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Abstract

The strength of the amplitudes for the coupling between the bottomonium Υ(nS)

states, the bottomonium-like isovector resonances Zb and a pion, Υ(nS)Zbπ, is con-

sidered. These amplitudes describe the decays Zb → Υ(nS)π for n = 1, 2, 3, and the

processes Υ(nS) → Zbπ for n = 5, 6, . . . with either Zb(10610) or Zb(10650). It is

pointed out that analyticity and unitarity impose a sum rule for these couplings to

each of the Zb resonances. With the currently available data it appears to be difficult

or impossible to simultaneously satisfy the sum rules for the Zb(10610) and Zb(10650)

resonances. This difficulty can be resolved if there is a considerable dissimilarity in

the yield of the states Zb(10610)π and Zb(10650)π in the e+e− annihilation at energies

above the Υ(5S) resonance.



The bottomonium-like isovector resonances [1, 2] Zb(10610) and Zb(10650) with the quan-

tum numbers IG(JP ) = 1+(1+) are objects of great interest for experimental and theoretical

studies due to their manifestly exotic quark structure. Their masses, 10607.2± 2.0MeV and

10652.2± 1.5MeV coincide, within the errors, with the thresholds for respectively B∗B̄ and

B∗B̄∗ heavy meson pairs, suggesting [3] that these are ‘molecular’ states [4] of the corre-

sponding heavy meson-antimeson pair. These resonances are mostly studied through their

production in the e+e− annihilation at the c.m. energy around 10870MeV within the peak

of the bottomonium resonance Υ(5S) [5, 6] due to the decay Υ(5S) → Zbπ, and there is also

an indication [7, 8] of similar processes at higher energies around 11000MeV corresponding

to the peak of the Υ(6S) resonance. The Zb resonances are observed through their decay into

lower bottomonium states and a pion: Zb → Υ(nS)π with n = 1, 2, 3 and Zb → hb(kP )π

with k = 1, 2 [5], or into the corresponding heavy meson pairs: Zb(10610) → B∗B̄ + c.c.,

Zb(10650) → B∗B̄∗ [6].

The purpose of this paper is to point out that there is a sum rule, following from ana-

lyticity and unitarity, and relating the couplings of bottomonium states with fixed quantum

numbers JPC to the channel Zbπ with each one of the Zb resonances. The sum runs over the

products of these couplings times the amplitude of production of the bottomonium states

by a local operator producing the bb̄ quark pair with the corresponding quantum numbers.

Clearly, of the most practical interest are the sum rules for the vector 1−− bottomonium

states, Υ(nS) resonances, since their production by the electromagnetic current of the b

quarks, jµ = (b̄γµb), is directly measured in the e+e− annihilation, and the discussed sum

rules can be compared with the existing data. For this reason the further discussion is

presented for this channel.

It will be argued below that for each of the Zb resonances there are two sum rules relating

the couplings between Zbπ and the Υ(nS) resonances. The two sum rules differ by the power

of the masses of the Υ(nS). The sums run over all the vector bb̄ resonances including the

contribution of the Υ(4S). However the strength of the coupling between Zbπ and the latter

state cannot be directly measured for kinematical reasons, and in order to eliminate this

unknown contribution the two sum rules are combined into one relation having the form

∑

n

Cn(M4 −Mn) + continuum = 0 , (1)

where the sum includes all the Υ(nS) resonances with masses Mn, and the quantities Cn are

generally complex and their absolute values squared are related to the e+e− decay widths,

Γee of these resonances and the rates of the one-pion transitions between these and one of
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the Zb resonances as

|Cn|
2 = const

Γee[Υ(nS)] ΓZπ[Υ(nS)]

E2
πkπ

. (2)

Here ΓZπ[Υ(nS)] stands for the rate of the kinematically possible transition: Γ[Zb → Υ(nS)]

for n = 1, 2, 3 and Γ[Υ(nS) → Zbπ] for n = 5, 6, . . .; Eπ and kπ denote the energy and

the momentum of the emitted pion. Finally, the ‘continuum’ term is a contribution of the

production of Zbπ states in e+e− in the continuum, i.e. not associated with the bottomonium

resonances. The common constant in Eq.(2), inessential in the relation (1), can be chosen

for ‘numerical convenience’, and will be specified later in the text.

A certain deficiency of the sum rule (1) is that the terms in it are not sign-definite but

rather are generally complex numbers, Cn = eiφn|Cn| , and only the absolute value of the

contribution of each Υ resonance can be evaluated from Eq.(2) using the data. However

the phases between the coefficients Cn for the Zb(10610) and Zb(10650) (i.e., in different

sum rules) for each of the lower Υ(nS) (n = 1, 2, 3) states can be determined from the

interference patterns between the two Zb resonances in the corresponding channel [5].

Furthermore, neither the continuum contribution has a definite phase. At the energies

up to 11020MeV studied thus far, no non-resonant production of the Zbπ states has been

observed [8], so that the continuum term is very small or zero. If it is found that with

the studied Υ(nS) up to n = 6 the sum rules can not be satisfied for one or both Zb

resonances, this would imply existence of their production at higher e+e− energies, either in

the continuum, or in possible higher resonances.

In fact, even with the current uncertainty, it can be concluded that limiting the summa-

tion in Eq.(1) at the Υ(5S) resonance indeed results in a significant mismatch between the

sums for the Zb(10610) and Zb(10650) states. As will be discussed, the absolute values of the

coefficients Cn with n = 1, 2, 3 in the sum rule for Zb(10650) are systematically smaller (by

approximately a factor of two) than those in the sum rule for Zb(10610). On the contrary, the

absolute values of the coefficients C5 in the sum rules for each of these states are very close to

each other, although the overall normalization is subject to an uncertainty. For this reason

it is impossible to saturate the sum rules for both Zb(10610) and Zb(10650) simultaneously

by adjusting the common normalization of the coefficients C5. This considerable mismatch

should thus be compensated by a significantly dissimilar yield in the channels Zb(10610)π

and Zb(10650)π at Υ(6S) or at higher energies 1.

1The study in Ref. [8] could not resolve the relative yield in these channels at Υ(6S), and it has been

also argued in a model [9], that this relative yield can display a nontrivial behavior at Υ(6S) and at a higher
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The derivation of the sum rules is based on considering the amplitude for production of

the state Zbπ with one of the Zb bosons by the b quark electromagnetic current:

Aµ = 〈Zb(ǫ, p)π(k)|jµ(q)|0〉 , (3)

where ǫ and p are the polarization amplitude and the momentum of the Zb, and q = p+k. The

amplitude can be written in terms of two scalar functions, in agreement with the presence

of S and D partial waves. The expression, satisfying the relations (q ·A) = 0 and (p · ǫ) = 0,

can generally be written in terms of two invariant form factors A1 and A2,

Aµ = A1 [ǫµ (q · k)− kµ (ǫ · k)] + A2 (ǫ · k)

[

kµ −
(q · k)

(q · p)
pµ

]

. (4)

It can be noted, that the amplitude also automatically satisfies the chiral algebra requirement

of vanishing at zero pion four-momentum, so that A1 and A2 are finite at k → 0. The form

factors A1 and A2 are functions of three invariants: q2, p2 and k2. For on-shell Zb and pion,

two of the latter invariants are obviously fixed, p2 = M2
Z , k

2 = m2
π, so that the form factors

are analytic functions of q2, A1,2(q
2). The asymptotic behavior of these functions at large q2

is limited by the quark counting rule [10, 11], according to which they decrease as 1/|q2|5/2

at |q2| → ∞. One can thus write a dispersion relation

A1,2(q
2) =

1

2 π i

∫

DiscA1,2(s)

s− q2 − i0
ds , (5)

and conclude that the conditions for the required asymptotic behavior at large |q2| reads
∫

DiscA1,2(s) ds = 0 , and
∫

DiscA1,2(s) s ds = 0 . (6)

The integral runs over the values of s where the discontinuity, DiscA, of the amplitude at

the unitary cut is nonzero. By the unitarity relation these values correspond to the on-shell

vector bb̄ states produced by the electromagnetic current and coupled to Zbπ. Thus the

integral in Eq.(6) is contributed by the Υ(nS) resonances and, possibly, a continuum at

higher energies. In the mass region of the Υ resonances in the discussed pion transitions

between bottomonium and the Zb resonances the hidden-bottom states (but not the pion) can

be treated nonrelativistically. Also in these transitions theD wave is suppressed by the heavy

quark spin symmetry (HQSS) and also kinematically, and one can limit consideration to only

the S wave, which is given by the first term in the part of the expression (4) proportional to

A1. In the nonrelativistic limit the amplitude Aµ reduces in the center of mass frame to

~A = A1 M~ǫEπ , (7)

energy around 11.2GeV.
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where M is hidden-bottom mass which is to be taken as a common constant, since its

difference for different states is beyond the leading nonrelativistic order.

The contribution of each of the Υ(nS) resonances in the imaginary part of A1 can be

written as
1

2 π i
DiscA1

∣

∣

∣

∣

Υ(nS)
= δ(s−M2

n)M Cn , (8)

where for all n, except for n = 4,

|Cn| =

(

24π

Q2
b α

2

Γee[Υ(nS)] ΓZπ[Υ(nS)]M

E2
πkπ

)1/2

(9)

with Qb = −1/3 being the electric charge of the b quark and α the fine structure constant.

This relation also specifies, for definiteness, the convention for the overall normalization of

the coefficients Cn, used in the numerical estimates below. (Also the value M = 10GeV is

used for definiteness. Clearly, the relative values of the coefficients Cn do not depend on this

specific number.)

The coupling Υ(4S)Z
(′)
b π is not accessible kinematically for a measurement either in the

production of the Z
(′)
b π channel or in the decays of the Z

(′)
b resonances. In order to eliminate

the unknown contribution of the Υ(4S) one can combine the sum rules (6) into one with the

weight factor vanishing at the Υ(4S) pole:
∫

DiscA1,2(s) (M
2
4 − s) ds = 0 . (10)

Clearly, in the nonrelativistic limit, where the mass differences between the Υ(nS) resonances

are small compared to their common mass M , the latter relation reduces to the sum rule in

Eq.(1).

The numerical estimates of the absolute values of the coefficients Cn ≡ Cn[Zb(10610)]

and C ′

n ≡ Cn[Zb(10650)] for the lower Υ(nS) resonances with n = 1, 2, 3 can be done using

the data [6] on the branching fractions for the Zb decays to Υ(nS)π and the PDG [12] values

of the Υ(nS) leptonic widths Γee and the widths of the Zb resonances. The results are shown

in Table 1 where in the estimates of the uncertainty the statistical and systematic errors

from Ref. [6] are added in quadrature. The presented numbers are for the amplitudes with

one specific charge combination with a charged pion, e.g. Z+
b → Υ(nS)π+.

The phases of the coefficients estimated in Table 1 are not known. On the theoretical

side, these coefficients can be expected to be almost real, since the complex phase arising

from re-scattering in the Υ(nS)π channel should be small, as can be deduced from the

relatively low rates of similar processes of transition between the lower bottomonium states
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Table 1: The absolute values of the coefficients Cn ≡ Cn[Zb(10610)] and C ′

n ≡ Cn[Zb(10650)],

the products Cn (M4−Mn) and C ′

n (M4−Mn), and the experimental [5] relative phases φ′

n−φn

for the lower Υ(nS) resonances.

n |Cn| |C ′

n| |Cn|(M4 −Mn) (MeV) |C ′

n|(M4 −Mn) (MeV) φ′

n − φn (deg.)

1 0.11± 0.02 0.04± 0.02 123± 22 45± 22 67± 36+24
−52

2 0.55± 0.08 0.23± 0.04 306± 45 128± 22 −10± 13+34
−12

3 1.37± 0.23 0.67± 0.14 308± 52 152± 32 −5± 22+15
−33

with emission of two pions. This however leaves an ambiguity in the relative sign of the

coefficients Cn. On the experimental side, the data on the interference pattern between the

Zb(10610) and Zb(10650) resonances in the processes e+e− → Υ(nS)π+π− for each n indicate

that the relative phase between their contribution is consistent with zero [5] (cf. Table 1).

The experimental observation implies that, given that the absolute value of each of the

coefficients C ′

n is significantly smaller (by about a factor of two) than of the corresponding

coefficient Cn, the absolute value of the sum C ′

1 + C ′

2 + C ′

3 should also be similarly smaller

than the absolute value of C1 + C2 + C3.

In order to estimate the coefficients C5 and C ′

5 describing the amplitudes of the transitions

Υ(5S) → Zb(10610)π and Υ(5S) → Zb(10650)π, one can use the data [6] on the cross sections

σ(E0) = σ[e+e− → (B∗B̄ + B̄∗B)+π−] and σ′(E0) = σ[e+e− → (B∗B̄∗)+π−] at the energy

E0 = 10866MeV where the largest experimental statistics within the peak of Υ(5S) is

available 2. These data can be converted to the cross section for the production of the Zbπ

states, since experimentally [6] the yield of the final states BB∗π is only due to the Zb(10610)

resonance and that of B∗B∗π is fully described by the Zb(10650), and the branching fractions

are known and measured as BZBB∗ = Br[Z+
b (10610) → (BB∗)+] = (82.6± 2.9± 2.3)% and

BZ′B∗B∗ = Br[Z+
b (10650) → (B∗B∗)+] = (70.6 ± 4.9 ± 4.4)%. Using the Breit-Wigner

formula for the Υ(5S) resonance, one can write the product of its widths ΓeeΓZπ directly in

terms of the measured cross section and the total width Γtot(5S):

Γee(5S)ΓZ(′)π(5S) =
M2

5 σ
(′)(E0)

12π

σmax

σ(′)(E0)

Γ2
tot(5S)

BZ(′)BB

, (11)

where M5 is the mass of Υ(5S), and σmax is the cross section at the maximum of the Υ(5S)

2I thank A. Bondar for suggesting this way of estimating the relevant combination of the parameters.

Another method leading to similar results, albeit with larger uncertainties, would be based on the measured

cross section for e+e− → hb(kP )π+π− and the fit [5] of the fractional contribution of each of the Zb

resonances.
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resonance peak, so that the ratio rσ(E0) = σmax/σ(E0) depends only on the shift of the

energy E0 from the resonance maximum at M5:

rσ(E0) =
4 (E0 −M5)

2 + Γ2
tot

Γ2
tot

, (12)

and is the same for the Zb(10610) and Zb(10650) resonances. The ratio rσ is currently not

known well. The data [8] of the energy scan of the cross section for e+e− → hb(kP )π+π−,

the processes going through the Zb resonances, indicate that rσ(E0) ≈ 2, and the resonance

maximum is actually above 10866MeV. In the following numerical estimates a ‘benchmark’

value rσ(E0) = 2 is used.

The absolute values of the coefficients C5 and C ′

5 normalized as in Eq.(9) can thus be

evaluated as

|C5| = (2.10± 0.05)
Γtot(5S)

55MeV

√

rσ(E0)

2

σ(E0)

8.7 pb
,

|C ′

5| = (2.24± 0.10)
Γtot(5S)

55MeV

√

rσ(E0)

2

σ′(E0)

4.38 pb
, (13)

where the used benchmark values for the cross sections are the central values of the available

data [6] after radiative corrections. (The data presented in Ref. [6] describe the total cross

section for two charge combinations containing a charged pion. Here the cross sections are

for one charge combination and are thus two times smaller.) The estimates (13) translate

into the following evaluation of the Υ(5S) contribution to the sums rules (1) for the Zb and

Z ′

b resonances

|C5|(M4 −M5) = −(630± 28)MeV
Γtot(5S)

55MeV

√

rσ(E0)

2

σ(E0)

8.7 pb
,

|C ′

5|(M4 −M5) = −(672± 39)MeV
Γtot(5S)

55MeV

√

rσ(E0)

2

σ′(E0)

4.38 pb
, (14)

where the error in the mass difference M5 −M4 is also added in quadrature.

There is a considerable uncertainty in the estimates in Eqs. (13) and (14) with a large

part of it resulting from the current error [12] in the total width: Γtot(5S) = 55 ± 28MeV.

The uncertainty is significantly reduced if one considers the ratio of the absolute values of

the coefficients:

|C ′

5|

|C5|
= (1.07± 0.05)

√

2 σ′(E0)/σ(E0) = 1.07± 0.13 . (15)
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The essentially equal estimated absolute values of these coefficients, combined with the

previous estimate of the relative value of the sums over three lower resonances, imply that the

sum rules (1) can not be satisfied simultaneously for the Zb(10610) and Zb(10650) resonances

by only the vector states of bottomonium up to (and including) Υ(5S), and there should be

a significant contribution from higher vector bb̄ states. Moreover, the yield of Zb(10650)π at

higher energies should be substantially different than that of Zb(10610)π. The production

of Zbπ states has been observed [7, 8] within the Υ(6S) peak. However the ratio of the

yield for the two Zb resonances is not known yet. Also the present uncertainty in the relative

amplitude and the phase between the Υ(5S) and Υ(6S) is large, so that it would be premature

to speculate whether the production amplitudes at the Υ(6S) can fix the discussed mismatch

in the sum rules, or a contribution of still higher states is needed. If however no significant

difference in the yield of Zb(10650)π and Zb(10610)π channels is observed in future studies at

Υ(6S) and higher energies, the remaining possibility for balancing the sum rules (1) would

be that the data on the Zb resonances should change. Indeed, the suppression of the sum of

the coefficients C ′

n results, in part, from the smaller measured total width of Zb(10650) in

comparison with Zb(10610). The tension in the sum rules would thus be somewhat relaxed

if this measurement changes in future more detailed data.

In summary. The amplitudes for pion transitions between the Zb resonances and the

bottomonium states Υ(nS) should satisfy the sum rules (1). The existing data indicate that

the sums up to Υ(5S) are significantly different for the Zb(10610) and Zb(10650) states,

and, provided the current data do not change much in the future, the difference should be

compensated by a substantially dissimilar yield of the exotic bottomonium-like resonances

at Υ(6S) and possibly at higher energies in e+e− annihilation.

I thank Alexander Bondar for illuminating discussions and Bastian Kubis for pointing

out an omission in an earlier version of this paper. This work is supported in part by U.S.

Department of Energy Grant No. DE-SC0011842.
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