 (unrooted staggered

fermions). The fit gives an estimate h = c1/6 = 0.0274(2) at

α = 0.03. In view of this, we seem to be justified in ignoring

terms of order h2 and higher in eqs. (25) and (27). The data

for h is collected at several values of α , and then extrapolated

to α = 0, as shown in Fig. 2. The constant c0 gives an estimate

for K̃(0), and this can also be extrapolated to α = 0. For kkk 6= 0

we may dispense with the imaginary chemical potential, and
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 0.25

 0.3

 0.35

 0.4

 0.45

0 π/2 π 3π/2 2π

1/
L

3 (δ
S P

/δ
α)

a 0
=α

θ

lattice data
0.2387+0.1629cos(θ)

FIG. 1. Derivative of the PLA ∂SP/∂aR
0 with respect to the zero

momentum component of the Polyakov lines, evaluated at a0 = α =
0.03, vs. imaginary chemical potential θ = µ/T . This is for an un-

derlying lattice gauge theory with a Wilson action at β = 5.2, ma =
0.35, Nt = 4.
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FIG. 2. Parameter h extracted from relative weights data with lattice

parameters as in the previous figure, for a variety of a0 = α values,

and extrapolated to α = 0.

simply compute the left hand side of (27) at θ = 0 at selected

values of α . A typical result is shown in Fig. 3. for the mode

triplet (m1m2m3) = (210). From the slope of a best straight-

line fit through the data, we determine K̃(kkk) at this particular

wavevector.

For the results shown in the next section, h and K̃(kkk) have

been determined by the procedure just described.

IV. RESULTS FOR THE PLA

In this initial study we have concentrated on parameters (β ,

quark mass ma, and inverse temperature Nt in lattice units)

which bring us close to, but not past, the deconfinement transi-
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FIG. 3. Relative weights data for the derivative of SP with respect

to the Fourier component of the Polyakov line configuration at mode

numbers (210). The underlying lattice gauge theory is the same as

in the previous two figures.

tion. In all cases we work on a 163×Nt lattice with staggered,

unrooted fermions.

A. Wilson action, Nt = 4

1. β = 5.04, ma = 0.2

Figure 4(a) is a plot of K(kkk) vs. the lattice momentum

kL = 2

√
3

∑
i=1

sin2(ki/2) (30)

We have found in previous work [4], and find here also, that

most of the data points can be fit by two straight lines

K̃ f it(kkk) =

{
c1 − c2kL kL ≤ k0

d1 − d2kL kL ≥ k0
(31)

where k0 is the point of intersection. The exception is one or

two points at the lowest momentum, which do not fall on a

straight line. If in fact K̃ f it(kkk) would fit K̃(kkk) down to kL = 0,

it would imply in position space that K(xxx− yyy) ∝ 1/|xxx− yyy|4.

As in previous work, we interpret the deviation as implying

a cutoff on the long range couplings, and define the position-

space kernel with a long distance cutoff rmax

K(xxx− yyy) =





1
L3 ∑kkk K̃ f it(kL)e

ikkk·(xxx−yyy) |xxx− yyy| ≤ rmax

0 |xxx− yyy|> rmax

. (32)

The cutoff rmax is chosen so that, upon transforming this ker-

nel back to momentum space, the resulting K̃(k) also fits the

low-momentum data at low momenta. The result of this pro-

cedure is shown in Fig. 4(b).

The constant h = 0.033 is determined as explained in the

previous section. The parameter h and the kernel K(xxx− yyy)
are sufficient to specify the PLA, assuming the validity of the

heavy-quark ansatz (20), and at zero chemical potential we

-2
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(a)
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K
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k

K(k)
lattice data

(b)

FIG. 4. For the lattice gauge theory at β = 5.04, ma = 0.2, Nt = 4:

(a) Relative weights results for K̃(kkk) vs kL. Most of the data points

are fit by the two straight lines shown. (b) The two straight line fits

for K̃(kkk), combined with a long-range cutoff, results in the computed

value K̃ f it which also fits the data point at kkk = 0.

may simulate both the PLA and the underlying lattice gauge

theory (LGT) to compute and compare the Polyakov line cor-

relators in each theory. The result is shown in Fig. 5

2. β = 5.2, ma = 0.35

Fig. 6(a) is a plot of K̃(kkk) vs kL, and the analysis proceeds

as in the previous section. The comparison of Polyakov line

correlators in the PLA and LGT is shown in Fig. 6(b).

3. β = 5.4, ma = 0.6

Plots of of K̃(kkk) vs kL and the comparison of Polyakov line

correlators are shown in Figs. 7(a) and 7(b) respectively.
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FIG. 5. Comparison of Polyakov line correlators G(R) vs. R com-

puted in the lattice gauge theory at β = 5.04, ma = 0.2, Nt = 4, and

in the corresponding PLA derived via relative weights.
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FIG. 6. (a) same as Fig. 4(a); and (b) same as Fig. 5, for the underly-

ing lattice gauge theory with β = 5.2, ma = 0.35, Nt = 4.

B. Lüscher-Weisz action, Nt = 6, β = 7.0, ma = 0.3

We have also applied the relative weights method to the

Lüscher-Weisz action, with the parameters listed above. (We

are referring here to the Lüscher-Weisz gauge action, not the

fermion action with a clover term.) Again most of the K̃(kkk)
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(b)

FIG. 7. (a) same as Fig. 4(a); and (b) same as Fig. 5, for the underly-

ing lattice gauge theory with β = 5.4, ma = 0.6, Nt = 4.

data points can be fit by two straight lines. However, there is

a significant difference as compared to the previous cases at

kkk = 0, where K̃(0) lies above, rather than below the straight

line, as seen in Fig. 8(a). Neglecting couplings between lat-

tice sites beyond some separation rmax will inevitably result in

disagreement with the K̃(0) data point.

In this case the strategy is to Fourier transform the two-line

fit (31) to position space, with the modification that we iden-

tify K f it(0) with K̃(0), and dispense with a finite-distance cut-

off at rmax. The resulting kernel K(xxx− yyy) in the PLA couples

each lattice site to every other lattice site. The result appears

to be multiple metastable phases, which depend, in numerical

simulations, on the initial configuration.

In Fig. 8(b) we display our results for the Polyakov line

correlator G(R) obtained from numerical simulations of

• the Polyakov line action with a starting configuration

initialized to Pxxx = 0.3;

• the Polyakov line action with a starting configuration

initialized to Pxxx = 0.0;

• the underlying lattice gauge theory.

These results indicate that there are at least two phases in the

PLA, confined and deconfined, which are stable over thou-
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action Nt β ma c1 c2 d1 d2 rmax h

Wilson 4 5.04 0.2 3.45 1.24 4.22 1.79 4.2 0.0334

Wilson 4 5.2 0.35 4.57 1.72 5.33 2.27 2.3 0.0264

Wilson 4 5.4 0.6 7.12 3.09 − − 3.4 0.0168

Lüscher-Weisz 6 7.0 0.3 5.94 3.20 4.01 1.77 ∞ 0.0117

TABLE I. Parameters defining the effective Polyakov line actions SP, for the corresponding SU(3) lattice gauge theories with dynamical

staggered fermions on a 163 ×Nt lattice volume. The lattice gauge theory is specified in the the first four entries on each row, and the effective

action used to compute Polyakov line correlators is described by the remaining parameters. In the Lüscher-Weisz case, with rmax = ∞, it is

also necessary to specify K̃(0) = 7.46 in defining SP, as discussed in the text.
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FIG. 8. (a) same as Fig. 4(a); and (b) same as Fig. 5, for the

underlying lattice gauge theory with the Lüscher-Weisz action at

β = 7, ma = 0.3, Nt = 6. In this case the result for the Polyakov line

correlator determined by numerical simulation of the effective action

depends on the initialization. Upper data in (b) is obtained by initial-

izing at Pxxx = 0.3, and the lower data is obtained by initialization at

Pxxx = 0. The lower data points agree quite well with G(R) computed

in the underlying lattice gauge theory, which are also shown.

sands of Monte Carlo sweeps. The Polyakov line correlator of

the PLA in the confined phase is consistent with the correlator

in the underlying lattice gauge theory, while the correlator in

the deconfined phase is not. It seems that for the purpose of

numerical simulations the effection action alone may be insuf-

ficient, and it may be necessary in some cases to supplement

the PLA with a prescription for initialization of the SU(3) spin

system.

The existence of multiple stable or metastable phases in

the PLA is very clearly associated with the long-range cou-

plings in the effective action. We have checked that if one

simply truncates the range of bilinear couplings then the mul-

tiple phases disappear, and the result for the Polyakov line

correlator is independent of the initialization. Of course, that

arbitrary truncation also destroys the agreement of the corre-

lators obtained in the PLA and the underlying lattice gauge

theory.

Parameters which describe the effective actions in each of

the cases considered above are displayed in Table I.

V. MEAN FIELD SOLUTIONS AT FINITE DENSITY

We review here the mean field approach to solving the PLA

at finite density, as explained in refs. [9] and [10]. The parti-

tion function corresponding to the action (20) is

Z =

∫
∏

xxx

dUxxxDxxx(µ ,TrU,TrU†)eS0

S0 = ∑
xxxyyy

1

9
K(xxx− yyy)TrUxxxTrUyyy (33)

with

Dxxx(µ ,TrU,TrU†)) = (1+ heµ/TTrUxxx + h2e2µ/T TrU†
xxx + h3e3µ/T )(1+ he−µ/TTrU†

xxx + h2e−2µ/T TrUxxx + h3e−3µ/T )

= a1 + a2TrUxxx + a3TrU†
xxx + a4(TrUxxx)

2 + a5(TrU†
xxx )

2 + a6TrUxxxTrU†
xxx (34)
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and

a1 = 1+ h3(e3µ/T + e−3µ/T )+ h6

a2 = (1+ h2)2heµ +(1+ h2)h2e6−2µ − 2h3eµ , a3 = (h+ h5)e−µ/T +(h2 + h4)e2µ/T

a4 = h3e−µ/T , a5 = h3eµ/T , a6 = h2 + h3 . (35)

We then write

S0
P =

1

9
∑
(xxxyyy)

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy)+ a0 ∑

xxx

Tr[Uxxx]Tr[U†
xxx ] ,(36)

where we introduce the notation for the double sum excluding

xxx = yyy

∑
(xxxyyy)

≡ ∑
xxx

∑
yyy

(1− δxxx,yyy) . (37)

Next introduce parameters u,v

TrUxxx = (TrUxxx − u)+ u , TrU†
xxx = (TrU†

xxx − v)+ v (38)

so that

S0 = J0 ∑
xxx

(vTrUxxx + uTrU†
xxx )− uvJ0V

+a0 ∑
xxx

Tr[Uxxx]Tr[U†
xxx ]+E0 , (39)

where V = L3 is the lattice volume, and we have defined

E0 = ∑
(xxxyyy)

(TrUx − u)(TrU†
yyy − v)

1

9
K(xxx− yyy) ,

J0 =
1

9
∑
xxx6=0

K(xxx) , a0 =
1

9
K(0) . (40)

Parameters u and v are to be chosen such that E0 can be treated

as a perturbation, to be ignored as a first approximation. In

particular, 〈E0〉= 0 when

u = 〈TrUx〉 , v = 〈TrU†
x 〉 . (41)

These conditions turn out to be equivalent to the stationarity

of the mean field free energy. The leading mean field result is

obtained by dropping E0, in which case the integrand of the

partition function factorizes

Zm f = e−uvJ0V ∏
x

∫
dUxxxDxxx(µ ,TrU,TrU†)exp[a0TrUxxxTrU†

xxx ]e
ATrUxxx+BTrU

†
xxx

= e−uvJ0V

{
D

(
µ ,

∂

∂A
,

∂

∂B

)
exp

[
a0

∂ 2

∂A∂B

]∫
dUeATrU+BTrU†

}V

(42)

where A = J0v, B = J0u. The SU(3) group integral is known

(see, e.g., [9]),

∫
dUeATrU+BTrU†

=
∞

∑
s=−∞

det
[
D−s

i j I0[2
√

AB]
]

(43)

where D−s
i j is the i, j-th component of a matrix of differential

operators

Ds
i j =

{
Di, j+s s ≥ 0

Di+|s|, j s < 0
,

Di j =





(
∂

∂B

)i− j

i ≥ j
(

∂
∂A

) j−i

i < j
, (44)

Putting everything together, with Zm f = exp[− fm f V/T ], the

mean-field free energy/volume is

fm f

T
= J0uv− logG(A,B) (45)

where

G(A,B) = D

(
µ ,

∂

∂A
,

∂

∂B

) ∞

∑
s=−∞

det
[
D−s

i j I0[2
√

AB]
]

(46)

With these definitions, the mean field values

〈TrU〉= u , 〈TrU†〉= v (47)

are obtained from the solution of the simultaneous equations

u− 1

G

∂G

∂A
= 0 and v− 1

G

∂G

∂B
= 0 , (48)
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with the number density given by

n =
1

G

∂G

∂ µ
(49)

In practice a computation of the mean field estimate fm f of

the free energy requires a truncation of the sum over s in (46),

an expansion in a0 to finite order, and a check that the results

are not sensitive to increasing the cutoff. We have found that

restricting the sum over s to the range −3 ≤ s ≤ 3, and the

expansion to a0 to second order, is sufficient.

The results for the examples we have considered in the

last section, with the Wilson action and Nt = 4, are quali-

tatively very much like the mean field results heavy quark

cases, which were reported in [10]. The mean field solu-

tions for 〈TrU〉,〈TrU†〉 and number density n for the cases

β = 5.04, ma= 0.2 and β = 5.4, ma = 0.6 are shown in Figs.

9 and 10.
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FIG. 9. Mean field solution of the PLA corresponding to a Wilson

action lattice gauge theory at β = 5.04, ma = 0.2, Nt = 4 at finite

density µ . (a) Expectation values of TrU, TrU† vs. µ . (b) Quark

number density n vs. µ .

The Lüscher-Weisz action at Nt = 6, β = 7.0, ma = 0.3 is

more interesting. There are multiple solutions of the mean-

field equations (48), and the solution which is found by a

search routine depends on the starting values for u and v. Ini-

tialization at u= v near zero gives the results shown in Fig. 11.
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FIG. 10. Mean field solution of the PLA corresponding to a Wilson

action lattice gauge theory at β = 5.4, ma = 0.6, Nt = 4 at finite

density µ . (a) Expectation values of TrU, TrU† vs. µ . (b) Quark

number density n vs. µ .

Here there seem to be two clear phase transitions at finite den-

sity. If, however, the search routines begin at u = v = 1, then

solutions correspond to the deconfined phase at µ = 0, and

there is no transition found at any value of µ , as seen in Fig.

12. Ordinarily the stable phase corresponds to the phase with

lowest free energy, and by this criterion (see Fig. 13) the solu-

tions shown in Fig. 12 are selected. However, we have found

that at µ = 0 this is not the phase which corresponds to the

phase of the underlying lattice gauge theory. This of course

raises the question of which metastable state corresponds to

the state of the underlying gauge theory at finite density.

A. Validity of Mean Field at µ = 0

The mean field method is an approximation technique

whose validity depends on each spin being coupled to many

other spins, and for this reason the mean field approach is of-

ten thought of as a 1/d expansion, with d the number of di-

mensions. At least, this is the case for theories with mainly

nearest-neighbor couplings. However, it is clear that the effec-

tive Polyakov line actions corresponding to lattice gauge the-
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FIG. 11. A mean field solution of the PLA corresponding to a Lüscher-Weisz action lattice gauge theory at β = 7.0, ma = 0.3, Nt = 6 at

finite density µ . In this case the routines look for a solution of the mean field equations (48) closest to u = v = 0. (a) Expectation values of

TrU, TrU† vs. µ . (b) Quark number density n vs. µ .

action Nt β ma 1
3 〈TrU〉 1

3 〈TrU〉m f

Wilson 4 5.04 0.2 0.01778(3) 0.01765

Wilson 4 5.2 0.35 0.01612(4) 0.01603

Wilson 4 5.4 0.6 0.01709(5) 0.01842

Lüscher-Weisz I 6 7.0 0.3 0.03580(4) 0.03212

Lüscher-Weisz II 6 7.0 0.3 0.554(1) 0.5580

TABLE II. Polyakov line expectation values from numerical simulations of lattice gauge theory (column 5) , compared to mean field estimates

(column 6). For the Lüscher-Weisz action there are multiple solutions of the mean field equations. The solution in Lüscher-Weisz I is the one

found by a search routine initialized at u = v = 0, while the solution in Lüscher-Weisz II corresponds to initialization at u = v = 1. For Lüscher-

Weisz II, the value in column 5 was obtained from numerical simulation of the PLA, rather than the lattice gauge theory, with Polyakov lines

initialized to 0.3.

ories couple each SU(3) spin to a very large number of other

spins, and in one case we have looked at (with the Lüscher-

Weisz action) each spin is coupled to all other spins on the lat-

tice. This means that even in D = 3 dimensions the mean field

method may be quantitatively more accurate then one might

naively expect. One place we can check this is at µ = 0, where

〈TrU〉 can be computed in the underlying lattice gauge theory,

and also from the mean field solution of the effective Polyakov

line actions. It turns out that these values are in very accurate

agreement, as can be seen in Table II.

In an earlier work [10] we compared the mean-field solution

of effective Polyakov line actions corresponding to gauge-

Higgs theories, at µ 6= 0, to the corresponding solution of the

effective theories by the Langevin equation. In that work it

was found that even at µ 6= 0 the mean field results were vir-

tually identical to the Langevin results, in every region where

the latter could be trusted. This is in accord with the accu-

racy we have found for mean field at µ = 0 with dynamical

fermions.

VI. CONCLUSIONS

We have derived effective Polyakov line actions via the rel-

ative weights method for several cases of SU(3) lattice gauge

theory with dynamical staggered fermions, and solved these

theories at non-zero chemical potential by a mean field ap-

proach. At µ = 0 we find good agreement for the Polyakov

line correlators computed in the effective theories and the un-

derlying lattice gauge theories. We have also found, at µ = 0,

that Polyakov line expectation values computed via mean field

theory are in remarkably close agreement with the values ob-

tained by numerical simulation, and this is probably due to the

fact that each SU(3) spin is coupled to very many other spins

in the effective theory, which favors the mean field approach.

However, this non-local feature of the effective action also

leads, in the most non-local case we have looked at (each spin

coupled to all spins) to an unpleasant feature, namely, the ex-

istence of more than one metastable phase. These phases de-

pend on the initialization chosen, and they persist throughout

the numerical simulation, involving thousands of Monte Carlo

sweeps. Only one of the metastable phases is “physical,” in

the sense that it corresponds to the physics of the underly-

ing lattice gauge theory. Since this is a phenomenon seen at

µ = 0, it is not specifically tied to the sign problem, but rather

to the non-locality of the effective action in certain cases. We

have seen these metastable phases arising in the effective ac-

tion derived from the Lüscher-Weisz gauge action at the given

parameters, but we believe that the phenomenon is associated

with the very long range couplings in the effective action for
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FIG. 12. A mean field solution of the PLA corresponding to

a Lüscher-Weisz action lattice gauge theory at β = 7.0, ma =
0.3, Nt = 6 at finite density µ . In this case the routines look for a

solution of the mean field equations (48) closest to u = v = 1. (a)

Expectation values of TrU, TrU† vs. µ . (b) Quark number density n

vs. µ .
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FIG. 13. The mean field free energy corresponding to solutions

shown in the previous two figures. Where the solutions differ, the

solutions with larger TrU, TrU† have the lower free energy.

that case, rather than some fundamental difference between

the Lüscher-Weisz and Wilson gauge action.

At µ 6= 0 it appears that we must either find some crite-

rion for choosing the phase which corresponds to the underly-

ing lattice gauge theory, or else restrict the investigation to a

range of parameters in the underlying gauge theory (whether

Wilson or Lüscher-Weisz) which give rise to an effective ac-

tion in which the couplings are comparatively short range, and

the metastable phases are absent. It should be emphasized that

even if there are significant terms in the effective action which

are ignored in the simple ansatz (20), and even if such terms

were taken into account, there may still be multiple metastable

phases if the bilinear couplings are long (or infinite) range. It

is therefore important to systematically explore the parameter

space of quark mass, gauge coupling, and temperature, to de-

termine which regions of that parameter space will result in

finite range couplings for the effective Polyakov line action,

and a unique stable phase.
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