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Resummation of Goldstone boson contributions to the

MSSM effective potential

Nilanjana Kumar and Stephen P. Martin

Department of Physics, Northern Illinois University, DeKalb IL 60115

We discuss the resummation of the Goldstone boson contributions to the

effective potential of the Minimal Supersymmetric Standard Model (MSSM).
This eliminates the formal problems of spurious imaginary parts and logarith-

mic singularities in the minimization conditions when the tree-level Goldstone
boson squared masses are negative or approach zero. The numerical impact

of the resummation is shown to be almost always very small. We also show
how to write the two-loop minimization conditions so that Goldstone boson

squared masses do not appear at all, and so that they can be solved without
iteration.
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I. INTRODUCTION

The relations between vacuum expectation values (VEVs) of Higgs fields and Lagrangian

parameters can be obtained from the effective potential [1]-[5]. It is also a useful tool

to understand vacuum stability [6]-[21]. The effective potential V (φ) is equal to the tree-

level potential, plus the sum of one-particle-irreducible connected vacuum graphs, computed

using field-dependent masses and couplings. In the Standard Model the full one and two

loop contributions to the effective potentials have been computed in ref. [22], with the 3-

loop leading contributions involving the strong and Yukawa couplings found in ref. [23],

and the 4-loop part at leading order in QCD in ref. [24]. In supersymmetry, the 2-loop

effective potential has been found for a general theory in ref. [25], and specialized to the

case of the Minimal Supersymmetric Standard Model (MSSM) in ref. [26], with partial

results previously given in refs. [27–33]

In ref. [23], it was noted that there are two related problems involving the mass square

of the Goldstone boson (G) in Standard Model. One is when G is negative. Due to the

appearance of logarithms of G, Veff is complex. Thus it appears to suffer from an instability

[4] although no physical instability is present. The second problem occurs as G → 0, where

the effective potential suffers from a logarithmic singularity at three loop order and power

law singularity after that [23]. Even though the first problem can be avoided by dropping

the imaginary term by hand and the second problem is not too severe for numerical analysis,

a way to avoid them using resummation was given in [34, 35]; see also [36–38]. In practice

these methods can be applied to any other model in which Goldstone radiative corrections

lead to terms with IR problems in the effective potential.

In this paper, we analyze this problem for the 2-loop MSSM effective potential, which

also suffers from the same problem when the neutral (G0) and charged (G±) Goldstone

bosons are close to zero or negative at a particular value of renormalization scale Q. In the

case of the MSSM, the neutral and charged Goldstone boson squared masses are distinct,

and there are two minimization conditions, arising from the first derivatives of the effective

potential (Veff) with respect to the two real neutral Higgs degrees of freedom, denoted vu

and vd in this paper. These minimization conditions both have singularities when G0 and

G± tend to zero, and have imaginary parts when they are negative. In this paper we show

how these problems of principle are avoided by the resummation procedure, so that working

consistently at 2-loop order the Goldstone boson squared masses do not appear at all in the

minimization conditions. In practice, the numerical effect of the resummation turns out to

be very small for almost all choices of the renormalization scale. We illustrate this with a

numerical example.
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II. EFFECTIVE POTENTIAL OF THE MSSM

The scalar potential of the Minimal Supersymmetric Standard Model are very much sen-

sitive to higher order corrections, so the minimization conditions for the scalar potential also

depend very significantly on radiative corrections. The complete 2-loop effective potential of

the MSSM has been given in [25, 26]. We follow those works for conventions and notations,

in particular for the Lagrangian parameters (also as specified in [39]) and mixing parame-

ters, and for 1-loop and 2-loop integral functions. Also, we follow the notation of using the

name of a particle to represent its squared mass in formulas, for example

Z =
1

2
(g2 + g′2)(v2u + v2d), W =

1

2
g2(v2u + v2d), (2.1)

t = y2t v
2
u, b = y2bv

2
d, τ = y2τv

2
d. (2.2)

The MSSM effective potential can be written as

Veff = V (0) +∆V, (2.3)

∆V =
1

16π2
V (1) +

1

(16π2)2
V (2) +

1

(16π2)3
V (3) + . . . , (2.4)

where V (0) is the tree-level MSSM effective potential, expressed as

V (0) = (|µ|2 +m2
Hu

)v2u + (|µ|2 +m2
Hd
)v2d − 2bvuvd +

1

8
(g2 + g′2)(v2u − v2d)

2. (2.5)

Here µ, the Higgs supersymmetric mass parameter, can have an arbitrary phase. The

Higgs fields also have soft supersymmetry-breaking squared-mass running parameters m2
Hu

,

m2
Hd
, and b. The first two of these are definitely real, and by convention b is taken to

be real at the renormalization scale Q at which the effective potential is to be minimized.

There are two gauge-eigenstate complex scalar doublet Higgs fields Hu = (H+
u , H

0
u) and

Hd = (H0
d , H

−
d ). The electrically neutral components have VEVs vu and vd, which are taken

to be real and positive by convention. In general, V (0) also contains a constant vacuum

energy term, necessary for renormalization group invariance [40–42], but we do not include

it here because it plays no direct role in the following.

The gauge-eigenstate fields can be expressed in terms of the tree-level squared-mass eigen-

state fields as

(
H0

u

H0
d

)
=

(
vu

vd

)
+

1√
2
Rα

(
h0

H0

)
+

i√
2
Rβ0

(
G0

A0

)
(2.6)



4

and

(
H+

u

H−∗
d

)
= Rβ±

(
G+

H+

)
, (2.7)

G0 and G± are Nambu-Goldstone fields, and h0, H0, A0, and H± are the Higgs tree-level

mass eigenstate fields, and vu and vd are the classical fields on which the masses and cou-

plings entering the effective potential depends. The orthogonal matrices that accomplish

the squared-mass diagonalizations are written

Rβ0
=

(
sβ0

cβ0

−cβ0
sβ0

)
, Rβ±

=

(
sβ±

cβ±

−cβ±
sβ±

)
, (2.8)

Rα =

(
cα sα

−sα cα

)
, (2.9)

where we use the abbreviations cβ0
= cos(β0) and sβ0

= sin(β0), etc. In the following, we

also write, for example, s2α and c2α for sin(2α) and cos(2α), respectively. Unlike the case

in the ordinary Standard Model, the squared masses of the charged and neutral Goldstone

bosons in the MSSM are not equal at tree level. They are given by

G0 = |µ|2 + 1

2
(m2

Hu
+m2

Hd
)− 1

2

{
[m2

Hu
−m2

Hd
+

(g2 + g′2)

2
(v2u − v2d)]

2 + 4b2
}1/2

, (2.10)

G± = |µ|2 + 1

2
(m2

Hu
+m2

Hd
) +

g2

4
(v2u + v2d)

−1

2

{
[m2

Hu
−m2

Hd
+

g′2

2
(v2u − v2d)]

2 + (2b+ g2vuvd)
2
}1/2

. (2.11)

The tree-level squared masses of the other Higgs fields are:

A0 = |µ|2 + 1

2
(m2

Hu
+m2

Hd
) +

1

2

{
[m2

Hu
−m2

Hd
+

(g2 + g′2)

2
(v2u − v2d)]

2 + 4b2
}1/2

, (2.12)

H± = |µ|2 + 1

2
(m2

Hu
+m2

Hd
) +

g2

4
(v2u + v2d)

+
1

2

{
[m2

Hu
−m2

Hd
+

g′2

2
(v2u − v2d)]

2 + (2b+ g2vuvd)
2
}1/2

, (2.13)

h0 = |µ|2 + 1

2
(m2

Hu
+m2

Hd
) +

(g2 + g′2)

4
(v2u + v2d)

−1

2

{
[m2

Hu
−m2

Hd
+ (g2 + g′2)(v2u − v2d)]

2 + (2b+ (g2 + g′2)vuvd)
2
}1/2

, (2.14)

H0 = |µ|2 + 1

2
(m2

Hu
+m2

Hd
) +

(g2 + g′2)

4
(v2u + v2d)
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+
1

2

{
[m2

Hu
−m2

Hd
+ (g2 + g′2)(v2u − v2d)]

2 + (2b+ (g2 + g′2)vuvd)
2
}1/2

. (2.15)

The minimization conditions of the full effective potential can be written as

1

2vu

∂Veff

∂vu
=

1

2vd

∂Veff

∂vd
= 0. (2.16)

We define δu and δd by

δu =
1

2vu

∂

∂vu
∆V, (2.17)

δd =
1

2vd

∂

∂vd
∆V, (2.18)

so that at the minimum of the full effective potential

|µ|2 +m2
Hu

− b
vd
vu

+
(g2 + g′2)

4
(v2u − v2d) = −δu, (2.19)

|µ|2 +m2
Hd

− b
vu
vd

+
(g2 + g′2)

4
(v2d − v2u) = −δd. (2.20)

The minimum of the effective potential is not a minimum of the tree-level potential. For

this reason, the angles β0 and β± for the rotations in the pseudo-scalar and charged Higgs

sector are distinct from each other, and are also different from the angle β defined by

tanβ ≡ vu/vd. (2.21)

Hence it is possible to write an exact relation between β0 and β

cot(2β0) = cot(2β) +
δd − δu

2b
. (2.22)

An approximate relation can be obtained by expanding in terms of δu and δu:

tan β0 = tanβ +
δu − δd

b
s2β +

(δu − δd)
2

8b2
s32β + . . . (2.23)

Similar relations between β± and β can be achieved in a similar manner, and give the same

result with the replacement of b by b+ g2vuvd/2:

cot(2β±) = cot(2β) +
δd − δu

2b+ g2vuvd
, (2.24)
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tanβ± = tan β +
δu − δd

b+ g2vuvd/2
s2β +

(δu − δd)
2

8(b+ g2vuvd/2)2
s32β + . . . . (2.25)

Substituting eqs. (2.19) and (2.20) in eqs. (2.10) and (2.11) and expanding in δu and δd,

G0 = −δus
2
β − δdc

2
β −

(δu − δd)
2

8b
s32β + . . . , (2.26)

G± = −δus
2
β − δdc

2
β −

(δu − δd)
2

8(b+ g2vuvd/2)
s32β + . . . . (2.27)

Thus, at the minimum of the full 2 loop effective potential of MSSM, the tree-level masses of

the Goldstone bosons are not zero, but can be considered to be of 1-loop order, and unlike

the situation in the Standard Model they are not exactly the same, with the difference

between them being effectively of 2-loop order, with an additional mass suppression when b

is large, as well as a 1/ tan3 β suppression.

III. EXPANSION OF THE 2-LOOP MSSM EFFECTIVE POTENTIAL FOR

SMALL G0, G±

In this section we consider the leading contributions to the effective potential in an

expansion in small G0, G± in the MSSM. In the DR
′
scheme the one loop order correction

to the MSSM potential can be written as

V (1)(G0, G±) = V (1)(0, 0) + f(G0) + 2f(G±), (3.1)

where the 1-loop integral function is defined as

f(x) =
x2

4
(lnx− 3/2), (3.2)

with

ln(x) = ln(x/Q2) (3.3)

where Q is the renormalization scale. In eq. (3.1), f(G0) + 2f(G±) is the Goldstone bosons

contribution and the terms independent of G0 and G± are

V (1)(0, 0) = f(h0) + f(H0) + f(A0) + 2f(H±) + 2
∑

f̃

nf̃f(f̃)− 2
4∑

i=1

f(Ñi)− 4
2∑

i=1

f(C̃i)
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−16f(g̃)− 12f(t)− 12f(b)− 4f(τ) + 3f(Z) + 6f(W ), (3.4)

where the sfermions are called f̃ , with nf̃ = 3 for squarks and 1 for sleptons. At the two

loop order, we find it convenient to expand for small G0 and G±, neglecting quadratic terms,

in the form

V (2)(G0, G±) = V (2)(0, 0) +
1

2
A(G0)∆0

1 + A(G±)∆±
1 +

1

2
Ω0G0 + Ω±G± + . . . , (3.5)

where ∆0
1, ∆

±
1 , Ω

0, and Ω± do not depend on G0 or G±, and

A(x) = x(lnx− 1). (3.6)

The expressions for V (1)(0, 0) and V (2)(0, 0) can be obtained by taking G0, G± = 0 in every

expression that contributes to V (1) and V (2) in ref. [25]. We prefer to write in this way

because we want to deal with the Goldstone bosons separately. The logarithmic terms

G0lnG0 and G±lnG± are included in A(G0) and A(G±). The ellipses represent terms in

higher order of G0 and G±.

To obtain the expressions for ∆0
1, ∆

±
1 , Ω

0, and Ω±, we first expand the 2-loop integral

functions defined in ref. [25] that involve scalars:

fSSS(G, x, y) = fSSS(0, x, y) + PSS(x, y)A(G) +RSS(x, y)G+O(G2), (3.7)

fSS(G, x) = A(x)A(G), (3.8)

fFFS(x, y, G) = fFFS(x, y, 0) + PFF (x, y)A(G) +RFF (x, y)G+O(G2), (3.9)

fFFS(x, y, G) = fFFS(x, y, 0) + PFF (x, y)A(G) +RFF (x, y)G+O(G2), (3.10)

fSSV (G, x, y) = fSSV (0, x, y) +RSV (x, y)G+O(G2), (3.11)

FV S(x,G) = 3A(x)A(G), (3.12)

FV V S(x, y, G) = FV V S(x, y, 0) + PV V (x, y)A(G) +RV V (x, y)G+O(G2). (3.13)

For the P and R functions defined in this way, we find:

PSS(x, y) =
A(x)−A(y)

x− y
, (3.14)

PSS(x, x) = 1 + A(x)/x, (3.15)

PFF (x, y) = −2
[xA(x)− yA(y)

x− y

]
, (3.16)

PFF (x, x) = −2x− 4A(x), (3.17)

PFF (x, y) = −2PSS(x, y), (3.18)
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PV V (x, y) = 3PSS(x, y), (3.19)

and

RSS(x, y) =
{
(x+ y)2 + 2A(x)A(y)− 2xA(x)− 2yA(y)

+(x+ y)I(0, x, y)
}
/(x− y)2 (3.20)

RSS(x, x) = −3− 2A(x)/x−A(x)2/2x2 (3.21)

RFF (x, y) = −
[
(x+ y)

{
2A(x)A(y)− 2xA(x)− 2yA(y) + (x+ y)2

}

+2(x2 + y2)I(0, x, y)
]
/(x− y)2 (3.22)

RFF (x, x) = 8x+ 2A(x) + 2A(x)2/x (3.23)

RFF (x, y) = −2RSS(x, y) (3.24)

RV V (x, y) =
1

4xy(x− y)2

[
3A(x)A(y)

{
x2 + y2 + 6xy

}
− 24xy

{
xA(x) + yA(y)

}

+14xy(x2 + y2) + 20x2y2 − 3(x− y)2
{
xI(0, 0, x) + yI(0, 0, y)

}

+3(x+ y)3I(0, x, y)
]

(3.25)

RV V (0, x) =
11

4
+

3

x
I(0, 0, x)− 9A(x)

2x
(3.26)

RSV (x, y) =
1

y

{
3(x+ y)I(0, x, y)− 3xI(0, 0, x) + 3A(x)A(y) + 2xy + y2

}
(3.27)

RSV (x, 0) = −x+ 6A(x) (3.28)

Expressions for I(0, x, y) and I(0, 0, x) in the notation of the present paper in terms of

logarithms and dilogarithms can be found in equation (2.26)-(2.28) of [25]. The expansion

of these functions in terms of small G0 and G± also can be obtained from eqs. (2.29)-(2.31)

of the same reference.

[Although they are not needed for the MSSM as discussed in this paper, for the MS

scheme, we find instead for the expansions of the relevant functions defined in eqs. (4.17)

and (4.18) of ref. [25] the results:

fV S(x,G) = 3A(x)A(G) + 2xA(G), (3.29)

fV V S(x, y, G) = fV V S(x, y, 0) + pV V (x, y)A(G) + rV V (x, y)G+O(G2), (3.30)

where

pV V (x, y) = PV V (x, y) + 2, (3.31)

rV V (x, y) = RV V (x, y)− 1. (3.32)
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These could be useful for example in non-supersymmetric two-Higgs doublet models. The

other functions do not differ between the MS and DR
′
schemes.]

Hence, one can write the expressions for ∆0
1, ∆

±
1 , Ω

0, and Ω± in terms of the functions

defined above. For the MSSM, we find:

∆0
1 = (λG0A0h0)2PSS(A

0, h0) + (λG0A0H0)2PSS(A
0, H0) + (λG0G0h0)2PSS(0, h

0)

+(λG0G0H0)2PSS(0, H
0) + 2|λG0G+H− |2PSS(0, H

+)

+
∑

f̃ ,f̃ ′

nf̃ |λG0f̃ f̃ ′∗ |2PSS(f̃ , f̃
′) +

1

2
λG0G0h0h0A(h0) +

1

2
λG0G0H0H0A(H0)

+
1

2
λG0G0A0A0A(A0) + λG0G0H+H−A(H+) +

∑

f̃

nf̃λG0G0f̃ f̃∗A(f̃)

+6|YttG0|2PFF (t, t) + 6t(YttG0)2PFF (t, t)

+6|YbbG0 |2PFF (b, b) + 6b(YbbG0)
2PFF (b, b)

+2|YττG0|2PFF (τ, τ) + 2τ(YττG0)2PFF (τ, τ)

+
2∑

i,j=1

{
2|Y

C̃+

i
C̃−

j
G0 |2PFF (C̃i, C̃j) + 2

√
C̃iC̃jRe[YC̃+

i
C̃−

j
G0YC̃+

j
C̃−

i
G0 ]PFF (C̃i, C̃j)

}

+
4∑

i,j=1

{
|YÑiÑjG0|2PFF (Ñi, Ñj) +

√
ÑiÑjRe[(YÑiÑjG0)2]PFF (Ñi, Ñj)

}

+
3g2

2
A(W ) +

3(g2 + g′2)

4
A(Z) (3.33)

Ω0 = (λG0A0h0)2RSS(A
0, h0) + (λG0A0H0)2RSS(A

0, H0) + (λG0G0h0)2RSS(0, h
0)

+(λG0G0H0)2RSS(0, H
0) + 2|λG0G+H−|2RSS(0, H

+) +
∑

f̃ ,f̃ ′

nf̃ |λG0f̃ f̃ ′∗ |2RSS(f̃ , f̃
′)

+6|YttG0 |2RFF (t, t) + 6t(YttG0)2RFF (t, t)

+6|YbbG0 |2RFF (b, b) + 6b(YbbG0)
2RFF (b, b)

+2|YττG0 |2RFF (τ, τ) + 2τ(YττG0)2RFF (τ, τ)

+
2∑

i,j=1

{
2|Y

C̃+

i
C̃−

j
G0|2RFF (C̃i, C̃j) + 2

√
C̃iC̃jRe[YC̃+

i
C̃−

j
G0YC̃+

j
C̃−

i
G0]RFF (C̃i, C̃j)

}

+
4∑

i,j=1

{
|YÑiÑjG0 |2RFF (Ñi, Ñj) +

√
ÑiÑjRe[(YÑiÑjG0)2]RFF (Ñi, Ñj)

}

+
g2 + g′2

4

{
(cαcβ0

+ sαsβ0
)2RSV (H

0, Z) + (sαcβ0
− cαsβ0

)2RSV (h
0, Z)

}

+
g2

2

{
(cβ0

cβ±
+ sβ0

sβ±
)2RSV (0,W ) + (sβ0

cβ±
− cβ0

sβ±
)2RSV (H

±,W )
}

(3.34)
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∆±
1 = |λh0G+H−|2PSS(h

0, H+) + |λA0G+H−|2PSS(A
0, H+) + |λH0G+H− |2PSS(H

0, H+)

+|λh0G+G− |2PSS(0, h
0) + |λH0G+G−|2PSS(0, H

0) + |λG0G+H−|2PSS(0, H
+)

+
∑

f̃ ,f̃ ′

nf̃ |λG+f̃ f̃ ′∗|2PSS(f̃ , f̃
′) + λG+H+G−H−A(H+) +

1

2
λH0H0G+G−A(H0)

+
1

2
λh0h0G+G−A(h0) +

1

2
λA0A0G+G−A(A0) +

∑

f̃

nf̃λG+G−f̃ f̃∗A(f̃)

+3
{
|YtbG+ |2 + |YbtG− |2

}
PFF (t, b) + 6YtbG+YbtG−

√
tbPFF (t, b)

+|YτντG−|2PFF (0, τ) +
2∑

i=1

4∑

j=1

[{
|Y

C̃+

i
ÑjG−|2 + |Y

C̃−

i
ÑjG+ |2

}
PFF (C̃i, Ñj)

+2Re[Y
C̃+

i
ÑjG−YC̃−

i
ÑjG+ ]

√
C̃iÑjPFF (C̃i, Ñj)

]

+
3g2

2
A(W ) +

3(g2 − g′2)2

4(g2 + g′2)
A(Z)

+
g2g′2

2(g2 + g′2)
(cβ±

vd + sβ±
vu)

2
{
g2PV V (0,W ) + g′2PV V (W,Z)

}
(3.35)

Ω± = |λh0G+H−|2RSS(h
0, H+) + |λA0G+H−|2RSS(A

0, H+) + |λH0G+H−|2RSS(H
0, H+)

+|λh0G+G−|2RSS(0, h
0) + |λH0G+G−|2RSS(0, H

0) + |λG0G+H− |2RSS(0, H
+)

+
∑

f̃ ,f̃ ′

nf̃ |λG+f̃ f̃ ′∗ |2RSS(f̃ , f̃
′) + 3

{
|YtbG+ |2 + |YbtG−|2

}
RFF (t, b)

+6YtbG+YbtG−

√
tbRFF (t, b) + |YτντG−|2RFF (0, τ)

+
2∑

i=1

4∑

j=1

[{
|(Y

C̃+

i
ÑjG−|2 + |Y

C̃−

i
ÑjG+ |2

}
RFF (C̃i, Ñj)

+2Re[Y
C̃+

i
ÑjG−YC̃−

i
ÑjG+ ]

√
C̃iÑjRFF (C̃i, Ñj)

]
+

(g2 − g′2)2

4(g2 + g′2)
RSV (0, Z)

+
g2

4

{
(cαcβ±

+ sαsβ±
)2RSV (H

0,W ) + (sαcβ±
− cαsβ±

)2RSV (h
0,W )

+(sβ0
cβ±

− cβ0
sβ±

)2RSV (A
0,W ) + (cβ0

cβ±
+ sβ0

sβ±
)2RSV (0,W )

}

+
g2g′2

2(g2 + g′2)
(cβ±

vd + sβ±
vu)

2
{
g2RV V (0,W ) + g′2RV V (W,Z)

}
. (3.36)

All of the associated couplings appearing above are taken from Section II of ref. [43], using

the following coefficients:

kuh0 = kdH0 = cα, kuH0 = −kdh0 = sα, (3.37)

kuG0 = kdA0 = isβ0
, kuA0 = −kdG0 = icβ0

, (3.38)

kuG+ = kdH+ = sβ±
, kuH+ = −kdG+ = cβ±

. (3.39)
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G0G0

G0G0

G±G±

G±G±

FIG. 3.1: The leading contribution at fixed loop order to the effective potential as G0, G± → 0

comes from vacuum diagrams with chains of ℓ−1 one-loop subdiagrams involving heavy particles

connected by ℓ− 1 Goldstone boson propagators.

At higher loop orders, the singularities in the effective potential as G0, G± → 0 are

derived from diagrams consisting of chains of ℓ−1 one-loop subdiagrams connected by ℓ−1

Goldstone boson propagators, as shown in figure 3.1. In general, the grey blobs in the figure

represent 1-particle irreducible subdiagrams, but the leading contribution as G0, G± → 0 at

any fixed loop order ℓ comes when these are 1-loop subdiagrams. (Beyond the leading order

as G0, G± → 0 at a fixed loop order, one must include other diagrams.) The calculation

of this class of diagrams, treating the gray blobs as constant squared-mass insertions, then

reduces down to a 1-loop integration, as described in refs. [34, 35]. For G0, G± much less

than the squared-mass scale of the blobs, the contributions to Veff from these classes of

diagrams can be written as

1

16π2

∞∑

n=0

1

n!

[
(∆0)nf (n)(G0) + 2(∆±)nf (n)(G±)

]
+ . . . (3.40)

where n = ℓ− 1 with ℓ denoting the loop order, and f (n)(G) is the nth derivative, with

f (1)(G) = A(G)/2, (3.41)

f (2)(G) = ln(G)/2 (3.42)

f (n)(G) =
1

2
(−1)n−1(n− 3)!G2−n (for n ≥ 3), (3.43)

and the ∆’s result from the integrations over heavy 1-particle irreducible subdiagrams. The

charged and neutral Goldstone bosons G0 and G± have distinct loop expansions for these

subdiagram quantities:

∆0 =
1

16π2
∆0

1 +
1

(16π2)2
∆0

2 + . . . (3.44)

∆± =
1

16π2
∆±

1 +
1

(16π2)2
∆±

2 + . . . (3.45)

In the following, we consider only the leading terms in small G0 and G± at each loop order,
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hence the 2-loop contributions ∆0
2 and ∆±

2 and higher orders can be neglected. The contri-

butions ∆0
1 and ∆±

1 are given above, as they can be read off of the known 2-loop results [the

n = 1 term in eq. (3.40)]. From these, we can predict the leading logarithmic singularities

in the 3-loop effective potential (before resummation) as G0, G± → 0, corresponding to the

n = 2 term in eq. (3.40):

V (3) =
1

4
(∆0

1)
2 ln(G0) +

1

2
(∆±

1 )
2 ln(G±) + . . . . (3.46)

where the ellipses means terms finite as G0, G± → 0. The ln(G0) and ln(G±) terms here

can be eliminated, along with the leading 2-loop order terms proportional to G0ln(G0) and

G±ln(G±), by the resummation described below.

IV. RESUMMATION OF LEADING GOLDSTONE CONTRIBUTIONS IN

MSSM

One can now sum the contributions to Veff indicated in eq. (3.40) to all loop orders, with

the result

1

16π2
f(G0 +∆0) +

2

16π2
f(G± +∆±) + . . . (4.1)

We have checked that at the minimum of the effective potential, G0 + 1
16π2∆

0
1 = 0 and

G± + 1
16π2∆

±
1 = 0, up to terms of 2-loop order, so that eq. (4.1) is 0 and has vanishing first

derivatives there, up to terms of 3-loop order. Therefore, if the effective potential Veff has

been obtained at loop order ℓ, then the corresponding resummed effective potential can be

expressed as

V̂eff = Veff +
1

16π2

[
f(G0 +∆0)−

ℓ−1∑

n=0

(∆0)n

n!
f (n)(G0)

]

+
2

16π2

[
f(G± +∆±)−

ℓ−1∑

n=0

(∆±)n

n!
f (n)(G±)

]
. (4.2)

After expanding this equation, there are no terms involving G0lnG0 and G±lnG± at 2-loop

order. The contributions of the different terms involving the Goldstone bosons in the 2-loop

contribution were given in the previous section. From these, we find that the resummed
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MSSM effective potential through 2-loop order can be written from eq. (4.2) as

V̂eff = V (0) +
1

16π2

[
V (1)(0, 0) + f(G0 +∆0) + 2f(G± +∆±)

]

+
1

(16π2)2

[
V (2)(0, 0) +

1

2
Ω0G0 + Ω±G±

]
, (4.3)

where 2-loop order terms of order G2 have been neglected, as they cannot affect the min-

imization conditions at 2-loop order. In summary, one replaces the 1-loop Goldstone con-

tributions by functions with arguments shifted by the ∆’s, and sets the Goldstone boson

contributions at 2-loop order to 0, with additional 2-loop terms linear in G0 and G± (but

with no logarithms of them). The last terms are necessary for the minimization conditions

described in the next section.

V. MINIMIZATION CONDITIONS FOR THE RESUMMED MSSM

EFFECTIVE POTENTIAL

A. Minimization conditions with Goldstone boson resummation

In this section, we consider the minimization condition of the resummed effective poten-

tial, obtained by requiring the vanishing of the derivatives with respect to vu and vd of V̂eff

in eq. (4.3). We note first that the 1-loop Goldstone terms have no effect, because at the

minimum of V̂eff ,

f ′(G0 +∆0) = 0, f ′(G± +∆±) = 0, (5.1)

up to terms of 3-loop order, due to the vanishing of the arguments as noted above. The

derivatives of V (1)(0, 0) and V (2)(0, 0) can be obtained from the expressions in ref. [25,

26]. The remaining contribution comes from the terms proportional to Ω0G0 and Ω±G±

in eq. (4.3). In these terms, if the derivatives do not act on the Goldstone boson squared

masses, then the result will be proportional to G0 or G±, and thus is of order 3-loop order,

and can be consistently neglected. We therefore only need the derivatives of G0 and G± with

respect to vu and vd, and keeping only the terms independent of δu and δd when expanded

in terms of them. For these derivatives, we find:

1

2vu

∂G0

∂vu
=

1

2vu

∂G±

∂vu
= − 1

2vd

∂G0

∂vd
= − 1

2vd

∂G±

∂vd
= −1

4
(g2 + g′2)c2β . (5.2)
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Hence, we find that the minimization conditions can be written as eqs. (2.19)-(2.20) with:

δu =
1

16π2
∆̂(1)

u +
1

(16π2)2
∆̂(2)

u , (5.3)

δd =
1

16π2
∆̂

(1)
d +

1

(16π2)2
∆̂

(2)
d , (5.4)

where

∆̂(1)
u =

1

2vu

∂

∂vu
V (1)(0, 0), (5.5)

∆̂
(1)
d =

1

2vd

∂

∂vd
V (1)(0, 0), (5.6)

∆̂(2)
u =

1

2vu

∂

∂vu
V (2)(0, 0) − 1

8
(g2 + g′2)c2β

(
Ω0 + 2Ω±

)
, (5.7)

∆̂
(2)
d =

1

2vd

∂

∂vd
V (2)(0, 0) +

1

8
(g2 + g′2)c2β

(
Ω0 + 2Ω±

)
. (5.8)

In words, this means that one can simply minimize the two-loop effective potential with

all Goldstone boson squared masses replaced by 0, provided that one then includes extra

terms in the 2-loop order part of the minimization condition that are proportional to the

quantities Ω0 and Ω± provided in the previous section.

Explicitly, we find

∆̂(1)
u =

1

2vu

[
1

2
A(h0)

∂h0

∂vu
+

1

2
A(H0)

∂H0

∂vu
+

1

2
A(A0)

∂A0

∂vu
+ A(H±)

∂H±

∂vu

+
∑

f̃

nf̃A(f̃)
∂f̃

∂vu
−

4∑

i=1

A(Ñi)
∂Ñi

∂vu
− 2

2∑

i=1

A(C̃i)
∂C̃i

∂vu
− 6A(t)

∂t

∂vu

+
3

2
A(Z)

∂Z

∂vu
+ 3A(W )

∂W

∂vu

]
, (5.9)

∆̂
(1)
d =

1

2vd

[
1

2
A(h0)

∂h0

∂vd
+

1

2
A(H0)

∂H0

∂vd
+

1

2
A(A0)

∂A0

∂vd
+ A(H±)

∂H±

∂vd

+
∑

f̃

nf̃A(f̃)
∂f̃

∂vd
−

4∑

i=1

A(Ñi)
∂Ñi

∂vd
− 2

2∑

i=1

A(C̃i)
∂C̃i

∂vd
− 6A(b)

∂b

∂vd

−2A(τ)
∂τ

∂vd
+

3

2
A(Z)

∂Z

∂vd
+ 3A(W )

∂W

∂vd

]
. (5.10)

while the 2-loop contributions are straightforward to evaluate using eqs. (5.7) and (5.8) but

rather lengthy. In general, the partial derivatives of mixing angles and squared masses,

needed for finding the derivatives and thus the minimization conditions for effective poten-
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tials, can be derived in the following manner. Consider diagonal squared mass matrices

given by

M2
D = UM2U † (5.11)

where M2 is a gauge-eigenstate squared mass matrix and U is a unitary matrix. The

derivatives of the diagonal entries of M2
D, which are the squared mass eigenvalues, with

respect to any parameter x on which they depend, can be found by doing

∂

∂x
(M2

D)ii =

[
U
∂M2

∂x
U †

]

ii

, (5.12)

with no sum on the repeated index i. In order to calculate the derivatives of the two-loop

effective potential one will also need the derivatives of the mixing angles found in the unitary

matrices denoted U . Those can be found by

∂

∂x
U = AU, (5.13)

where the matrix A has elements

Aij =





[
U ∂M2

∂x
U †
]
ij
/ [(M2

D)ii − (M2
D)jj] , (i 6= j),

0 (i = j),
(5.14)

with again no summation on repeated indices. One needs derivatives with respect to both

the VEVs, x = vu, vd.

The preceding minimization conditions do not involve G0 or G± at all, but do include

the quantities b, µ, m2
Hu

, and m2
Hd

through the mixing angles α, β0, β± which enter the

Higgs couplings to other particles and the squared masses of the other Higgs states, h0,

H0, A0, and H±. One can now choose to eliminate any two of the parameters b, µ, m2
Hu

,

and m2
Hd

using the minimization conditions, by expanding in δu and δd. (This is analogous

to eliminating the negative Higgs squared mass quantity m2 in the Standard Model case,

as explained in section IV of ref. [34].) This has the practical advantage that the effective

potential minimization conditions can then be solved numerically without iteration.
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B. Reexpansion to eliminate m2
Hu

and m2
Hd

For example, working at the minimum of the effective potential, one can choose to elim-

inate m2
Hu

and m2
Hd
. To do so, it is convenient to define modified tree-level Higgs squared

masses:

Â0 = 2b/s2β , (5.15)

Ĥ± = Â0 +W, (5.16)

Ĥ0, ĥ0 =
1

2

[
Â0 + Z ±

√
(Â0 + Z)2 − 4Â0Zc22β

]
, (5.17)

in terms of which the full tree-level squared masses appearing in the formulas above can be

expanded for small δu, δd:

A0 = Â0 − δuc
2
β − δds

2
β + . . . , (5.18)

H± = Ĥ± − δuc
2
β − δds

2
β + . . . , (5.19)

h0 = ĥ0 − 1

2
(δu + δd) + (δu − δd)c2β

(Â0 − Z)

2(Ĥ0 − ĥ0)
+ . . . , (5.20)

H0 = Ĥ0 − 1

2
(δu + δd) + (δd − δu)c2β

(Â0 − Z)

2(Ĥ0 − ĥ0)
+ . . . . (5.21)

We have already seen in eqs. (2.22)-(2.25) how to write exact expressions or expansions for

the mixing angles β0 and β± in terms of the angle β and the radiative corrections δu and δd.

Similarly, we find that

cot(2α) = cot(2α̂) +
δd − δu

2b+ (g2 + g′2)vuvd
, (5.22)

where

cot(2α̂) =

(
Â0 − Z

Â0 + Z

)
cot(2β). (5.23)

Thus, all of the parameters of the Higgs sector, namely the squared masses h0, H0, A0, H±

and the angles β0, β±, and α in the effective minimization condition formulas above can be

expanded (in δu, δd) about the modified tree-level values ĥ0, Ĥ0, Â0, Ĥ±, α̂, and β, which do

not depend explicitly on m2
Hu

or m2
Hd
. After doing this expansion, the quantities involving

δu and δd from the 1-loop terms can be grouped with the 2-loop terms, and higher-order

terms can be neglected consistently as 3-loop order. Then solving for m2
Hu

and m2
Hd

at the
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minimum of the effective potential can be done without iteration.

The results of the reexpansion described above can be summarized as follows. In the

expressions for ∆(1)
u , ∆

(1)
d , ∆(2)

u , and ∆
(2)
d found in eqs. (5.5)-(5.8) above, one makes the

replacements:

(h0, H0, A0, H±) → (ĥ0, Ĥ0, Â0, Ĥ±), (5.24)

α → α̂, (5.25)

β0, β± → β. (5.26)

One then should add the following extra terms to the 2-loop parts:

∆̂(2)
u → ∆̂(2)

u − 1

16
(g2 + g′2)

{
2c2β

[
∆̂(1)

u c2β + ∆̂
(1)
d s2β

]
ln(Â0)

+ [(1 + 2c2α̂) + s2α̂ cβ/sβ]
[
∆̂(1)

u + ∆̂
(1)
d − (∆̂(1)

u − ∆̂
(1)
d )

Â0 − Z

Ĥ0 − ĥ0
c2β
]
ln(ĥ0)

+ [(1− 2c2α̂)− s2α̂ cβ/sβ]
[
∆̂(1)

u + ∆̂
(1)
d + (∆̂(1)

u − ∆̂
(1)
d )

Â0 − Z

Ĥ0 − ĥ0
c2β
]
ln(Ĥ0)

}

−1

4

[
g2(1 + 2c2β) + g′2c2β

] [
∆̂(1)

u c2β + ∆̂
(1)
d s2β

]
ln(Ĥ+)

+
1

8
(∆̂(1)

u − ∆̂
(1)
d )

{
−(g2 + g′2)s22βA(Â

0)/Â0 + [g2c2β/s
2
β − 2g′2]s22βA(Ĥ

+)/Ĥ+

+(g2 + g′2)(2s2α̂ − c2α̂ cβ/sβ)(s
2
2α̂/s2β)[A(Ĥ

0)− A(ĥ0)]/(Ĥ0 + ĥ0)
}
, (5.27)

∆̂
(2)
d → ∆̂

(2)
d +

1

16
(g2 + g′2)

{
2c2β

[
∆̂(1)

u c2β + ∆̂
(1)
d s2β

]
ln(Â0)

− [(1− 2c2α̂) + s2α̂ sβ/cβ]
[
∆̂(1)

u + ∆̂
(1)
d − (∆̂(1)

u − ∆̂
(1)
d )

Â0 − Z

Ĥ0 − ĥ0
c2β
]
ln(ĥ0)

− [(1 + 2c2α̂)− s2α̂ sβ/cβ]
[
∆̂(1)

u + ∆̂
(1)
d + (∆̂(1)

u − ∆̂
(1)
d )

Â0 − Z

Ĥ0 − ĥ0
c2β
]
ln(Ĥ0)

}

−1

4

[
g2(1 + 2s2β)− g′2c2β

] [
∆̂(1)

u c2β + ∆̂
(1)
d s2β

]
ln(Ĥ+)

+
1

8
(∆̂(1)

u − ∆̂
(1)
d )

{
(g2 + g′2)s22βA(Â

0)/Â0 + [g2c2β/c
2
β + 2g′2]s22βA(Ĥ

+)/Ĥ+

−(g2 + g′2)(2s2α̂ + c2α̂ sβ/cβ)(s
2
2α̂/s2β)[A(Ĥ

0)− A(ĥ0)]/(Ĥ0 + ĥ0)
}
. (5.28)

Then one can solve for m2
Hu

and m2
Hd

realizing the minimum of the effective potential using

eqs. (2.19)-(2.20), without iteration.
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C. Reexpansion to eliminate µ and b

Alternatively, one could choose to eliminate |µ|2 and b. Then, the corresponding results

for the tree-level mixing angles are:

tan(2β0) = tan(2β)

[
1 +

δd − δu
m2

Hd
−m2

Hu
+ Zc2β

]
, (5.29)

tan(2β±) = tan(2β)

[
1 +

δd − δu
m2

Hd
−m2

Hu
+ (Z −W )c2β

]
, (5.30)

tan(2α) = tan(2α) + (δd − δu)

[
tan(2β)

m2
Hd

−m2
Hu

+ 2Zc2β

]
, (5.31)

where one defines

tan(2α) = tan(2β)

[
m2

Hd
−m2

Hu

m2
Hd

−m2
Hu

+ 2Zc2β

]
, (5.32)

and one can expand the tree-level Higgs squared masses around the modified tree-level values

defined by:

A
0
= (m2

Hu
−m2

Hd
)/c2β − Z, (5.33)

H
±

= (m2
Hu

−m2
Hd
)/c2β − Z +W, (5.34)

H
0
, h

0
=

1

2

[
A

0
+ Z ±

√
(A

0
+ Z)2 − 4A

0
Zc22β

]
, (5.35)

with the results:

A0 = A
0
+ puδu + pdδd + . . . , (5.36)

H± = H
±
+ puδu + pdδd + . . . , (5.37)

h0 = h
0
+
[
δu
(
s2β H

0
+ puh

0
)
+ δd

(
c2β H

0
+ pdh

0
)]

/(h
0 −H

0
) + . . . , (5.38)

H0 = H
0
+
[
δu
(
s2β h

0
+ puH

0
)
+ δd

(
c2β h

0
+ pdH

0
)]

/(H
0 − h

0
) + . . . , (5.39)

where

pu = s2β(1 + 2c2β)/c2β, (5.40)

pd = −c2β(1 + 2s2β)/c2β. (5.41)
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Then the effective potential minimization conditions can be expanded in δu, δd about the

modified tree-level values h
0
, H

0
, A

0
, H

±
, α, and β, which do not depend explicitly on b or

µ. After doing these expansions, the quantities involving δu and δd from the 1-loop terms

can be grouped with the 2-loop terms, and higher-order terms can be neglected consistently

as 3-loop order.

The reexpansion described above can be implemented as follows. In the expressions for

∆(1)
u , ∆

(1)
d , ∆(2)

u , and ∆
(2)
d found in eqs. (5.5)-(5.8) above, one makes the replacements:

(h0, H0, A0, H±) → (h
0
, H

0
, A

0
, H

±
), (5.42)

α → α, (5.43)

β0, β± → β. (5.44)

One then should add the following extra terms to the 2-loop parts:

∆̂(2)
u → ∆̂(2)

u +
1

8
(g2 + g′2)c2β

[
∆̂(1)

u pu + ∆̂
(1)
d pd

]
ln(A

0
) +

g2 + g′2

8(H
0 − h

0
)

{

−{[1 + 2c2α] + s2αcβ/sβ}
[
∆̂(1)

u (s2βH
0
+ puh

0
) + ∆̂

(1)
d (c2βH

0
+ pdh

0
)
]
ln(h

0
)

+ {[1− 2c2α]− s2αcβ/sβ}
[
∆̂(1)

u (s2βh
0
+ puH

0
) + ∆̂

(1)
d (c2βh

0
+ pdH

0
)
]
ln(H

0
)
}

+
1

4

[
g2(1 + 2c2β) + g′2c2β

] [
∆̂(1)

u pu + ∆̂
(1)
d pd

]
ln(H

+
)

+
1

8

(
∆̂

(1)
d − ∆̂(1)

u

) {
(g2 + g′2)s22βA(A

0
)/A

0
+ [2g′2s22β − 4g2c2βc2β]A(H

+
)/H

+

+(g2 + g′2)[2s2α − c2αcβ/sβ](s2αc2α/c2β)[A(h
0
)−A(H

0
)]/(H

0
+ h

0
)
}
, (5.45)

∆̂
(2)
d → ∆̂

(2)
d − 1

8
(g2 + g′2)c2β

[
∆̂(1)

u pu + ∆̂
(1)
d pd

]
ln(A

0
) +

g2 + g′2

8(H
0 − h

0
)

{

−{[1− 2c2α] + s2αsβ/cβ}
[
∆̂(1)

u (s2βH
0
+ puh

0
) + ∆̂

(1)
d (c2βH

0
+ pdh

0
)
]
ln(h

0
)

+ {[1 + 2c2α]− s2αsβ/cβ}
[
∆̂(1)

u (s2βh
0
+ puH

0
) + ∆̂

(1)
d (c2βh

0
+ pdH

0
)
]
ln(H

0
)
}

+
1

4

[
g2(1 + 2s2β)− g′2c2β

] [
∆̂(1)

u pu + ∆̂
(1)
d pd

]
ln(H

+
)

+
1

8

(
∆̂(1)

u − ∆̂
(1)
d

) {
(g2 + g′2)s22βA(A

0
)/A

0
+ [2g′2s22β + 4g2s2βc2β]A(H

+
)/H

+

+(g2 + g′2)[2s2α + c2αsβ/cβ](s2αc2α/c2β)[A(h
0
)− A(H

0
)]/(H

0
+ h

0
)
}
. (5.46)

Then one can solve for b and |µ|2 using eqs. (2.19)-(2.20), without iteration.
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FIG. 6.1: Diagrams that give the most singular behavior as h0 → 0 for the minimization condition

of the effective potential, at 2-loop order (a) and 3-loop order (b).

VI. SINGULARITIES AND SPURIOUS IMAGINARY PARTS FOR SMALL

AND NEGATIVE h0

It should be noted that there are also singularities in the effective potential for h0 → 0,

and in fact these are formally more severe than the singularities coming from G0, G± → 0.

This can be seen, for example, from the diagrams shown in Figure 6.1, which involve only

the h0 field. The contribution of the 2-loop diagram to the effective potential is:

V
(2)

Fig. 6.1(a)
= − 1

12
(λh0h0h0)2I(h0, h0, h0) (6.1)

=
1

12
(λh0h0h0)2h0

[
15

2
− 3

√
3Ls2 − 6ln(h0) +

3

2
ln

2
(h0)

]
, (6.2)

where Ls2 = − ∫ 2π/30 dx ln[2 sin(x/2)] = 0.6766277376 . . . . This contribution is finite as h0 →
0, but derivatives of it have a squared logarithm singularity. At 3-loop order, the contribution

shown in Figure 6.1 has the form

V
(3)

Fig. 6.1(b)
=

1

16
(λh0h0h0)4

(
5

3
− 2ζ(3)− 2

√
3Ls2[1 + ln(h0)]− ln

2
(h0) +

1

3
ln

3
(h0)

)
, (6.3)

with a cubic logarithmic singularity even before taking derivatives, and other diagrams

leading to quadratic logarithmic singularities. For contributions at L-loop order, we expect

contributions with leading singularities of the form

V (L) ∝ (λh0h0h0)2L−2 ln
L
(h0)/(h0)L−3 (6.4)

as h0 → 0. Note that the reason these singularities are more severe than for the Goldstone

case is because of the absence of triple Goldstone boson couplings. Furthermore, unlike

diagrams involving Goldstone bosons, such diagrams have no larger mass scale with respect

to which one can expand for small h0. Other diagrams involving h0 will involve W and



21

Z, which have smaller physical masses than h0, so an expansion in small h0 may not be

appropriate. Methods for resumming non-Goldstone light boson singularities have been

discussed in ref. [35]. Another way of doing a resummation is by taking advantage of the

renormalization group, by simply choosing a scale Q where h0 is positive, and not too far

from the physical squared mass. As illustrated by the example in the next section, this

is generally possible, and will be a sensible choice of renormalization scale from the point

of view of perturbative expansions for other physical quantities. (However, note that with

such a choice, the Goldstone boson squared masses could still easily be negative or 0, so

that before resummation of the G0 and G± contributions the effective potential would be

complex or singular at its minimum.) The reexpansions described in subsection VB or VC

can also be used to eliminate the problems with h0 ≤ 0.

VII. NUMERICAL EXAMPLE

The impact of the resummations described in this paper is typically numerically ex-

tremely small, at least for the minimization of the effective potential, unless one has chosen

a renormalization scale where G0 or G± or h0 vanishes exactly. To illustrate this, we consider

a benchmark MSSM model with input parameters (with mass scales chosen large enough

to clearly avoid all present bounds from the Large Hadron Collider, and to be roughly

compatible with the h0 physical mass near 125 GeV, with tan β near 25) at Q0 = 2000 GeV:

vu = 172.1 GeV, vd = 6.88 GeV, (7.1)

m2
Hu

= −(1500 GeV)2, m2
Hd

= (2000 GeV)2, (7.2)

g = 0.6362, g′ = 0.3636, g3 = 1.018, (7.3)

yt = 0.785, yb = 0.296, yτ = 0.256, (7.4)

M1 = 500 GeV, M2 = 1000 GeV, M3 = 2500 GeV, (7.5)

at = −3000 GeV, ab = −2000 GeV, aτ = −1000 GeV, (7.6)

m2
Q3

= (2000 GeV)2, m2
u3

= (2100 GeV)2, m2
d3 = (2400 GeV)2, (7.7)

m2
L3

= (2200 GeV)2, m2
e3
= (2000 GeV)2, (7.8)

m2
Q1,2

= m2
u1,2

= m2
d1,2

= (3000 GeV)2, (7.9)

m2
L1,2

= (2400 GeV)2, m2
e1,2 = (2200 GeV)2. (7.10)
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FIG. 7.1: The dependences of tree-level masses on

the renormalization scale, for the Goldstone bosons

G0, G± (solid blue line) and the lightest neutral Higgs

bosons h0 (long-dashed red line). The modified tree-

level values ĥ0 and h
0
, defined by eqs. (5.17) and

(5.35), are visually indistinguishable from each other

and are nearly constant, and are shown as the short-

dashed green line. In each case, sqrt(m2) is plotted.

The input parameters are defined by 2-loop renormal-

ization group running starting from eqs. (7.1)-(7.11)

at Q0 = 2000 GeV.

Then, we find that the (real part) of the 2-loop MSSM effective potential as given in ref. [26]

is minimized for

µ = 1516.44446868 GeV, b = (522.793413744 GeV)2. (7.11)

Then we run the input parameters of eqs. (7.1)-(7.11) from Q0 to a new renormalization

scale Q, and require the potential to be minimized again, both using the original method of

ref. [26] and then with the resummation methods of the present paper.

First, shown in Figure 7.1 are the values obtained for sqrt(G0) and sqrt(G±) and sqrt(h0)

at the minimum of the effective potential, as a function of Q, where the function

sqrt(x) = x/
√
|x| (7.12)

is used in order to plot masses while keeping information about the sign of the squared

mass, while avoiding imaginary numbers. Due to the influence of very heavy squarks, these

tree-level masses are seen to run very quickly. The Goldstone boson masses are visually

indistinguishable from each other, and are slightly lower than the tree-level mass of h0. All

three are negative for Q < 1849 GeV, and deviate very far from 0 (in the case of G0 and G±)

and 125 GeV (in the case of h0). In contrast, the modified tree-level masses ĥ0 and h
0
both

remain nearly constant near 89 GeV (and are visually indistinguishable from each other on

the graph). For this reason, a perturbative expansion about either one of these tree-level

definitions, obtained by the re-expansions of the previous section, could be preferred at least

formally. The numerical values of tan β0 and tanβ± at the minimum of the potential are

compared to the running value of tanβ ≡ vu/vd in Figure 7.2. The values of tanβ0 and

tan β± are visually indistinguishable in the figure, but both deviate significantly from tan β,

which runs slowly from its nominal value near 25 at Q0 = 2000 GeV.

Despite the large deviations of G0 and G± and h0 from their physical values, the 2-loop
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FIG. 7.2: The dependences of tan β = vu/vd, the

tree-level neutral pseudoscalar Higgs mixing parame-

ter tan β0, and the charged Higgs mixing parameter

tan β±, as a function of the renormalization scale Q at

which the 2-loop effective potential is minimized. The

input parameters are defined by running (7.1)-(7.11)

starting from Q0 = 2000 GeV.
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FIG. 7.3: The dependence of the ratio of µmin/µrun (left panel) and bmin/brun (right panel) on the

renormalization scale Q. Here “run” means obtained by 2-loop renormalization group running

starting from Q0 = 2000 GeV with inputs from (7.1)-(7.11), while “min” means obtained by

applying the effective potential minimization conditions directly at Q. The thinnest (green) lines

are obtained with Veff found in ref. [26]. The next thinnest (red) lines were obtained in the

same way, but with G0 = G± = 0 set by hand. The thicker (blue) lines were obtained with

the resummed effective potential using eqs. (5.3)-(5.8) in eqs. (2.19)-(2.20). The thickest (black)

lines were obtained by further re-expanding the minimization conditions to eliminate µ and b in

the radiative correction part as described in section VC.

effective potential minimization results are very stable. This is shown in Figure 7.3, which

shows the ratios of the values obtained for µmin(Q)/µrun(Q) and bmin(Q)/brun(Q), where

“run” means obtained by running the MSSM 2-loop renormalization group equations [44–

47] starting from Q0 with inputs from eqs. (7.1)-(7.11), while “min” means all of the inputs

are run to Q and then the effective potential minimization conditions are used to find µ and

b directly at that scale. The closeness of these ratios to 1 as Q is varied is a test of the

robustness of the approximations used.
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Four different version of the minimization conditions are compared in Figure 7.3. First,

the thinnest (green) lines show the results obtained using the real part of the original Veff

found in ref. [26]. By definition, the thinnest (green) curves run through 1 at Q = Q0 = 2000

GeV. We note that although these curves have singularities at G0 = 0 and G± = 0, in

practice these singularities are too mild to show up on the plots even for very fine grids

for the data (here we used an increment of 50 MeV for Q in the vicinities of G0 = 0,

G± = 0, and h0 = 0). There are visible kinks near Q = 1823 GeV, corresponding to the

scale at which h0 crosses through 0, as discussed in the previous section. The next thinnest

(red) lines show what would be obtained if one simply sets G0 and G± to 0 by hand in the

effective potential before minimization. The thicker (blue) line shows the result obtained

from the resummed effective potential minimization, using eqs. (5.3)-(5.8) in eqs. (2.19)-

(2.20). Finally, the thickest (black) lines show the results obtained after the reexpansion

of the effective potential minimization conditions to eliminate the dependence of the loop

correction part on the parameters µ and b, using eqs. (5.42)-(5.46). This allows the effective

potential minimization conditions to be implemented without iteration, and eliminates the

possibility of kinks and singularities where G0, G±, and h0 run through 0. We see that in

all cases the dependence on Q for each of the ratios shown in Figure 7.3 is extremely mild,

well under 0.1% in all cases, despite the large magnitudes and Q dependences of the G0, G±,

and h0 squared masses. Furthermore, the different ways of implementing the minimization

conditions agree well with each other, again to better than 0.1%.

Similar results are shown in Figure 7.4 for the determination of m2
Hu

and m2
Hd

from the

other parameters. In this case, the thickest (black) line is obtained by reexpanding the

resummed effective potential to eliminate the dependence on m2
Hu

and m2
Hd

in the radiative

correction part of the minimization conditions, using eqs. (5.24)-(5.28), allowing them to

be implemented without iteration. Again, in all cases the scale dependences are very mild,

and the agreement between different methods of implementing the minimization conditions

is excellent. Therefore, while conceptually important, and practically convenient, the re-

summation and reexpansion does not seem to have a significant numerical effect for the

minimization condition.

VIII. OUTLOOK

In this paper we have showed how to resum the Goldstone boson contributions to the

MSSM effective potential and its minimization conditions. Although the numerical impact

on the minimization conditions is very small compared to the results obtained by minimizing

the non-resummed effective potential, or simply setting G0 and G± to 0 by hand, there is a

practical benefit in that one can then reexpand the minimization conditions to implement
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FIG. 7.4: As in figure 7.3, but for m2
Hu

and m2
Hd

. Here, the thickest (black) line is obtained by

reexpanding the resummed effective potential to eliminate the dependence on m2
Hu

and m2
Hd

in

the radiative correction part of the minimization conditions, as described in section VB

them consistently at 2-loop order without iteration.

In addition, the resummation and reexpansions described here can be systematically ap-

plied to other calculations, for example the pole masses of the ordinary Higgs bosons. The

existence of a Standard Model-like Higgs boson with mass near 125 GeV provides an op-

portunity to confront models with data. There has been a tremendous effort to compute

the physical mass Mh0 using self-energy diagrammatic methods [48]-[60], the approximation

based on second derivatives of the effective potential [27–33, 61–69], and effective field theory

with renormalization group resummation methods [70]-[77]. (For a recent review of these

approaches, see [78].) The methods described here will allow a full 2-loop self-energy dia-

grammatic calculation of the pole mass Mh0 , using modified tree-level Higgs couplings and

masses that do not differ greatly from their physical values, while using VEVs that minimize

the full 2-loop effective potential. (Note that the resummations described above do not at-

tempt to address the singularities in the second derivatives of the effective potential, which

are sometimes used to approximate the h0 pole mass. Instead, the momentum dependence

of the self-energy diagrams should be kept in order to find the true pole mass.) The results

above can also serve as examples for other models with non-minimal Higgs sectors, such as

the MSSM extended by a singlet, or non-supersymmetric two Higgs doublet models.

Acknowledgments: This work was supported in part by the National Science Foundation

grant number PHY-1417028.

[1] S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spontaneous
Symmetry Breaking,” Phys. Rev. D 7, 1888 (1973).



26

[2] R. Jackiw, “Functional evaluation of the effective potential,” Phys. Rev. D 9, 1686 (1974).
[3] M. Sher, “Electroweak Higgs Potentials and Vacuum Stability,” Phys. Rept. 179, 273 (1989),

and references therein.
[4] E. J. Weinberg and A. -q. Wu, “Understanding Complex Perturbative Effective Potentials,”

Phys. Rev. D 36, 2474 (1987).
[5] C. Ford, D. R. T. Jones, P. W. Stephenson and M. B. Einhorn, “The Effective potential and

the renormalization group,” Nucl. Phys. B 395, 17 (1993) [hep-lat/9210033].
[6] J. A. Casas, J. R. Espinosa and M. Quirós, “Improved Higgs mass stability bound in the

standard model and implications for supersymmetry,” Phys. Lett. B 342, 171 (1995) [hep-
ph/9409458].

[7] J. R. Espinosa and M. Quiros, “Improved metastability bounds on the standard model Higgs
mass,” Phys. Lett. B 353, 257 (1995) [hep-ph/9504241].

[8] J. A. Casas, J. R. Espinosa and M. Quiros, “Standard model stability bounds for new physics
within LHC reach,” Phys. Lett. B 382 (1996) 374 [hep-ph/9603227].

[9] A. Andreassen, W. Frost and M. D. Schwartz, “Consistent Use of Effective Potentials,” Phys.
Rev. D 91, no. 1, 016009 (2015) [1408.0287].

[10] G. Isidori, G. Ridolfi and A. Strumia, “On the metastability of the standard model vacuum,”
Nucl. Phys. B 609, 387 (2001) [hep-ph/0104016].

[11] M. B. Einhorn and D. R. T. Jones, “The Effective potential, the renormalisation group and
vacuum stability,” JHEP 0704, 051 (2007) [hep-ph/0702295].

[12] J. R. Espinosa, G. F. Giudice and A. Riotto, “Cosmological implications of the Higgs mass
measurement,” JCAP 0805, 002 (2008) [0710.2484].

[13] N. Arkani-Hamed, S. Dubovsky, L. Senatore and G. Villadoro, “(No) Eternal Inflation and
Precision Higgs Physics,” JHEP 0803, 075 (2008) [0801.2399].

[14] F. Bezrukov and M. Shaposhnikov, “Standard Model Higgs boson mass from inflation: Two
loop analysis,” JHEP 0907, 089 (2009) [0904.1537].

[15] J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker and A. Riotto, “The Probable Fate of the
Standard Model,” Phys. Lett. B 679, 369 (2009) [0906.0954].

[16] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, “Higgs
mass implications on the stability of the electroweak vacuum,” Phys. Lett. B 709, 222 (2012)
[1112.3022].

[17] S. Alekhin, A. Djouadi and S. Moch, “The top quark and Higgs boson masses and the stability
of the electroweak vacuum,” Phys. Lett. B 716, 214 (2012) [1207.0980].

[18] F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, “Higgs Boson Mass and
New Physics,” JHEP 1210, 140 (2012) [1205.2893].

[19] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and A. Strumia,
“Higgs mass and vacuum stability in the Standard Model at NNLO,” JHEP 1208, 098 (2012)
[1205.6497].

[20] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia,
“Investigating the near-criticality of the Higgs boson,” [1307.3536].

[21] L. Di Luzio, G. Isidori and G. Ridolfi, “Stability of the electroweak ground state in the
Standard Model and its extensions,” Phys. Lett. B 753, 150 (2016) [1509.05028].

[22] C. Ford, I. Jack and D.R.T. Jones, “The Standard model effective potential at two loops,”
Nucl. Phys. B 387, 373 (1992) [Erratum-ibid. B 504, 551 (1997)] [hep-ph/0111190].

[23] S.P. Martin, “Three-loop Standard Model effective potential at leading order in strong and
top Yukawa couplings,” Phys. Rev. D 89, 013003 (2014) [1310.7553].

[24] S. P. Martin, “Four-loop Standard Model effective potential at leading order in QCD,” Phys.
Rev. D 92, no. 5, 054029 (2015) [1508.00912].

[25] S.P. Martin, “Two loop effective potential for a general renormalizable theory and softly
broken supersymmetry,” Phys. Rev. D 65, 116003 (2002) [hep-ph/0111209].

[26] S. P. Martin, “Two loop effective potential for the minimal supersymmetric standard model,”
Phys. Rev. D 66, 096001 (2002) [hep-ph/0206136].

[27] R. Hempfling and A. H. Hoang, “Two loop radiative corrections to the upper limit of the
lightest Higgs boson mass in the minimal supersymmetric model,” Phys. Lett. B 331, 99
(1994) [hep-ph/9401219].

[28] R. J. Zhang, “Two loop effective potential calculation of the lightest CP even Higgs boson
mass in the MSSM,” Phys. Lett. B 447, 89 (1999) [hep-ph/9808299].

[29] J. R. Espinosa and R. J. Zhang, “MSSM lightest CP even Higgs boson mass to O(alpha(s)
alpha(t)): The Effective potential approach,” JHEP 0003, 026 (2000) [hep-ph/9912236].

[30] J. R. Espinosa and I. Navarro, “Radiative corrections to the Higgs boson mass for a hierarchical



27

stop spectrum,” Nucl. Phys. B 615, 82 (2001) [hep-ph/0104047].
[31] G. Degrassi, P. Slavich and F. Zwirner, “On the neutral Higgs boson masses in the MSSM for

arbitrary stop mixing,” Nucl. Phys. B 611, 403 (2001) [hep-ph/0105096].
[32] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, “On the O(alpha(t)**2) two loop cor-

rections to the neutral Higgs boson masses in the MSSM,” Nucl. Phys. B 631, 195 (2002)
[hep-ph/0112177].

[33] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, “On the two loop sbottom corrections to
the neutral Higgs boson masses in the MSSM,” Nucl. Phys. B 643, 79 (2002) [hep-ph/0206101].

[34] S. P. Martin, “Taming the Goldstone contributions to the effective potential,” Phys. Rev. D
90, no. 1, 016013 (2014) [1406.2355].

[35] J. Elias-Miro, J. R. Espinosa and T. Konstandin, “Taming Infrared Divergences in the Effective
Potential,” JHEP 1408, 034 (2014) [1406.2652].

[36] H. H. Patel and M. J. Ramsey-Musolf, “Baryon Washout, Electroweak Phase Transition, and
Perturbation Theory,” JHEP 1107, 029 (2011) [1101.4665].

[37] A. Pilaftsis and D. Teresi, “Symmetry Improved 2PI Effective Action and the Infrared Diver-
gences of the Standard Model,” J. Phys. Conf. Ser. 631, no. 1, 012008 (2015) [1502.07986].

[38] A. Pilaftsis and D. Teresi, “Symmetry-Improved 2PI Approach to the Goldstone-Boson IR
Problem of the SM Effective Potential,” Nucl. Phys. B 906, 381 (2016) [1511.05347].

[39] S. P. Martin, “A supersymmetry primer,” [hep-ph/9709356] (version 7, 2016).
[40] M. B. Einhorn and D. R. T. Jones, “Scale Fixing by Dimensional Transmutation: Supersym-

metric Unified Models and the Renormalization Group,” Nucl. Phys. B 211, 29 (1983).
[41] B. M. Kastening, “Renormalization group improvement of the effective potential in massive

phi**4 theory,” Phys. Lett. B 283, 287 (1992).
[42] M. Bando, T. Kugo, N. Maekawa and H. Nakano, “Improving the effective potential,” Phys.

Lett. B 301, 83 (1993) [hep-ph/9210228]. “Improving the effective potential: Multimass scale
case,” Prog. Theor. Phys. 90, 405 (1993) [hep-ph/9210229].

[43] S. P. Martin, “Strong and Yukawa two-loop contributions to Higgs scalar boson self-energies
and pole masses in supersymmetry,” Phys. Rev. D 71, 016012 (2005) [hep-ph/0405022].

[44] S. P. Martin and M. T. Vaughn, “Two loop renormalization group equations for soft super-
symmetry breaking couplings,” Phys. Rev. D 50, 2282 (1994) Erratum: [Phys. Rev. D 78,
039903 (2008)] [hep-ph/9311340].

[45] Y. Yamada, “Two loop renormalization group equations for soft SUSY breaking scalar inter-
actions: Supergraph method,” Phys. Rev. D 50, 3537 (1994) [hep-ph/9401241].

[46] I. Jack and D. R. T. Jones, “Soft supersymmetry breaking and finiteness,” Phys. Lett. B 333,
372 (1994) [hep-ph/9405233].

[47] I. Jack, D. R. T. Jones, S. P. Martin, M. T. Vaughn and Y. Yamada, “Decoupling of the epsilon
scalar mass in softly broken supersymmetry,” Phys. Rev. D 50, 5481 (1994) [hep-ph/9407291].

[48] H. E. Haber and R. Hempfling, “Can the mass of the lightest Higgs boson of the minimal
supersymmetric model be larger than m(Z)?,” Phys. Rev. Lett. 66, 1815 (1991).

[49] Y. Okada, M. Yamaguchi and T. Yanagida, “Upper bound of the lightest Higgs boson mass
in the minimal supersymmetric standard model,” Prog. Theor. Phys. 85, 1 (1991).

[50] J. R. Ellis, G. Ridolfi and F. Zwirner, “On radiative corrections to supersymmetric Higgs
boson masses and their implications for LEP searches,” Phys. Lett. B 262, 477 (1991).

[51] S. Heinemeyer, W. Hollik and G. Weiglein, “QCD corrections to the masses of the neutral
CP-even Higgs bosons in the MSSM,” Phys. Rev. D 58, 091701 (1998) [hep-ph/9803277];
“Precise prediction for the mass of the lightest Higgs boson in the MSSM,” Phys. Lett. B
440, 296 (1998) [hep-ph/9807423]; S. Heinemeyer, W. Hollik and G. Weiglein, “FeynHiggs: A
Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM,”
Comput. Phys. Commun. 124, 76 (2000) [hep-ph/9812320]; “The Masses of the neutral CP -
even Higgs bosons in the MSSM: Accurate analysis at the two loop level,” Eur. Phys. J. C 9,
343 (1999) [hep-ph/9812472].

[52] R. V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, “Higgs boson mass in supersym-
metry to three loops,” Phys. Rev. Lett. 100, 191602 (2008) [Phys. Rev. Lett. 101, 039901
(2008)] [0803.0672].

[53] P. Kant, R. V. Harlander, L. Mihaila and M. Steinhauser, “Light MSSM Higgs boson mass to
three-loop accuracy,” JHEP 1008, 104 (2010) [1005.5709].

[54] J. S. Lee, M. Carena, J. Ellis, A. Pilaftsis and C. E. M. Wagner, “CPsuperH2.3: an Updated
Tool for Phenomenology in the MSSM with Explicit CP Violation,” Comput. Phys. Commun.
184, 1220 (2013) [1208.2212].

[55] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, “High-precision predictions



28

for the light CP-even Higgs Boson Mass of the MSSM,” Phys. Rev. Lett. 112, 141801 (2014)
[1312.4937].

[56] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, “Momentum-dependent
two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM,” Eur. Phys. J. C
74, no. 8, 2994 (2014) [1404.7074].

[57] W. Hollik and S. Passehr, “Two-loop top-Yukawa-coupling corrections to the Higgs boson
masses in the complex MSSM,” Phys. Lett. B 733, 144 (2014) [1401.8275]. “Higgs boson
masses and mixings in the complex MSSM with two-loop top-Yukawa-coupling corrections,”
JHEP 1410, 171 (2014) [1409.1687].

[58] G. Degrassi, S. Di Vita and P. Slavich, “Two-loop QCD corrections to the MSSM Higgs
masses beyond the effective-potential approximation,” Eur. Phys. J. C 75, no. 2, 61 (2015)
[1410.3432].

[59] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, “Renormalization scheme
dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM,”
Eur. Phys. J. C 75, no. 9, 424 (2015) [1505.03133].

[60] T. Hahn and S. Passehr, “Implementation of the O
(
α2
t

)
MSSM Higgs-mass corrections in

FeynHiggs,” [1508.00562].
[61] M. S. Carena, M. Quiros and C. E. M. Wagner, “Effective potential methods and the Higgs

mass spectrum in the MSSM,” Nucl. Phys. B 461, 407 (1996) [hep-ph/9508343].
[62] J. R. Espinosa and R. -J. Zhang, “Complete two loop dominant corrections to the mass of the

lightest CP even Higgs boson in the minimal supersymmetric standard model,” Nucl. Phys.
B 586, 3 (2000) [hep-ph/0003246].

[63] S. P. Martin, “Complete two loop effective potential approximation to the lightest Higgs scalar
boson mass in supersymmetry,” Phys. Rev. D 67, 095012 (2003) [hep-ph/0211366].

[64] A. Dedes and P. Slavich, “Two loop corrections to radiative electroweak symmetry breaking
in the MSSM,” Nucl. Phys. B 657, 333 (2003) [hep-ph/0212132].

[65] A. Dedes, G. Degrassi and P. Slavich, “On the two loop Yukawa corrections to the MSSM
Higgs boson masses at large tan beta,” Nucl. Phys. B 672, 144 (2003) [hep-ph/0305127].

[66] M. D. Goodsell, K. Nickel and F. Staub, “Two-Loop Higgs mass calculations in supersym-
metric models beyond the MSSM with SARAH and SPheno,” Eur. Phys. J. C 75, no. 1, 32
(2015) [1411.0675].

[67] H. K. Dreiner, K. Nickel and F. Staub, “On the two-loop corrections to the Higgs mass in
trilinear R-parity violation,” Phys. Lett. B 742, 261 (2015) [1411.3731].

[68] M. Goodsell, K. Nickel and F. Staub, “Generic two-loop Higgs mass calculation from a dia-
grammatic approach,” Eur. Phys. J. C 75, no. 6, 290 (2015) [1503.03098].

[69] M. D. Goodsell and F. Staub, “The Higgs mass in the CP violating MSSM, NMSSM, and
beyond,” [1604.05335].

[70] H. E. Haber and R. Hempfling, “The Renormalization group improved Higgs sector of the
minimal supersymmetric model,” Phys. Rev. D 48, 4280 (1993) [hep-ph/9307201].

[71] J. A. Casas, J. R. Espinosa, M. Quiros and A. Riotto, “The Lightest Higgs boson mass in
the minimal supersymmetric standard model,” Nucl. Phys. B 436, 3 (1995) [Erratum-ibid. B
439, 466 (1995)] [hep-ph/9407389].

[72] M. S. Carena, J. R. Espinosa, M. Quiros and C. E. M. Wagner, “Analytical expressions for
radiatively corrected Higgs masses and couplings in the MSSM,” Phys. Lett. B 355, 209 (1995)
[hep-ph/9504316].

[73] H. E. Haber, R. Hempfling and A. H. Hoang, “Approximating the radiatively corrected Higgs
mass in the minimal supersymmetric model,” Z. Phys. C 75, 539 (1997) [hep-ph/9609331].

[74] M. S. Carena, H. E. Haber, S. Heinemeyer, W. Hollik, C. E. M. Wagner and G. Weiglein,
“Reconciling the two loop diagrammatic and effective field theory computations of the mass
of the lightest CP - even Higgs boson in the MSSM,” Nucl. Phys. B 580, 29 (2000) [hep-
ph/0001002].

[75] S. P. Martin, “Three-loop corrections to the lightest Higgs scalar boson mass in supersymme-
try,” Phys. Rev. D 75, 055005 (2007) [hep-ph/0701051].

[76] P. Draper, G. Lee and C. E. M. Wagner, “Precise Estimates of the Higgs Mass in Heavy
SUSY,” Phys. Rev. D 89, 055023 (2014) [1312.5743].

[77] J. P. Vega and G. Villadoro, “SusyHD: Higgs mass Determination in Supersymmetry,” JHEP
1507, 159 (2015) [1504.05200].

[78] P. Draper and H. Rzehak, “A Review of Higgs Mass Calculations in Supersymmetric Models,”
Phys. Rept. 619, 1 (2016) [1601.01890].


