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Abstract

The proton radius puzzle, i.e. the large discrepancy in the extraction of the proton
charge radius between regular and muonic hydrogen, challenges our understanding of the
structure of the proton. It can also be an indication of a new force that couples to muons,
but not to electrons. An effective field theory analysis using Non Relativistic Quantum
Electrodynamics (NRQED) indicates that the muonic hydrogen result can be interpreted
as a large, compared to some model estimates, muon-proton spin-independent contact
interaction. The muonic hydrogen result can be tested by a muon-proton scattering
experiment, MUSE, that is planned at the Paul Scherrer Institute in Switzerland. The
typical momenta of the muons in this experiment are of the order of the muon mass. In
this energy regime the muons are relativistic but the protons are still non-relativistic.
The interaction between the muons and protons can be described by a hybrid QED-
NRQED effective field theory. We present some elements of this effective field theory.
In particular we consider O(Zα) scattering up to power m2/M2, where m (M) is the
muon (proton) mass and Z = 1 for a proton, and O(Z2α2) scattering at leading power.
We show how the former reproduces Rosenbluth scattering up to power m2/M2 and the
latter the relativistic scattering off a static potential. Proton structure corrections at
O(Z2α2) will be considered in a subsequent paper.



1 Introduction

In 2010 the first measurement of the proton charge radius from spectroscopy of muonic hy-
drogen was found to be five standard deviations away from the value extracted from regular
hydrogen [1]. More than five years later, this “proton radius puzzle” is still unresolved, see [2]
for a recent review.

The most exciting interpretation of the puzzle is that of a new force that couples to
muons and not electrons. But before considering such an option, one would like to rule out
a standard model interpretation. Since the proton charge radius can also be extracted from
electron-proton scattering, some of the discussion in the literature has focused on reevaluation
of the extraction of proton radii from scattering, see for example the z-expansion based studies
[3, 4, 5], and references therein1. While leading to a more robust error estimate, the value for
the proton charge radius of [3, 5] generally disfavors the muonic hydrogen result. It should be
noted that other studies not based on the z expansion listed, e.g., in [10], find values that are
consistent with the muonic hydrogen result.

Another possibility is that in the extraction of the charge radius from muonic hydrogen
the hadronic uncertainty, i.e. a matrix element or elements that cannot be directly related to
experiment, is underestimated. The proton charge radius is defined via a “one-photon” probe
of the proton structure. At the level of precision needed to extract it from the muonic hydrogen
spectroscopy, “two-photon” effects must be considered. Estimating these effects is challenging
[11], even using experimental data. The problem is that only the imaginary part of the two-
photon amplitude can be related to experimental data: form factors and structure functions.
In order to reconstruct the full amplitude from its imaginary part, one needs a subtracted
dispersion relation, which requires the knowledge of a subtraction function. Although there
are estimates of this function in the literature, see e.g. [12, 13, 14, 15, 16], it cannot be
extracted fully from data, which introduces a hadronic uncertainty. It should be noted that
other studies [12, 15] do not use dispersion relation analyses but rather effective field theory
techniques.

One way of presenting the problem is by the use of an effective field theory. The typical
momentum of the muon in muonic hydrogen is of order mα ∼ 1 MeV, where m is the muon
mass. As a result both the muon and the proton can be described as non-relativistic fields.
The appropriate effective field theory is called Non Relativistic Quantum Electrodynamics
(NRQED) [17], used successfully for problems in precision QED [18]. It can also be used to
describe proton structure effects in systems like muonic hydrogen. For example, it was first
used for that purpose in [19, 20] as part of a chain of effective field theories where Heavy
Baryon Effective Theory (HBET) is matched onto NRQED and NRQED in turn is matched
onto potential NRQED (pNRQED). If one matches directly onto NRQED as was done in
[11], proton structure effects in muonic hydrogen at the current level of experimental precision
depend on two non-perturbative parameters2: cD, related to the proton charge radius, and

1Some other z-expansion based studies do not bound the coefficients of the z expansion [6, 7, 8] or modify
it [9]. These may result in values that are lower than [3, 5]. See [3] for a discussion of the bounding of the
coefficients.

2Protons also contribute to hadronic vacuum polarization effects. Hadronic vacuum polarization effects can
be incorporated in NRQED by matching onto new photon interaction terms. See for example [18] for such a
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d2, the coefficient the spin-independent four-fermion contact interaction between protons and
muons. Assuming that the proton charge radius is known from another source, the muonic
hydrogen result can be interpreted at face value as a measurement of the contact interaction
d2. The value obtained is large compared to some model estimates.

The muonic hydrogen result can be tested by a muon-proton scattering experiment. Such
an experiment, MUSE, is planned at the Paul Scherrer Institute in Switzerland [21]. The
typical momentum of the muons in the experiment is of the order of the muon mass, m ∼ 100
MeV. At these energies the muon is relativistic but the proton can still be considered as non-
relativistic. The appropriate effective field theory for such kinematics was suggested in [22].
We refer to it as QED-NRQED effective field theory3.

In order to establish this new effective field theory, we show in this paper how it reproduces
some known results. In particular, we consider O(Zα) scattering up to power m2/M2, where
m (M) is the muon (proton) mass and Z = 1 for a proton, and O(Z2α2) scattering at leading
power4. We show how the former reproduces Rosenbluth scattering [23] and the latter the
scattering of a relativistic fermion off a static potential [24, 25].

While this effective field theory has different contact interactions than those of “pure”
NRQED, one would expect that they can be related to the NRQED contact interactions
probed by muonic hydrogen spectroscopy. The determination of the coefficients of the QED-
NRQED contact interactions will be considered in a subsequent paper [26].

The ultimate goal of this program is to calculate the muon-proton cross section in QED-
NRQED in terms of quantities such as the proton charge radius and the muon-proton contact
interactions. This will allow to connect muonic hydrogen spectroscopy to muon-proton scat-
tering in a model-independent way. This paper is the first step in the program.

The paper is structured as follows. In section 2 we briefly review the QED-NRQED
Lagrangian. In section 3 we present the O(Zα) scattering up to power m2/M2. In section
4 we present O(Z2α2) scattering at leading power. We present our conclusions in section 5.
Technical details about the kinematics and the QED-NRQED amplitude are collected in the
appendix.

2 The Lagrangian

2.1 NRQED Lagrangian

The NRQED Lagrangian describes the interaction of non-relativistic, possibly composite, spin-
half particle ψ with the electromagnetic field. Up to and including 1/M2, where M is the mass
of the spin-half particle, the NRQED Lagrangian is [17, 18]

L = ψ†
{
iDt + c2

D2

2M
+ cF e

σ ·B
2M

+ cDe
[∇ ·E]

8M2
+ icSe

σ · (D×E −E ×D)

8M2

}
ψ+· · · , (1)

matching for perturbative vacuum polarization.
3We do not include the pion as a dynamical degree of freedom. The effects of the strong interaction are

encoded in the non-perturbative QED-NRQED Wilson coefficients ci and bi defined below. Backgrounds from
pions are discussed in MUSE technical design report, see [21].

4We use the factors of Z to keep track of the number of proton-photon interactions.
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where Dt = ∂/∂t+ ieA0, D =∇− ieA, σ are the Pauli matrices, and e is the electromagnetic
coupling constant5. These are the components of Dµ = ∂µ + ieAµ. The notation [∇ · E]
denotes that the derivative is acting only on E and not on ψ. For a review see [27]. The
(hidden) Lorentz invariance of the Lagrangian implies that c2 = 1 [28, 29, 22]. The other
Wilson coefficients can be related to the proton electromagnetic form factors

〈p(p′)|Jem
µ |p(p)〉 = ū(p′)

[
γµF1(q

2) +
iσµν
2M

F2(q
2)qν

]
u(p) , (2)

via cF = F1(0) + F2(0), cD = F1(0) + 2F2(0) + 8M2F ′1(0), where F ′1 = dF1(q
2)/dq2, and

cS = 2cF − F1(0). The latter can also be determined by the hidden Lorentz invariance of the
Lagrangian [28, 29, 22]. The NRQED Feynman rules can be extracted from figure 3 of [18] by
multiplying the vertices by −i and the propagators by i.

At 1/M2 there are operators that couple four spin-half fields6

Lψχ =
d1
M2

ψ†σiψχ†σiχ+
d2
M2

ψ†ψχ†χ+ · · · . (3)

Here χ is another NRQED field which can be different from ψ. The coefficients d1 and d2
start at order α2, see [19, 20, 11]. The 1/M2 NRQED Lagrangian of (1) and (3) is enough
to describe the proton structure effects relevant to the current precision of muonic hydrogen
spectroscopy [19, 20, 11]. In particular, χ is taken to be an NRQED field for the lepton. In
the following calculations we will only need (1) to describe the proton’s interactions.

2.2 QED-NRQED Lagrangian

As described in the introduction, we are interested in an effective field theory where the muon
is relativistic, while the proton is still non-relativistic. In the following we use the muon mass
m as a parameter. Since the discussion also applies to an electron, from now on we refer to
m as the lepton mass.

For the application of QED-NRQED considered in this paper, the interactions of the lepton
are described using the usual QED Lagrangian

L = ¯̀γµ i (∂µ + ieQ`Aµ) `−m ¯̀̀ , (4)

where Q` = −1 for a muon or an electron. We have not included 1/M2 operators of [22], since
they have Wilson coefficients that start at O(α). As a result they only lead to m2/M2 effects
beyond O(Zα) which are not considered in this paper.

The NRQED interaction distinguishes between the time-like (A0) and space-like (Ai) com-
ponents of Aµ. Therefore in a photon exchange between a QED field and an NRQED field
the photon polarization will be determined by the NRQED vertex. It is often convenient

5We follow the conventions of [18], although in that paper the NRQED Lagrangian describes an electron.
In other words, in this paper we take e to be positive.

6We use the convention of [22], where the operators are suppressed by 1/M2 instead of 1/MχM of [18].
The two are related by a factor of Mχ/M , where Mχ is the mass of the χ field.
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to use Coulomb gauge, where the photon propagator is different for time-like and space-like
components. It can be found in, e.g., [18].

At 1/M2 we can also have contact interactions of the form ψ†Σψ ¯̀Γ`, where Γ is a 4 × 4
matrix and Σ = 12×2, σi. The contact interactions must be even under parity and time reversal.
Since both the unit matrix and the Pauli matrices are even under parity, ¯̀Γ` must be parity
even too. This implies eight possible options for Γ, namely, 14×4, γ0, σij, γiγ5 [30]. Since 12×2
(σi) are even (odd) under time reversal, 14×4 and γ0 can only be combined with 12×2, while
σij and γiγ5 can only be combined with σi. For the former we use εijk and for the latter δij.

An operator of the form ¯̀Γ` couples the left-handed and right-handed components of the
relativistic lepton field if Γ contains an even number of gamma matrices. As a result one
would expect that the Wilson coefficient of such an operator would be proportional to m. In
other words, we have chiral symmetry in the m → 0 limit. This implies that operators with
an even number of gamma matrices should be multiplied by m/M3. At 1/M2 we therefore
have only two possible contact interactions,

L`ψ =
b1
M2

ψ†ψ ¯̀γ0`+
b2
M2

ψ†σiψ ¯̀γiγ5`+O
(
1/M3

)
, (5)

where our notation follows that of [22].
In the following we will consider QED-NRQED scattering at O(Zα), i.e. one-photon

exchange, up to power m2/M2 and QED-NRQED scattering at O(Z2α2), i.e. two-photon
exchange, at leading power. As we will see, for both we will only need equations (1) and (4).
As a result, b1 and b2 start at O(Z2α2). These will be considered in a subsequent paper [26].

3 QED-NRQED scattering at O(Zα)
Our first application is the calculation of the QED-NRQED lepton-proton elastic scattering
`(k) + p(p) → `(k′) + p(p′) at O(Zα) (for the amplitude) and at power m2/M2. We will see
that the result agrees with the result of the Rosenbluth formula [23] up to power m2/M2.

Calculating the Feynman diagrams of figure 1 for a one-photon exchange between a rela-
tivistic lepton and a non-relativistic proton up to 1/M2 using (1) and (4) we find

MQN = −e2ZQ`

[(
1− cD

~q 2

8M2

)
1

~q 2
ξ†p′ξpū(k′)γ0u(k) + i

cF
2M

1

q2
εijkqjξ†p′σ

kξpu(k′)γiu(k)

]
,

(6)
where “QN” stands for QED-NRQED, and ξp′ and ξp are two-component spinors. There is no
contribution from the operator D2 at this order. We have also omitted a contribution from
cS that is proportional to q0 and leads to 1/M3 suppressed terms.

The spin-averaged square of the amplitude can be calculated by an analogue of the Casimir
trick, see the appendix. We find

|M|2QN = e4Z2Q2
`

[
1

~q 4

(
1− cD

~q 2

8M2

)2 (
4EE ′ + q2

)
+

c2F
M2

1

q4
~q 2

(
EE ′ −m2 −

~k · ~q ~k′ · ~q
~q 2

)]

=
e4Z2Q2

`

~q 2

[
1

~q 2

(
4E2 − ~q 2

)
− 2E

M
+
~q 2 + c2F (~q 2 + 4E2 − 4m2) + cD (~q 2 − 4E2)

4M2

]
, (7)
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Figure 1: QED-NRQED Feynman diagrams that give a non-zero contribution to elastic lepton-
proton scattering at O(Zα) up to power m2/M2. The double line denotes the NRQED field.
The dashed (curly) line represents Coulomb (transverse) photon. The dot, circle, and cross
vertices represent the Coulomb, Fermi, and Darwin terms, respectively, see [18] for details.

where E (E ′) is the energy of the initial (final) lepton. In the second line we have expanded
the kinematical variables in powers of 1/M and retained only terms up to 1/M2, for details
see the appendix.

We can compare this result to Rosenbluth scattering, i.e. the one-photon interaction
between a proton, described by the form-factors, and a lepton. Without a considerable increase
in complexity, we can introduce form-factors for the lepton too, since some of the radiative
corrections modify the lepton form-factors from the tree-level value of F1 = 1, F2 = 0. We
thus have for the lepton-photon vertex

〈`(k′)|Jem
µ |`(k)〉 = ū(k′)

[
γµF

`
1(q2)− iσµν

2m
F `
2(q2)qν

]
u(k) . (8)

The spin averaged square of the amplitude is given by

|M|2 =
4π2α2Z2Q2

`

q4
Tr

{
(/p′ +M)

(
γµF

p
1 (q2) +

iσµα
2M

F p
2 (q2)qα

)
(/p+M)

(
γνF

p
1 (q2)− iσνβ

2M
F p
2 (q2)qβ

)}
× Tr

{
(/k′ +m)

(
γµF `

1(q2)− iσµρ

2m
F `
2(q2)qρ

)
(/k +m)

(
γνF `

1(q2) +
iσνλ

2m
F `
2(q2)qλ

)}
. (9)
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Collecting the terms by their powers of q2 we have,

|M|2

π2α2
=

256E2(F `
1)2(F p

1 )2M2

q4
+

64

q2

[
(F `

1)2(F p
1 + F p

2 )2m2 + (F p
1 )2(F `

1 + F `
2)2M2 +

+ 2(F `
1)2(F p

1 )2ME −
E2
((
F `
1

)2
(F p

2 )2m2 + (F p
1 )2
(
F `
2

)2
M2
)

m2

]
+ 16

[(
(F p

1 )2 + 4F p
1F

p
2 + (F p

2 )2
)((

F `
1

)2
+ 4F `

1F
`
2 +

(
F `
2

)2)
+ F `

1F
p
1 (F `

1F
p
1 − 4F `

2F
p
2 )

−
2E
((
F `
1

)2
(F p

2 )2m2 + (F p
1 )2
(
F `
2

)2
M2
)

m2M
+
E2
(
F `
2

)2
(F p

2 )2

m2

]

+ 4q2
[
F `
2F

p
2

(
(2F `

1 + F `
2)F p

2m
2 + (2F p

1 + F p
2 )F `

2M
2)
)

m2M2
+

2E
(
F `
2

)2
(F p

2 )2

m2M

]

+ q4
[(
F `
2

)2
(F p

2 )2

m2M2

]
, (10)

where we have suppressed the dependence of the form factors on q2. Inserting this expression
into (42) and taking the limit F `

1 → 1, F `
2 → 0 reproduces similar expressions in the literature

[31, 32].

As explained in the appendix, in the rest frame of the initial proton, |M|2 = 4MEp′ |M|
2

QN.
Multiplying (7) by 4MEp′ , using the relations cF = F1(0) + F2(0), cD = F1(0) + 2F2(0) +
8M2F ′1(0), and expanding in powers of 1/M , we find that the result agrees with the expansion
of (10) in powers of 1/M in the F `

1 → 1, F `
2 → 0 limit. In particular there is no contribution to

the Wilson coefficients of the contact interactions, b1 and b2 at this order. Such contribution
arises at O(Z2α2) and at power 1/M2 and will be considered in a subsequent paper [26].

4 QED-NRQED scattering at O(Z2α2) at leading power

We consider elastic lepton-proton scattering `(k) + p(p)→ `(k′) + p(p′) at O(Z2α2) at leading
power in m/M . We will show that the three methods: QED-NRQED at leading power, QED
for a point particle at leading power in 1/M , and scattering off a static 1/r potential, give the
same amplitude.

4.1 QED-NRQED amplitude

The relevant diagrams are shown in figure 2. The NRQED propagator is i(p0−~p 2/2M + iε)−1

[18]. At leading power in 1/M we can approximate7 it as i(p0 + iε)−1. Also, at leading power

7Note that in this approximation the propagator looks like a HQET propagator, i(v · p + iε)−1, with
v = (1,~0). The relation between the HQET and NRQED Lagrangians is discussed in [28].
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p

k

p+ k − l p′

l k′

p

k

p+ k′ + l p′

l k′

Figure 2: QED-NRQED Feynman diagrams contributing to elastic lepton-proton scattering
at O(Z2α2) at leading power in m/M . The double line denotes the NRQED field.

the NRQED field only couples to A0. Finally, in the rest frame of the proton, p0 = 0 and
~p = 0. The resulting amplitude is (in Feynman gauge)

iM = Z2Q2
`e

4

∫
d4l

(2π)4
ū(k′)γ0 (/l +m) γ0u(k)ξ†p′ξp

(l − k)2(l − k′)2(l2 −m2)

(
1

k0 − l0 + iε
+

1

l0 − k′ 0 + iε

)
. (11)

At the leading power in 1/M conservation of momentum and energy imply√
~k2 +m2 +M =

√
~k′ 2 +m2 +

√
M2 +

(
~k′ − ~k

)2
⇒
√
~k2 +m2 =

√
~k′ 2 +m2 +O(1/M),

(12)

i.e. |~k| = |~k′| and k0 = k′ 0. This also implies that δ4(k′+p′−k−p) ≈ δ(k′ 0−k0)δ3(~k ′+~p ′−~k).
Using the identity [33] 1/ (x+ iε) = P (1/x)− iπδ(x), where P is Cauchy principle value,

we have at leading power in 1/M

1

k0 − l0 + iε
+

1

l0 − k′ 0 + iε
=

1

k0 − l0 + iε
+

1

l0 − k0 + iε
= −2πiδ(l0 − k0). (13)

Averaging over the initial proton spins and summing over the final proton spins implies ξ†p′ξp →
1. Since δ(l0 − k0)δ(k′ 0 − k0) = δ(l0 − k0)δ(l0 − k′ 0), we can finally write

iM (2π)4δ4(k′ + p′ − k − p) =

∫
d4l

(2π)4
2πδ(l0 − k0)
(l − k)2 − λ2

2πδ(l0 − k′ 0)
(l − k′)2 − λ2

ū(k′)γ0 (/l +m) γ0u(k)

l2 −m2

× (−)iZ2Q2
`e

4(2π)3δ3(~k ′ + ~p ′ − ~k), (14)

where we have introduced an IR regulator λ as the photon “mass”.

4.2 Point particle QED amplitude

If the proton were a point particle, we could calculate the same diagrams using QED. As we will
show, this toy model actually gives the same answer as the effective field theory calculation.
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The reason is that in the infinite proton mass limit the only information the lepton has about
the composite proton is its overall charge. Of course, once we include other properties of
the proton such as its magnetic moment or charge radius, described in NRQED by operators
suppressed by 1/M and 1/M2 respectively, the two calculations will differ.

Calculating the diagrams for a point particle particle of mass M and charge Ze we find

iM = Z2Q2
`e

4

∫
d4l

(2π)4
1

(l − k)2 − λ2
1

(l − k′)2 − λ2
ū(k′)γµ (/l +m) γνu(k)

(l2 −m2)
×

× ū(p′)

(
γµ

/p+ /k − /l +M

(p+ k − l)2 −M2
γν + γν

/p− /k′ + /l +M

(p− k′ + l)2 −M2
γµ
)
u(p). (15)

Since p = (M,~0), in the infinite mass limit

/p+ /k − /l +M

(p+ k − l)2 −M2
→ 1 + γ0

2
· 1

k0 − l0 ,
/p− /k′ + /l +M

(p− k′ + l)2 −M2
→ 1 + γ0

2
· 1

l0 − k′ 0 , (16)

and u(p) = (ξp, 0), ū(p′) = (ξp′ , 0)†γ0. As a result (1 − γ0)u(p) = 0, ū(p′)(1 − γ0) = 0. The
proton matrix element can be simplified as

ū(p′)γα
(

1 + γ0

2

)
γβu(p) = ū(p′)γα

(
1 + γ0

2

)(
1 + γ0

2

)
γβu(p) =

= ū(p′)

[(
1− γ0

2

)
γα + gα0

] [
gβ0 + γβ

(
1− γ0

2

)]
u(p) = gα0gβ0ξ†p′ξp. (17)

All together we obtain

iM = Z2Q2
`e

4

∫
d4l

(2π)4
ū(k′)γ0 (/l +m) γ0u(k)ξ†p′ξp

(l − k)2(l − k′)2(l2 −m2)

(
1

k0 − l0 + iε
+

1

l0 − k′ 0 + iε

)
, (18)

which is the same result as from the QED-NRQED calculation, see equation (11). We now
proceed in the same way as in the previous section to get equation (14).

4.3 Static potential amplitude

We consider a lepton scattering off a static external potential [24, 25] :

~A = 0, A0 =
Ze e−λr

4πr
= −Ze

∫
d4q

(2π)4
2πδ(q0)

q2 − λ2 e
iqx, (19)

This implies that in terms of Feynman rules we have a factor of 2πδ(q0)/(q2 − λ2) for each
photon exchange with the potential. Calculating the transition matrix element we have

iM (2π)δ(k′ 0 − k0) = −iZ2Q2
`e

4

∫
d4l

(2π)4
2πδ(l0 − k0)
(l − k)2 − λ2 ·

2πδ(l0 − k′ 0)
(l − k′)2 − λ2 ·

ū(k′)γ0 (/l +m) γ0u(k)

l2 −m2
.

(20)

Up to a factor of (2π)3δ3(~k ′+ ~p ′−~k) this is the same result as the QED-NRQED calculation,
equation (14).
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4.4 Cross section

For completeness we calculate also the cross section. The calculation is similar to [24, 25] but
the integrals are calculated using the standard Feynman parameters. We start from equation
(14). Using

δ(l0 − k0)δ(l0 − k′ 0)
[(l − k)2 − λ2] [(l − k′)2 − λ2] [l2 −m2]

=
δ(l0 − k0)δ(l0 − k′ 0)[

(~l − ~k)2 + λ2
] [

(~l − ~k′)2 + λ2
] [
~k2 −~l2

] , (21)

and
δ(l0 − k0)ū(k′)γ0 (/l +m) γ0u(k) = δ(l0 − k0)ū(k′)

(
k0γ0 +m+~l · ~γ

)
u(k), (22)

we get

iM (2π)4δ4(k′ + p′ − k − p) = −2i
Z2Q2

`α
2

π
2πδ(k0 − k′ 0)(2π)3δ3(~k ′ + ~p ′ − ~k)×

×
∫
d3l

ū(k′)
(
k0γ0 +m+~l · ~γ

)
u(k)[

(~l − ~k)2 + λ2
] [

(~l − ~k′)2 + λ2
] [
~k2 −~l2 + iε

] . (23)

We need two integrals

I1 =

∫
d3l

1[
(~l − ~k)2 + λ2

] [
(~l − ~k′)2 + λ2

] [
~k2 −~l2 + iε

] ,
I i2 =

∫
d3l

li[
(~l − ~k)2 + λ2

] [
(~l − ~k′)2 + λ2

] [
~k2 −~l2 + iε

] . (24)

The denominators arising from the photon propagators can be combined using a Feynman
parameter as

x
[
(~l − ~k)2 + λ2

]
+ x̄

[
(~l − ~k′)2 + λ2

]
= (~l − ~K)2 +M2, (25)

where 0 ≤ x ≤ 1, x̄ = 1− x, ~K = x~k+ x̄~k′, M2 = − ~K2 +~k2 + λ2, and we have used ~k2 = ~k′ 2.
Combining this with the third denominator of (24) using another Feynman parameter we find

I1 = −2

∫ 1

0

dx

∫ 1

0

dy y

∫
d3l

1(
~l2 + ∆− iε

)3
I i2 = −2

∫ 1

0

dx

∫ 1

0

dy y2
∫
d3l

Ki(
~l2 + ∆− iε

)3 , (26)

where ∆ = yȳ ~K2 + yM2 − ȳ~k2 and we have changed ~l → ~l − ~Ky. It is convenient to perform
the integral over |~l| first and then to integrate over y. For the x integral we note that ∆ is
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a function of x(1 − x). We split the integration range into two intervals, 0 ≤ x ≤ 1/2 and
1/2 ≤ x ≤ 1, and change variables to z = x(1− x). Thus for a function f(x),∫ 1

0

dx f(x) =

∫ 1
4

0

dz
f
(
1
2
− 1

2

√
1− 4z

)
+ f

(
1
2

+ 1
2

√
1− 4z

)
√

1− 4z
. (27)

After the change of variables, ~K2 = ~k2 − 4~k2z sin2 θ
2

and M2 = λ2 + 4~k2z sin2 θ
2
. Performing

the |~l| and y integrations we have

I1 = −2

∫ 1
4

0

dz√
1− 4z

π2

M

[(
M − i|~k|

)2
+ ~K2

] (28)

I i2 = −2π2

(
ki + k′i

2

)∫ 1
4

0

dz√
1− 4z

{
1

M ~K2
+

iM | ~K|+ ~k2

M ~K2

[(
M − i|~k|

)2
+ ~K2

] +

+
i

2| ~K|3
log

(
iM + |~k| − | ~K|
iM + |~k|+ | ~K|

)}
. (29)

The polynomial terms in I1 and I i2 can be integrated directly. For the logarithmic term in I i2
it is convenient to use integration by parts. Defining I i2 ≡ I2 (ki + k′i) /2, we find

I1 =
π2

2i|~k|3 sin2 θ
2

log

(
2|~k| sin θ

2

λ

)

I2 =
π2

2|~k|3 cos2 θ
2

{
π

2

(
1− 1

sin θ
2

)
− i
[

1

sin2 θ
2

log

(
2|~k| sin θ

2

λ

)
+ log

λ

2|~k|

]}
. (30)

This is the same result of [25]. As was pointed out in [22], [24] has the wrong sign for I1.

Since /ku(k) = (k0γ0 − ~k · ~γ)u(k) = mu(k), we have ~k · ~γ u(k) = (k0γ0 −m)u(k). Similarly

ū(k′)~k′ · ~γ = ū(k′)(k′ 0γ0 −m). Equation (23) simplifies to

M(2)
QN = −2Z2Q2

`α
2

π
ū(k′)

[
m(I1 − I2) + k0γ0(I1 + I2)

]
u(k), (31)

where we have added the subscript “QN” to denote that we are using non-relativistic normal-
ization for the proton states.

The O(Zα) amplitude at leading power is obtained from equation (6) by keeping only the
leading power term and replacing ξ†p′ξp → 1, see section 4.1. We have

M(1)
QN = −4παZQ`

1

~q 2
u(k′)γ0u(k). (32)

10



At leading power in 1/M the relation between MQN and M in the initial proton rest frame
is just M = 2MMQN, see the appendix, and we obtain

M(1+2) =
−8MπαZQ`

~q 2
ū(k′)

{
γ0
[
1 + αZQ`

k0~q 2

2π2
(I1 + I2)

]
+ αZQ`

m~q 2

2π2
(I1 − I2)

}
. (33)

At leading power in 1/M the cross section is given by dσ/dΩ = |M|2/(64π2M2). We find

dσ

dΩ
=

4Z2α2Q2
`E

2
(
1− v2sin2 θ

2

)
~q 4

[
1 + αZQ`

~q 2E

π2

(
Re (I1 + I2) +

m2 Re (I1 − I2)
E2
(
1− v2sin2 θ

2

))],(34)

where E = k0 and v = |~k|/k0. Since I1 is purely imaginary, only I2 contributes to the cross
section. In particular the dependance on λ cancels. The cross section is finally

dσ

dΩ
=

4Z2α2Q2
`E

2
(
1− v2sin2 θ

2

)
~q 4

[
1− αZQ`

πv sin θ
2
(1− sin θ

2
)

1− v2sin2 θ
2

]
. (35)

Taking Q` = −1 we obtain the results8 of [24, 25].

4.5 Anti-lepton cross section

In the calculation above we have assumed that the lepton is a particle. It is instructive to
see how (35) changes for anti-lepton-proton scattering. The answer, “Take Q` = +1 in (35)”
is correct, but since for QED the Feynman rule for the vertex is the same for leptons and
anti-leptons, it is not immediately obvious why this is true. Beyond the theoretical interest,
MUSE will consider both µ±p and e±p scattering [21], so it is instructive to see how the cross
section changes.

Ignoring overall minus signs, apart from sign difference between lepton and anti-leptons,
the leptonic part of the O(Zα) amplitude is given by

M(1)

`− = Zα ū(k′)γµu(k)Aµ(k − k′) . . .

M(1)

`+ = −Zα v̄(k)γµv(k′)Aµ(k − k′) . . . . (36)

As seen in figure 3, the leptonic part of the O(Z2α2) amplitude is

M(2)

`− = Z2α2

∫
d4l

(2π)4
ū(k′)γµ

(/l +m)

l2 −m2
γνu(k)Aµ(l − k′)Aν(k − l) . . .

M(2)

`+ = −Z2α2

∫
d4l

(2π)4
v̄(k)γν

(−/l +m)

l2 −m2
γµv(k′)Aµ(l − k′)Aν(k − l) . . . . (37)

8Note that [24] uses A0 = Ze e−λr/r. As a result, one needs to replace α → e2 in the comparison. Also,
one has to be careful about the relative sign between the lepton and the potential charges in [25].
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k→ l→ k′→

ν µ

k′→k→ l→

ν µ

Figure 3: The leptonic part of the O(Z2α2) amplitude at leading power in m/M for a lepton
(left) and an anti-lepton (right).

Notice that M(1)

`+ and M(2)

`+ have the same overall sign. Calculating the spin-averaged
leptonic part of the squared amplitude we have the following traces

Leptons: Tr
{

(/k′ +m) [γρ + Zαγµ (a/l + bm) γν ] (/k +m)
[
γρ
′
+ Zαγν

′
(a∗ /l + b∗m) γµ

′
]}

Anti leptons: Tr
{

(/k −m) [γρ + Zαγν (−a/l + bm) γµ] (/k′ −m)
[
γρ
′
+ Zαγµ

′
(−a∗ /l + b∗m) γν

′
]}

,

(38)

where a and b contain integrals over d4l and we ignore overall factors common to the two
traces. Collecting the terms arising from the inference between M(1) and M(2), i.e. the
O(Z3α3) terms in the cross section, we always pick up even number of gamma matrices which
imply we always get an extra minus sign for the anti-leptons. The order of the gamma matrices
also changes, but because of the symmetries of trace, this has no effect. The cross section is
therefore,

dσ`∓

dΩ
=

4Z2α2E2
(
1− v2sin2 θ

2

)
~q 4

[
1± αZπv sin θ

2
(1− sin θ

2
)

1− v2sin2 θ
2

]
. (39)

5 Conclusions and outlook

It has been almost six years since the first measurement of the proton charge radius in muonic
hydrogen was published [1] and found to be five standard deviations away from the regular
hydrogen value. In the intervening time many studies have looked into the extraction of the
radius from regular and muonic hydrogen spectroscopy as well as from scattering, see [2] for
a recent review, but this “proton radius puzzle” is still unresolved.

One of the issues involved in the extraction of the proton charge radius from muonic
hydrogen is the hadronic uncertainty associated with the two-photon exchange amplitude.
Only its imaginary part can be directly reconstructed from experimental data. Due to the
need for subtraction in the dispersion relation, the amplitude cannot be fully reconstructed
from its imaginary part. We have some information about the subtraction function, but by
and large, it has to be modeled [11].

There have been several studies of this issue, see e.g. [12, 13, 14, 15, 16], but considering
the far-reaching implications of the puzzle it is important to explore a variety of approaches.
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One such approach is to directly match onto NRQED to describe proton structure effects in
hydrogen-like systems as was done in [11]9. From such an analysis one finds that the muonic
hydrogen measurement depends on two Wilson coefficients in the NRQED Lagrangian. One
is equivalent to the charge radius. The other is the coefficient of the spin-independent muon-
proton contact interaction and could be determined by matching to the two-photon amplitude,
if it was fully known.

The muonic hydrogen result can be tested in the planned muon-proton scattering experi-
ment, MUSE [21]. In this experiment the energy of the muons is of the order of the muon mass.
As a result, the appropriate effective field theory has relativistic muons but non-relativistic
protons. Such an effective field theory, QED-NRQED, was suggested in [22]. Lepton-proton
scattering in QED-NRQED is naturally organized as an expansion in α and m/M . In this
paper we presented two QED-NRQED calculations: O(Zα) corrections to the amplitude up
to and including power m2/M2 and O(Z2α2) at leading power in m/M .

QED-NRQED lepton-proton scattering at O(Zα) and power m2/M2 reproduces the known
Rosenbluth scattering formula, i.e. the one-photon exchange cross section expressed in terms
of the proton form factors [23], up to power m2/M2. It requires just the Dirac Lagrangian and
the NRQED Lagrangian up to 1/M2. In particular there is no contribution at this order from
1/M2 corrections to the Dirac Lagrangian [22] and more importantly from the lepton-proton
contact interactions. This implies that the coefficients of these operators start at a higher
order in α. In particular, one would expect that the first non-zero contribution to b1 and b2 in
equation (5) would be at O(Z2α2) . For that, one has to calculate an appropriate amplitude
to O(Z2α2) and power m2/M2 and will be considered in a subsequent paper [26].

QED-NRQED lepton-proton scattering at O(Z2α2) and at leading power reproduces the
O(Z2α2) terms in the scattering of a lepton off a static 1/r potential [24, 25]. Interestingly it
also reproduces the lepton scattering off a “point particle” proton at leading power in 1/M . It
is easy to understand why. In the M →∞ limit the only information the lepton has about the
proton is the proton’s charge Ze. Effects such as the proton magnetic moment and the proton
charge radius arise only at 1/M and 1/M2 respectively, see equation (1). QED-NRQED can
naturally incorporate such effects. For completeness we have also calculated the cross section,
but unlike [24, 25] we used the standard technique of Feynman parameters. Still, these leading
power integrals are not representative of the typical integrals one would obtain in calculating
QED-NRQED diagrams at higher powers. We will discuss such integrals in a subsequent paper
[26]. Finally, we have also commented on the change in the cross section when we consider
anti-lepton scattering.

These calculations validate QED-NRQED and set the stage for its use in addressing the
proton radius puzzle. The next step will be to relate the Wilson coefficients b1 and b2 to
the full two-photon amplitude and to the NRQED Wilson coefficients d1 and d2 either di-
rectly by matching, or indirectly via the full two-photon amplitude10. Once this is done, one
could calculate the lepton-proton cross section in QED-NRQED. Ideally this would lead to
a direct model-independent relation between muon-proton scattering and muonic hydrogen
spectroscopy, or in other words, use data to resolve the hadronic uncertainty.

9See also [19, 20] for a different approach that first used NRQED for this problem.
10An analogous, but different, matching between HBET and NRQED was done in [12].
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A Appendix

A.1 Kinematics

We consider lepton-proton scattering, `(k) + p(p) → `(k′) + p(p′), in the initial proton rest
frame, i.e. ~p = 0. We denote the lepton mass by m and the proton mass by M . The initial
lepton energy is E and the final lepton energy is E ′. The scattering angle, i.e. the angle
between ~k and ~k′ is θ. We define q = k − k′ = p′ − p.

For spin-averaged 2 → 2 scattering there are only two independent variables, so many of
the kinematical variables can be related to one another:

p′ = p+ q, k′ = k − q, p2 = M2, k2 = m2,

p · q = M(E − E ′) = Mq0 = −q2/2,
k · q = q2/2, ~q 2 = −q2 + q4/4M2. (40)

There are also several approximate relations between the various kinematic variables:

q2 = −~q 2 + ~q 4/4M2 +O
(

1

M3

)
,

~k · ~q = ~q 2/2 +O
(

1

M

)
,

~k′ · ~q = −~q 2/2 +O
(

1

M

)
. (41)

The differential cross section is given by:

dσ

dΩ
=

1

64π2M

|~k′|
|~k|

1∣∣∣∣∣M + E − |
~k|E ′ cos θ

|~k′|

∣∣∣∣∣
|M|2, (42)

where as usual |M|2 is the spin-averaged amplitude squared.

A.2 QED-NRQED amplitude

Usually the Dirac spinors are normalized via u†u = 2E. For NRQED the spinors are normal-
ized as ξ†ξ = 1. As a result we can relate the amplitude for lepton-proton scattering in the
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standard normalization (M) to that of QED-NRQED (MQN) via M = 2
√
Ep′EpMQN. In

the rest frame of the initial proton the spin averaged amplitudes |M|2 and |M|2QN are related

by |M|2 = 4MEp′|M|
2

QN, where Ep′ =
√
M2 + ~q 2.

Spin averaged squared amplitudes in QED-NRQED can be calculated by an analogue of
the Casimir trick. Thus for the amplitude of the form M = ξ†p′ Σ ξp ū(k′) Γu(k), where ξ is a
two-component spinor, Σ = ~σ or 12×2, u is a Dirac spinor, and Γ part of the Dirac basis,

|M|2QN =
1

4
Tr
[
ΣΣ†

]
Tr
[
(/k +m)Γ(/k′ +m)Γ

]
, (43)

where Γ = γ0Γ†γ0.
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