This is the accepted manuscript made available via CHORUS. The article has been published as:

Tests of CPT symmetry in $B^{\wedge}\{0\}-B\left[\text { over }{ }^{-}\right]^{\wedge}\{0\}$ mixing and in $B^{\wedge}\{0\} \rightarrow c c\left[\right.$ over $\left.{ }^{-}\right] K^{\wedge}\{0\}$ decays
J. P. Lees et al. (BABAR Collaboration)

Phys. Rev. D 94, 011101 - Published 18 July 2016
DOI: 10.1103/PhysRevD.94.011101

Tests of $C P T$ symmetry in $B^{0}-\bar{B}^{0}$ mixing and in $B^{0} \rightarrow c \bar{c} K^{0}$ decays

J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ G. Eigen, ${ }^{4}$ D. N. Brown, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ H. Koch, ${ }^{6}$ T. Schroeder, ${ }^{6}$ C. Hearty, ${ }^{7}$ T. S. Mattison, ${ }^{7}$ J. A. McKenna, ${ }^{7}$ R. Y. So, ${ }^{7}$ V. E. Blinov ${ }^{a b c},{ }^{8}$ A. R. Buzykaev ${ }^{a},{ }^{8}$ V. P. Druzhinin ${ }^{a b},{ }^{8}$ V. B. Golubev ${ }^{a b},{ }^{8}$ E. A. Kravchenko ${ }^{a b},{ }_{8}$ A. P. Onuchin ${ }^{a b c},{ }_{8}^{8}$
S. I. Serednyakov ${ }^{a b},{ }^{8}$ Yu. I. Skovpen ${ }^{a b},{ }^{8}$ E. P. Solodov ${ }^{a b},{ }^{8}$ K. Yu. Todyshev ${ }^{a b},{ }^{8}$ A. J. Lankford, ${ }^{9}$ J. W. Gary, ${ }^{10}$ O. Long, ${ }^{10}$ A. M. Eisner, ${ }^{11}$ W. S. Lockman, ${ }^{11}$ W. Panduro Vazquez, ${ }^{11}$ D. S. Chao, ${ }^{12}$ C. H. Cheng, ${ }^{12}$ B. Echenard, ${ }^{12}$ K. T. Flood, ${ }^{12}$ D. G. Hitlin, ${ }^{12}$ J. Kim, ${ }^{12}$ T. S. Miyashita, ${ }^{12}$ P. Ongmongkolkul, ${ }^{12}$ F. C. Porter, ${ }^{12}$ M. Röhrken, ${ }^{12}$ Z. Huard, ${ }^{13}$ B. T. Meadows, ${ }^{13}$ B. G. Pushpawela, ${ }^{13}$ M. D. Sokoloff, ${ }^{13}$ L. Sun, ${ }^{13, ~ * ~ J . ~ G . ~ S m i t h, ~}{ }^{14}$ S. R. Wagner, ${ }^{14}$
D. Bernard, ${ }^{15}$ M. Verderi, ${ }^{15}$ D. Bettoni ${ }^{a},{ }^{16}$ C. Bozzi ${ }^{a},{ }^{16}$ R. Calabrese ${ }^{a b},{ }^{16}$ G. Cibinetto ${ }^{a b},{ }^{16}$ E. Fioravanti ${ }^{a b},{ }^{16}$ I. Garzia ${ }^{a b},{ }^{16}$ E. Luppi ${ }^{a b},{ }^{16}$ V. Santoro ${ }^{a},{ }^{16}$ A. Calcaterra, ${ }^{17}$ R. de Sangro, ${ }^{17}$ G. Finocchiaro, ${ }^{17}$ S. Martellotti, ${ }^{17}$ P. Patteri, ${ }^{17}$ I. M. Peruzzi, ${ }^{17}$ M. Piccolo, ${ }^{17}$ A. Zallo, ${ }^{17}$ S. Passaggio, ${ }^{18}$ C. Patrignani, ${ }^{18, ~} \dagger$ B. Bhuyan, ${ }^{19}$ U. Mallik, ${ }^{20}$ C. Chen, ${ }^{21}$ J. Cochran, ${ }^{21}$ S. Prell, ${ }^{21}$ H. Ahmed, ${ }^{22}$ A. V. Gritsan, ${ }^{23}$ N. Arnaud, ${ }^{24}$ M. Davier, ${ }^{24}$ F. Le Diberder, ${ }^{24}$ A. M. Lutz, ${ }^{24}$ G. Wormser, ${ }^{24}$ D. J. Lange, ${ }^{25}$ D. M. Wright, ${ }^{25}$ J. P. Coleman, ${ }^{26}$ E. Gabathuler, ${ }^{26}$ D. E. Hutchcroft, ${ }^{26}$ D. J. Payne, ${ }^{26}$ C. Touramanis, ${ }^{26}$ A. J. Bevan, ${ }^{27}$ F. Di Lodovico, ${ }^{27}$ R. Sacco, ${ }^{27}$ G. Cowan, ${ }^{28}$ Sw. Banerjee, ${ }^{29}$ D. N. Brown, ${ }^{29}$ C. L. Davis, ${ }^{29}$ A. G. Denig, ${ }^{30}$ M. Fritsch, ${ }^{30}$ W. Gradl, ${ }^{30}$ K. Griessinger, ${ }^{30}$ A. Hafner, ${ }^{30}$ K. R. Schubert, ${ }^{30}$ R. J. Barlow, ${ }^{31, ~} \ddagger$ G. D. Lafferty, ${ }^{31}$ R. Cenci, ${ }^{32}$ A. Jawahery, ${ }^{32}$ D. A. Roberts, ${ }^{32}$ R. Cowan, ${ }^{33}$ R. Cheaib, ${ }^{34}$ S. H. Robertson, ${ }^{34}$ B. Dey ${ }^{a},{ }^{35}$ N. Neri ${ }^{a},{ }^{35}$ F. Palombo ${ }^{a b},{ }^{35}$ L. Cremaldi, ${ }^{36}$ R. Godang, ${ }^{36, \S}$ D. J. Summers, ${ }^{36}$ P. Taras, ${ }^{37}$ G. De Nardo, ${ }^{38}$ C. Sciacca, ${ }^{38}$ G. Raven, ${ }^{39}$ C. P. Jessop, ${ }^{40}$ J. M. LoSecco, ${ }^{40}$ K. Honscheid, ${ }^{41}$ R. Kass, ${ }^{41}$ A. Gaz ${ }^{a},{ }^{42}$ M. Margoni ${ }^{a b},{ }^{42}$ M. Posocco ${ }^{a}{ }^{42}$ M. Rotondo ${ }^{a},{ }^{42}$ G. Simi ${ }^{a b},{ }^{42}$ F. Simonetto ${ }^{a b},{ }^{42}$ R. Stroili ${ }^{a b},{ }^{42}$ S. Akar, ${ }^{43}$ E. Ben-Haim, ${ }^{43}$ M. Bomben, ${ }^{43}$ G. R. Bonneaud, ${ }^{43}$ G. Calderini, ${ }^{43}$ J. Chauveau, ${ }^{43}$ G. Marchiori, ${ }^{43}$ J. Ocariz, ${ }^{43}$ M. Biasini ${ }^{a b},{ }^{44}$ E. Manoni ${ }^{a},{ }^{44}$ A. Rossi ${ }^{a},{ }^{44}$ G. Batignani ${ }^{a b},{ }^{45}$ S. Bettarini ${ }^{a b},{ }^{45}$ M. Carpinelli ${ }^{a b},{ }^{45}$, ${ }^{\top}$ G. Casarosa ${ }^{a b},{ }^{45}$ M. Chrzaszcz ${ }^{a},{ }^{45}$ F. Forti ${ }^{a b},{ }^{45}$ M. A. Giorgi ${ }^{a b},{ }^{45}$ A. Lusiani ${ }^{a c},{ }^{45}$ B. Oberhof ${ }^{a b},^{45}$ E. Paoloni ${ }^{a b},{ }^{45}$ M. Rama ${ }^{a},{ }^{45}$ G. Rizzo ${ }^{a b},{ }^{45}$ J. J. Walsh ${ }^{a},{ }^{45}$ A. J. S. Smith, ${ }^{46}$ F. Anulli ${ }^{a},{ }^{47}$ R. Faccini ${ }^{a b},{ }^{47}$ F. Ferrarotto ${ }^{a},{ }^{47}$ F. Ferroni ${ }^{a b}{ }^{47}$ A. Pilloni ${ }^{a b},{ }^{47}$ G. Piredda ${ }^{a},{ }^{47}$ C. Bünger, ${ }^{48}$ S. Dittrich, ${ }^{48}$ O. Grünberg, ${ }^{48}$ M. Heß, ${ }^{48}$ T. Leddig, ${ }^{48}$ C. Voß, ${ }^{48}$ R. Waldi, ${ }^{48}$ T. Adye, ${ }^{49}$ F. F. Wilson, ${ }^{49}$ S. Emery, ${ }^{50}$ G. Vasseur, ${ }^{50}$ D. Aston, ${ }^{51}$ C. Cartaro, ${ }^{51}$ M. R. Convery, ${ }^{51}$ J. Dorfan, ${ }^{51}$ W. Dunwoodie, ${ }^{51}$ M. Ebert, ${ }^{51}$ R. C. Field, ${ }^{51}$ B. G. Fulsom, ${ }^{51}$ M. T. Graham, ${ }^{51}$ C. Hast, ${ }^{51}$ W. R. Innes, ${ }^{51}$ P. Kim, ${ }^{51}$ D. W. G. S. Leith, ${ }^{51}$ S. Luitz, ${ }^{51}$ V. Luth, ${ }^{51}$ D. B. MacFarlane, ${ }^{51}$ D. R. Muller, ${ }^{51}$ H. Neal, ${ }^{51}$ B. N. Ratcliff, ${ }^{51}$ A. Roodman, ${ }^{51}$ M. K. Sullivan, ${ }^{51}$ J. Va'vra, ${ }^{51}$ W. J. Wisniewski, ${ }^{51}$ M. V. Purohit, ${ }^{52}$ J. R. Wilson, ${ }^{52}$ A. Randle-Conde, ${ }^{53}$ S. J. Sekula, ${ }^{53}$ M. Bellis, ${ }^{54}$ P. R. Burchat, ${ }^{54}$ E. M. T. Puccio, ${ }^{54}$ M. S. Alam, ${ }^{55}$ J. A. Ernst, ${ }^{55}$ R. Gorodeisky, ${ }^{56}$ N. Guttman, ${ }^{56}$ D. R. Peimer, ${ }^{56}$ A. Soffer, ${ }^{56}$ S. M. Spanier, ${ }^{57}$ J. L. Ritchie, ${ }^{58}$ R. F. Schwitters, ${ }^{58}$ J. M. Izen, ${ }^{59}$ X. C. Lou, ${ }^{59}$ F. Bianchi ${ }^{a b},{ }^{60}$ F. De Mori ${ }^{a b},{ }^{60}$ A. Filippi ${ }^{a},{ }^{60}$ D. Gamba ${ }^{a b},{ }^{60}$ L. Lanceri, ${ }^{61}$ L. Vitale, ${ }^{61}$ F. Martinez-Vidal, ${ }^{62}$ A. Oyanguren, ${ }^{62}$ J. Albert, ${ }^{63}$ A. Beaulieu, ${ }^{63}$ F. U. Bernlochner, ${ }^{63}$ G. J. King, ${ }^{63}$ R. Kowalewski, ${ }^{63}$ T. Lueck, ${ }^{63}$ I. M. Nugent, ${ }^{63}$ J. M. Roney, ${ }^{63}$ N. Tasneem, ${ }^{63}$ T. J. Gershon, ${ }^{64}$ P. F. Harrison, ${ }^{64}$ T. E. Latham, ${ }^{64}$ R. Prepost, ${ }^{65}$ and S. L. Wu ${ }^{65}$
(The BABAR Collaboration)

[^0]${ }^{10}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{11}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{12}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{13}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{14}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{15}$ Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
${ }^{16}$ INFN Sezione di Ferrara ${ }^{a}$; Dipartimento di Fisica e Scienze della Terra, Università di Ferrara ${ }^{b}$, I-44122 Ferrara, Italy
${ }^{17}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{18}$ INFN Sezione di Genova, I-16146 Genova, Italy
${ }^{19}$ Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
${ }^{20}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{21}$ Iowa State University, Ames, Iowa 50011, USA
${ }^{22}$ Physics Department, Jazan University, Jazan 22822, Kingdom of Saudi Arabia
${ }^{23}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{24}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, F-91898 Orsay Cedex, France
${ }^{25}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{26}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{27}$ Queen Mary, University of London, London, E1 $4 N S$, United Kingdom
${ }^{28}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{29}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{30}$ Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
${ }^{31}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{32}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{33}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{34} \mathrm{Mc}$ Gill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{35}$ INFN Sezione di Milano ${ }^{a}$; Dipartimento di Fisica, Università di Milano ${ }^{b}$, I-20133 Milano, Italy
${ }^{36}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{37}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{38}$ INFN Sezione di Napoli and Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
${ }^{39}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{40}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{41}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{42}$ INFN Sezione di Padova ${ }^{a}$; Dipartimento di Fisica, Università di Padova ${ }^{b}$, I-35131 Padova, Italy
${ }^{43}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{4}$ INFN Sezione di Perugia ${ }^{a}$; Dipartimento di Fisica, Università di Perugia ${ }^{b}$, I-06123 Perugia, Italy
${ }^{45}$ INFN Sezione di Pisa ${ }^{a}$; Dipartimento di Fisica,
Università di Pisa ${ }^{b}$; Scuola Normale Superiore di Pisac, I-56127 Pisa, Italy
${ }^{46}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{47}$ INFN Sezione di Roma ${ }^{a}$; Dipartimento di Fisica, Università di Roma La Sapienza ${ }^{b}$, I-00185 Roma, Italy ${ }^{48}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{49}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 OQX, United Kingdom
${ }^{50}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
${ }^{51}$ SLAC National Accelerator Laboratory, Stanford, California 94309 USA
${ }^{52}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{53}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{54}$ Stanford University, Stanford, California 94305, USA
${ }^{55}$ State University of New York, Albany, New York 12222, USA
${ }^{56}$ Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
${ }^{57}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{58}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{59}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{60}$ INFN Sezione di Torino ${ }^{a}$; Dipartimento di Fisica, Università di Torino ${ }^{b}$, I-10125 Torino, Italy
${ }^{61}$ INFN Sezione di Trieste and Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
${ }^{62}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{63}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{64}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{65}$ University of Wisconsin, Madison, Wisconsin 53706, USA

Using the eight time dependences $\mathrm{e}^{-\Gamma t}\left(1+C_{i} \cos \Delta m t+S_{i} \sin \Delta m t\right)$ for the decays $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0} \rightarrow$ $f_{j} f_{k}$, with the decay into a flavor-specific state $f_{j}=\ell^{ \pm} X$ before or after the decay into a $C P$ eigenstate $f_{k}=c \bar{c} K_{S, L}$, as measured by the $B A B A R$ experiment, we determine the three $C P T$ sensitive parameters $\operatorname{Re}(\mathrm{z})$ and $\operatorname{Im}(\mathrm{z})$ in $B^{0}-\bar{B}^{0}$ mixing and $|\bar{A} / A|$ in $B^{0} \rightarrow c \bar{c} K^{0}$ decays. We find $\operatorname{Im}(z)=0.010 \pm 0.030 \pm 0.013, \operatorname{Re}(z)=-0.065 \pm 0.028 \pm 0.014$, and $|\bar{A} / A|=0.999 \pm 0.023 \pm 0.017$, in agreement with $C P T$ symmetry.

PACS numbers: $11.30 . \mathrm{Er}, 13.20 . \mathrm{He}, 13.25 . \mathrm{Hw}, 14.40 . \mathrm{Nd}$

I. INTRODUCTION

The discovery of $C P$ violation in 1964 [1] motivated searches for T and $C P T$ violation. Since $C P T=C P \times T$, violation of $C P$ means that T or $C P T$ or both are also violated. For the K^{0} system, the two contributions were first determined [2] in 1970, by using the Bell-Steinberger unitarity relation [3] for $C P$ violation in $K^{0}-\bar{K}^{0}$ mixing: T was violated with about 5σ significance and no $C P T$ violation was observed. Large $C P$ violation in the B^{0} system was discovered in 2001 [4,5] in the interplay of $B^{0}-\bar{B}^{0}$ mixing and $B^{0} \rightarrow c \bar{c} K^{0}$ decays, but an explicit demonstration of T violation was given only recently [6]. In the present analysis, we test $C P T$ symmetry quantitavely in $B^{0}-\bar{B}^{0}$ mixing and in $B^{0} \rightarrow c \bar{c} K^{0}$ decays.

Transitions in the $B^{0}-\bar{B}^{0}$ system are well described by the quantum-mechanical evolution of a two-state wavefunction

$$
\begin{equation*}
\Psi=\psi_{1}\left|B^{0}\right\rangle+\psi_{2}\left|\bar{B}^{0}\right\rangle \tag{1}
\end{equation*}
$$

using the Schrödinger equation

$$
\begin{equation*}
\dot{\Psi}=-\mathrm{i} \mathcal{H} \Psi \tag{2}
\end{equation*}
$$

where the Hamiltonian \mathcal{H} is given by two constant Hermitian matrices, $\mathcal{H}_{i j}=m_{i j}+\mathrm{i} \Gamma_{i j} / 2$. In this evolution, $C P$ violation is described by three parameters, $|q / p|, \operatorname{Re}(z)$, and $\operatorname{Im}(z)$, defined by

$$
\begin{align*}
|q / p| & =1-\frac{2 \operatorname{Im}\left(m_{12}^{*} \Gamma_{12}\right)}{4\left|m_{12}\right|^{2}+\left|\Gamma_{12}\right|^{2}} \\
\mathrm{z} & =\frac{\left(m_{11}-m_{22}\right)-\mathrm{i}\left(\Gamma_{11}-\Gamma_{22}\right) / 2}{\Delta m-\mathrm{i} \Delta \Gamma / 2} \tag{3}
\end{align*}
$$

where $\Delta m=m\left(B_{H}\right)-m\left(B_{L}\right) \approx 2\left|m_{12}\right|$ and $\Delta \Gamma=$ $\Gamma\left(B_{H}\right)-\Gamma\left(B_{L}\right) \approx+2\left|\Gamma_{12}\right|$ or $-2\left|\Gamma_{12}\right|$ are the mass and the width differences of the two mass eigenstates ($H=$ heavy, $L=$ light) of the Hamiltonian,

$$
\begin{align*}
B_{H} & =\left(p \sqrt{1+\mathrm{z}} B^{0}-q \sqrt{1-\mathrm{z}} \bar{B}^{0}\right) / \sqrt{2} \\
B_{L} & =\left(p \sqrt{1-\mathrm{z}} B^{0}+q \sqrt{1+\mathrm{z}} \bar{B}^{0}\right) / \sqrt{2} \tag{4}
\end{align*}
$$

[^1]Note that we use the convention with $+q$ for the light and $-q$ for the heavy eigenstate. If $|q / p| \neq 1$, the evolution violates the discrete symmetries $C P$ and T. If $\mathrm{z} \neq 0$, it violates $C P$ and $C P T$. The normalizations of the two eigenstates, as given in Eq. (4), are precise in the lowest order of r and z, where $r=|q / p|-1$. Throughout the following, we neglect contributions of orders $r^{2}, \mathrm{z}^{2}, r \mathrm{z}$, and higher.

The T-sensitive mixing parameter $|q / p|$ has been determined in several experiments, the present world average [7] being $|q / p|=1+(0.8 \pm 0.8) \times 10^{-3}$. The $C P T$-sensitive parameter $\operatorname{Im}(\mathbf{z})$ has been determined by analyzing the time dependence of di-lepton events in the decay $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0} \rightarrow\left(\ell^{+} \nu X\right)\left(\ell^{-} \bar{\nu} X\right)$; the BABAR result [8] is $\operatorname{Im}(z)=(-13.9 \pm 7.3 \pm 3.2) \times 10^{-3}$. Since $\Delta \Gamma$ is very small, di-lepton events are only sensitive to the product $\operatorname{Re}(z) \Delta \Gamma$. Therefore, $\operatorname{Re}(z)$ has so far only been determined by analyzing the time dependence of the decays $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ with one B meson decaying into $\ell \nu X$ and the other one into $c \bar{c} K$. With $88 \times 10^{6} B \bar{B}$ events, $B A B A R$ measured $\operatorname{Re}(z)=(19 \pm 48 \pm 47) \times 10^{-3}$ in 2004 [9], while Belle used $535 \times 10^{6} B \bar{B}$ events to measure $\operatorname{Re}(z)=(19 \pm 37 \pm 33) \times 10^{-3}$ in 2012 [10].

In our present analysis, we use the final data set of the BABAR experiment [11, 12] with $470 \times 10^{6} B \bar{B}$ events for a new determination of $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$. As in Refs. [9, 10], this is based on $c \bar{c} K$ decays with amplitudes A for $B^{0} \rightarrow c \bar{c} K^{0}$ and \bar{A} for $\bar{B}^{0} \rightarrow c \bar{c} \bar{K}^{0}$, using the following two assumptions:
(1) $c \bar{c} K$ decays obey the $\Delta S=\Delta B$ rule, i. e., B^{0} states do not decay into $c \bar{c} \bar{K}^{0}$, and \bar{B}^{0} states do not decay into $c \bar{c} K^{0}$;
(2) $C P$ violation in $K^{0}-\bar{K}^{0}$ mixing is negligible, i. e. $K_{S}^{0}=\left(K^{0}+\bar{K}^{0}\right) / \sqrt{2}, K_{L}^{0}=\left(K^{0}-\bar{K}^{0}\right) / \sqrt{2}$.

The $C P T$-sensitive parameters are determined from the measured time dependeces of the four decay rates $B^{0}, \bar{B}^{0} \rightarrow c \bar{c} K_{S}^{0}, K_{L}^{0}$. In $\Upsilon(4 S)$ decays, B^{0} and \bar{B}^{0} mesons are produced in the entangled state $\left(B^{0} \bar{B}^{0}-\bar{B}^{0} B^{0}\right) / \sqrt{2}$. When the first meson decays into $f=f_{1}$ at time t_{1}, the state collapses into the two states f_{1} and B_{2}. The later decay $B_{2} \rightarrow f_{2}$ at time t_{2} depends on the state B_{2} and, because of $B^{0}-\bar{B}^{0}$ mixing, on the decay-time difference

$$
\begin{equation*}
t=t_{2}-t_{1} \geq 0 \tag{5}
\end{equation*}
$$

Note that t is the only relevant time here, it is the evolution time of the single-meson state B_{2} in its rest frame.

The present analysis does not start from raw data but uses intermediate results from Ref. [6] where, as mentioned above, we used our final data set for the demonstration of large T violation. This was shown in four time-dependent transiton-rate differences

$$
\begin{equation*}
R\left(B_{j} \rightarrow B_{i}\right)-R\left(B_{i} \rightarrow B_{j}\right) \tag{6}
\end{equation*}
$$

where $B_{i}=B^{0}$ or \bar{B}^{0}, and $B_{j}=B_{+}$or B_{-}. The two states B_{i} were defined by flavor-specific decays [13] denoted as $B^{0} \rightarrow \ell^{+} X, \bar{B}^{0} \rightarrow \ell^{-} X$. The state B_{+}was defined as the remaining state B_{2} after a $c \bar{c} K_{S}^{0}$ decay, and B_{-}as B_{2} after a $c \bar{c} K_{L}^{0}$ decay. In order to use the two states for testing T-symmetry in Eq. (6), they must be orthogonal; $\left\langle B_{+} \mid B_{-}\right\rangle=0$, which requires the additional assumption
(3) $|\bar{A} / A|=1$.

In the same 2012 analysis, we demonstrated that $C P T$ symmetry is unbroken within uncertainties by measuring the four rate differences

$$
\begin{equation*}
R\left(B_{j} \rightarrow B_{i}\right)-R\left(\bar{B}_{i} \rightarrow B_{j}\right) \tag{7}
\end{equation*}
$$

For both measurements in Eqs. (6) and (7), expressions

$$
\begin{equation*}
R_{i}(t)=N_{i} \mathrm{e}^{-\Gamma t}\left(1+C_{i} \cos \Delta m t+S_{i} \sin \Delta m t\right) \tag{8}
\end{equation*}
$$

$i=1 \ldots 8$, were fitted to the four time-dependent rates where the ℓX decay precedes the $c \bar{c} K$ decay, and to the four rates where the order of the decays is inverted. The rate ansatz in Eq. (8) requires $\Delta \Gamma=0$. The time $t \geq 0$ in these expressions is the time between the first and the second decay of the entangled $B^{0} \bar{B}^{0}$ pair as defined in Eq. (5). In our 2012 analysis, we named it $\Delta \tau$, equal to $t_{c \bar{c} K}-t_{\ell X}$ if the ℓX decay occured first, and
equal to $t_{\ell X}-t_{c \bar{c} K}$ with $c \bar{c} K$ as first decay. After the fits, the T-violating and $C P T$-testing rate differences were evaluated from the obtained S_{i} and C_{i} results. The $C P T$ test showed no $C P T$ violation, i.e., it was compatible with $z=0$, but no results for $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ were given in 2012.

Our present analysis uses the eight measured time dependences in the 2012 analysis, i. e. the 16 results C_{i} and S_{i}, for determining z. This is possible without assumption (3) since we do not need to use the concept of states B_{+}and B_{-}. We will therefore be able to determine the decay parameter $|\bar{A} / A|$ in addition to the mixing parameters $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$. As in 2012 , we use $\Delta \Gamma=0$, but we will show at the end of this analysis that the final results are independent of this constraint. Accepting the assumptions (1) and (2), and in addition
(4) the amplitudes A and \bar{A} have a single weak phase,
only two more parameters $|\bar{A} / A|$ and $\operatorname{Im}(q \bar{A} / p A)$ are required in addition to $|q / p|$ and \mathbf{z} for a full description of $C P$ violation in time-dependent $B^{0} \rightarrow c \bar{c} K^{0}$ decays. In this framework, T symmetry requires $\operatorname{Im}(q \bar{A} / p A)=0$ [14], and $C P T$ symmetry requires $|\bar{A} / A|=1$ [15].

II. B-MESON DECAY RATES

The time-dependent rates of the decays $B^{0}, \bar{B}^{0} \rightarrow c \bar{c} K$ are sensitive to both symmetries $C P T$ and T in $B^{0}-\bar{B}^{0}$ mixing and in B^{0} decays. For decays into final states f with amplitudes $A_{f}=A\left(B^{0} \rightarrow f\right)$ and $\bar{A}_{f}=A\left(\bar{B}^{0} \rightarrow f\right)$, using $\lambda_{f}=q \bar{A}_{f} /\left(p A_{f}\right)$ and approximating $\sqrt{1-\mathrm{z}^{2}}=1$, the rates are given by

$$
\begin{align*}
& R\left(B^{0} \rightarrow f\right)=\frac{\left|A_{f}\right|^{2} \mathrm{e}^{-\Gamma t}}{4}\left|\left(1-\mathrm{z}+\lambda_{f}\right) \mathrm{e}^{\mathrm{i} \Delta m t} \mathrm{e}^{\Delta \Gamma t / 4}+\left(1+\mathrm{z}-\lambda_{f}\right) \mathrm{e}^{-\Delta \Gamma t / 4}\right|^{2}, \\
& R\left(\bar{B}^{0} \rightarrow f\right)=\frac{\left|\bar{A}_{f}\right|^{2} \mathrm{e}^{-\Gamma t}}{4}\left|\left(1+\mathrm{z}+1 / \lambda_{f}\right) \mathrm{e}^{\mathrm{i} \Delta m t} \mathrm{e}^{\Delta \Gamma t / 4}+\left(1-\mathrm{z}-1 / \lambda_{f}\right) \mathrm{e}^{-\Delta \Gamma t / 4}\right|^{2} . \tag{9}
\end{align*}
$$

For the $C P$ eigenstates $c \bar{c} K_{L}^{0} \quad(C P=+1)$ and $c \bar{c} K_{S}^{0}(C P=-1)$ with $A_{S(L)}=A\left[B^{0} \rightarrow c \bar{c} K_{S(L)}^{0}\right]$ and $\bar{A}_{S(L)}=A\left[\bar{B}^{0} \rightarrow c \bar{c} K_{S(L)}^{0}\right]$, assumptions (1) and (2) give $A_{S}=A_{L}=A / \sqrt{2}$ and $\bar{A}_{S}=-\bar{A}_{L}=\bar{A} / \sqrt{2}$. In the
following, we only need to use $\lambda_{S}=-\lambda_{L}=\lambda$. Setting $\Delta \Gamma=0$ and keeping only first-order terms in the small quantities $|\lambda|-1$, \mathbf{z}, and $r=|q / p|-1$, this leads to rate expressions as given in Eq. (8) with coefficients

$$
\begin{align*}
S_{1}=S\left(\ell^{-} X, c \bar{c} K_{L}\right) & =\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)+\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2} \\
C_{1} & =+\frac{1-|\lambda|^{2}}{2}-\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})-\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}) \\
S_{2}=S\left(\ell^{+} X, c \bar{c} K_{L}\right) & =-\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)-\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2} \\
C_{2} & =-\frac{1-|\lambda|^{2}}{2}+\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})-\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}) \\
S_{3}=S\left(\ell^{-} X, c \bar{c} K_{S}\right) & =-\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)+\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2} \\
C_{3} & =+\frac{1-|\lambda|^{2}}{2}+\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})+\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}) \\
S_{4}=S\left(\ell^{+} X, c \bar{c} K_{S}\right) & =\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)-\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2} \\
C_{4} & =-\frac{1-|\lambda|^{2}}{2}-\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})+\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}) \tag{10}
\end{align*}
$$

The four other rates $R_{5}(t) \cdots R_{8}(t)$ with $c \bar{c} K$ as the first decay and $t_{\ell X}-t_{c \bar{c} K}=t$ follow from the same two-decay-time expression $[16,17]$ as the rates $R_{1} \ldots R_{4}$ with $t_{c \bar{c} K}-t_{\ell X}=t$. Therefore, the rates $R_{5}\left(c \bar{c} K_{L}, \ell^{-} X\right)$, $R_{6}\left(c \bar{c} K_{L}, \ell^{+} X\right), \quad R_{7}\left(c \bar{c} K_{S}, \ell^{-} X\right), \quad$ and $R_{8}\left(c \bar{c} K_{S}, \ell^{+} X\right)$ are given by Eq. (8) with the coefficients

$$
\begin{equation*}
S_{i}=-S_{i-4}, \quad C_{i}=+C_{i-4} \text { for } i=5,6,7, \text { and } 8 \tag{11}
\end{equation*}
$$

The S_{i} and C_{i} results from our 2012 analysis, including uncertainties and correlation matrices, have been published as supplemental material [18] in Tables II, III, and IV. For completeness, we include in Table I the results and the uncertainties.

TABLE I: Input values from the supplemental material [18] of Ref. [6]. The second column gives the two decays with their sequence in decay time.

i	decay pairs	S_{i}				$\sigma_{\text {stat }}$	$\sigma_{\text {sys }}$	C_{i}			$\sigma_{\text {stat }}$	$\sigma_{\text {sys }}$
1	$\ell^{-} X, c \bar{c} K_{L}$	0.51	0.17	0.11	-0.01	0.13	0.08					
2	$\ell^{+} X, c \bar{c} K_{L}$	-0.69	0.11	0.04	-0.02	0.11	0.08					
3	$\ell^{-} X, c \bar{c} K_{S}$	-0.76	0.06	0.04	0.08	0.06	0.06					
4	$\ell^{+} X, \bar{c} K_{S}$	0.55	0.09	0.06	0.01	0.07	0.05					
5	$c \bar{c} K_{L}, \ell^{-} X$	-0.83	0.11	0.06	0.11	0.12	0.08					
6	$c \bar{c} K_{L}, \ell^{+} X$	0.70	0.19	0.12	0.16	0.13	0.06					
7	$c \bar{c} K_{S}, \ell^{-} X$	0.67	0.10	0.08	0.03	0.07	0.04					
8	$c \bar{c} K_{S}, \ell^{+} X$	-0.66	0.06	0.04	-0.05	0.06	0.03					

III. FIT RESULTS

The relations between the 16 observables $y_{i}=S_{1} \cdots C_{8}$ in Eqs. (10) and (11) and the four parameters $p_{1}=$ $\left(1-|\lambda|^{2}\right) / 2, p_{2}=2 \operatorname{Im}(\lambda) /\left(1+|\lambda|^{2}\right), p_{3}=\operatorname{Im}(z)$, and $p_{4}=\operatorname{Re}(z)$ are approximately linear. Therefore, the four parameters can be determined in a two-step linear χ^{2} fit using matrix algebra. The first-step fit determines p_{1} and p_{2} by fixing $\operatorname{Re}(\lambda)$ and $\operatorname{Im}(\lambda)$ in the products $\operatorname{Re}(z) \operatorname{Re}(\lambda), \operatorname{Im}(z) \operatorname{Im}(\lambda), \operatorname{Im}(z)[\operatorname{Re}(\lambda)]^{2}$, and $\operatorname{Re}(z) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)$. After fixing these terms, the relation between the vectors y and p is strictly linear,

$$
\begin{equation*}
y=M_{1} p \tag{12}
\end{equation*}
$$

where M_{1} uses $\operatorname{Im}(\lambda)=0.67$ and $\operatorname{Re}(\lambda)=-0.74$, motivated by the results of analyses assuming $C P T$ symmetry [7]. With this ansatz, χ^{2} is given by

$$
\begin{equation*}
\chi^{2}=\left(M_{1} p-\hat{y}\right)^{T} G\left(M_{1} p-\hat{y}\right) \tag{13}
\end{equation*}
$$

where \hat{y} is the measured vector of observables, and the weight matrix G is taken to be

$$
\begin{equation*}
G=\left[C_{\mathrm{stat}}(y)+C_{\mathrm{sys}}(y)\right]^{-1} \tag{14}
\end{equation*}
$$

where $C_{\text {stat }}(y)$ and $C_{\text {sys }}(y)$ are the statistical and systematic covariance matrices, respectively. The minimum of χ^{2} is reached for

$$
\begin{equation*}
\hat{p}=\mathcal{M}_{1} \hat{y} \text { with } \mathcal{M}_{1}=\left(M_{1}^{T} G M_{1}\right)^{-1} M_{1}^{T} G \tag{15}
\end{equation*}
$$

and the uncertainties of \hat{p} are given by the covariance matrices

$$
\begin{align*}
C_{\mathrm{stat}}(p) & =\mathcal{M}_{1} C_{\mathrm{stat}}(y) \mathcal{M}_{1}^{T} \\
C_{\mathrm{sys}}(p) & =\mathcal{M}_{1} C_{\mathrm{sys}}(y) \mathcal{M}_{1}^{T} \tag{16}
\end{align*}
$$

with the property

$$
\begin{equation*}
C_{\mathrm{stat}}(p)+C_{\mathrm{sys}}(p)=\left(M_{1}^{T} G M_{1}\right)^{-1} \tag{17}
\end{equation*}
$$

This first-step fit yields

$$
\begin{align*}
& p_{1}=0.001 \pm 0.023 \pm 0.017 \\
& p_{2}=0.689 \pm 0.030 \pm 0.015 \tag{18}
\end{align*}
$$

This leads to

$$
\begin{align*}
|\lambda| & =1-p_{1}=0.999 \pm 0.023 \pm 0.017 \\
\operatorname{Im}(\lambda) & =\left(1-p_{1}\right) p_{2}=0.689 \pm 0.034 \pm 0.019 \\
\operatorname{Re}(\lambda) & =-\left(1-p_{1}\right) \sqrt{1-p_{2}^{2}} \\
& =-0.723 \pm 0.043 \pm 0.028 \tag{19}
\end{align*}
$$

where the negative sign of $\operatorname{Re}(\lambda)$ is motivated by four measurements [19-22]. The results of all four favor $\cos 2 \beta>0$, and in Ref. [22] $\cos 2 \beta<0$ is excluded with 4.5σ significance.

In the second step, we fix the two λ values according to the p_{1} and p_{2} results of the first step, i.e. to the central values in Eqs. (19). Eqs. (12) to (17) are then applied again, replacing M_{1} with the new relations matrix M_{2}. This gives the same results for p_{1} and p_{2} as in Eq. (18), and

$$
\begin{align*}
& p_{3}=\operatorname{Im}(\mathbf{z})=0.010 \pm 0.030 \pm 0.013 \\
& p_{4}=\operatorname{Re}(\mathbf{z})=-0.065 \pm 0.028 \pm 0.014 \tag{20}
\end{align*}
$$

with a χ^{2} value of 6.9 for 12 degrees of freedom.
The $\operatorname{Re}(z)$ result deviates from zero by 2.1σ. The result for $|\lambda|$ can be easily converted into $|\bar{A} / A|$ by using the world average of measurements for $|q / p|$. With $|q / p|=1.0008 \pm 0.0008[7]$, we obtain

$$
\begin{equation*}
|\bar{A} / A|=0.999 \pm 0.023 \pm 0.017 \tag{21}
\end{equation*}
$$

in agreement with $C P T$ symmetry. Using the matrix algebra in Eqs. (12) to (17) allows us to determine the separate statistical and systematic covariance matrices of the final results, in agreement with the condition $C_{\text {stat }}(p)+C_{\text {sys }}(p)=\left(\begin{array}{l}M^{T} G M\end{array}\right)^{-1}$, where M relates y and p after convergence of the fit. The statistical correlation coefficients are $\rho[|\bar{A} / A|, \operatorname{Im}(\mathrm{z})]=0.03, \quad \rho[|\bar{A} / A|, \operatorname{Re}(\mathrm{z})]=0.44$, and $\rho[\operatorname{Re}(z), \operatorname{Im}(z)]=0.03$. The systematic correlation coefficients are $\rho[|\bar{A} / A|, \operatorname{Im}(z)]=0.03$, $\rho[|\bar{A} / A|, \operatorname{Re}(\mathrm{z})]=0.48$, and $\rho[\operatorname{Re}(\mathrm{z}), \operatorname{Im}(\mathrm{z})]=-0.15$.

IV. ESTIMATING THE INFLUENCE OF $\Delta \Gamma$

Using an accept/reject algorithm, we have performed two "toy simulations", each with $\sim 2 \times 10^{6}$ "events", i.e. t values sampled from the distributions

$$
\begin{equation*}
\mathrm{e}^{-\Gamma t}[1+\operatorname{Re}(\lambda) \sinh (\Delta \Gamma t / 2)+\operatorname{Im}(\lambda) \sin (\Delta m t)] \tag{22}
\end{equation*}
$$

with $\Delta \Gamma=0$ for one simulation and $\Delta \Gamma=0.01 \Gamma$ for the other one, corresponding to one standard deviation from the present world average [7]. For both simulations we use $\operatorname{Im}(\lambda)=0.67$ and $\operatorname{Re}(\lambda)=-0.74$ and sample t values between 0 and $+5 / \Gamma$. We then fit the two samples, binned in intervals of $\Delta t=0.25 / \Gamma$, to the expressions

$$
\begin{equation*}
N \mathrm{e}^{-\Gamma t}[1+C \cos (\Delta m t)+S \sin (\Delta m t)] \tag{23}
\end{equation*}
$$

with three free parameters N, C and S. The fit results agree between the two simulations within 0.002 for C and 0.008 for S. We, therefore, conclude that omission of the sinh term in Ref. [6] has a negligible influence on the three final results of this analysis.

V. CONCLUSION

Using $470 \times 10^{6} B \bar{B}$ events from $B A B A R$, we determine

$$
\begin{aligned}
\operatorname{Im}(\mathrm{z}) & =0.010 \pm 0.030 \pm 0.013 \\
\operatorname{Re}(\mathrm{z}) & =-0.065 \pm 0.028 \pm 0.014 \\
|\bar{A} / A| & =0.999 \pm 0.023 \pm 0.017
\end{aligned}
$$

where the first uncertainties are statistical and the second uncertainties systematic. All three results are compatible with $C P T$ symmetry in $B^{0}-\bar{B}^{0}$ mixing and in $B \rightarrow c \bar{c} K$ decays. The uncertainties on $\operatorname{Re}(z)$ are comparable with those obtained by Belle in 2012 [10] with $535 \times 10^{6} B \bar{B}$ events, $\operatorname{Re}(z)=-0.019 \pm 0.037 \pm 0.033$. The uncertainties on $\operatorname{Im}(z)$ are considerably larger, as expected, than those obtained by $B A B A R$ in 2006 [8] with di-lepton decays from $232 \times 10^{6} B \bar{B}$ events, $\operatorname{Im}(z)=-0.014 \pm 0.007 \pm 0.003$. The result of the present analysis for $\operatorname{Re}(z),-0.065 \pm 0.028 \pm 0.014$, supersedes the BABAR result of 2004 [9].

VI. ACKNOWLEDGEMENTS

We thank H.-J. Gerber (ETH Zurich) and T. Ruf (CERN) for very useful discussions on T and $C P T$ symmetry.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom), BSF (USAIsrael). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).
[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
[2] K. R. Schubert et al., Phys. Lett. B 31, 662 (1970).
[3] J. S. Bell and J. Steinberger, Proc. Int. Conf. Elem. Part., Oxford 1965, p. 195 (Rutherford Lab. 1966).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 87, 091801 (2001).
[5] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).
[6] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 109, 211801 (2012).
[7] The Review of Particle Physics, K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014) and 2015 update.
[8] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 96, 251802 (2006).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 012007 (2004), inserting $\operatorname{Re}(\lambda)=-0.73$.
[10] T. Higuchi et al. (Belle Collaboration), Phys. Rev. D 85, 071105 (2012).
[11] B. Aubert et al. (BABAR Collaboration), Nucl. Instum. and Meth. A 479, 1 (2002).
[12] B. Aubert et al. (BABAR Collaboration), Nucl. Instum.
and Meth. A 729, 615 (2013).
[13] In addition to prompt charged leptons from inclusive semileptonic decays $\ell^{ \pm} \nu X$, Ref. [6] used charged Kaons, charged pions from D^{*} decays and high-momentum charged particles in the flavor-specific samples $\ell^{ \pm} X$.
[14] C. P. Enz and R. R. Lewis, Helv. Phys. Acta 38, 860 (1965).
[15] T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340 (1957).
[16] T. B. Day, Phys. Rev. 121, 1204 (1961).
[17] H. Lipkin, Phys. Rev. 176, 1715 (1968).
[18] J. P. Lees et al. (BABAR Collaboration), Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevLett.109.211801.
[19] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 032005 (2005).
[20] R. Itoh et al. (Belle Collaboration), Phys. Rev. Lett. 95, 091601 (2005).
[21] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 231802 (2007).
[22] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 161802 (2007).

[^0]: ${ }^{1}$ Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
 ${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
 ${ }^{3}$ INFN Sezione di Bari and Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
 ${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
 ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{6}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{7}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
 ${ }^{8}$ Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 ${ }^{a}$, Novosibirsk State University, Novosibirsk 630090 ${ }^{\text {b }}$,
 Novosibirsk State Technical University, Novosibirsk 630092c, Russia
 ${ }^{9}$ University of California at Irvine, Irvine, California 92697, USA

[^1]: *Now at: Wuhan University, Wuhan 43072, China
 ${ }^{\dagger}$ Now at: Università di Bologna and INFN Sezione di Bologna, I-47921 Rimini, Italy
 \ddagger Now at: University of Huddersfield, Huddersfield HD1 3DH, UK
 ${ }^{\S}$ Now at: University of South Alabama, Mobile, Alabama 36688, USA
 ${ }^{\text {§ }}$ Also at: Università di Sassari, I-07100 Sassari, Italy

