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Abstract

Warped extra dimensions can address both the Planck-weak and flavor hierarchies of the Standard
Model (SM). In this paper we discuss the SM neutrino mass generation in a scenario in which a SM
singlet bulk fermion — coupled to the Higgs and the lepton doublet near the IR brane — is given
a Majorana mass of order the Planck scale on the UV brane. Despite the resemblance to a type I
seesaw mechanism, a careful investigation based on the mass basis for the singlet 4D modes reveals
a very different picture. Namely, the SM neutrino masses are generated dominantly by the exchange
of the TeV-scale mass eigenstates of the singlet, that are pseudo-Dirac and have a sizable Higgs-
induced mixing with the SM doublet neutrino: remarkably, in warped 5D models the anticipated
type I seesaw morphs into a natural realization of the so-called “inverse” seesaw. This understanding
uncovers an intriguing and direct link between neutrino mass generation (and possibly leptogenesis)
and TeV-scale physics. We also perform estimates using the dual CFT picture of our framework,
which back-up our 5D calculation.

1



1 Motivation and summary

The Randall-Sundrum (RS1) model [1] with a warped extra dimension [in particular, five-
dimensional (5D) anti de-Sitter space (AdS)], coupled with an appropriate mechanism [2] to
stabilize the size of the extra dimension, provides an attractive solution to the Planck-weak
hierarchy problem of the Standard Model (SM). The basic idea is that localizing the SM
Higgs boson near the IR brane results in scale of its vacuum expectation value (VEV) being
warped-down to the ∼ TeV scale relative to that of 4D graviton (i.e., the Planck scale) which
is localized near the UV brane. By the correspondence between AdS space and conformal
field theories (CFTs) in lower space-time dimension [3], this idea is dual to a purely 4D
theory, where the SM Higgs boson is a composite of some new strong dynamics [4].

In addition, the warped framework with the SM fermions arising as zero-modes of fermion
fields propagating in the extra dimension can also account for the charged fermion mass and
mixing angle (flavor) hierarchies of the SM as follows [6, 7, 8]. The effective 4D Yukawa
couplings are dictated by the overlap of fermion zero-mode profiles with the Higgs boson, the
latter being localized near/on the TeV/IR brane. The crux of this idea is that small changes
in the five-dimensional (5D) mass parameters can result in large variations in the (extra-
dimensional) profiles of the fermion zero modes at the TeV brane, thus (easily) generating the
desired hierarchies in these Yukawa couplings, i.e., the SM fermion masses. It is interesting
that such a scenario for SM fermions is dual to SM fermions being partially composite also
[9], to degrees determined by scaling dimensions of the fermionic operators to which they
couple (this scaling dimension is dual to the 5D mass parameter). The point then is that the
coupling to Higgs is dictated by the amount of composite admixture in SM fermions, which
can be hierarchical even with small differences in the scaling dimensions of the fermionic
operators, provided there is a large energy range for the associated renormalization group
evolution (RGE). Of course, 5D fermions necessitate 5D gauge fields [5].

In such a “bulk” SM in warped extra dimension (see also [10]), there are also Kaluza-Klein
(KK) excitations of SM particles, which have masses starting at and quantized in units of
roughly TeV scale and profiles which are peaked near the TeV brane. These new particles
inherently contribute to various types of precision tests of the SM. Thus, there are indirect
constraints on the KK mass scale in this model; the worry being that KK scale much larger
than ∼ TeV will jeopardize the solution to the Planck-weak hierarchy problem. Those from
electroweak tests can be controlled by suitable custodial symmetries [11], allowing a few TeV
KK scale [12]. As far as flavor violation is concerned, there is a built-in suppression of such
effects in this framework, roughly an analog of Glashow-Iliopoulos-Maiani (GIM) mechanism
in the SM [7, 8, 13]. Still, KK scale above ∼ 10 TeV might be required (modulo the option
of fine-tuning of flavor parameters) in order to be consistent with flavor precision data [14].
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Of course, this situation can be mitigated by use of appropriate flavor symmetries [15] such
that a few TeV KK mass scale can be once again allowed1. For a review of the framework
and its phenomenology (and more references), see, for example, [16].

In this paper, we study the SM neutrino masses in this framework: clearly there are
two options to begin with, namely, Dirac or Majorana type mass. For Majorana neutrinos,
an incarnation of the standard type I seesaw mechanism [17] has been incorporated in the
warped extra dimensional framework [18, 19, 20]: we will focus only on this model in this
paper.2 In this model, SM singlet neutrinos (denoted generically by N) are added in the bulk
to the above framework of SM-charged fermions, aka the “right-handed” (RH) neutrino in
the 4D case, even though it gives massive 4D modes with both chiralities in the 5D version (a
fact which will turn out to be crucial in our work). This singlet neutrino field has a coupling
to lepton doublet and Higgs on (or near) the IR brane, from which the singlet neutrino 5D
field acquires a Dirac mass term with the doublet (or LH) neutrino field once EW symmetry
breaking (EWSB) occurs, i.e., Higgs develops a VEV (just like for charged SM fermions).
However, the difference from charged fermion case is that we assume that lepton-number
is broken only on the UV brane (i.e., it is still a good symmetry in the bulk and on the
TeV brane). This choice essentially manifests itself as a Majorana mass term for the UV
brane-localized value of the bulk singlet neutrino field. (Obviously, no such mass terms are
allowed for the charged fermions.)

Note that adding a Majorana mass term (or lepton-number violation) only on the UV
brane is technically natural by 5D locality. It is also quite generic in scenarios where the bulk
EW gauge group is extended to SU(2)L×SU(2)R×U(1)B−L in order to satisfy bounds from
EW precision tests [11]. Here SU(2)R × U(1)B−L is spontaneously broken down to U(1)Y

(hypercharge of the SM) on the Planck brane, either by boundary conditions or Planckian
VEV of a localized scalar (this is equivalent to the former case in the large VEV limit),
whereas SU(2)L × U(1)Y → U(1)EM occurs by the Higgs VEV localized near the IR brane.
In this setup N will be typically charged under SU(2)R×U(1)B−L

3 while remaining neutral
under the SM gauge group. Such a choice of the bulk gauge symmetry (and breaking) implies
that a Majorana mass term for N , which would break SU(2)R × U(1)B−L, is only allowed
on Planck brane, i.e., it is forbidden in the bulk and on TeV brane.

We contextualize our contribution by first recapitulating the approaches used in previous
studies. It turns out that most of the earlier studies of this model [18, 20] were performed

1In addition, there are lower bounds on the KK scale from absence of any signal of direct production of
these KK particles at the LHC, but those from run 1 are still below the few TeV limit that we get from
precision tests.

2For other scenarios (for either Dirac or Majorana case) see, for example, references [6, 21, 24]. We will
comment on models with a bulk Majorana mass for the singlet at the end of this section.

3In fact, in the canonical case, this SM singlet simply corresponds to the SU(2)R doublet partner of the
charged RH lepton, i.e., it is not added “by hand”, rather its presence is required by the bulk gauge symmetry.
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employing the “usual” (i.e., similarly to the charged-SM fermions) KK modes of the SM
singlet field as the basis, where the above-mentioned Planck brane localized Majorana mass
term is treated as a (not necessarily small) “perturbation” or at the least an “add-on”: we
will call this simply the “KK” basis. 4

In more detail, in these earlier papers the KK decomposition for singlet field 5 is performed
neglecting the Majorana mass on UV brane, giving zero (chiral) and massive, Dirac (KK)
modes, just like for doublet lepton and, in general, SM charged fermion fields. Afterwards,
turning on the Planck brane localized Majorana mass term results in the would-be zero-mode
acquiring a large Majorana mass. Furthermore, it leads to mixing (via Majorana mass terms)
among the would-be zero and (already massive) KK modes so that clearly the would-be zero
modes and KK modes are not the mass eigenstates. Finally, including EWSB leads to mass
terms between the SM neutrino and the entire tower of singlet modes; integrating out the
latter then generates a mass for the SM neutrino, which is thus purely Majorana in nature,
deriving from the above-mentioned Majorana mass terms for the singlet modes.

The advantages of the KK basis are its familiarity (from the numerous studies of charged
fermion masses, where of course such Majorana mass terms are absent). As we will detail in
what follows, it is perhaps the quickest/easiest way to obtain the SM neutrino mass formula
in the 5D model. Indeed, the exchange of non-zero KK singlet modes with Dirac mass terms
quantized in units of TeV-scale gives negligible contribution to the SM neutrino mass (inspite
of these modes having Majorana mass terms also): almost all of this effect then comes instead
from the would-be zero-mode (i.e., no Dirac mass term), with a super-large Majorana mass
term. This “anatomy” of the SM neutrino mass gives it the appearance of type I high-scale
seesaw.

In addition, the “intermediate” seesaw scale which is typically needed in type I high-scale
seesaw models for obtaining the right SM neutrino mass can be naturally realized in the 5D
model, i.e., even with input parameters being Planckian, via a natural choice of 5D mass of
the singlet. In contrast, in 4D models such a seesaw scale often has to be introduced as a
“new” scale.

In this paper, we re-consider the model using the mass basis (instead of the above KK
one) for the singlet 4D modes, neglecting the mass mixing with doublet due to Higgs VEV.

4An exception is reference [19], which employed the full mass basis, i.e., for all modes (entire tower) of
neutrinos (i.e., diagonalizing also the effect of doublet and singlet mixing due to EWSB, which we neglect
here to begin with, rather it can be genuinely treated as a insertion/perturbation). However, this study
focussed only on mass of the lightest (i.e., mostly SM) neutrino state, i.e., it did not (at least explicitly) work
out the spectrum of heavier states. Hence, the “inner workings” of the SM neutrino mass, whose exchange is
responsible for its generation, is not clear from such an analysis.

5At leading order in Higgs VEV, the doublet lepton KK modes will play no role in the generation of
the SM neutrino mass, no matter which basis we use. So, we will only keep the doublet zero-mode, i.e.,
(approximately) the SM doublet lepton, from now on.
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The reason is that this is the basis necessary to analyze processes involving on-shell singlet
neutrinos, such as direct collider signals of singlet neutrino states and leptogenesis [25].

What we find is that the character of the seesaw is “changed” when the mass basis is
employed! Namely, even though the SM neutrino mass is obtained exchanging the mass
eigenstates of the singlet (similarly to exchanging would-be zero and KK modes), we show
that

• the TeV-scale mass eigenstates of the singlet actually give a significant contribution
to the SM neutrino mass (the end result being of course the same as in KK basis); in
fact, this is the dominant effect for the natural versions of the model.

Given also their unsuppressed Yukawa couplings to Higgs and the SM neutrino (following
from their profile leaning towards TeV brane, where Higgs is also localized), at first sight, it
seems somewhat counter-intuitive that the SM neutrino mass comes out very small: indeed,
this is due to these modes being mostly Dirac, i.e., with a highly suppressed Majorana mass
term.

A similar mechanism in four dimensions goes by the name “inverse” seesaw [22], i.e.,
where the very small SM neutrino mass arises from exchange of (possibly TeV-mass) singlet
mode which is pseudo Dirac and has sizable EWSB mass term with the SM neutrino. Thus,
we discover that, in mass basis, the dynamical picture of a seemingly high-scale type-I seesaw
model in warped 5D is that of an “inverse” see-saw. Actually, it is crucial that the Majorana
mass term for these TeV-mass modes in the 5D model is naturally small, as opposed to generic
4D inverse seesaw models, where such a smallness can be rather an ad-hoc assumption.

Phenomenologically, we then see that – for the purpose of leptogenesis or probing directly
the mechanism of the SM neutrino mass generation in this 5D model by producing the
responsible singlet states at the LHC/future colliders – the center of attention becomes
TeV-mass singlet modes, as in the usual/4D inverse seesaw models.

Furthermore, the CFT interpretation of this seesaw model has not been discussed in the
literature thus far, even though the charged SM fermion case has been thoroughly studied
in this way, providing physical intuition to the problem. Such a dual CFT description of
warped seesaw for neutrino masses will be similarly extremely useful, offering an alternative
picture for SM neutrino mass generation. In fact, we find that

• the CFT viewpoint allows us to quickly unveil the true nature of the seesaw mechanism
and clarifies the naturalness of the small Majorana component of the TeV-scale mass
eigenstates.

We end this section with a comment on scenarios in which the singlet is given a bulk
Majorana mass. A major difference compared to the models we analyze in this paper is that
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Basis → KK mass CFT
Features (would-be mass modes neglecting (for singlet only, i.e., [NR (external) and
↓ UV brane Majorana mass term) neglecting Higgs VEV) composites (with 2 sectors mixing)]

Advantage/Use familiar from charged fermion analysis; needed for on-shell production elucidates seesaw structure
easy to obtain mν (LHC and/or leptogenesis) easy to obtain mν

“bridge” between mass and KK bases
Nature of seesaw Type I (high-scale) (Dominantly) inverse for cN > −1/2 (Significantly) inverse
(details below) (for both cN < −1/2 and > −1/2) “Combination” for cN < −1/2 (for both

[
ON
]
> 5/2 and < 5/2)

fraction of (net) mν 0 ≈ 1 (∼ 1) for cN > (<)− 1/2 ∼ 1 (for both
[
ON
]
> 5/2 and < 5/2)

from ∼ TeV-scale modes (from each Dirac mode) (from pseudo-Dirac pair) (from each Dirac composite)
heavy (Majorana) mode would-be zero-mode, not mass eigenstate “special/single” mode external NR

Mass for cN > −1/2 MUV
N ×

(
TeV
MPl

)2 cN+1
MUV
N ×

(
MUV
N

MPl

) 1
−2 cN

−1
Mbare
N

(
µ
MPl

)5−2
[
ON
]

Mass for cN < −1/2 MUV
N MUV

N Mbare
N

fraction of (net) mν 1 � 1 for cN > −1/2 0
� 1 (“cancels” � 1 below) for cN < −1/2

fraction of (net) mν from 0 � 1 for cN > −1/2 unknown (for both cN < −1/2 and > −1/2)
sum of intermediate modes � 1 for cN < −1/2

Table 1: A comparison of the three bases used for studying this model. Note that the bulk mass
for singlet field in the 5D model (cN ) is dual (in the CFT picure) to

(
2−

[
ON
])
, where

[
ON
]
is

the scaling dimension of the singlet operator in the CFT basis. Whereas, the Majorana mass on
the Planck brane in the 5D model (MUV

N ) corresponds to the bare mass for the external singlet
(Mbare

N ) in the CFT interpretation.

in the former case a sizable bulk mass would significantly distort the spectrum of the KK
modes and produce a tower of Majorana states, as opposed to pseudo-Dirac. Unfortunately,
this is not a phenomenologically viable option because the SM neutrinos would acquire a
large mass as well. A realistic model can be obtained taking a very tiny bulk Majorana mass,
which corresponds to making a tuning roughly of order the UV/IR hierarchy. Then one can
safely treat the bulk Majorana mass as a perturbation of the KK basis, whose leading effect
is the generation of small Majorana mass splitting and lepton-number violating couplings
for the 4D modes of the singlet. From a dual CFT perspective, this is equivalent to assume
that there exists a tiny violation of the lepton number within the large N dynamics. We thus
see that models with a bulk Majorana mass reproduce the SM neutrino masses precisely as
in the 4D inverse seesaw mechanism, and still at the price of tuning. On the other hand, 5D
scenarios with an UV-localized Majorana mass offer a theoretically compelling justification
for the smallness of the SM neutrino masses.

Here is the outline for the rest of this paper. We begin with a review of the above 5D
model, setting-up our notation in section 2. In order to set the stage for our new analysis,
it is necessary to first give a more extensive review of the various related results from earlier
literature, namely, that of the KK basis calculation done earlier. We do this in section 3.
We then move onto our findings.

Our mass basis calculation of the SM neutrino mass is given in section 4; this is a
somewhat tedious procedure and so we begin (subsection 4.1) with a qualitative summary
of the subsequent results, followed by setting-up the mass basis in subsection 4.2. The main
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results are summarized in subsection 4.3. In table 1 we give a snapshot of the features in each
of the three bases mentioned above (i.e., KK, mass and CFT). Each entry will be clarified
below. The full details of 5D calculation are relegated to Appendix A.

In section 5 we scrutinize the 5D model from a 4D CFT perspective. We finally present
our conclusions in section 6, where we also discuss some directions for future work.

2 The 5D Model

We consider a slice of AdS5 geometry described by the following metric:

ds2 =

(
R

z

)2

ηab dx
adxb, (1)

where ηab = diag(+,−,−,−,−) and xa = (xµ, z), with µ = 0, 1, 2, 3 and the fifth coordinate
confined within the interval R 6 z 6 R′, where R is the AdS curvature radius. 6 At the
boundary z = R (R′) we locate a UV (IR) brane. The SM fermions are in the bulk and,
for simplicity, the SM Higgs boson is taken to be localized on the IR brane, although we
think that the arguments presented here can be straightforwardly generalized, giving similar
results, as long as the Higgs boson is peaked towards the IR brane.

In order to be consistent with bounds from EW precision tests, we consider a minimally
extended bulk gauge group SU(2)L × SU(2)R × U(1)B−L with SU(2)R × U(1)B−L sponta-
neously broken down to U(1)Y on the UV brane. Since detailed dynamics responsible for
such a spontaneous breaking is not of central interest here, we will not discuss it for brevity.
However, it is worth to mention that in this framework the SM singlet neutrino is charged
under SU(2)R × U(1)B−L. Since the Majorana mass term for the singlet breaks this gauge
symmetry it can appear only on the UV brane.

The quadratic action for SM singlet neutrino 7 in the background of Eq. (1), including a
UV-localized Majorana mass (SUV), is:

S =

∫
d5x
√
g

{
i

2

(
Ψ̄eMa γ

aDMΨ−DM Ψ̄eMa γ
aΨ
)
−mDΨ̄Ψ

}
+ SUV (2)

=

∫
d5x

(
R

z

)4{
−iχ̄ σ̄µ∂µχ− iψ σµ∂µψ̄ +

1

2

(
ψ
←→
∂5χ− χ̄

←→
∂5 ψ̄

)
+
cN
z

(
ψχ+ χ̄ψ̄

)}
+ SUV.

In the first line the Fünfbein reads eaM = (R/z)δaM , DM = ∂M +ωM with the spin connection
given by ωM =

(γµγ5
4z , 0

)
. For the gamma matrices we use the conventions of [19]:

γµ =

(
0 σµ

σ̄µ 0

)
σ0 = −1, γ5 =

(
i1 0
0 −i1

)
. (3)

6As a reference it is useful to recall that much of the literature uses the equivalent line element ds2 =

e−2kyηµνdx
µdxν − dy2, with 0 ≤ y ≤ 1

k
ln(kR′) related to ours by z = eky

k
and k = 1/R.

7For simplicity, we describe one generation, but our analysis can be easily extended to more.
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In the second line we explicitly wrote the action in terms of Weyl spinors:

Ψ =

(
χα
ψ̄α̇

)
,

and defined the real number cN ≡ mDR, and
←→
∂5 ≡

−→
∂5 −

←−
∂5.

The UV-localized Majorana mass term is defined as a quadratic term for ψ:

SUV =

∫
d5x

(
R

z

)4 d

2
δ(z −R)ψψ + hc, (4)

where d ≡MUV
N R.

We also introduce a coupling between Ψ, a Higgs H localized on the IR-brane at z = R′,
and the electroweak doublet 5D field ΨL:

δS = −
∫
d4x

∫
dz

(
R

z

)4

δ(z −R′)λ5HΨLΨ (5)

where λ5 is 5D Yukawa coupling with mass dimension -1. In our notation cN,L denote the
5D mass parameters for RH (singlet) and LH (doublet) neutrinos (which, in turn, determine
profiles for zero-modes in the extra dimension). We will follow convention that cL = 1/2

(cN = −1/2) is constant profile for the LH (RH) zero mode, cL > 1/2 (cN < −1/2) being
localized close to the Planck brane. Values cL & 1/2 are expected to explain the smallness
of the charged lepton masses 8

All dimensionful parameters are taken to be O(1) in units of AdS curvature scale (k ≡
1/R) and in turn, the latter mass scale is set to be the 4D Planck mass scale (denoted by
MPl). In the following, by “TeV scale”, we tacitly mean the scale 1/R′ which sets size of KK
masses.

3 SM neutrino mass using KK basis

In this section, we will first review previous results obtained using what we call the KK
basis and present our new work in the following section. As outlined in the introduction,
this KK basis is characterized by an a-posteriori consideration of the effects of the UV brane
Majorana mass term on the modes (both zero and massive KK) which had been obtained
without this UV brane mass term: essentially this “addition” generates Majorana mass terms
for all these modes: see, for example, reference [18].9

8There might be some leeway here, due to the profile of RH charged lepton. In any case, formulae below
can be easily generalized to cL < 1/2 by replacing ∼ (TeV/MPl)

cL−1/2 by ∼
√

1/2− cL.
9Note that in the literature, there are usages of “KK” basis with other meanings, for example, while

dealing with charged fermions (i.e., no Majorana mass!), some authors denote by it the mass (i.e., physical)
basis before taking into account EWSB (Higgs VEV), i.e., doublet and singlet modes are separate, whereas
some others reserve it for the final, i.e., post-EWSB, mass basis. Once again, our KK basis for singlet is the
one without taking into account both Majorana mass term on Planck brane and mass mixing with doublet
leptons via EWSB.
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×
M

(n,m)
Nν

(0)
L ν

(0)
L

H H

× v × v

N
(n)
R N

(n)
R N

(m)
R N

(m)
R

Figure 1: The (vanishing) SM neutrino mass contribution from exchange of massive/KK
modes in KK basis, where M (n,m)

N (n, m 6= 0) denote Majorana mass terms.

To begin with, we provide a simple derivation – using equations of motion (EOM) – of
the formula for the SM neutrino mass. The result that we are about to derive was already
obtained and used in earlier works [18, 20]; rather than following the approach used in the
literature we present a different one, that makes the relevant physics more transparent.

We use 4-component Dirac spinors notation, with N
(0)
R being singlet chiral zero-mode,

N
(n6=0)
R being singlet non-zero KK modes (Dirac i.e. have both L and R chiralities) and ν(0)

L

being (doublet) SM neutrino (left-handed only). We have the following mass terms

Lmass =
∑

n,m=0,1,2...

1

2
M

(n,m)
N

[
N (n) c

]
L
N

(m)
R +

∑
n=1,2...

mnN
(n)
L N

(n)
R +

∑
m=0,1...

m
(0,m)
D ν

(0)
L N

(m)
R

+ h.c. (6)

where m(0,m)
D is the (effective) Dirac mass for the two different types of neutrino modes

induced by the Higgs VEV. These EWSB-induced mass terms are given simply by 5D Yukawa
coupling (along with Higgs VEV) multiplied by product of profiles of LH (zero) and RH (zero
or KK, labelled m) neutrino modes at the IR brane. Similarly, M (n,m)

N are Majorana mass
terms between various singlet modes, obtained by multiplying the Majorana mass term on
the UV brane by relevant profiles at the UV brane. Finally, mn are the usual Dirac masses
for the non-zero KK modes. 10

We simply use equation of motion for N (n6=0)
L which implies N (n6=0)

R = 0, since only term
in Lagrangian involving N (n)

L is the KK mass with N (n)
R . Whereas, EOM for N (0)

R sets itself to
ν

(0)
L m

(0,0)
D /M

(0,0)
N . Plugging these expressions for N (n)

R (n = 0, 1...) back into the Lagrangian

10In [18] the Dirac masses are denoted by Dn (our mn). The Majorana mass terms between singlet modes,
which we denoted as M (n,m)

N , is denoted Anm. Finally, the Dirac mass between LH zero mode and RH
zero/KK modes, which we called m(0,m)

D , is denoted C0n in [18].
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we get

L 3 −1

2

[
m

(0,0)
D

]2

M
(0,0)
N

ν
(0)
L

[
ν(0) c

]
R

(7)

Equivalently, we can represent the use of EOM’s by Feynman diagrams: see Fig. 1. In this
KK basis, it is the right chirality of the KK mode which couples to both Higgs VEV at one
end and has Majorana mass term on the other side. Thus, we have to pick the “p6 ” piece
of propagator, which does not contribute to the mass term (again, despite the non-zero KK
modes having Majorana mass terms). 11 This argument is not valid for N (0)

R , so the entire
contribution comes from the would-be zero-mode.

The formula for the SM neutrino mass from the would-be zero mode exchange looks like
the usual, type I seesaw, i.e.,

mν ≡ meff 2
D

M eff
N

(8)

where meff
D = m

(0,0)
D for the case of would-be zero mode, with

m
(0,0)
D ≈

 a>−1/2Y5 v
(

TeV
MPl

)cL− 1
2 for cN > −1

2

a<−1/2Y5 v
(

TeV
MPl

)cL− 1
2 ×

(
TeV
MPl

)−cN− 1
2 for cN < −1

2

(9)

where the superscript (0, 0) on mD indicates that this is the mass term between two zero
modes, obtained by combining their profiles at the TeV brane (we assumed cL > 1/2 for
simplicity here). Also, Y5 ≡ λ5/R denotes the Yukawa coupling of brane-localized Higgs to
bulk fermions in units of AdS curvature scale (k).

Here (and in what follows), we have kept track of parametric effects, i.e., relegating the
O(1) factors to seperate formulae:

a>−1/2 ≈
√

(2cN + 1)(2cL − 1)

2
(10)

a<−1/2 ≈
√

(−2cN − 1)(2cL − 1)

2
(11)

Similarly, the effective Majorana mass in Eq. (8) is given by the Majorana mass term of the
would-be zero mode with itself, M eff

N = M
(0,0)
N

12, with

M
(0,0)
N ≈ MUV

N ×
{
b>−1/2

(
TeV
MPl

)1+2 cN
for cN > −1

2

b<−1/2 for cN < −1
2

. (12)

11However, the exchange of the KK mode can correct kinetic term for SM neutrino and this, after canoni-
cally normalizing kinetic term, will induce mass correction of order O(v4), which is higher-order than O(v2)
contribution from exchange of would-be zero-mode.

12We emphasize that (see also next section) these KK basis modes are not the mass eigenstates; in order
to make this point explicit, we denote this mass term as above, instead of simply M (0)

N , which would give
the impression that it is actually a physical mass.
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namely, size of Majorana mass term on UV brane, denoted by MUV
N , multiplied by (square

of) the profile of the would-be zero mode for the RH neutrino at the UV brane this time.
Once again, b’s above are O(1) factors, given by

b>−1/2 ≈ (2cN + 1) (13)

b<−1/2 ≈ − (2cN + 1) (14)

Plugging the singlet would-be zero mode Majorana mass from Eq. (12) and its Dirac mass
with doublet zero mode from Eq. (9) into the “master” formula in Eq. (8), we get (for both
cN < and > −1/2)

mν ≈
(
cL −

1

2

)
Y 2

5 v
2

MUV
N

(
TeV
MPl

)2(cL−cN−1)

(15)

As promised, deriving formula for the SM neutrino mass is a very straightforward task in
KK basis!

It is remarkable that the strong dependence on cN is similar whether we consider cN <

−1/2 or cN > −1/2. This requires more explanation. First of all, as can be seen from Eq(9),
for cN < −1/2, the Dirac mass is exponentially suppressed by the fact that the profile of
RH singlet would-be zero mode is peaked at UV brane and highly suppressed at IR brane.
On the other hand, the Dirac mass for cN > −1/2 does not show any strong sensitivity in
cN , which again comes from the fact that the profile at IR brane is unsuppressed and has
very little cN -dependence in this case. In the case of Majorana mass, however, the situation
is interestingly reversed (see Eq(12)). Namely, it is now cN > −1/2 case that acquires
exponential suppression and only a mild cN -dependence for cN < −1/2 (arising from the
profile on the UV brane). After combining these two effects, one can now, at least intuitively,
see that in both cN < and > −1/2 cases the SM neutrino mass gets strong cN dependence
as explicitly shown in Eq(15). What’s really remarkable is that everything works out just
right such that both cases reveal exactly the same cN -dependence. In section 5, we will come
back to this point and provide another way to understand it in a somewhat less coincidental
manner. The above-mentioned results in KK basis are summarized in the left column of
table 1.

Before moving to a study of the mass basis, we stress that in type I high-scale seesaw
models (including the 5D realization above) there appears to be a “new hierarchy” of mass
scales. This is because the (effective) seesaw scale needed is ∼ O

(
1012

)
GeV, i.e., ∼ 6

orders of magnitude smaller than Planck scale13. In order to achieve this in the 4D models,
13In other words, it is not enough to get small mν – which is accomplished by the basic seesaw mechanism

for any high scale for singlet neutrino mass, but we need to get its right size as well, which requires seesaw
scale to be high, but not as much as Planck scale!
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one is usually forced to introduce new dynamics for this purpose, often requiring its own
explanations. This is what would also happen in our model if we took MUV

N � MPl.
Importantly, in warped 5D models there is an interesting alternative. In fact, the desired
seesaw scale can be obtained from Planckian-size MUV

N naturally, it suffices to choose |cN |
a bit smaller than 1/2 for M eff

N to be (much) smaller than the Planck scale. Specifically,
in order to get the observed size of the SM neutrino masses, given that cL ∼ 0.6 is a
“natural” choice14 for reproducing charged lepton masses [i.e., m(0,0)

D ∼ O(10 GeV)]15, we
can choose cN ∼ −0.3 > −1/2 so that for natural size of MUV

N [namely ∼ O(MPl)], we get
M eff
N ∼ O

(
1012

)
GeV, giving us mν ∼ O(0.1) eV as required.

4 SM neutrino mass using mass basis

The reader must be warned that the KK basis is not even remotely close to the mass basis.
Indeed, the Majorana mass term for low-lying (TeV-scale) KK modes can be much larger
than KK (Dirac) mass itself:

M
(1,1)
N ∼ MUV

N ×


(
cN + 1

2

)2 (TeV
MPl

)−2 cN−1
, for cN < −1/2(

cN + 1
2

)2 (TeV
MPl

)2 cN+1
, for cN > −1/2

(16)

where we are interested in cN ∼ −1/2 and MUV
N . MPl so that (typically) M (1,1)

N � TeV.
This demonstrates that the Majorana mass terms cannot really be treated as a “perturbation”
(i.e., that it should be included from the beginning).

We therefore decide to analyze the warped seesaw model using mass basis directly. Such
a step is necessary for the study of direct production of singlet neutrino states at colliders,
similarly for the consideration of their effects in the early universe (relevant perhaps for
leptogenesis). Namely, we include the effect of the Majorana mass on the Planck brane a
priori such that all modes are (from the start) Majorana16. The two approaches must of
course agree on the final result. Nonetheless, we will see that this change of basis has some
“surprises” in store for us that will elucidate the nature of the seesaw mechanism itself! An

14i.e., it can account for charged lepton mass hierarchies and suppress flavor violation without any significant
structure in the 5D Yukawa couplings, in addition to being safer from EW precision tests than cL < 1/2.

15Note that this (i.e., neutrino) Dirac mass is only suppressed by one factor of doublet lepton profile,
cf. charged lepton mass involving two such factors; that is why we can take O(10 GeV) as Dirac mass term
for neutrino, instead of ∼ O(GeV) for charged lepton, say, τ , mass.

16Strictly speaking and as mentioned earlier, EWSB will actually further mix the singlet modes in this
“mass” basis with doublet modes, but that effect can be genuinely treated as a perturbation, just like it
is often done for charged SM fermions: we will neglect it – at this stage – for simplicity and so continue
to call it the mass basis, again for the singlet modes by themselves. Of course, these EWSB-induced mass
terms between the singlet modes and the doublet zero-mode (i.e., the SM neutrino) are crucial later, i.e., in
generating mass for the SM neutrino.
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intuitive understanding of our results immediately follows from the CFT interpretation in
section 5.

4.1 Summary

We first give highlights of the mass basis analysis, before entering quantitative details in the
next subsection.

It turns out that basically all the singlet mass eigenstates (except one) are “pseudo-
Dirac”, i.e., form pairs with (roughly) the “original” Dirac-like mass, but with very small
mass splitting within each pair, induced by the Majorana mass term on the UV brane. This
spectrum comes with a regular spacing between these pairs, given by ∼ TeV (the usual
KK scale): in other words, each ∼ TeV interval (starting at ∼ TeV itself) in mass has 2
almost degenerate Majorana modes. In addition to the mass spectrum, we need to know the
couplings to Higgs (and doublet lepton) of these singlet modes; they turn out to be sizable,
given the localization of these mass eigenstates near TeV brane. These two properties (which
are qualitatively similar for both cN < and > −1/2) can then be combined as done above in
the KK basis in order to get the SM neutrino mass.

We find that using the mass basis points to a strikingly different underlying mechanism
of the generation of SM neutrino mass, giving the same end result for the SM neutrino mass
itself. First of all, in the mass basis, the contribution of ∼ TeV mass singlet states to the
SM neutrino mass is similar in size (for both cN < and > −1/2) to the final result. Thus,
even though it “started out” trying to be type I, the same 5D model (again, in the mass
basis) is reminiscent of the so-called “inverse” seesaw mechanism in the context of (purely)
4D models [22]. Namely, both this 5D model and the 4D models in [22] (and follow-ups) are
characterized by SM neutrino mass originating from exchange of a singlet mode(s) with very
small Majorana mass term combined with its couplings to Higgs not being small! In other
words, the mechanism for the generation of SM neutrino mass might be “closer at hand”
than would have been anticipated in the KK basis: for example,

• the TeV mass singlet states, whose exchange generates the SM neutrino mass, can
potentially be probed at the LHC (or future colliders).

Furthermore,

• for leptogenesis, the focus might be on the decay of these TeV singlet states, which
does not require the universe to be reheated to temperatures (much) above a TeV, thus
avoiding the issue of the (too slow) phase transition of the high temperature scenario. 17

17It is known [23] that the transition from such a high-temperature phase (i.e., � TeV) to the usual
warped model below temperature of ∼ TeV might proceed too slowly, which might then become a bottleneck
in implementing a standard (i.e., high-scale) leptogenesis scenario.
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Overall, we thus see that the mass basis picture leads to a dramatic shift in the expected
phenomenology. Indeed, from the KK basis one might erroneously be drawn to conclude
that the physics which generates the SM Majorana neutrino mass cannot be probed directly
at the LHC (or foreseeable colliders), and that leptogenesis would require the universe to be
reheated to temperatures (much) above a TeV, which might then pose a problem in these
scenarios (as mentioned above). Our results show that none of this is true.

Note that reference [24] actually added an extra (i.e., beyond the N discussed above)
singlet in the bulk to this model in order to implement inverse seesaw in 5D (which is the
way it is done in usual, 4D models), but our claim here is that there is no “need” to do so.
18

Next, we mention finer points about the mass basis analysis. For example, consider the
“fate” (in the mass basis) of the would-be zero mode of the KK basis. We can show that
there is indeed one mode which is unpaired: it seems to not conform to the “one pair-per-TeV
bin” rule. Hence, it is termed a “special” mode, with what one might therefore call a “purely”
Majorana mass. It is somewhat tempting to “identify” it with the would-be zero mode of
the KK basis discussed earlier. However, we find that this “mapping” is not quite accurate.
After a careful calculation, we discover that

• (i) for cN > −1/2, the special mode in the mass basis is not at the would-be zero mode
mass, but instead is parametrically higher (while still being smaller than the Majorana
mass term on the UV brane), with a coupling to the Higgs which is similar to would-
be zero-mode however. Thus, its contribution to the SM neutrino mass is negligible.
Similarly, we can show that the effect of the (much) heavier than ∼ TeV paired modes
is small, i.e., sum over these mass eigenstates from bottom-up is convergent. Hence,
we can indeed say that the SM neutrino mass is dominantly of inverse seesaw nature,
i.e., it basically arises from exchange of ∼ TeV mass eigenstates mentioned above19.

(ii) cN < −1/2: the special mode is in fact (roughly) at the would-be zero-mode
mass. Nevertheless its coupling to Higgs is actually unsuppressed, giving too large a
contribution to the SM neutrino mass. However, we show that this contribution is
similar in size to the effect of the other, i.e., higher than ∼ TeV, paired modes (i.e.,
this sum is now not dominated by the low-lying modes, cf. cN > −1/2 case above).

18In more detail, in 4D inverse seesaw model, we consider two Weyl spinor singlets, which form a pseudo-
Dirac state. Reference [24] attempted to mimic this in the 5D model by incorporating two (chiral) zero-modes,
i.e., one from each of two (singlet) bulk fields. However, we see that such a “proliferation” of bulk singlets is
actually not necessary since a single bulk field does have two chiralities at the non-zero mode level: we find
that these form the required pseudo-Dirac state.

19Again, it is more than one pair of modes which contribute here, i.e., involving more like a “tower”, albeit
rapidly convergent, of inverse seesaws, but this is a minor variation with respect to the usual 4D model of
this type.
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We therefore conjecture that these two contributions (again, those of the single/special
mode and the heavy, paired ones, with each of them being too large) cancels against
one another, leaving behind that of the ∼ TeV modes mentioned above (which on its
own is the “correct” size); in this sense, we have sort of a “hybrid” of inverse and type
I seesaws here.

Finally, as far as the curious feature about dependence on cN of the final SM neutrino
mass is concerned, we can boil it down to

• the dependence on cN of the Majorana mass splitting between the two (∼ TeV) mass
eigenstates in each pair being similar for cN > −1/2 and < −1/2 (as mentioned above,
this splitting is essentially what generates the bottomline SM neutrino mass for both
ranges of cN ).

The picture arising from our mass basis calculation is summarized in the middle column of
table 1.

4.2 Setting-up the calculation

We now show derivation of the above claims. Once again, in this approach, we take into
account the Majorana mass term on the UV brane from the get-go so that all singlet modes
are strictly speaking Majorana. The calculation is rather straightforward, even if tedious:
see Appendix A for details. It turns out that these Majorana mass modes can be divided into
two types: light modes and special modes. The low-lying (TeV-mass) modes come in pairs of
pseudo-Dirac particles (a Weyl spinor with mass m and another of mass ∼ −m) and similar
couplings to the SM Higgs and SM doublet neutrino. We will denote the two modes within
each pair (and values of their masses and couplings) by the subscripts ±, respectively. Of
course, we have an infinite tower of such modes, counted by n = 1, 2, · · · , so each n actually
stands for two, “±”, modes. In addition, at a mass scale much larger than ∼ TeV (essentially
dictated by Majorana mass term on UV brane, but appropriately modulated by profiles), we
find an unpaired/single mode, which we dub “special”.

The single/special, Majorana mode (mass M special
N , coupling yspecial with Higgs and dou-

blet neutrino zero-mode) gives the usual type I seesaw contribution to the SM neutrino
mass

mspecial
ν =

(
v yspecial

)2
M special
N

as in Fig. 2 [with (m+ ∆m) → M special
N ] , where v yspecial is the Dirac mass with doublet

neutrino zero-mode as usual.
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Figure 2: The SM neutrino mass from exchange of one singlet mode in mass basis, labelled
N

(n)
mass and of mass (mn + ∆m).

Each mode of a pair of Majorana modes (mass mn ±, magnitude of coupling yn ±) gives
a contribution to the SM neutrino mass which is similar to the above. However, given the
near-degeneracy within each pair, it is convenient to consider their combined effect:

mpair
ν = v2

(
y2
n +

mn +
− y2

n −
mn −

)
≈ y2

nv
2

mn

(
2

∆y

yn
− ∆m

mn

)
(17)

again, as in Fig. 2.20 Here ∆y = yn + − yn − and ∆m = mn + −mn −.
The procedure then is to determine the masses and couplings from a detailed 5D calcu-

lation, plug these into above formulae, and finally sum over the pairs of Majorana modes.

4.3 Results

In this section, we will simply summarize the results of the above outlined procedure, refer-
ring the reader to the appendix A for the actual calculation. As already mentioned in the
summary above, each of the two cases cN > and < −1/2 has to be treated on its own.

(i) cN > −1/2
We begin with the case of cN > −1/2, which is the phenomenologically viable option,

i.e., can give the known size of the SM neutrino masses with natural choices of the bulk
parameters.

The special mode
20Equivalently, we can treat the small Majorana splitting (∆m) as a “mass insertion” in getting to the 2nd

term of the above result.
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The first surprising element is that the mass of special mode [for a derivation, see ap-
pendix A.221] is parametrically different than the Majorana mass of the would-be zero mode
in the KK basis: namely, we find that

M special
N ≈ f>−1/2M

UV
N ×

(
MUV
N

MPl

)− 1
2 cN

−1

(18)

with the O(1) factor given by

f>−1/2 ≈ 2

( −π tan(cNπ)

Γ2(−cN + 1/2)

) 1
2cN

(19)

i.e., it is smaller than the input ofMUV
N (given that cN > −1/2, the exponent is positive and

we assume MUV
N .MPl here), but it is larger than the would-be zero mode mass in 1st line

of Eq. (12). On the other hand, the coupling of special mode to the SM Higgs is (roughly)
similar to that of the would-be zero-mode (apart from the absence of the

√
1/2 + cN factor

[which anyway is∼ O(1)]), i.e., the EWSB-induced Dirac mass with the SM doublet neutrino,
meff
D , is approximately22:

meff,special
D ∼ m(0,0)

D [where m(0,0)
D is 1st line of Eq. (9)]. (20)

Thus it is clear that special mode’s contribution to SM neutrino mass is too small to reproduce
Eq. (15).

Low-lying modes

It is the TeV-mass physical modes which shoulder the responsibility of generating the SM
neutrino mass. Their Yukawa coupling to the Higgs and the SM lepton doublet is suppressed
only by the latter’s profile at the TeV brane, given that these singlet profiles are peaked near
the TeV brane, i.e., meff

D is again similar to m(0,0)
D in 1st line of Eq. (9).

Naively, one might then expect a too large SM neutrino mass from exchange of these
modes, given the ∼ TeV mass for these modes. However, the crucial point is that the fraction
of (primordially) “Majorana natured”-mass is naturally very small. From the explicit 5D mass
basis calculation we find that the mass and coupling splitting are given by (see appendix

21Following [18], MUV
N in units of MPl is denoted by d in appendix A also.

22The reason for this similarity is, in turn, that of the profiles, i.e., they are both leaning towards the
IR brane. Although it might not be needed (given the expectation based on these profiles), for an actual
derivation of this coupling, see appendix A.3.
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A.2)

∆m

mn
≈ h>−1/2

TeV
mn

1

MUV
N /MPl

(
mn

MPl

)−2 cN

irrespective of cN

≈ h>−1/2
1

MUV
N /MPl

(TeV/MPl)
−2 cN , for mn ∼ TeV (21)

∆y

yn
= −cN

∆m

mn
(22)

where the leading order mass mn and coupling yn are given by

mn ≈
(
n+

1

2
(1− cN )

)
π (TeV) (23)

yn ≈ Y5

√
2cL − 1

(
TeV

MPl

)cL−1/2

. (24)

(assuming cL > 1/2 as before). The O(1) factor h>−1/2 is given by

h>−1/2 ≈
4cNπ

Γ2(−cN + 1/2)
. (25)

As is discussed in detail in section A.2, the above formula for the O(1) factor [and similarly
Eqs. (23) and (24)] is valid for any low-lying modes with not so small n and more precise
expression that holds even for the first few modes can be found there.

Notice that the mass (and similarly coupling) splitting is clearly � 1, as long as cN < 0

and MUV
N . MPl, i.e., for a (very) wide range of parameter space. (We would like to again

emphasize here that the above estimate for Majorana mass splitting holds both for cN >

and < −1/2.) It should be clear from Eq. (21) and Eq. (22) that the contribution from the
mass splitting to the SM neutrino mass is similar in size to that due to coupling splitting.

Plugging Eqs. (21), (22), (24) and (23) into the general formula in Eq. (17) and summing
over such modes, we find that SM neutrino mass formula becomes

mν ≈ h>−1/2(2cN + 1)
∑

n
TeV

MUV
N /MPl

(ynv)2

m2
n

(
mn
MPl

)−2 cN
(26)

Approximating mn by ∼ n TeV, we can see that this sum goes as ∼
(
n−2 cN−1

max − 1
)
, where

nmax (� 1) denotes a naive cut-off on the sum approaching from n = 1. Thus this sum is
convergent for cN > −1/2, which implies that it is dominated by the lightest, i.e., ∼ TeV
mass modes (this argument is valid only for cN > −1/2). This is one of our main results. As
far as the quantitative aspect is concerned, as indicated earlier, the expressions for masses
and couplings given above are a very good approximation for low-lying modes with not so
small n. However, since, as we just learnt, the contribution from the first few modes is
significant, a more careful treatment is needed to get a more reliable final result. We do this
in the appendix A, and, as can be seen in section A.4, the final answer for SM neutrino mass
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by performing numerical sum with improved O(1) factor shows excellent agreement with the
result obtained in the KK basis.

Having established the above quantitative result, we now turn our attention to its qual-
itative features. For this purpose, it is clear that we can simply focus on the contribution
from the lightest TeV mode. By setting mn ∼ TeV in Eq. (26) and noticing that the Dirac
mass ynv is approximately m(0,0)

D [compare Eq. (24) with Eq. (9)], we get for cN > −1/2

mν ∼ 1

MUV
N /MPl

[
m

(0,0)
D

]2

TeV
(TeV/MPl)

−2 cN . (27)

Clearly it has the same form as Eq. (8), where the “effective” Majorana mass in this case can
be defined by

M eff
N ∼ MUV

N (TeV/MPl)
1+2 cN (28)

which is identical to the would-be zero mode mass in the KK basis [see 1st line of Eq. (12)].
Thus, it is easy to see that we reproduce the KK basis result already at this estimate-level.
However, it is important to realize that there is no “special” physics at M eff

N in the mass
basis, this scale is just an “illusion”.

Modes near special mode

Based on the sum over low-lying modes being convergent, combined with the special
mode (by itself, i.e., unpaired) giving too small an effect, we can anticipate that the modes
near special mode will have a very small contribution to the SM neutrino mass. Indeed a
dedicated analysis of the mass and coupling splittings of these modes confirms this expecta-
tion. Similarly, we can estimate that the modes much above the special one also contribute
negligibly.

(ii) cN < −1/2
Finally, for the sake of completeness we also briefly comment on the case cN < −1/2,

even though does not give the observed size of neutrino masses for natural values of the bulk
parameters.

Special mode

Here, a similar analysis [for a derivation, see appendix A.2] shows that the special mode
(in the mass basis) is indeed at the mass of the would-be zero-mode:

M special
N ≈ f<−1/2 MUV

N for cN < −1

2
(29)

with the O(1) factor given by

f<−1/2 ≈ − (2cN + 1) . (30)
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but there is more to it than meets the eye! Namely, it is not just the mass, but also the
coupling to the Higgs is a player in this game of the generation of SM neutrino mass. It turns
out that the “analogy” between the special mode of mass basis and the would-be zero mode
of KK basis, based on similarity in their masses, does not extend to their coupling to the
Higgs: from the detailed 5D calculation (see appendix A.3), we find that the coupling of the
special mode to the Higgs is not suppressed by the factor of the would-be zero mode profile
at the TeV brane simply because the special mode is peaked near the TeV brane (instead of
near Planck brane for the would-be zero mode). So, this is a rather unexpected result: see
section 5 for some “understanding” of it in the CFT basis. Thus, we have

mspecial,single
D ∼ v

(
TeV

MPl

)cL− 1
2

∼
(
MPl

TeV

)−cN− 1
2

m
(0,0)
D (2nd factor is second line of Eq. (9))

� m
(0,0)
D (31)

(where we have labelled it “single” – in addition to special – since it is after all an unpaired
mode: further reasons will be made clear later). In other words, it is actually similar to the
Dirac mass term (with the SM doublet neutrino) of the would-be zero mode in the KK basis
for the other value of cN (> −1/2) [see 1st line of Eq. (9), even though we have cN < −1/2

in this case]. Equivalently, it is (roughly) same as the coupling of the non-special or KK
modes, irrespective of cN : again, the point is that all these modes are peaked near the TeV
brane. Substituting Eqs. (29) and (31) as the effective masses into Eq. (8), we see that

mspecial,single
ν ∼ v2

MUV
N

(
TeV
MPl

)2(cL− 1
2)

∼ mν [of Eq. (15)]×
(
MPl

TeV

)−2 cN−1

(32)

i.e., the contribution of the special mode by itself is too large compared to the KK basis
result of Eq. (15).

Nonetheless, there is no reason to “worry” here, since only after summing all mass eigen-
states would the result for the SM neutrino mass agree with that obtained using the KK
basis. So, we now proceed to considering the contribution of the other modes carefully.

Low-lying modes

Let us start with the low-lying modes, i.e., much below the special (single) one. We can
show that the Majorana mass (and similarly coupling) splitting for these non-special modes
– for the case cN < −1/2 being considered here – is also given by Eq. (21) that we used for
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cN > −1/2 earlier (see appendix A.2 and A.3). Also, the Dirac mass with the SM doublet
neutrino for these modes is similar to that of the special mode in Eq. (31): equivalently, to
that for the low-lying modes for the case cN > −1/2 (again, this is expected based on all
these profiles being peaked near the TeV brane). Thus, we see that the lowest TeV-scale
modes (no sum yet!) give a contribution to the SM neutrino mass that is similar in form to
that discussed above for cN > −1/2. In other words, it is clear that, even for cN < −1/2,
the first few mass eigenstates (by themselves) contribute to the SM neutrino mass at order
unity.

However, unlike for cN > −1/2 that we studied earlier, for the case of cN < −1/2,
as we include more and more low-lying modes, the sum seems to actually “diverge” from
this bottom-up viewpoint: this is easy to see from the 2nd line of Eq. (26), where sum is
∼
(
n−2 cN−1

max − 1
)
∼ n−2 cN−1

max for the case of cN < −1/2. Obviously, these modes then also
give too large contribution to the SM neutrino mass:

mnon−special
ν ∼ n−2 cN−1

max ×mν [of Eq. (15)] (33)

We can thus naturally hope that the above sum might (up to the contribution of lightest
modes) cancel against the special (single) mode contribution [Eq. (32)] – both being overly
large. In order to check this possibility, let us estimate the above sum of modes by cutting
it off at (roughly) mass of the special mode itself, i.e., set nmax ∼MUV

N /TeV: this might be
a reasonable way to proceed, since we do expect properties of modes to change as we make
the transition across the special mode mass. This assumption gives

mnon−special
ν ∼

(
MUV
N

TeV

)−2 cN−1

×mν [of Eq. (15)]

∼ mspecial,single
ν ×

(
MUV
N

MPl

)−2 cN−1

(34)

where in 2nd line above, we have used Eq. (32). So, even though the collective effect of
the light modes is much larger than the “right” answer, mν , it is still parametrically much
smaller than the special (single) mode contribution. 23 Another crucial contribution must
come from somewhere else.

Modes near special mode

What remains to be considered for the resolution of the above “discrepancy” is to take into
account a “threshold” effect at the scale of the special mode, i.e., include the contribution
to the SM neutrino mass from the paired modes near the special one. Indeed, we find

23Note that we are assuming MUV
N � MPl here, although the hierarchy here need only be an order of

magnitude or so for the 5D mass basis results (for the special mode) to be valid.
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that the modes just above and below the special mode are also “special” (even if paired)
in the sense that the naive extrapolation for their properties from the formulae for low-
lying modes is simply invalid. For example, 1st line of Eq. (21) would give mass splitting
∼
(
MUV
N /MPl

)−2 cN−1× TeV, i.e., � TeV, by setting mn ∼MUV
N , but actually we find that

it is ∼ TeV (see appendix A.2 and A.3). And, the Dirac mass with the SM doublet neutrino
for these modes (at the leading order) is similar to that of the special, single mode, i.e.,
Eq. (31) (again, as dictated by all these profiles being peaked near the TeV brane). Thus,
for each such pair, the contribution to the SM neutrino mass from the mass splitting by itself
(i.e., setting couplings to be exactly degenerate: we will return to the splitting in couplings
momentarily!) is

mspecial,one−pair
ν (mass splitting only) ∼ v2

(
TeV
MPl

)2(cL− 1
2) ∆Mspecial

M2
special

∼ v2

(
TeV
MPl

)2(cL− 1
2) TeV

MUV
N

2 (35)

Now, the number of such special, paired modes is approximately given by (see appendix A.2)

ηspecial,paired ∼
(
MPl

TeV

)(
MUV
N

MPl

)−2 cN

(36)

Upon summing Eq. (35) over these special modes, we then get

mspecial,all−pairs
ν (mass splitting only) ∼ v2

MUV
N

(
TeV
MPl

)2(cL− 1
2)(MUV

N

MPl

)−2 cN−1

(37)

i.e., same size as the sum over non-special modes (cut-off as above), see Eqs. (34) and (32), so
that this is still not enough to cancel the excessive contribution of the special, single mode.

However, what “saves the day” is that the effect of the coupling splitting for these paired-
special modes is actually larger, i.e., dominates over the mass splitting. In detail, the relative
splitting in coupling (and hence in Dirac mass term with the SM doublet neutrino) is given
by (see appendix A.3)

δspecial
coupling ∼

(
TeV

MPl

)(
MUV
N

MPl

)2 cN

(38)

so that contribution to the SM neutrino mass from this effect for each pair is:

mspecial,one−pair
ν (coupling splitting) ∼ v2

(
TeV
MPl

)2(cL− 1
2) δspecial

coupling

MUV
N

∼ v2

(
TeV
MPl

)2(cL− 1
2) TeV

M2
Pl

(
MUV
N

MPl

)2 cN−1

(39)
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clearly larger than the mass splitting effect of Eq. (35). And, summing over special mode
pairs, gives (we multiply the previous result by ηspecial,paired):

mspecial,all−pairs
ν (coupling splitting) ∼ v2

MUV
N

(
TeV
MPl

)2(cL− 1
2)
. (40)

which is indeed larger than sum of non-special modes (cut-off at special mode mass) in
Eq. (34). Importantly, the above collective effect is parametrically comparable to that of the
special mode by itself in Eq. (32). So the two “special” contributions – single and paired
(again, with mass ∼MUV

N ) – can cancel each other to a large extent!
We thus conjecture that this is precisely what happens: it is the sum over all modes –

special (paired and single) and ordinary below it – which can reproduce the KK basis result
for cN < −1/2.

Modes (much) above special mode

For the sake of completeness, especially given the “divergence” in the bottom-up approach,
we should carefully estimate the effect from modes (much) above special one: we indeed find
this to be convergent and negligible. In more detail, an analysis similar to that performed for
modes below special one shows that the mass splitting in each pair for MPl � mn � MUV

N

is given by

∆m for mn �MUV
N ∼ TeV

(
MUV
N

MPl

)(
mn

MPl

)−2 cN−2

(41)

whereas the Dirac mass term with the SM doublet neutrino is similar to the other mass
eigenstates, i.e., Eq. (31). So, the contribution of each such pair to the SM neutrino mass is
given by (the coupling splitting contributes similarly)

mpair
ν ∼

(
mspecial,single
D

)2
(
TeV
m2
n

)(
MUV
N

MPl

)(
mn

MPl

)−2 cN−2

(42)

Thus, we see that the sum over these modes (setting mn ∼ n×TeV as usual) is convergent
(as long as cN > −3/2). Their total contribution is much smaller than the (summed)
contribution of the low-lying modes [see Eq. (34)] by ∼ TeV/MUV

N .

5 CFT interpretation

Let us start by reminding the reader the CFT interpretation of bulk charged SM fermions.
In this case a massless chiral external fermion (often called “elementary”) is coupled (at the
UV cut-off) to a CFT fermionic operator: the scaling dimension of this operator (and hence
the size of this coupling in the IR, up on RGE from UV cut-off) is related to the 5D mass
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parameter. The mass eigenstates, which correspond to the zero and KK modes of the 5D
model, are actually admixtures of the external fermion and composite fermions interpolated
by the CFT operator.

For the case of the singlet neutrino at hand, there is an additional feature: the external
fermion (denoted byNR) has a Majorana mass term whose size can be close to the UV cut-off.
Denoting by ON the CFT operator to which NR couples, the UV Lagrangian contains

L = LCFT + λNRON +
1

2
Mbare
N N2

R (43)

where we are using the convention that the engineering dimension of ON is 5/2 so that the
coupling λ is dimensionless. We take the natural size of bare Majorana mass Mbare

N .MPl.
The composite operator ON actually interpolates left-handed composite fermionic states.
These composites form Dirac states, with masses being quantized in units of ∼ TeV and
with their RH partners originating from a different operator (which will not concern us
here). Due to the above coupling, there is mixing between NR and CFT composites so that
the basis defined by the external NR and the CFT composites is not quite the mass basis
of the 5D model that we discussed above, neither is it the KK basis of 5D model. We dub
it “CFT” basis. This provides yet another angle on the seesaw mechanism, allowing us to
obtain quick estimates as we discuss below.

(i)
[
ON
]
< 5/2 or cN > −1/2

The coupling NRON is relevant when the scaling dimension of operator, denoted by[
ON
]
, is less than 5/2. In this scenario, the (CFT +NR) theory flows to a new fixed point

and we assume it is reached rather rapidly, just below the UV cut-off ∼ MPl. At the fixed
point, NR effectively has a scaling dimension of

(
4−

[
ON
])

so that the net coupling NRON
has a scaling dimension of 4, as appropriate for a fixed point behaviour [9].

Mass of NR

The mass term for NR can be significantly renormalized (actually reduced) compared
to its bare value. The RG running is dominantly dictated by anomalous dimension of the
operator N2

R and we find

MN (µ) ∼ Mbare
N

(
µ

MPl

)5−2
[
ON
]
, for

[
ON
]
< 5/2 (44)

where we assumed the large-N limit 24 in taking scaling dimension of N2
R field to be twice

that of NR (and we have set the engineering dimension of NR to be 3/2).
24Here, “N ” denotes (roughly) the number of fundamental degrees of freedom in the CFT, which is not to

be confused with the singlet fermion field N !
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It is natural to assume that the “physical mass” for NR (denoted by Mphy
N ) is given by

the value of µ where the renormalized mass term becomes comparable to µ itself ,

Mphy
N ∼ Mbare

N

(
Mphy
N

MPl

)5−2
[
ON
]
. (45)

Solving for Mphy
N gives

Mphy
N ∼ Mbare

N

(
Mbare
N

MPl

) 1

2

[
ON

]
−4

−1

. (46)

Note that the exponent on RHS in equation just above is indeed > 0 for
[
ON
]
< 5/2 so

that Mphy
N < Mbare

N . Of course, NR mixes with CFT states (that is why we used quotes
while callingMphy

N a mass), but it is clear that there will be a resultant mass eigenstate with
significant admixture of NR, which thus has a mass roughly given by the renormalized NR

mass term.
When matching to the 5D results, we use the standard AdS/CFT “dictionary”: first, we

can relate
[
ON
]
to the 5D mass of N , namely,

[
ON
]

= 2− cN . Thus, it is cN > −1/2 which
corresponds to the relevant NRON coupling assumed above. And, Mbare

N in the CFT picture
is dual to the Majorana mass term on the UV brane, MUV

N . Plugging in the parameters into
Eq. (46), we recover the mass of the special mode in Eq. (18).

Low-lying modes

Effectively integrating out NR at the scale Mphy
N gives rise to the composite operator

O2
N , thus feeding lepton-number violation into the CFT sector:

∆LCFT ∼ λNRON +
1

2
Mphy
N N2

R

→ λ2

Mphy
N

O2
N , renormalized atMphy

N (47)

where ∆LCFT denotes perturbation to the CFT Lagrangian. RG evolving this to the ∼
TeV scale (as before, we use

[
O2
N

]
= 2 ×

[
ON
]
, similarly for the engineering dimensions),

where composite Higgs is interpolated by the product of ON and OL (latter being the doublet

25



operator)25, we get

∆LCFT ∼ λ2

Mphy
N

(
TeV

Mphy
N

)2
[
ON
]
−5

O2
N , renormalized at TeV

∼ λ2

Mbare
N

(
TeV

MPl

)2
[
ON
]
−5

O2
N (48)

∼ λ2

TeV

(
TeV

Mphy
N

)2
([
ON
]
−2

)
O2
N

using Eq. (46) in 2nd line above.
Based on the above RG scaling and the requirement of stability of the system, we find

that there is a lower limit on
[
ON
]
as follows. Suppose the dimensionless coefficient (λ)

appearing in the Lagrangian term of 2nd line of Eq. (47) is ∼ O(1), i.e., it starts being a
“borderline” perturbation to the CFT. However, even with this assumption about the initial
condition, as can be seen from the last line of Eq. (48), in the IR26, it will always be a
genuine perturbation, i.e., the coefficient (in units of the corresponding RGE scale) � 1, as
long as

[
ON
]
> 2 so that O2

N is an irrelevant operator. In 5D we thus require cN < 0, which
is what we assumed in our calculations.27

SM neutrino mass

Interpreting Eq. (48) as the main source for lepton-number violation, introducing a factor

of ∼ (TeV/MPl)
2
[
OL
]
−5 for the (square of) coupling of doublet lepton neutrino to the CFT

in the IR [9] 28 and Higgs VEV for EWSB, we estimate the SM neutrino mass:

mν ∼ v2

Mbare
N

(
TeV

MPl

)2
([
ON
]
+
[
OL
]
−5

)
(49)

Upon translating to the 5D parameters, we again get agreement for another physical observ-
able, namely, the SM neutrino mass in Eq. (49) is similar to the result obtained using the
5D calculation in Eq. (15).

25Note that had we taken Higgs field also to be in the bulk (but with profile of its VEV/SM Higgs boson to
be peaked near TeV brane), then we would have a single trace, finite/low scaling dimension CFT operator,
OH which can also interpolate the composite Higgs. Instead, we assumed here – mostly for simplicity – that
Higgs is strictly localized on the TeV brane which implies that there is no such “Higgs” operator at higher
than ∼ TeV energies.

26note that, in general, TeV here should be replaced by whatever is the IR scale
27In other words, for the case

[
ON
]
< 2, we see that O2

N is a relevant operator. The “problem” with this
scenario is that, even if the coefficient in Eq. (47) is smaller than 1, it will become (again, in appropriate
units) larger than ∼ O(1) at an RG scale which is (possibly much) above ∼ TeV, i.e., there is a danger that
scale invariance is then broken at that scale.

28Recall that, as discussed in section 3, cL ∼ 0.6 reproduces charged lepton masses and this corresponds
to
[
OL
]
> 5/2, i.e. irrelevant coupling.
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In the CFT picture, we can also think in terms of the SM neutrino mass actually arising
from exchange of heavy SM singlet particles. The point is that the above lepton-number
violating perturbation O2

N to the CFT will induce small Majorana mass terms and lepton-
number violating couplings to the Higgs for the entire tower of CFT composites, which of
course are SM singlets and Dirac. In more detail, using Eq. (48), it is rather straightforward
to estimate this effect for the lightest TeV-scale composites. For example, the mass splitting
is of order:

∆M from O2
N ∼ TeV2

Mbare
N

(
TeV

MPl

)2
[
ON
]
−5

(50)

After diagonalizing these mass terms it is clear that we will obtain pairs of (almost) degen-
erate Majorana modes with mass splitting as in Eq.(50), and this is what we found in the
5D mass basis calculation. Speaking more quantitatively, relating the scaling dimension of
ON to cN and identifying Mbare

N with MUV
N , we see that this Majorana mass term has the

same size as in Eq. (21) of the 5D calculation.
Armed with these Majorana mass terms for the TeV-scale composites, it is rather straight-

forward to show that the contribution to the SM neutrino mass from the exchange of the
low-lying resonances provides an order one contribution to the SM neutrino mass. Interest-
ingly,

• the Majorana mass term is for the left-handed composites (again, interpolated by ON ),
whereas coupling to the Higgs is for the R chirality so that we do not encounter any
propagator suppression in the exchange of TeV-scale composites (as opposed to the
KK basis), see Fig. 3.

We see from Eq. (50) that ∆M � TeV, as long as
[
ON
]
> 2 (as we assumed above

for stability). Also, just to make this point more explicitly, for NRON coupling being close
to marginal (i.e.,

[
ON
]
∼ 5/2)29, we get ∆M ∼ TeV2/Mbare

N , i.e., Majorana mass term for
CFT composites is naturally suppressed because it sort of manifests a “seesaw”, with ∼ TeV
in numerator being (roughly) Dirac mass term between NR and (TeV-scale) CFT composite
and Mbare

N being Majorana mass for NR which is heavy and integrated out: of course, the
“difference” from usual seesaw for SM neutrino mass is that here CFT composite also has a
Dirac mass ∼ TeV (with another composite).

In addition, it is worth mentioning that the Majorana mass term which is needed for
obtaining SM neutrino mass [i.e., ∼ O(0.1) eV] from exchange of these TeV-mass modes is
actually ∼ keV, i.e., several orders of magnitude larger than simply ∼ TeV2/MPl ∼ meV that
we would have gotten for the NR − ON coupling being marginal (as indicated above) and
Mbare
N ∼MPl. Yet, here we have an interesting option:
29deviating from marginality does not really (at least qualitatively) change the point which follows
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Figure 3: The SM neutrino mass generated by exchange of one composite state in the
CFT basis, labelled ψcomp with Dirac mass Mcomp and Majorana mass term ∆MMaj

comp. The
chirality structure is to be contrasted to that in Fig. 1 for the KK basis.

• for [ON ] . 5/2, i.e., a slightly relevant coupling of NR to CFT operator, naturally gives
the requisite size of Majorana mass term for TeV-mass Dirac composites [as seen from
Eq. (50)]: the crucial point being that a small deviation from marginality for the above
coupling is “enhanced” by RGE over the large energy range.

Finally, we have seen that the TeV scale composites provide an important contribution
to the SM neutrino mass. On the other hand, while NR is crucial in introducing the seed of
lepton-number violation in the CFT via O2

N , NR itself does not directly couple to the Higgs.
So, we learn that

• there is no additional contribution to the SM neutrino mass from NR exchange per se,
even though NR has a Majorana mass: what is missing is the coupling to the Higgs.

(ii)
[
ON
]
> 5/2 or cN < −1/2

The CFT picture for cN < −1/2 should then be easy to go through; to begin with, the
usual translation dictionary implies

[
ON
]
> 5/2 so that coupling NRON is now irrelevant.

Thus, it is clear that the mass term for NR is roughly the size of the Majorana mass term
at the UV cut-off itself, i.e., there is negligible renormalization for it. Moreover, as before,
we can argue that in spite of the mixing of NR with CFT composites there will be an “NR

state” whose physical mass is not significantly modified relative to the NR mass term above,
i.e.,

Mphy
N ∼ Mbare

N , for
[
ON
]
> 5/2 (51)

which is of course in agreement with the 5D single-special mode mass [see Eq. (29)] for this
case.
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We can integrate out NR as before, except that this is now done at Mbare
N . Then, RG

flowing from this scale to ∼ TeV, it is easy to see that the cN < −1/2 (or
[
ON
]
> 5/2) case

actually gives similar form for the coefficient of O2
N operator as cN > −1/2 (or

[
ON < 5/2

]
)

that we discussed earlier; this happens mainly because the only assumption we made earlier
for this purpose about

[
ON
]
was that it is larger than 2, which is certainly the case for

cN < −1/2. Hence, the SM neutrino mass for cN < −1/2 in the CFT picture is also given
by Eq. (49) and, in turn, agrees with the 5D result in Eq. (15). Again, the SM neutrino mass
originates only from CFT composites exchange [with Majorana mass terms for ∼ TeV-scale
composites given as before: see Eq. (50)], since external NR does not couple to the Higgs in
this basis.

The above CFT picture discussion is summarized in the right column of table 1.

Contribution to the SM neutrino mass from special modes for cN < −1/2

Using the CFT picture, can we understand the unexpectedly large contribution to the SM
neutrino mass of the special mode in mass basis found in the 5D calculation for cN < −1/2?
Note that this CFT basis is not exactly the mass basis. Thus, first of all, there is no
obvious “contradiction” between NR exchange in CFT picture not (directly) contributing
to the SM neutrino mass with the fact that, in the mass basis, the special mode gives a
large contribution to the SM neutrino mass, in turn, from its unsuppressed30 coupling to the
Higgs. The point is that

• the special mode of the 5D model would in the CFT picture correspond to an admixture
of NR and CFT composites and the latter component of it does couple to another
composite, i.e., the Higgs: first of all, this implies that the special mode will couple to
the Higgs (as we found in the 5D calculation). Note that this point applies to both
the choices of

[
OL
]
(equivalently cN ).

Thus, the “origin” of the special mode and how it contributes to the SM neutrino mass is
clear from the CFT perspective.

But, the main question still remains, namely, how come special mode’s coupling to the
Higgs is so large, given that the coupling between NR and the CFT is small for the case[
ON
]
> 5/2 ? The answer to this puzzle is the following. There is a whole tower of

CFT composites (from ∼ TeV to MPl) with which NR mixes. In particular there are many
composites which have mass ∼Mphy

N , with spacing between successive modes being ∼ TeV.
Therefore, even the small off-diagonal mass terms between NR and these CFT composite
states (denoted by δmNR−CFT) can result in large mixing angles.31 This mixing – even if it

30as usual, apart from being possibly small due to choice of cL or
[
OL
]
.

31Specifically, we can estimate that δmNR−CFT (the mass mixing term) can be � TeV (the mass spacing)
so that there are actually many CFT composites with which NR can mix significantly.
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is close to maximal – does not really change the physical mass of NR from the mass term
for NR. Conversely, the coupling can be modified significantly. In particular, we see that
the special mode can acquire a large coupling to the Higgs by “piggy-back riding” on the
coupling of its sizable admixture of (almost) degenerate CFT composites. Schematically, we
have:

special mode constitution ∝ NR + aψnear + εψfar (52)

where ψnear denotes (collectively) the CFT composites with mass close to Mbare
N (ψfar de-

noting rest of the CFT tower) and a is ∼ O(1) mixing angle, whereas ε � 1. Thus, in the
end, the special mode has O(1) coupling to the Higgs.

Note that a similar argument applies to the case cN > −1/2 or
[
ON
]
< 5/2 studied

earlier. However, there the mixing mass term, i.e., δmNR−CFT, can be sizable to begin with,
given that the coupling between NR and CFT operator is relevant. Thus, the closeness in
mass of some CFT composites with NR has less of an additional impact as compared to the
case cN < −1/2 discussed above, i.e., the issue of “resonant" enhancement of mixing between
NR and CFT composites close to it is not so relevant here, as far as their contribution to
the SM neutrino mass is concerned. Also, the special mode – being too heavy compared
to would-be zero mode – does not contribute significantly to the SM neutrino mass, even
if its coupling to the Higgs is taken to be unsuppressed32 (and similarly for modes around
it). Overall, that is why this issue of taking into account mixing between NR and CFT
composites is not really significant for cN > −1/2, i.e., we do not expect to find (and indeed
did not in the 5D calculation) any “surprises” here.

“Universal” dependence on cN of the SM neutrino mass

Moreover, as should already be clear from the separate discussions for the two cases of
cN (or

[
O
]
) above, the CFT picture leads to a simple “understanding” of why the dependence

on cN in the formula for SM neutrino mass obtained from 5D calculation is the same for
cN < −1/2 and cN > −1/2 [see Eq (15)]; as have been discussed in section 3, this looked
somewhat of a coincidence in the KK basis. Just to summarize then, the SM neutrino mass
in the CFT picture is essentially dictated by the lepton-number violating effect in the CFT
sector, i.e., the coefficient of the operator O2

N renormalized at ∼ TeV scale33. In turn, this
is determined by

[
ON
]
, the scaling dimension of ON (that of O2

N being twice in the large-N
limit). The key observation is that, as long as

[
O2
N

]
> 4 (thus

[
ON
]
> 2) the RG flow of

coefficient of O2
N (down to the TeV scale) has a similar dependence on

[
ON
]
. This range of

32cf. for cN < −1/2, where the (unexpectedly) large coupling to Higgs changed the game drastically!
33in the anatomical language, this operator first leads to Majorana mass terms for the CFT singlet com-

posites, whose exchange then generates the SM neutrino mass.
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[
ON
]
corresponds to cN < 0, whether cN < −1/2 or cN > −1/2. Hence, we do not expect

any qualitative change in the formula for the SM neutrino mass as we cross the cN = −1/2

“threshold”: again, while this marks the transition of the coupling NRON from relevant to
irrelevant, it is

[
O2
N

]
which matters for the bottomline SM neutrino mass and this operator

stays irrelevant throughout this range of cN .

6 Conclusions and outlook

We studied a simple warped 5D scenario that accommodates the SM neutrino masses.
Namely, a SM singlet field is added in the bulk and coupled to the Higgs and lepton doublet
fields on the IR brane. Furthermore, a Planck-size Majorana mass term for the bulk singlet
field is turned on only at the UV brane. This is natural due to an extended bulk EW gauge
symmetry (in turn, invoked in order to satisfy EW precision test bounds) under which the
singlet is charged and which is broken only on the UV brane.

Such a framework has all the makings of type I high-scale seesaw. Indeed the bottomline
formula for the SM neutrino mass in this model,

mν ∝ v2

MUV
N

, (53)

seems to conform to the above expectation (here, MUV
N is the Majorana mass term for the

singlet on the UV brane). This result was derived in the earlier literature using the basis
of the “usual” zero and KK modes, in which the Majorana mass term on the Planck brane
is neglected in the KK decomposition and subsequently taken into account in the form of
Majorana mass terms for the zero and KK modes. In that picture the SM neutrino mass
arises entirely from the exchange of the would-be zero mode, that in practice has a super-large
Majorana mass term of order MUV

N . The latter is the scale that appears in the denominator
of (53), whereas the numerator corresponds to the Dirac mass induced by the Higgs VEV,
just like the usual 4D seesaw. On the other hand, the KK modes contribute negligibly (even
though they also have very large Majorana mass terms).

In this paper, we focussed instead on the mass basis for the singlet neutrino modes (as
might be required for studies involving on-shell production of the singlet neutrino states)
and analyzed in detail neutrino mass generation via a 5D calculation. Such a change of basis
actually turns out to lead to a paradigm shift. Our results show that Eq. (53) should be
reinterpreted as

mν ∝
(
v2

TeV

)(
TeV

MUV
N

)
. (54)

Namely, it is the exchange of TeV mass singlet modes with unsuppressed coupling to Higgs
which dominantly contribute to the SM neutrino mass, as indicated by the first factor above.
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The smallness of the SM neutrino mass follows from these singlet modes being mostly Dirac
with a tiny fraction of their mass being Majorana-natured (which accounts for the 2nd factor).
What is remarkable is that these highly suppressed Majorana mass terms are completely
natural, being themselves the result of an incarnation of a type I seesaw mechanism, albeit
here it is for the Majorana mass term for TeV-scale singlet modes which already have a Dirac
mass of a TeV! This picture realizes a natural version of a scenario dubbed “inverse” seesaw
in the literature. The type I high-scale seesaw was merely a mirage.

We also presented the first discussion of the CFT interpretation of this warped seesaw
model. The new ingredient relative to the case of the charged SM fermions is the Majorana
mass for the external singlet field coupled to the CFT. Taking it into account we confirmed
that one naturally ends up with an inverse seesaw mechanism. The CFT picture also clarifies
the universal dependence on the 5D singlet mass parameter cN in the neutrino mass formula
(15), whose origin was somewhat obscured in the KK basis.

Importantly, our finding leads to a radical shift in the phenomenology of this scenario.
Indeed, we realized that the physical source of a dominant part the SM neutrino mass – which
are the TeV-mass singlet states – can potentially be directly probed at colliders. Similarly,
leptogenesis may occur at a temperature of order the TeV from decays of these singlet modes.
The attention is therefore on TeV-scale physics. 34
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A Details of the 5D mass basis calculation

A.1 The 5D Model and KK decomposition

Varying the full action S in (2) with respect to χ̄ and ψ we get:

−iσ̄µ∂µχ− ∂5ψ̄ +
cN + 2

z
ψ̄ = 0 (55)

−iσµ∂µψ̄ + ∂5χ+
cN − 2

z
χ+ d

R

z
δ(z −R)ψ = 0. (56)

34We will detail these ideas in ongoing work [25].
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The boundary conditions in the absence of SUV are chosen to be Dirichlet for χ (and conse-
quently Neumann for ψ). The UV-Majorana mass alters the boundary conditions at z = R.

Following [19], we slightly displace the UV-localized mass to z = R + ε and impose
standard Dirichlet boundary conditions for χ at z = R. The effect of the localized mass is
then encoded in a jump of the field: χ|R+ε = −d ψ|R+ε. We can now send ε → 0. The
corresponding jump in ψ may be found imposing the bulk equations of motion: ∂5ψ|R+ε =

id/∂ψ̄|R+ε.
Overall, the boundary conditions turn out to be:

χ|R′− = 0, χ|R+ = −d ψ|R+ . (57)

For the sake of completeness, we also observe that the remaining two (redundant conditions)
are ∂5ψ|R′− = 0, ∂5ψ|R+ = id/∂ψ̄|R+ .

Next, we perform a Kaluza-Klein reduction. Because the UV-localized mass breaks the
U(1)Ψ number, the reduced 4D theory will be a dynamics of Majorana fermions. It is
therefore convenient to decompose χ, ψ in terms of a single tower of Weyl fermions:

χ(x, z) =
∑
n

gn(z)ξn(x), ψ̄(x, z) =
∑
n

fn(z)ξ̄n(x), (58)

where ξn satisfy Majorana equations of motion −iσ̄µ∂µξn + mnξ̄n = 0. The bulk equations
of motion and the boundary conditions then become

f ′n +mngn −
cN + 2

z
fn = 0 g′n −m∗nfn +

cN − 2

z
gn = 0, (59)

gn(R′) = 0 gn(R) = −df∗n(R).

The Dirac mass parameter cN is real by Hermiticity of the action. In addition, by making a
phase rotation of ψ we can always eliminate the phase in d. Since ψ is one component of Ψ,
in order not to break 5D Lorentz invariance, we are actually performing a phase rotation of
the 5D field Ψ itself. We conventionally take d > 0 from now on. Finally, mn are real because
they are the eigenvalues of the Hermiticitan differential operator defined by Eqs (59) in the
metric determined by the kinetic term. Hermiticity also guarantees that the Kaluza-Klein
expansion (58) is meaningful.

Consistently, observe that inserting (58) in (2) gives

S =

∫
d4x

[∫
dz
∑
n,m

(
R

z

)4

(f∗nfm + g∗ngm)

]{
−iξn/∂ξ̄m +

1

2

(
m∗nξnξm +mnξ̄nξ̄m

)}
, (60)

The normalization is therefore defined by∫
dz

(
R

z

)4

(f∗nfm + g∗ngm) = δnm. (61)
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For clarity we stress our convention for cN , which we do by solving the zero mode equation
for the right-handed fermion gn, i.e. Eq(59) with mn = 0. By plugging the solution into the
action, one can easily see that cN = −1/2 (as opposed to 1/2) corresponds to flat, cN > −1/2

a IR-localized and cN < −1/2 a UV-localized profile.
We decide to carry out the Kaluza-Klein decomposition with real eigenfunctions fn, gn

(as in [26]), in whichmn are allowed to acquire any (real) positive or negative value. 35 Before
proceeding with the actual calculation of the spectrum, note that the eigenvalue problem is
invariant under the following spurious symmetry:

(fn, gn,mn, d)→ (fn,−gn,−mn,−d). (62)

This tells us that for d = 0 the solution consists of Dirac pairs: there exists an independent
solution with eigenvalue −mn for any eigenfunction with mass mn. This is no more true as
soon as d 6= 0, and no exact pairing is observed.

The coupled system described by the bulk equations of motion can be decoupled in a
straightforward way, yielding Bessel equation. The result is given by:

gn(z) = − 1

Nn

mn

|mn|
z5/2

[
J−cN−1/2(|mn|z) + bnY−cN−1/2(|mn|z)

]
(63)

fn(z) =
1

Nn
z5/2

[
J−cN+1/2(|mn|z) + bnY−cN+1/2(|mn|z)

]
.

The coefficient bn is constrained by the boundary conditions: 36

−bn =
J−cN−1/2(|xn|)
Y−cN−1/2(|xn|)

=
J−cN−1/2(|xn|/Ω)− d xn

|xn|J−cN+1/2(|xn|/Ω)

Y−cN−1/2(|xn|/Ω)− d xn
|xn|Y−cN+1/2(|xn|/Ω)

, (66)

where xn = mnR
′ and Ω ≡ R′/R. This is the equation constraining the eigenvalues xn.

Defining Zν(y) ≡ Jν(y) + bnYν(y), the normalization is determined by

N2
n = R4

∫ R′

R
dz z

[
Z2
ν (|mn|z) + Z2

ν+1(|mn|z)
]

(67)

=
R4

2

(
In(R′)− In(R)

)
,

35One may alternatively work with both real and imaginary components of the wave-functions, but with
a constraint mn > 0 on the eigenvalues (we believe this is the convention implicitly adopted in [18]). We
checked that our results do not depend on which convention is used.

36This is equivalent to the alternative solution:

gn(z) =
mn

|mn|
z5/2

[
CnJcN+1/2(|mn|z)−DnJ−cN−1/2(|mn|z)

]
(64)

fn(z) = z5/2
[
CnJcN−1/2(|mn|z) +DnJ−cN+1/2(|mn|z)

]
.

Indeed, using Yν(x) =
Jν(x) cos(νπ)−J−ν(x)

sin(νπ)
we get:

Cn = − 1

Nn

bn
cos(cNπ)

Dn =
1

Nn
(1 + bntan(cNπ)) . (65)

In particular, Dn/Cn = − cos(cNπ)/bn + sin(cNπ). The authors independently checked all results of the
paper using both (64) and (63).
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where ν = −cN −1/2 and In(z) = z2
[
Z2
ν (y)− Zν+1(y)Zν−1(y) + Z2

ν+1(y)− Zν+2(y)Zν(y)
]
,

y = |mn|z.

A.2 Masses

We can find approximate analytic solutions for the modes satisfying |xn| � Ω. Using a
small argument approximation of the Bessel functions for the UV boundary condition, the
spectrum equation (66) is simplified to

−bn =
J−cN−1/2(|xn|)
Y−cN−1/2(|xn|)

≈ 1

Γ2(−cN+1/2)
π

(
|xn|
2Ω

)2cN
[
d xn
|xn| + 1

(cN+1/2)

(
|xn|
2Ω

)]
+ tan(cNπ)

. (68)

To derive this expression we assumed cN 6= −1/2. From now onwards we will consider
cN < 0. We will also assume that d is smaller than one, but much larger than the TeV-
Planck hierarchy.

The ratio bn can also be approximated for large arguments |xn| � 1 by bn ≈ 1
tan(|xn|+

cN
2
π)
.

However, this approximation will break down for the first few KK modes. Because, as we
will show below, these give the most important contribution to the SM neutrino mass, we
keep the general expression (68) for now.

For cN < 0 and |xn|/Ω � d (and far from special points discussed shortly), tan(cNπ)

can be neglected from the right-hand side of Eq. (68) and

−bn =
J−cN−1/2(|xn|)
Y−cN−1/2(|xn|)

≈ xn
|xn|

π

dΓ2(−cN + 1/2)

( |xn|
2Ω

)−2cN

. (69)

As can be seen from |bn| ∝ (|xn|/Ω)−2cN � 1, the spectrum of light modes is approximately
determined by xn = ±x0

n, where x0
n are the zeros of J−cN−1/2. For n not too small, using the

large argument expansion, these are approximately given by x0
n ≈

(
n+ 1

2(1− cN )
)
π with

n = 0, 1, · · · . Including the leading correction we get

xn = ±x0
n + δn (70)

δn =
Y−cN−1/2(|x0

n|)
J ′−cN−1/2(|x0

n|)
π

dΓ2(−cN + 1/2)

( |x0
n|

2Ω

)−2cN

.

This result shows that the light modes are approximately Dirac pairs 37 up to a split δn,
induced when the UV-localized Majorana mass is turned on. In other words, there are
two towers of Weyl spinors, one with positive masses (“positive tower”) and the other with
negative masses (“negative tower”); the modes with |xn|/Ω � d (“low-lying modes”) form
pseudo-Dirac pairs.

37A Dirac fermion consists of two Weyl fermions of mass ±m.
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In the vicinity of the zeros of the denominator of the right-hand side of (68), the function
bn is no more much smaller than one and we need a separate analysis. In this regime the
mass eigenstates are identified by the fact that the denominator of the right-hand side of
(68) is much smaller than one (or very close to zero):

d

π
Γ2(−cN + 1/2)

(
|xspecial
n |
2Ω

)2cN
[
xspecial
n

|xspecial
n |

+
1

d(cN + 1/2)

(
|xspecial
n |
2Ω

)]
+ tan(cNπ) ≈ 0.(71)

As we will see shortly, the mode xspecial
n that satisfies (71) is special in the sense that there is

no analog solution of mass ∼ −xspecial
n , that is, it is unpaired (and so pure Majorana), unlike

the usual cases where there are two modes in each TeV-bin, making up a (pseudo) Dirac
pair. For this reason, we will call such mode “single-special ” mode. Later, we will introduce
“paired-special ” modes, which, as the name indicates, consist of a pair of two Weyl fermions
of mass close to the single-special and a mass splitting of order the TeV.

Now, let us discuss in detail when (71) can be satisfied. Consider first −1/2 < cN < 0, for
which tan(cNπ) < 0. If |xspecial

n | & dΩ the second term in the squared parenthesis dominates
over the first term. In this case since 2cN + 1 > 0, (|xn|/Ω)2cN+1 � 1 for ∀|xn| � Ω and
yet, for generic value of cN ∈ (−1/2, 0), tan(cNπ) ∼ O(1). That is, for a generic value of
cN (71) cannot be satisfied by modes below Ω. On the other hand, when |xspecial

n | � dΩ the
first term in the squared parenthesis dominates. Because tan(cNπ) < 0, the cancellation can
occur only when the first term is positive, i.e. the solution exists only for xspecial

n > 0. The
solution is given by:

xspecial
n

2Ω
≈
( −π tan(cNπ)

dΓ(−cN + 1/2)2

) 1
2cN

, −1

2
< cN < 0. (72)

We stress out again that xspecial
n � dΩ and, as anticipated, there is no analog behavior at

xn < 0. This is how we see that the “single-special” mode is unpaired.
For cN . −1/2, the second term of (71) is negative and tan(cNπ) > 0. Again, when

|xspecial
n | & dΩ the second term in the squared parenthesis dominates. However, as in the

previous case, no solution is found when dΩ . |xspecial
n | < Ω for generic choice of cN < −1/2.

Similarly, for |xspecial
n | � dΩ the first term dominates and one would seem to find |xn| ∼

Ωd
− 1

2cN ; however, this value is now much larger than d, and is therefore inconsistent with
the original hypothesis |xspecial

n | � dΩ. A solution is only possible when the terms inside the
squared parenthesis approximately cancel each other. This is possible only when xn > 0 and
thus mass of the special mode is in the positive tower (i.e. xn > 0) and parametrically close
to the UV-localized Majorana mass:

xspecial
n

2Ω
∼ −(cN + 1/2)d, cN < −1

2
. (73)
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Again, no partner at −xspecial
n .

In summary, with our convention d > 0 the single-special mode is located in the positive
tower for both cN > or < −1/2 albeit with parametrically different mass for single-special
mode. No special behavior (i.e. no singularity in the right-hand side of (68)) is present in
the negative tower.

We conclude this section with a few more comments on the spectrum. We start with
−1/2 < cN < 0. In this case, since |xspecial| � dΩ, the analysis leading to (70) allows us
to conclude that all states with mass |xn| � |xspecial| are pseudo-Dirac with mass splitting
of order δn. The denominator of (68) gets smaller as we approach the special mode in the
positive tower, whereas bn remains very small for xn ∼ −|xspecial|. This suffices to argue
that the mass splitting for states close to the special mode is generically of order the TeV
(δn ∼ 1). These pseudo-Dirac fermions have mass splitting (of order the TeV) much smaller
than their mass ∼ |xspecial| but much larger than that of low-lying modes. We call them
“paired-special” modes.

The states heavier than the special mode are again pseudo-Dirac, with a mass splitting
controlled by |bn| � 1 between xspecial

n � |xn| � dΩ.
When cN < −1/2 the states with |xn| � dΩ are pseudo-Dirac with mass splitting δn.

However, since xspecial
n ∼ dΩ our equation (70) breaks down before we reach the special mode;

to precisely estimate the mass splitting for |xspecial| . dΩ one may perform a completely
analogous analysis without dropping tan(cNπ). We do not quote the result for brevity. The
modes at xspecial

n ∼ dΩ have bn = O(1) and typically a Majorana splitting of order the TeV,
which is the maximal value set by the IR brane. As above, for |xn| & dΩ the states are
pseudo-Dirac.

As we will discuss below, in order to make sense of the SM neutrino mass calculation in
the case of cN < −1/2 it is useful to know the number of the paired-special modes. We can
address this question by determining the width of the special point (73), i.e. what condition
on η = xn − xspecial

n follows requiring the right-hand side of (71) is allowed to be of order
unity (or more precisely, of O(tan(cNπ))). This gives:

η . tan(cNπ)
2π(−1/2− cN )1−2cN

Γ2(−cN + 1/2)
Ωd−2cN . (74)

With realistic numbers (say, cN = −0.7, d = 10−3, Ω ∼ 1015), one finds η � 1 (5× 108).

A.3 Couplings

We are interested in the couplings of ξn to the zero mode L(x) of ΨL, that we identify with
the Standard Model lepton doublet:

ΨL → Ψ
(0)
L (z)L, Ψ

(0)
L =

1√
R

√
2cL − 1

1− Ω1−2cL

( z
R

)2−cL
, (75)
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where ML = cL/R is the 5D mass of ΨL. Introducing the canonically normalized 4D field
H = R′/RH, eq(5) becomes:

δS = −
∫
d4x ynHLξ̄n, (76)

where

yn = Ω−3λ5Ψ
(0)
L (R′)fn(R′). (77)

The wave function Ψ
(0)
L (R′) can be read from above. The profile of the singlet can be written

as fn(R′) = R′5/2Zν+1(|mn|R′)/Nn, where Zν = Jν + bnYν with ν = −cN − 1/2. We will
now carefully determine fn(R′) for the low-lying (pseudo-Dirac) modes |xn| � xspecial

n . The
coupling for modes around xspecial

n will be analyzed subsequently.
The normalization (67) receives a contribution from z = R′ and one from z = R.

To analyze the former we observe that the boundary condition for gn(z) in the IR im-
plies Zν(|mn|R′) = 0 (see Eq(59)). Then, from the definition (67), and using the identity
Zν+1(|xn|)+Zν−1(|xn|) = 2ν

|xn|Zν(|xn|) = 0, we get In(R′) = R′2[−Zν+1Zν−1 +Z2
ν+1](|xn|) =

2R′2Z2
ν+1(|xn|).

In the UV the boundary condition reads Zν(|xn|/Ω) = d (xn/|xn|)Zν+1(|xn|/Ω). We are
interested in In(R), the UV contribution to the normalization Nn. For |xn| � |xspecial

n | we
can use the small argument approximation of the Bessel functions. At leading order, when
cN 6= −1/2 (and cN < 1/2), the relevant expressions are:

Zν(|xn|/Ω) ∼
( |xn|

2Ω

)ν 1

Γ(ν + 1)
[1 +O(δ, |xn|/Ω)] , (78)

Zν−1(|xn|/Ω) ∼
( |xn|

2Ω

)ν−1 1

Γ(ν)

[
1 +O(δ, (|xn|/Ω)3)

]
,

Zν+2(|xn|/Ω) ∼ −bn
(

2Ω

|xn|

)ν+2 Γ(ν + 2)

π

[
1 +O(|xn|/Ω)3

]
.

In order to understand whether the subleading O(δ, |xn|/Ω) terms must be kept in our
analysis we have to compare the leading order estimate of In(R) with In(R′) ∼ R′2/|xn|.
The leading contribution of Z2

ν and Z2
ν+1 to In(R) are suppressed by |xn|/Ω compared to

the other two and can be neglected. The dominant terms give In(R) ∼ R2(|xn|/Ω)2ν−1 ∼
R2δn(|xn|/Ω)−2 ∼ R′2δn/|xn|2, which is itself a correction of order δn/|xn| of Nn. Being
interested in corrections at most of order δ in the normalisation Nn, we can safely neglect
O(δ) terms in (78), since they lead to O(δ2

n) corrections in Nn. A more accurate calculation
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gives

In(R)R−2 =

(
− xn
|xn|

1

d
ZνZν−1 − ZνZν+2

)
[1 +O(|xn|/Ω)] (79)

= − xn
|xn|

( |xn|
2Ω

)2ν−1 2ν + 1

dΓ2(ν + 1)
[1 +O(δ, |xn|/Ω)]

= − x0
n

|x0
n|
δn
J ′ν(|x0

n|)
Yν(|x0

n|)

( |x0
n|

2Ω

)−2
2ν + 1

π
[1 +O(δ)] .

In the second step we replaced (78) and used the definition of bn given in (68). In the third
step we neglected the correction arising from the replacement xn → x0

n, since in our final
estimate of Nn it would appear as a O(δ2) effect, which we drop.

Summing the UV and IR contributions we find

N2
n = R4R′2Z2

ν+1(|xn|)
[
1− 2

x0
n

|x0
n|
cN

δn
|x0
n|

(
2

π|x0
n|
J ′ν(|x0

n|)/Yν(|x0
n|)

Z2
ν+1(|x0

n|)

)]
. (80)

For later convenience we factored out Z2
ν+1(|xn|) because it automatically cancels out in the

expression fn/Nn entering yn. This results in a 1/Z2
ν+1(|xn|) factor in the δn correction.

Despite the fact that |xn| = |x0
n|(1 + x0δn/|x0

n|2 + · · · ), Because we content ourselves with
O(δn) effects, we can safely replace xn → x0

n in the squared parenthesis. On the other hand,
the overall Z2

ν+1(|xn|) contributes an additional O(δn) term to Nn, but — as anticipated —
this effect cancels out from (77). More precisely, putting everything together we get:

yn =
λ5

R

√
2cL − 1

1− Ω1−2cL
Ω1/2−cLsign(Zν+1)

[
1 +

xn
|xn|

cN
δn
|xn|

(
2

π|x0
n|

1

J2
ν+1(|x0

n|)
J ′ν(|x0

n|)
Yν(|x0

n|)

)]
.(81)

This result holds for |xn| � xspecial
n up to terms of order δ2

n.
We now turn to a discussion of the couplings of the modes of mass near xspecial

n , which
correspond to the special mode and the paired spacial modes. States in the negative tower
always have |bn| � 1 and may be analyzed in a way completely analogous to what we have
done for the light modes. The result is:

yn =
λ5

R

√
2cL − 1

1− Ω1−2cL
Ω1/2−cLsign(Zν+1) [1 +O(bn)] . (82)

In the positive tower the crucial difference is that bn is unsuppressed. This implies that our
estimate of the UV contribution to the normalization Nn must take this into account. In
particular, (78) are no more accurate. Instead, assuming bn = O(1) we find that In(R) ∼
R2ZνZν+2 ∼ R2(|xn|/Ω)−2ν−2 ∼ In(R′)|xn|2cNΩ−2cN−1. The subleading terms are of order
(|xn|/Ω)−2cN and (|xn|/Ω). Neglecting them, we conclude that

yn =
λ5

R

√
2cL − 1

1− Ω1−2cL
Ω1/2−cLsign(Zν+1)

[
1 + a|xn|2cNΩ−2cN−1

]
, (83)
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Figure 4: Function F (cN ) defined in (88) for nmax = 10 (yellow), 103 (orange), 106 (red), ∞
(purple). For comparison we also show the deviation of the purple line from 1 (right plot).

where a is some number of order one. Finally, for the special mode it is not possible to
determine bn analytically (it may well be that |bn| � 1, so the previous derivation does not
apply). Yet, for any bn we expect

yspecial
n ∼ λ5

R

√
2cL − 1

1− Ω1−2cL
Ω1/2−cL . (84)

This estimate is correct up to a number of order unity.

A.4 SM neutrino mass for −1/2 < cN < 0

The relevant part of the Lagrangian is (must change notation):

L =
mn

2
ξ̄nξ̄n − ynHLξ̄n + hc. (85)

Integrating out the heavy fermions ξn, and keeping only the leading terms in a derivative
expansion gives:

Lon−shell = −1

2
(HL)2

∑
mn≶0

y2
n

mn
+ hc. (86)

Let us consider the contribution from the low-lying modes first. In this case the sum includes
both the positive and negative tower up to mmax < xspecial. After some algebra we find:

Lon−shell = −1

2
(HL)2

mmax∑ y2
n

mn
+ hc (87)

= −1

2
(HL)2 λ

2
5

dR

(
2cL − 1

1− Ω1−2cL

)
Ω2+2cN−2cLF (cN ) + hc,

with

F (cN ) ≡ 4cNπ

Γ2(ν + 1)

nmax∑
n

1

|x0
n|2+2cN

[
4cN

(
2

π|x0
n|

1

J2
ν+1(|x0

n|)

)
− 2

Yν(|x0
n|)

J ′ν(|x0
n|)

]
. (88)
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In this expression, the Bessel functions are all evaluated at the zeros x0
n of Jν=−cN−1/2.

Rather than presenting the details of this computation, it is more instructive to reproduce
an approximate expression valid for n� 1:

mmax∑ y2
n

mn
(89)

→ λ2
5

R2

(
2cL − 1

1− Ω1−2cL

)
Ω1−2cLR′

nmax∑
n=0

1

|xn|

(
1− 2cN

δn
|xn|

1 + δn
|xn|

+
1 + 2cN

δn
|xn|

−1 + δn
|xn|

)

=
λ2

5

R2

(
2cL − 1

1− Ω1−2cL

)
Ω1−2cLR′

nmax∑
n=0

(4cN + 2)

(
− δn
|xn|2

)(
1 +O

(
δn
|xn|

))

=
λ2

5

dR

(
2cL − 1

1− Ω1−2cL

)
Ω2+2cN−2cL

[
4cNπ

Γ2(−cN + 1/2)

nmax∑
n=0

(4cN + 2)

|[n+ 1
2(1− cN )]π|2+2cN

](
1 +O

(
δn
|xn|

))
.

One can verify that F (cN ) consistently reduces to the quantity in the square bracket in this
limit. F (cN ) is a sole function of cN . It is plotted in Figure 4 for various values of nmax.
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