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We determine the first correction to the quadrupole operator in high-energy QCD beyond the
TMD limit of Weizsäcker-Williams and linearly polarized gluon distributions. These functions give
rise to isotropic resp. ∼ cos 2φ angular distributions in DIS dijet production. On the other hand,
the correction produces a ∼ cos 4φ angular dependence which is suppressed by one additional power
of the dijet transverse momentum scale (squared) P 2.

I. INTRODUCTION

We consider (inclusive) production of a qq̄ dijet at leading order in high-energy (small-x) Deep Inelastic Scattering
(DIS) of an electron off a proton or nucleus. The average transverse momentum of the jets is denoted as P and the
transverse momentum imbalance is q. In the “correlation limit” of roughly back to back jets [1] one has P 2 � q2. In
this limit the leading contribution (in terms of powers of 1/P 2) to the cross section can be obtained from Transverse
Momentum Dependent (TMD) factorization. For a recent review of TMD factorization see Ref. [2]. It predicts a
distribution for linearly polarized gluons in an unpolarized target [3, 4] which gives rise to ∼ cos 2φ asymmetries in dijet
production [5–7] and in other processes [8, 9]. The azimuthal angle φ is the angle between the transverse momentum
vectors P and q1. At small x the distribution of linearly polarized gluons xh(1)(x, q2) is expected to be comparable
in magnitude to the conventional Weizsäcker-Williams gluon distribution xG(1)(x, q2) for q2 of order the saturation
momentum scale Q2

s of the target [10]. These could be measured at a future electron-ion collider (EIC) [11]. However,
the experimental collaborations have requested an estimate [12] of 〈cos 4φ〉 since this may constitute a background
for 〈cos 2φ〉 which is generated by xh(1)(x, q2).

Corrections to TMD factorization appear beyond the leading order in 1/P 2. In what follows we derive the operator
form of the correction in Eqs. (9,10,11), and explicit expressions for the expectation values in a large-Nc Gaussian
theory in Eq. (35), and we show that it leads to a new ∼ cos 4φ azimuthal harmonic.

The remainder of the paper is organized as follows. In section II we derive the operator corresponding to the
correction to the (leading power) TMD approximation of the quadrupole. In sec. III we use a Gaussian (and large-Nc)
approximation to obtain explicit expressions of this correction in terms of the two-point function of the Gaussian
theory. The correction to the dijet cross section is worked out in sec. IV where we also provide a first qualitative
estimate of the magnitude of 〈cos 4φ〉 relative to 〈cos 2φ〉. We close with a brief summary in sec. V.

II. EXTRACTING THE AZIMUTHAL ANGULAR COMPONENTS OF THE QUADRUPOLE
OPERATOR

The production of a quark anti-quark dijet at small x in DIS involves the following expectation value of Wilson
lines [1]:

Qx(x1, x2;x′2, x
′
1) = 1 + S(4)

x (x1, x2;x′2, x
′
1)− S(2)

x (x1, x2)− S(2)
x (x′2, x

′
1), (1)

where

S(2)
x (x1, x2) = S(2)

x ((x1 − x2)2) ≡ 1

Nc

〈
TrV †(x2)V (x1)

〉
x

(2)

1 To avoid cluttering of notation we do not write vector arrows on 2d vectors. In this paper essentially all transverse coordinates and
momenta are 2d vectors and their magnitudes are written as |P | or

√
P 2 etc.
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is the dipole S-matrix evolved to light-cone momentum fraction x; we omit this subscript on the 〈·〉 field configuration
averages from now on. The field of the target is taken in covariant gauge. Also, x1 and x2 denote the 2d transverse
coordinates of the fundamental Wilson lines corresponding to the quark and the anti-quark, respectively. The satu-
ration momentum scale where the fields of the target become non-linear is conventionally defined implicitly through
S(2)(2/Q2

s) = 1/
√
e.

The quadrupole operator is given by a single trace over four Wilson lines,

S(4)(x1, x2;x′2, x
′
1) ≡ 1

Nc

〈
TrV †(x2)V (x1)V †(x′1)V (x′2)

〉
. (3)

Qx(x1, x2;x′2, x
′
1) vanishes in the coincidence limits x1 → x2 or x′1 → x′2.

In the so-called “correlation limit” [1, 7] of roughly back to back jets it is useful to introduce

u = x1 − x2; v =
1

2
(x1 + x2) , (4)

and similar for the primed coordinates. In this limit one expands Q in powers of u and u′,

Q = uiu
′
jGi,j(v, v′) + uiu

′
ju
′
ku
′
lGi,jkl(v, v′) + uiujuku

′
lGijk,l(v, v′) + uiuju

′
ku
′
lGij,kl(v, v′) + · · · . (5)

Ref. [7] performed the expansion to order O(uu′) from where one obtains the Weizsäcker-Williams (WW) gluon
distribution. It is proportional to

Gi,j(v, v′) = − 1

Nc
〈TrV †(v)∂iV (v)V †(v′)∂jV (v′)〉 . (6)

This is a two-point correlator of the target field transformed to light-cone gauge and so defines a gluon distribution.
Its Fourier transform,

xGijWW(x, q) ≡ 2Nc
αs
Gi,j(q) = − 2

αs

∫
d2v

(2π)2

d2v′

(2π)2
e−iq·(v−v

′)〈TrV †(v)∂iV (v)V †(v′)∂jV (v′)〉 (7)

can be projected onto its diagonal and traceless parts

xGijWW(x, q) =
1

2
δij xG

(1)(x, q2)− 1

2

(
δij − 2

qiqj
q2

)
xh(1)(x, q2) . (8)

The conventional WW gluon distribution xG(1)(x, q2) leads to a dijet cross section which is isotropic in φ, i.e. in the
angle between the dijet transverse momentum imbalance q and the average transverse momentum P .

In Eq. (8) the distribution of linearly polarized gluons is denoted as xh(1)(x, q2). This function has been computed
within the McLerran-Venugopalan (MV) model of semi-classical gluon fields [13] in Refs. [6, 7], and its QCD quantum
evolution to small-x has been determined in Ref. [10]. A non-vanishing xh(1)(x, q2) gives rise to a ∼ cos(2φ) azimuthal
anisotropy of the dijet cross section which is long range in the rapidity asymmetry of the dijet [10].

In this paper we extend the expansion to fourth order in u and/or u′ as indicated in Eq. (5). At quartic order,

Gij,mn(v, v′) =
1

16Nc
〈Tr

[
V †(v)∂i∂jV (v) + (∂i∂jV

†(v))V (v)
] [

(∂m∂nV
†(v′))V (v′) + V †(v′)∂m∂nV (v′)

]
〉 , (9)

Gijm,n(v, v′) = − 1

24Nc
〈Tr

[
V †(v)∂i∂j∂mV (v) + 3(∂i∂jV

†(v))∂mV (v)
]
V †(v′)∂nV (v′)〉 , (10)

Gn,ijm(v, v′) = − 1

24Nc
〈Tr

[
V †(v)∂nV (v)

] [
V †(v′)∂i∂j∂mV (v′) + 3(∂i∂jV

†(v′))∂mV (v′)
]
〉 . (11)

These expressions have been simplified by taking advantage of the symmetries in Eq. (5). Their Fourier transforms
are performed as for the WW distribution in Eq. (7) above and the resulting tensors can be decomposed as follows:

2Nc
αs
Gijmn(x, q2) = Pijkm

1 Φ0(x, q2) + Pijkm
2 Φ1(x, q2)−Pijkm

3 Φ2(x, q2) , (12)
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where

Gijmn(x, q2) = Gi,jmn(x, q2) + Gijm,n(x, q2)− 2

3
Gij,mn(x, q2) , (13)

Pijmn
1 =

1

2
√

6
(δijδmn + δimδjn + δjmδin) , (14)

Pijmn
2 = − 1

6
√

2
(δijΠmn + δmnΠij + δimΠjn + δjnΠim + δjmΠin + δinΠjm) , (15)

Pijmn
3 = − 1

6
√

2
(δijδmn + δimδjn + δjmδin − 2(ΠijΠmn + ΠimΠjn + ΠjmΠin)) , (16)

Πij = δij −
2qiqj
q2

. (17)

The function Gijmn(x, q2) as introduced in Eq. (13) appears in the dijet cross section, see section IV below.
The projectors are normalized so that P2

i = 1 for i = 1, 2, 3 and they satisfy

PiPjPmPnP
ijmn
1 =

1

2

√
3

2
P 4 , (18)

PiPjPmPnP
ijmn
2 =

1√
2
P 4 cos 2φ , (19)

PiPjPmPnP
ijmn
3 =

1

2
√

2
P 4 cos 4φ . (20)

Hence, the parity of Pi under φ→ φ+ π/2 is (−)i−1.
In what follows we shall focus on Φ2(x, q2) which determines the amplitude of the ∼ cos 4φ contribution to dijet

production,

Φ2(x, q2) = −2Nc
αs

Pijmn
3 Gijmn(x, q2) . (21)

The first two terms from Eq. (12) only contribute corrections (suppressed by ∼ 1/P 2) to the isotropic and “elliptic”
(∼ cos 2φ) contributions.

Equation (21) is the final result of this section. It expresses the correlation function Φ2(x, q2) which determines the
∼ cos 4φ asymmetry in terms of a combination of correlation functions of Wilson lines written in Eqs. (9,10,11).

III. GAUSSIAN APPROXIMATION

In this section we compute the correlator Φ2(x, q2) analytically in the Gaussian and large-Nc approximations. The
Gaussian theory is believed to be a good approximation at small x [14] unless, perhaps, the contribution from so-called
“pomeron loops” is large [15]. This has been confirmed explicitly by a numerical analysis [16]. Note, however, that
Ref. [16] did not test configurations corresponding to large v− v′ and small u, u′ as required for the present analysis.

At a Gaussian fixed point the theory is defined in terms of the two-point function

g2〈A−a(z+
1 , z1)A−b(z+

2 , z2)〉 = δab δ(z+
1 − z+

2 )µ2(z+)Lz1z2 , (22)

Lz1z2 = g4

∫
d2z G0(z1 − z)G0(z2 − z) , (23)

G0(z) =

∫
d2k

(2π)2

1

k2 + Λ2
IR

eik·z =
1

4π
ln

1

z2Λ2
IR

. (24)

ΛIR regularizes the long-distance 2d Coulomb singularity and we restrict to z2Λ2
IR � 1. This leads to the dipole

S-matrix

S(2)(x1, x2) = exp

(
−1

2
CFΓ((x1 − x2)2)

)
, (25)

where

Γ(r2) = 2
(
L(0)− L(r2)

)
. (26)
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In the large-Nc limit Q as defined in (5) can be written in the Gaussian theory as [1, 17]

QG = 1 + e−
CF
2 [Γ(x1−x2)+Γ(x′2−x

′
1)] − e−

CF
2 [Γ(x1−x2)] − e−

CF
2 [Γ(x′2−x

′
1)] (27)

−Γ(x1 − x′1)− Γ(x1 − x′2) + Γ(x2 − x′2)− Γ(x2 − x′1)

Γ(x1 − x′1)− Γ(x1 − x2) + Γ(x2 − x′2)− Γ(x′2 − x′1)

(
e−

CF
2 [Γ(x1−x2)+Γ(x′2−x

′
1)] − e−

CF
2 [Γ(x1−x′1)+Γ(x′2−x2)]

)
.

We now express x1, x2, x′1, x′2 in terms of u, u′, v, v′ and expand in powers of u and u′. The leading contribution at
quadratic order is

Gi,j(r2) =
(

1− [S(2)(r2)]2
)(

δij
Γ(1)(r2)

Γ(r2)
+ 2rirj

Γ(2)(r2)

Γ(r2)

)
, (28)

where

Γ(n)(r2) =
dnΓ(r2)

d(r2)n
, r ≡ v − v′ . (29)

From this one obtains the gluon distributions

xh(1)(x, q2) =
2Nc
αs

ΠijGi,j(x, q2) =
4Nc
αs

S⊥
(2π)3

∫
d|r| |r|3J2(|q| |r|)

(
1− [S(2)(r2)]2

) Γ(2)(r2)

Γ(r2)
(30)

and

xG(1)(x, q2) =
2Nc
αs

δijGi,j(x, q2) =
4Nc
αs

S⊥
(2π)3

∫
d|r| |r|J0(|q| |r|)

(
1− [S(2)(r2)]2

)(Γ(1)(r2)

Γ(r2)
+ r2 Γ(2)(r2)

Γ(r2)

)
. (31)

S⊥ denotes a transverse area.
In the MV model, in leading log 1/r2Λ2

IR � 1 approximation,

Γ(r2) =
Q2
s

4CF
r2 log

1

r2Λ2
IR

, (32)

where Qs denotes the saturation momentum. Note that the logarithmic factor in Γ(r2) ensures that the Fourier
transform of the dipole S-matrix is a power-law at high momentum, rather than a Gaussian; it also leads to a non-
vanishing second derivative of Γ(r2) w.r.t. r2 to generate the distribution of linearly polarized gluons, xh(1)(x, q2):

xh(1)(x, q2) =
NcS⊥
2π3αs

∫
d|r| |r|J2(|r| |q|)

[
1− exp

(
−Q

2
sr

2

4
log

1

r2Λ2
IR

)]
1

r2 log 1
r2Λ2

IR

, (33)

xG(1)(x, q2) =
NcS⊥
2π3αs

∫
d|r| |r|J0(|r| |q|)

[
1− exp

(
−Q

2
sr

2

4
log

1

r2Λ2
IR

)]
1

r2
(34)

which has been obtained previously in Refs. [6, 7].
At fourth order in u and/or u′ we find the following additional contribution to QG:

1

4
C2
FΓ(u2)Γ(u′2) +

[
1−

[
S(2)(r2)

]2] [
u · u′

[
1

4
(u2 + u′2)

Γ(2)(r2)

Γ(r2)
+

1

2

(
(u · r)2 + (u′ · r)2

) Γ(3)(r2)

Γ(r2)

]
+u · r u′ · r

[
1

2

(
u2 + u′2

) Γ(3)(r2)

Γ(r2)
+

1

3

(
(u · r)2 + (u′ · r)2

) Γ(4)(r2)

Γ(r2)

]]
+
u · u′ Γ(1)(r2) + 2u · r u′ · r Γ(2)(r2)

2Γ2(r2)

[
−
(
Γ(u2) + Γ(u′2)

)([
S(2)(r2)

]2
− 1 + CFΓ(r2)

)
+

([
S(2)(r2)

]2 (
1 + CFΓ(r2)

)
− 1

)(
1

2
(u− u′)2

Γ(1)(r2) + (u · r − u′ · r)2Γ(2)(r2)

)]
. (35)

This is the complete power-suppressed correction to QG. The terms proportional to rirjrmrn which project onto
∼ cos 4φ are

Gij,mn = rirjrmrn 2

(
Γ(2)(r2)

Γ(r2)

)2 [
1−

[
S(2)(r2)

]2
(1 + CFΓ(r2))

]
, (36)

Gijm,n = Gi,jmn = rirjrmrn
1

3

Γ(4)(r2)

Γ(r2)

(
1−

[
S(2)(r2)

]2)
− 1

2
Gij,mn (37)
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αsΦ2/(Q2
sS⊥)

FIG. 1: The functions xG(1)(q2), xh(1)(q2) and Φ2(q2) in the MV model. These functions determine the amplitudes of the
cos 2nφ contributions to the dijet angular distributions for n = 0, 1, 2, respectively. See text for details.

and so

Gijmn(r) = Gi,jmn + Gijm,n − 2

3
Gij,mn (38)

= rirjrmrn
2

3

[
Γ(4)(r2)

Γ(r2)

(
1−

[
S(2)(r2)

]2)
− 5

(
Γ(2)(r2)

Γ(r2)

)2 [
1−

[
S(2)(r2)

]2
(1 + CFΓ(r2))

]]
. (39)

Performing a Fourier transform like in Eq. (7) and projecting with P3 we extract

Φ2(x, q2) = −2Nc
αs

Pijmn
3 Gijmn(x, q2)

= − Nc√
2 3παs

S⊥
(2π)2

∫
d|r| J4(|r| |q|) |r|5

×
[

Γ(4)(r2)

Γ(r2)

(
1−

[
S(2)(r2)

]2)
− 5

(
Γ(2)(r2)

Γ(r2)

)2 [
1−

[
S(2)(r2)

]2
(1 + CFΓ(r2))

]]
. (40)

For the MV model, specifically,

Φ2(q2) =
Nc√

2 3παs

S⊥
(2π)2

∫
d|r|
|r|3 J4(|r| |q|)

[
2

ln 1
r2Λ2

IR

{
1− exp

(
−Q

2
sr

2

4
log

1

r2Λ2
IR

)}

+
5

ln2 1
r2Λ2

IR

{
1− exp

(
−Q

2
sr

2

4
log

1

r2Λ2
IR

)[
1 +

Q2
sr

2

4
log

1

r2Λ2
IR

]}]
(41)

For large q � Qs we have Φ2(q2) → (Nc/
√

2 24παs) (S⊥/4π
2)Q2

s. For small ΛIR � q � Qs we have Φ2(q2) ∼
(Nc/αs logQ2

s/Λ
2
IR)S⊥q

2 with a coefficient that can be determined numerically.

Figure 1 shows the functions xG(1)(q2), xh(1)(q2) and Φ2(q2) in the MV model as written in Eqs. (33,34,41). In
the numerical computations we have replaced 1/r2Λ2

IR → e + 1/r2Λ2
IR in the arguments of the logarithms to ensure

that they are ≥ 1 for all r2. Also, we have used Qs/ΛIR = 20.
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IV. DIJET CROSS SECTION IN DIS

At leading order the cross section for production of a qq̄ dijet in DIS is given by [1]

dσγ
∗
T,LA→qq̄X

d2k1dz1d2k2dz2
= Ncαeme

2
q δ(p

+ − k+
1 − k+

2 )

∫
d2u

(2π)2

d2u′

(2π)2

d2v

(2π)2

d2v′

(2π)2

×e−iP ·(u−u′)−iq·(v−v′)Q(u, u′, v, v′)
∑
λαβ

ψT,Lλαβ (u)ψT,Lλ∗αβ (u′) . (42)

k1 and k2 denote the 2d transverse momenta of the quark and anti-quark, respectively, and P = (k1−k2)/2, q = k1+k2.
We assume here that only the dijet is being detected while the azimuthal angle of the electron is integrated over. If
the azimuthal angle of the electron can be measured then the dijet cross section could exhibit a more involved angular
dependence [18].

In the “correlation limit” of roughly back to back jets P 2 � q2. Using the γ∗ → qq̄ splitting functions from the
literature, e.g. Ref. [1], and expanding Q to fourth order in u or u′ we obtain

dσγ
∗
TA→qq̄X

d2k1dz1d2k2dz2

= 2Ncαeme
2
q (2π)2δ(xγ − z1 − z2)

(
z2

2 + z2
1

) ∫ d2u

(2π)2

d2u′

(2π)2
e−iP ·(u−u

′)∇K0(εfu) · ∇K0(εfu
′)

×
[
uiu
′
jGi,j(q) + uiu

′
ju
′
ku
′
lGi,jkl(q) + uiujuku

′
lGijk,l(q) + uiuju

′
ku
′
lGij,kl(q)

]
, (43)

dσγ
∗
LA→qq̄X

d2k1dz1d2k2dz2
= 8Ncαeme

2
q (2π)2δ(xγ − z1 − z2)z1z2ε

2
f

∫
d2u

(2π)2

d2u′

(2π)2
e−iP ·(u−u

′)K0(εfu)K0(εfu
′)

×
[
uiu
′
jGi,j(q) + uiu

′
ju
′
ku
′
lGi,jkl(q) + uiujuku

′
lGijk,l(q) + uiuju

′
ku
′
lGij,kl(q)

]
. (44)

Here, ε2f = z1z2Q
2 with Q2 the virtuality of the photon which is on the order of P 2.

The integrals over u and u′ can be performed using the formulas collected in the appendix. The leading (in powers
of 1/P 2) contributions proportional to cos 2nφ, for n = 0, 1, 2, can be summarized as

dσγ
∗
TA→qq̄X

d2k1dz1d2k2dz2

= αsαeme
2
qδ(xγ − z1 − z2)

(
z2

1 + z2
2

) [ P 4 + ε4f
(P 2 + ε2f )4

(
xG(1)(x, q2)−

2ε2fP
2

P 4 + ε4f
xh(1)(x, q2) cos 2φ+O

(
1

P 2

))

−
48ε2fP

4

√
2 (P 2 + ε2f )6

Φ2(x, q2) cos 4φ

]
(45)

dσγ
∗
LA→qq̄X

d2k1dz1d2k2dz2

= 8αsαeme
2
qδ(xγ − z1 − z2)z1z2ε

2
f

[
P 2

(P 2 + ε2f )4

(
xG(1)(x, q2) + xh(1)(x, q2) cos 2φ+O

(
1

P 2

))

+
48P 4

√
2 (P 2 + ε2f )6

Φ2(x, q2) cos 4φ

]
. (46)

Here, cosφ = q̂ · P̂ . Note that the contribution ∼ cos 4φ is suppressed by 1/P 2 relative to the isotropic and ∼ cos 2φ
pieces which are due to the xG(1)(x, q2) and xh(1)(x, q2) TMDs.

Finally, we evaluate numerically the following angular averages for a longitudinally polarized photon:

〈cos 2φ〉 =
1

2

xh(1)(q2)

xG(1)(q2)
, 〈cos 4φ〉 =

24√
2P 2

(
P 2

P 2 + ε2f

)2
Φ2(q2)

xG(1)(q2)
. (47)

We employ the MV model expressions for xG(1)(q2), xh(1)(q2), and Φ2(q2) derived in the previous section. The
results are shown in Fig. 2 assuming

√
P 2 = 4.5Qs, z = 0.5 and Q2 = P 2. They confirm that for q2 � P 2 the
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FIG. 2: 〈cos 2φ〉 and 〈cos 4φ〉 in γ∗
L +A→ q + q̄ dijet production from the MV model. See text for details.

average cos 4φ is substantially less than the average cos 2φ although it may be measurable at a future high-energy
electron-ion collider. For more quantitative estimates it is required, however, to account for small-x QCD evolution
of these functions. This has been done in Ref. [10] for xG(1)(x, q2) and xh(1)(x, q2) and needs to be extended to
Φ2(x, q2).

V. SUMMARY

In this paper we have considered the expansion of the quadrupole operator

S(4)(x1, x2;x′2, x
′
1) ≡ 1

Nc

〈
TrV †(x2)V (x1)V †(x′1)V (x′2)

〉
(48)

about the coincidence limits u ≡ x1−x2 → 0, u′ ≡ x′1−x′2 → 0. At quadratic order it becomes a two-point correlator
of light-cone gauge fields [7],

uiu
′
j

〈
Tr

[
V †(v)

i

g
∂iV (v)

] [
V †(v′)

i

g
∂jV (v′)

]〉
(49)

which defines the Weizsäcker-Williams and linearly polarized gluon distributions. We have extended the expansion to
fourth order in u/u′ which leads to more involved correlators of Wilson lines and their derivatives, c.f. Eqs. (9,10,11).
Furthermore, we have obtained explicit analytic expressions in a Gaussian, large Nc approximation for the specific
correlation function denoted as Φ2(x, q2). This function gives rise to a∼ cos 4φ azimuthal harmonic in dijet production.
First qualitative estimates obtained within a specific Gaussian model (McLerran-Venugopalan model [13]) indicate
that 〈cos 4φ〉 is much smaller than 〈cos 2φ〉 generated by the distribution of linearly polarized gluons xh(1)(x, q2), at
least in the nearly back to back “correlation limit” P 2 � q2.
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Appendix: Useful Integrals

We start from the well known integral∫
d2u

(2π)2
exp(−iu · P )K0(εfu) =

1

2π

1

P 2 + ε2f
. (A.1)

Taking a derivative with respect to Pi gives∫
d2u

(2π)2
exp(−iu · P )uiK0(εfu) =

1

2πi

2Pi
(P 2 + ε2f )2

. (A.2)

Repeating this procedure one finds∫
d2u

(2π)2
exp(−iu · P )uiujK0(εfu) =

1

2π

2

(P 2 + ε2f )2

[
δij −

4PiPj
P 2 + ε2f

]
(A.3)

and ∫
d2u

(2π)2
exp(−iu · P )uiujukK0(εfu) =

1

2πi

8

(P 2 + ε2f )3

[
Piδjk + Pjδik + Pkδij −

6PiPjPk
P 2 + ε2f

]
. (A.4)

For transverse photon polarization we need∫
d2u

(2π)2
exp(−iu · P )

∂

∂ul
K0(εfu) = −

∫
d2u

(2π)2

(
∂

∂ul
exp(−iu · P )

)
K0(εfu) = − 1

2πi

Pl
P 2 + ε2f

, (A.5)

∫
d2u

(2π)2
exp(−iu · P )ui

∂

∂ul
K0(εfu) = − 1

2π

1

P 2 + ε2f

(
δil −

2PiPl
P 2 + ε2f

)
, (A.6)

∫
d2u

(2π)2
exp(−iu · P )uiuj

∂

∂ul
K0(εfu) = − 1

2πi

2

(P 2 + ε2f )2

(
δijPl + δilPj + δjlPi −

4PlPiPj
P 2 + ε2f

)
, (A.7)∫

d2u

(2π)2
exp(−iu · P )uiujuk

∂

∂ul
K0(εfu) = − 1

2π

2

(P 2 + ε2f )2

×
(
δilδjk + δijδkl + δikδjl − 4

PjPkδil + PlPkδij + PiPkδjl + PjPlδik + PiPjδlk + PiPlδjk
P 2 + ε2f

+ 24
PiPjPlPk
(P 2 + ε2f )2

)
(A.8)
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