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We study the impact of including the baryonic decay Λb → Λ(→ p π−)µ+µ− in a Bayesian
analysis of |∆B| = |∆S| = 1 transitions. We perform fits of the Wilson coefficients C9, C9′ , C10

and C10′ , in addition to the relevant nuisance parameters. Our analysis combines data for the
differential branching fraction and three angular observables of Λb → Λ(→ p π−)µ+µ− with data
for the branching ratios of Bs → µ+µ− and inclusive b → s`+`− decays. Newly available precise
lattice QCD results for the full set of Λb → Λ form factors are used to evaluate the observables of
the baryonic decay. Our fits prefer shifts to C9 that are opposite in sign compared to those found in
global fits of only mesonic decays, and the posterior odds show no evidence of physics beyond the
Standard Model. We investigate a possible hadronic origin of the observed tensions between theory
and experiment.

I. INTRODUCTION

The tensions between theory and experiment for P ′5
[1, 2], one of the angular observables in the kinematical
distribution of the decay B̄ → K̄∗(→ K̄π)µ+µ− [3], have
sparked much interest in the determination of the short-
distance couplings in flavor-changing neutral currents of
the form b → s`+`−. Several competing global analyses
have been published [4–14] that use the available data
on such rare decays of B̄ mesons to various degrees, and
most of these analyses find that a negative shift in the
Wilson coefficient C9 improves the agreement with the
data. However, it remains unclear whether this effect is
caused by physics beyond the Standard Model, or merely
by uncontrolled hadronic contributions.

None of the published analyses include the first mea-
surements of angular observables of the baryonic rare de-
cay Λb → Λ(→ p π−)µ+µ− [15], which offers complemen-
tary constraints compared to the commonly used mesonic
channels. A recent lattice QCD calculation of the rele-
vant Λb → Λ form factors [16] enables us to evaluate the
Λb → Λ(→ p π−)µ+µ− observables with high precision.
The purpose of this work is thus to study the constrain-
ing power of the b-baryon decay in a global analysis of
|∆B| = |∆S| = 1 decays.

Our article is structured as follows: First, we briefly
describe our framework, define our fit models and re-
view the observations that enter our likelihood function
in section II. We then present our results for each of the
fit models in section III, and further discuss the implica-
tions in section IV. Appendix A describes the subleading
corrections to the OPE at low hadronic recoil; appendix
B gives posterior-predictive distributions for the full set
of Λb → Λ(→ p π−)µ+µ− angular observables, and ap-
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pendix C contains additional fit results using only the
data for the baryonic decay.

II. FRAMEWORK

We work in the usual effective field theory for flavor-
changing neutral b → s{γ, `+`−} transitions; see e.g.
[17]. Its Hamiltonian reads

Heff = −4GF√
2
VtbV

∗
ts

αe
4π

∑
i

Ci(µ)Oi

+O (VubV
∗
us) + h.c. ,

(1)

where Ci(µ) denotes the Wilson coefficients at the renor-
malization scale µ, and Oi denotes a basis of field oper-
ators. The most relevant operators are

O7(7′) =
mb

e

[
s̄σµνPR(L)b

]
Fµν ,

O9(9′) =
[
s̄γµPL(R)b

][
¯̀γµ`

]
,

O10(10′) =
[
s̄γµPL(R)b

][
¯̀γµγ5`

]
,

(2)

where a primed index indicates a flip of the quarks’
chiralities with respect to the unprimed, SM-like oper-
ator. Further four-quark operators Oi ∼ [s̄Γib] [q̄Γ′iq],
i = 1, . . . , 6 as well as the chromomagnetic operator O8

contribute to the transition amplitudes via hadronic ma-
trix elements of two-point correlators with the quark elec-
tromagnetic current. These contributions are taken into
account in the numerical evaluation of the b → s`+`−

observables via process- and q2-dependent shifts of the
effective Wilson coefficients C9,λ and C7,λ that enter in
the various transversity amplitudes. The expressions rel-
evant to this work can be taken from Refs. [18, 19] (for
Λb → Λ`+`− at high q2) and Ref. [20] (for B → Xs`

+`−

at low q2). For definiteness, we fix µ = 4.2 GeV in our
fits.
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A. Fit Models

For the purpose of our analysis we define three
fit scenarios, labeled “SM(ν-only)”, “(9, 10)”, and
“(9, 9′, 10, 10′)”, respectively:

SM(ν-only) :


C7,9,10 SM values

C7′,9′,10′ SM values

~ν free floating

,

(9, 10) :


C9 ∈ [−4,+9]

C10 ∈ [−6,−2]

C7,7′,9′,10′ SM values

~ν free floating

,

(9, 9′, 10, 10′) :


C9,9′,10,10′ ∈ [−8,+8]

C7,7′ SM values

~ν free floating

,

(3)

where the parameters of interest are ~ϑ = (C9, C10) or ~ϑ =
(C9, C9′ , C10, C10′), and where the nuisance parameters ~ν
account for theoretical uncertainties in the computation
of the observables1. We obtain the posterior density for
a given model M , P (~x |M,data), using Bayes’ theorem

P (~x |M, data) =
P (data | ~x,M)P0(~x |M)

P (data |M)
. (4)

In the above, ~x ≡ (~ϑ, ~ν), P0(~x,M) is the prior density,
and P (data | ~x,M) denotes the product of the experimen-
tal likelihoods. The prior density factorizes,

P0(~x |M) ≡ P0(~ϑ |M)P0(~ν |M) , (5)

into the prior for the parameters of interest, which is
multivariate uniform (see eq. (3)), and the informative
(i.e., non-uniform) priors for the nuisance parameters.
The normalization on the right-hand side of eq. (4),

P (data |M) ≡
∫
V (M)

d~x P (data | ~x,M)P0(~x |M) , (6)

is the total evidence of the data given the model M . We
will refer to it as the local evidence whenever we restrict
the integration hypervolume V (M) to a subset of the

support of P0(~x,M). The parameter point ~x ∗ ≡ (~ϑ ∗, ~ν ∗)
maximizes the posterior,

~x ∗ = arg max
x

P (~x |M, data) , (7)

and is referred to as the best-fit point. For the purpose
of calculating the goodness of fit, we then compute

χ2 ≡ −2 lnP (data | ~x ∗,M) . (8)

1 Note that our fit models are lepton-flavor-universal, and therefore
cannot account for the present measurement of RK [21].

Since all measurements enter the likelihood as univariate
Gaussians, we define their individual pull values as

pulli ≡
O −O(~x ∗)

σ
, (9)

in which O ± σ corresponds to the experimental results,
and O(~x ∗) denotes the theory prediction at the best-fit
point.

In order to compare pairs of fit models, we employ the
notion of posterior odds. The odds of model M1 over
model M2 are defined as

P (M1 |data)

P (M2 |data)
=
P (data |M1)

P (data |M2)

P0(M1)

P0(M2)
. (10)

In the above, P0(M) denotes a model prior. The latter
can be obtained from, e.g., independent fits. In the ab-
sence of such results and following standard practice, we
use identical priors for all our models: P0(M) ≡ 1 ∀M .

Our statistical approach closely follows the one used in
Refs. [6, 22]. The calculation of all observables (listed in
the following subsection), and the statistical procedures
are carried out through use of the EOS software [23],
which implements a Monte Carlo algorithm as described
in Ref. [24].

B. Inputs

Our fits take into account the following observables:

1. The main task is the inclusion of the branching ra-
tio of Λb → Λ(→ p π−)µ+µ− decays, as well as
three further observables that arise from the angu-
lar distribution [19]: F0, the rate of longitudinally-
polarized lepton pairs, as well as the leptonic and
the hadronic forward-backward asymmetries A`FB
and AΛ

FB. The theory of QCD factorization at low
q2 [25] is not yet fully developed for the baryonic
decay (see Ref. [26] for a recent discussion), and
we therefore restrict our analysis to the high-q2 re-
gion, where the usual low-recoil OPE [18, 27] is
applicable. This restricts our use to observables
that are integrated of the entire low recoil region,
15 GeV2 ≤ q2 ≤ 20 GeV2 ' q2

max. We denote the
binning in this range as 〈 · 〉15,20.

The LHCb collaboration has published an analysis
of both the branching ratio and the three afore-
mentioned angular observables [15], which are all
included in our likelihood. The CDF collabora-
tion had previously reported [28] the first obser-
vation of this decay, and performed a measurement
of its branching ratio. However, the CDF analysis
is based on only a small number of 24 ± 5 signal
candidates in the entire phase space; the uncer-
tainty of the branching ratio in the low recoil region
is accordingly large. The CDF result is compati-
ble with the LHCb result, but with approximately
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three times larger uncertainty. We therefore do not
include the CDF measurement in our fits.

2. We denote the time-integrated branching ratio of
the decay Bs → µ+µ− as

∫
dτ B(τ) [29]. Our like-

lihood includes the recent results from a combined
analysis of the CMS and LHCb collaborations [30].
All of our fit models, as specified in eq. (3), imply
Aµµ∆Γs

= 1 [29].

3. From the inclusive decay B → Xs`
+`− we use the

branching ratio, integrated over the range of dilep-
ton mass square 1 GeV2 ≤ q2 ≤ 6 GeV2; denoted as
〈B〉1,6. The likelihood includes the measurements
by the BaBar [31] and the Belle [32] 2 collabora-
tions.

A summary of nuisance parameters, their association
with specific observables, and their respective priors that
enter our analyses is shown in table I.

The ten Λb → Λ form factors in the helicity basis are
parametrized using simplified z expansions [33] of the
form

f(q2) =
1

1− q2/m2
pole,f

kmax∑
k=0

af,k [z(q2)]k. (11)

The prior distribution of the parameters {af,k} is a mul-
tivariate Gaussian given by the lattice QCD calculation
of Ref. [16] (the definition of z and the values of the
pole masses, mpole,f , are also given in Ref. [16]). Note
that Ref. [16] provides two sets of form factor parame-
ters: the “nominal parameters” with kmax = 1, which are
used to evaluate central values and statistical uncertain-
ties, and the “higher-order parameters” with kmax = 2,
which are used in combination with the nominal param-
eters to evaluate systematic uncertainties according to
Eqs. (50)-(56) of Ref. [16]. Since a Bayesian fit requires
a single fit model, we follow a simplified approach in this
work. We use kmax = 2 throughout, but set the central
values of af,0 and af,1 equal to the nominal values and
set the central values of af,2 to zero. We then compute
the total (statistical plus systematic) covariance matrix
of the parameters {af,0, af,1, af,2} according to Eq. (56)
of Ref. [16], and use this total covariance matrix in our
prior distribution. In the high-q2 region considered here,
this simplified procedure accurately reproduces the total
covariances of all form factors and observables as com-
puted using the original method [16]. 3

2 In absence of a measurement for the µ+µ− final state, we use
the Belle result for a mixture of µ+µ− and e+e− final states,
assuming lepton universality.

3 This is not the case in the low-q2 region (which is not used here).
At low q2, the statistical and systematic uncertainties in the form
factors are larger due to the absence of lattice data points in that
region. Consequently, deviations from the quadratic approxima-
tion in Gaussian error propagation are larger, and the resulting
estimates depend on the order of the steps taken.

Quantity Prior Unit Reference

CKM Wolfenstein parameters

A 0.806± 0.020 — [34]

λ 0.2253± 0.0006 — [34]

ρ̄ 0.132± 0.049 — [34]

A 0.369± 0.050 — [34]

Quark masses

mc(mc) 1.275± 0.025 GeV [35]

mb(mb) 4.18± 0.03 GeV [35]

HQE parameters

µ2
π(1 GeV) 0.45± 0.10 GeV2 [36]

µ2
G(1 GeV) 0.35+0.03

−0.02 GeV2 [36]

Bs decay constant

fBs 227.7± 4.5 MeV [37–40]

Λ→ p π− decay parameter

α 0.642± 0.013 — [35]

TABLE I. Prior distributions of selected nuisance parameters:
CKM parameters, quark masses, hadronic matrix elements
entering the inclusive and the exclusive leptonic decays, and
Λ → p π− parity-violating decay parameter. For the CKM
parameters, we use the results of a Bayesian analysis of only
tree-level decays, which was performed by the UTfit Collab-
oration in 2013 [34]. All distributions are Gaussian, with the
exception of µ2

G(1 GeV). The latter follows a LogGamma dis-
tribution whose additional parameter allows to faithfully re-
produce the asymmetric uncertainty interval as given in [36].
The prior distribution for the Λb → Λ form factors is a mul-
tivariate Gaussian with inputs directly taken from the lattice
QCD calculation in Ref. [16]; see the text for details.

III. RESULTS

In the following subsections we will summarize our
findings for each of the fit scenarios through

• the value of ~ϑ ∗, the best-fit point for the parame-
ters of interest (if applicable);

• a summary of ~ν ∗, the nuisance parameters at the
best-fit point, as well as a summary of the 1D-
marginalizd densities of the posterior for all com-
ponents of ~ν;

• a χ2 value and its associated p-value: our a-priori
threshold for an acceptable fit is p ≥ 0.03;

• a description of a hypercube that includes the
global mode of the posterior, and its associated lo-
cal evidence;

• and a summary of the 1D-marginalized posteriors
of the parameters of interest for the local solution
with the largest local evidence.
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Pull value [σ]

Constraint SM(ν-only) (9, 10) (9, 9′, 10, 10′)

Λb → Λµ+µ−

〈B〉15,20 +0.86 −0.17 −0.08

〈F0〉15,20 +1.41 +1.41 +1.41

〈A`FB〉15,20 +3.13 +2.60 +0.72

〈AΛ
FB〉15,20 −0.26 −0.24 −1.08

B̄s → µ+µ−∫
dτ B(τ) −0.72 +0.75 +0.37

B̄ → Xs`
+`−

〈B〉1,6 (BaBar) +0.47 −0.26 −0.10

〈B〉1,6 (Belle) +0.17 −0.35 −0.24

χ2 at best-fit point

13.40 9.60 3.87

TABLE II. Pull values for the individual experimental con-
straints within each of the fit scenarios at the respective best-
fit point. The last line gives the total χ2 value at the respec-
tive best-fit point.

A short summary of the goodness-of-fit quantities for
each of the scenarios is shown in table II .

A. Scenario SM(ν-only)

This scenario does not feature any parameters of inter-
est, and thus only probes the goodness-of-fit between the
theory predictions in the SM and the data. We find that
both the best-fit point ~ν ∗ and the 1D-marginalized poste-
rior densities correspond excellently to the prior density
for each of the 35 nuisance parameters. Overall, we find
χ2 = 13.40 for 7 degrees of freedom (d.o.f.). This trans-
lates to a p-value of 0.06, assuming a Gaussian likelihood.
Since this value is larger than our a-priori threshold for
the p-value, we accept this fit. We obtain the global evi-
dence as P (data |SM(ν-only)) = (1.1469± 0.0003) · 1018,
where the error is only statistical in nature4. The indi-
vidual pull values for this scenario are listed in the left
column of table II. We draw attention to the observable
〈A`FB〉15,20, whose pull is the only pull to exceed 3σ; all
other pulls are smaller than 2σ.

4 Large numbers for the evidence are not worrisome. They are
driven by the integration of the likelihood as a function of the
model parameters over the model parameters. As such, they are
meaningful for comparison of fits as long as the fits share the
same likelihood. Providing the evidence as part of our analysis
allows other researchers to make their own conclusions, and to
produce their own Bayes factors for model comparisons.

−4 −2 0 2 4 6 8
C9

−7

−6

−5

−4

−3

−2

−1

C 1
0

FIG. 1. The 2D-marginalised posterior in the C9-C10 plane.
To demonstrate the impact of including the baryonic decay
in the analysis, we show the results from a fit to the B̄ →
Xs`

+`− and B̄s → µ+µ− branching ratios only (blue lines)
and from the full fit including also the Λb → Λ(→ p π−)µ+µ−

observables (orange-red areas). The SM point is marked with
a diamond shape, while the best-fit point from the full fit is
marked with a black cross. The contours correspond to 68%
(inner contours) and 95% (outer contours) of probability for
the respective 2D-marginalised posteriors.

B. Scenario (9,10)

In this scenario we fit 2 parameters of interest in addi-
tion to the parameters of SM(ν-only). The ϑ components
of the best-fit point read

~ϑ ∗ : (C9, C10) = (5.92,−3.50) . (12)

The 2D marginalization onto these two parameter is
shown in figure 1. As before for the model SM(ν-only),
we find that also in this fit model the nuisance param-
eters ~ν ∗ and their 1D-marginalized posterior densities
correspond excellently to the priors densities. We fur-
ther obtain χ2 = 9.60, which is a reduction compared to
SM(ν-only) by 3.80. Given the now 5 d.o.f., we find a
p-value of 0.09; the fit is therefore acceptable. The ev-
idence is P (data | (9, 10)) = (2.253 ± 0.008) · 1017. The
most prominent local mode lies within the rectangle

+3 ≤ C9 ≤ +9 −6 ≤ C10 ≤ −2 , (13)

which contributes (1.738 ± 0.008) · 1017 or roughly 77%
to the evidence. The 1D marginal posteriors for both C9
and C10 are non-Gaussian, and we find for their respective
modes and 1σ intervals:

C9 = +5.9+0.7
−0.9 , ∆9 = +1.6+0.7

−0.9 ,

C10 = −3.5+0.5
−0.8 , ∆10 = +0.7+0.5

−0.8 .
(14)

In the above, we also state the ranges for ∆i ≡ Ci − CSM
i

for i = 9, 10. A comparison of our results with other
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findings in the literature is difficult, due to the differ-
ent methodologies. Naively, one finds that the max-
imum distance between our results and the ones from
Refs. [6, 9, 13] are

−3.1σ for ∆9 and − 1.1σ for ∆10, (15)

where we have expressed the distance in terms of the
width of our results for 68% probability intervals.

In conclusion, we find that, while the (9,10) scenario
can locally explain the data better by a ∆χ2 = 3.80,
on average the SM(ν-only) scenario is more efficient in
explaining the data with posterior odds

P ((9, 10) |data)

P (SM(ν-only) |data)
= 1 : 6.6 . (16)

Following Jeffreys’ scale [41] these odds are substantially
in favor of SM(ν-only).

C. Scenario (9,10,9’,10’)

For this scenario we fit four parameters of interest in
addition to the nuisance parameters, yielding 39 fit pa-
rameters. The ϑ components of the best-fit point are

~ϑ ∗ : (C9, C9′ , C10, C10′) = (6.20, 0.50,−1.13,+2.54) .
(17)

We show all 2D marginalizations of the posterior in fig-
ure 2. As in Ref. [24], we find four local solutions. How-
ever, opposed to the results of Ref. [24], the local so-
lutions in our posterior are not well separated in the
2D marginalizations. We interpret this as an effect of a
“shallow” posterior, which is due to the still considerable
uncertainties on the experimental results for the Λb → Λ
observables, and also the small number of observations: a
full angular analysis of the decay Λb → Λ(→ p π−)µ+µ−

is therefore desirable. As a further consequence, the pos-
terior of the nuisance parameters is very close to our
prior. At the best-fit point we find χ2 = 3.87, which
is a reduction compared to the (9, 10) scenario by 5.73,
and compared to SM(ν-only) by 9.53. Given the only 3
degrees of freedom in this exploratory scenario, we obtain
a p-value of 0.28, which is a good fit. We obtain for the
evidence P (data | (9, 9′, 10, 10′)) = (2.188± 0.003) · 1016,
with the uncertainty only due to statistics.

We proceed to investigate one of the four solutions that
is contained within the hyperrectangle

+3 ≤ C9 ≤ +8 , −4 ≤ C9′ ≤ +4 ,

−4 ≤ C10 ≤ +1 , 0 ≤ C10′ ≤ +5 .
(18)

Its local evidence is found to be (1.152 ± 0.001) · 1016,
which corresponds to ∼ 53% of the total evidence. We
obtain the 1D marginalizations within the above bound-
aries, which are non-Gaussian. The modes and 1σ inter-

vals read

C9 = +6.0+0.8
−0.8 , ∆9 = +1.7+0.8

−0.8 ,

C9′ = +0.5+1.3
−1.8 ,

C10 = −1.3+1.3
−1.1 , ∆10 = +2.9+1.3

−1.1 ,

C10′ = +2.3+0.8
−1.3 ,

(19)

where, as before, ∆i ≡ Ci − CSM
i .

Our findings can be summarized as follows: The pos-
terior odds relative to the previous two fit scenarios are

P ((9, 9′, 10, 10′) |data)

P (SM(ν-only) |data)
= 1 : 100 , (20)

as well as

P ((9, 9′, 10, 10′) |data)

P ((9, 10) |data)
= 1 : 15 . (21)

Thus, again, SM(ν-only) is more efficient in its descrip-
tion of the data than a new-physics interpretation involv-
ing C9 through C10′ .

IV. DISCUSSION

The newly available lattice QCD results for the Λb → Λ
form factors [16] have considerably decreased the theo-
retical uncertainties in the Λb → Λ(→ p π−)µ+µ− ob-
servables at low hadronic recoil, and the strengths of the
constraints on the |∆B| = |∆S| = 1 Wilson coefficients
are currently limited by the experimental uncertainties.
Nevertheless, already with the current experimental data
[15], we find that this decay has now reached a similar
level of constraining power as the decay B̄ → K̄∗µ+µ−

exhibited after the first LHCb measurement [42].
Within our nominal fit in the (9, 10) scenario, we find

C9 = +5.9+0.7
−0.9 , ∆9 = +1.6+0.7

−0.9 ,

C10 = −3.5+0.5
−0.8 , ∆10 = +0.7+0.5

−0.8 .
(22)

Our fits in both the (9, 10) and (9, 9′, 10, 10′) scenarios
were surprisingly well behaved, given the small number
of observables included. We look forward to including the
Λb → Λ(→ p π−)µ+µ− data in a larger analysis together
with all mesonic decays.

Even though our fits of the Wilson coefficients yield
noticeable reductions in χ2 compared to the SM, neither
the scenario (9, 10), nor the scenario (9, 9′, 10, 10′), is as
efficient as the Standard Model in describing the com-
bined present data on inclusive B → Xs`

+`− decays,
the leptonic decay Bs → µ+µ−, and the branching ratio
and angular observables of Λb → Λ(→ p π−)µ+µ−. As
a consequence, we find no evidence for effects of physics
beyond the Standard Model.

When comparing our results for the Wilson coefficient
C9 with analyses excluding the baryonic decay but includ-
ing the decays B̄ → K̄(∗)µ+µ−, we find poor agreement
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FIG. 2. The 2D-marginalised posteriors for all pairs of Wilson coefficients in the (9, 10, 9′, 10′) scenario. The SM point is
marked with a diamond shape, while the best-fit point from the full fit is marked with a black cross. The contours correspond
to 68% (inner contours) and 95% (outer contours) of probability for the respective 2D-marginalised posteriors.
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with the findings in the literature. The maximal distance
emerges for the most recent result of Ref. [13], and reads
−3.1σ in terms of the standard deviation of our result.

In our opinion, the observed discrepancy can be caused
by two different mechanisms:

1. The discrepancy might arise from our incomplete
understanding of the hadronic matrix elements of
the two-point correlators of O1,...,6;8 with the quark
electromagnetic current, which effectively shift the
Wilson coefficients C7 and C9. The main difficulty
arises from the operators O1 and O2, whose contri-
butions are enhanced by charmonium resonances
(see e.g. Ref. [43], where these contributions are
discussed within a hadronic dispersion relation).
A drastically different shift to C9 in the baryonic
decay compared to the mesonic transitions, e.g.
through different phases, would yield the different
results that we currently face. This would consti-
tute a breakdown of the universal structure of the
transversity amplitudes at low recoil [19, 44] that
is predicted by the OPE. We explicitly show in ap-
pendix C that such effects can only partially explain
the presently observed shift to C9.

2. Given the large experimental uncertainties for the
Λb → Λ(→ p π−)µ+µ− observables, statistical fluc-
tuations could conspire to mimic a large positive
shift to C9. The best candidate for such an influ-
ence in the fit is the measurement of the branching
ratio 〈B〉15,20. We note that the experimental un-
certainty of 〈B〉15,20 [15] is currently dominated by
the uncertainty of the branching ratio of the nor-
malization mode Λb → J/ψΛ [35].

One must also consider that the results of Ref. [13] are
driven, amongst other effects, by the low value of RK [21],
which cannot be explained by hadronic effects, and the
consistent picture of the mesonic decays B̄ → K̄(∗)µ+µ−

both below and above the narrow charmonium reso-
nances.

Ultimately, to settle the questions regarding C9, we
need both a reduction in the experimental uncertainties
for Λb → Λ(→ p π−)µ+µ− (and an analysis of the full
angular distribution, e.g. using a principal moment anal-
ysis as proposed in [45]) as well as breakthroughs in our
understanding of the nonlocal hadronic matrix elements
of the operators O1,...,6;8.
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Appendix A: Parametrization of subleading terms in
the low recoil OPE

The decay Λb → Λ`+`− can be described through eight
transversity amplitudes: AL⊥0

, AL‖0 , AL⊥1
, AL‖1 , and their

counterparts with L ↔ R. At low recoil, the OPE pre-
dicts a universal structure, see [19]. Following Ref. [18],
this structure is broken only by hadronic matrix ele-
ments ri (where i ∈ {⊥0, ‖0,⊥1, ‖1}) at the level of
dimension-five operators in the OPE. We therefore write
the transversity amplitudes as

A
L(R)
⊥0

= +
√

2N
√
s−
mΛb

+mΛ√
q2

[
C
L(R)
9,10,+ fV0 +

2mb(C7 + C7′)

mΛb
+mΛ

fT0 +

(
4

3
C1 + C2

)
r⊥0

]
,

A
L(R)
‖0 = −

√
2N
√
s+
mΛb

−mΛ√
q2

[
C
L(R)
9,10,− f

A
0 +

2mb(C7 − C7′)

mΛb
−mΛ

fT5
0 +

(
4

3
C1 + C2

)
r‖0

]
,

A
L(R)
⊥1

= −2N
√
s−

[
C
L(R)
9,10,+ fV⊥ +

2mb(mΛb
+mΛ)(C7 + C7′)

q2
fT⊥ +

(
4

3
C1 + C2

)
r⊥1

]
,

A
L(R)
‖1 = +2N

√
s+

[
C
L(R)
9,10,+ fA⊥ +

2mb(mΛb
−mΛ)(C7 − C7′)

q2
fT5
⊥ +

(
4

3
C1 + C2

)
r‖1

]
,

(A1)

where the kinematics quantities s±, the effective Wilson coefficients C
L(R)
9,10,±, the normalization N , and the formfactors

fJλ are defined as in Ref. [19].

In general, the matrix elements ri are complex-valued,
q2-dependent functions. These matrix elements arise

only with a suppression of order Λ2
had/Q

2, where Q2 ∼
{m2

b , q
2}. (We note that a similar parametrization is used
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Observable (9, 10)

K̂1ss +0.352+0.003
−0.003

K̂1cc +0.296+0.006
−0.006

K̂1c −0.233+0.008
−0.008

K̂2ss −0.195+0.005
−0.005

K̂2cc −0.153+0.006
−0.006

K̂2c +0.186+0.004
−0.004

K̂4sc −0.022+0.005
−0.005

K̂4s −0.102+0.007
−0.009

TABLE III. Summary of the 1D marginalised posterior-
predictive distributions for the normalized angular observ-
ables K̂n = 〈Kn〉15,20/〈Γ〉15,20. We present the distributions
obtained from the posteriors of the (9, 10) scenario. The sta-
tistical uncertainty from the Monte Carlo integration is esti-
mated to be 10−3.

in Ref. [46]. However, there the OPE is used in terms of
HQET operators [27]. As a consequence, the leading cor-
rections to the OPE arise from dimension-four operators,
which enter suppressed by one power of the strong cou-
pling αs. As such, their effect is virtually the same as
here.)

Since in our fits we only use a single q2 bin that cov-
ers the entire phase space above q2 = 15 GeV2, we can
parametrize the unknown hadronic matrix elements as
q2-constant quantities. Within the fits, we take the ri to
be real-valued5, with uncorrelated Gaussian priors cen-
tered around zero and with a standard deviation of 0.03:
ri ∼ N (0, 0.03). We emphasize that this is a conservative
estimate for the size of these hadronic matrix elements,
since Λ2

had/Q
2 <∼ 0.9%.

Appendix B: Posterior-predictive distributions for
the Λb → Λ(→ p π−)µ+µ− angular observables

In this section, we compute posterior-predictive distri-
butions for the normalized angular observables

K̂n ≡
〈Kn〉15,20

〈Γ〉15,20
, (B1)

from the (9, 10) fit scenario. Summaries in form of the
mode and the 68% probability interval for the observables
with n ∈ {1ss, 1cc, 1c, 2ss, 2cc, 2c, 4sc, 4s} are shown in
table III. We abstain from providing predictions for the
observables with n ∈ {3sc, 3s}, since for real-valued Wil-
son coefficients these observables are only sensitive to

5 Only the observables K3sc and K3s, or combinations thereof, are
sensitive to the phases of the matrix elements ri. As these observ-
ables are presently unconstrained, our use of real-valued quan-
tities therefore suffices. A similar observation has been made in
[6] for power corrections at large q2 in B → K(∗)µ+µ− decays.

small interference effects introduced by the imaginary
parts of the hadronic matrix elements of O1,...,6;8, and
by the contributions proportional to Vub.

Appendix C: Fits of Λb → Λ(→ p π−)µ+µ− data only

In order to further investigate a possible hadronic ori-
gin for the tensions between theory and experiment, we
carry out fits to only the Λb → Λ(→ p π−)µ+µ− observ-
ables listed in table II. Beside the scenario SM(ν-only),
we also employ a new scenario (9):

(9) :


C9 ∈ [−4,+9]

C7,7′,9′,10,10′ SM values

~ν free floating

. (C1)

Using the very same priors as described in section II, we
find poor fits: When only fitting the nuisance parameters,
the p-value is 1.3 · 10−2, while the fit with freely floating
C9 only slightly improves the p-value to 1.5 · 10−2. The
reason for this behavior is that the current experimental
results for the observables 〈B〉15,20 and 〈A`FB〉15,20 pull C9
in opposite directions (the branching ratio 〈B〉15,20, which
more strongly depends on C9, favors a positive shift).

We thus investigate the possibility that hadronic effects
break the universal nature of the OPE for the transver-
sity amplitudes in Λb → Λµ+µ− transitions. This cor-
responds to a breakdown of the semi-local quark-hadron
duality. We can simulate such effects by dramatically in-
creasing the allowed ranges of the power corrections ri as
defined in appendix A. We let ri ∼ N (0, 3), on a support
−5 ≤ ri ≤ +5. Using these priors, we repeat our fits to
only the Λb → Λ(→ p π−)µ+µ− observables.

For the SM(ν-only) scenario with the wide priors for
ri we obtain χ2 = 4.27, and a p-value of 0.37. All 1D-
posteriors of the form factor parameters, CKM parame-
ters and quark masses are in agreement with their priors.
The posteriors for the power correction parameters can
be summarized as follows:

r⊥,0 = +2.1+2.4
−2.2 ,

r‖,0 = +3.6+1.4
−1.8 ,

r⊥,1 = −3.2+2.1
−1.8 ,

r‖,1 = −1.5+2.2
−2.5 .

(C2)

The total evidence is P (only Λb → Λµ+µ− |SM(ν-only)) =
1.8 · 105.

For the scenario (9) with the wide priors for ri we
obtain χ2 = 4.59, and a p-value of 0.20. This is sur-
prising at first glance, since it means that adding one
parameter has lead to an increase in χ2. However,
− logP (~x∗ | (9), only Λb → Λµ+µ−) has in fact decreased
by 4.35 on the log scale. With respect to SM(ν-only), the
ri components of the best-fit point have moved closer to
0, thereby increasing the posterior. At the same time, a
shift of ∆9 = 0.7+1.5

−1.3 compensates for the smaller values
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of the parameters ri. The 1D posteriors of the power
corrections read:

r⊥,0 = +1.8+2.4
−2.5 ,

r‖,0 = +2.9+1.9
−1.9 ,

r⊥,1 = −3.4+2.4
−1.6 ,

r‖,1 = −2.5+2.3
−2.0 .

(C3)

Compared to the shift ∆9

∣∣∣
(9,10)

= 1.6+0.7
−0.9, we see a

marked reduction in need to modify C9. We conclude that
symmetry-breaking shifts to all four transversity ampli-
tudes in Λb → Λµ+µ− can only partially explain our
results in the (9, 10) scenario.
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