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Much attention has been paid to the quantum structure of the vacuum. Higher order processes in
Quantum Electrodynamics are strongly believed to cause polarization and even breakdown of the
vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments.
Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of
electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as
opposed to coupling to virtual fluctuations. In this article, I will demonstrate how Vacuum Four
Wave Mixing has the possibility to differentiate between the these two types of vacuum responses:
quantum effects on one hand and nonlinear classical extensions on the other.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The technology of high intensity lasers has been pro-
gressing rapidly. The next generation of high power lasers
about to come on-line such as ELI, capable of provid-
ing up to 1025 Wcm−2 field strengths, will open up pre-
viously unexplored energy regimes. The high intensity,
low frequency domain that will soon be made accessible
due to these next generation laser facilities will provide a
new parameter space in which to explore aspects of non-
perturbative Quantum Electrodynamics. From a funda-
mental physics perspective, this will not only shed much
needed light on the behavior of non-perturbative regimes
of quantum field theories, but also provide a space in
which to search for new physics in these high field inten-
sity environments [1].
A general framework in terms of effective Lagrangians

can be developed to describe non-perturbative QED, as
well as other nonlinear theories of electrodynamics such
as Born-Infeld (BI) type theories. Electrodynamics can
be thought of as the study of gauge potentials whose
kinematics satisfy the Bianchi Identities, and whose dy-
namics follow from the extremes of an action constructed
from invariant quantities with respect to the symme-
tries of the theory[2]. In the case of electrodynamics,
these symmetries include gauge, Lorentz, and parity in-
variance, as well as causal behavior. This leads to a
very general action constructed from the only two in-
dependent quantities, F = 1

4FabF
ab = 1

2 (B
2 − E2) &

G = 1
4FabF̃

ab = −E · B, that are invariant under these
transformations.

L = −F + c1F2 + c2G2 + ... (1)

Note that parity invariance disallows odd powers of G as
it is a pseudoscalar. Maxwell’s electrodynamics are en-
capsulated in the quadratic term, L = −F , resulting in
equations of motion that are linear in the fields. Linear
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equations of motion result in theories where the law of
superposition holds, a reflection of the fact that it is pos-
sible to disentangle charges from fields. This property
breaks down in a number of scenarios.
One well known scenario occurs when Maxwell’s the-

ory is coupled to relativistic electrically charged sources,
such as electrons described by the Dirac equation. In this
case, the electromagnetic fields contribute to the elec-
tron’s mass, magnetic moment, and charge. Conversely,
we can consider how the ground, or zero particle, state of
the electron quantum field can affect the classical electro-
magnetic field equations. In this paradigm, the electron
vacuum field can be viewed as a high band gap insulator,
Eg ∝ 2me, which can be polarized like any other dielec-
tric medium. This dielectric response was first calculated
by Euler & Heisenberg (EH)[3] and reproduced in the full
context of QED by Schwinger[4].

c1 =
8α2

45m4
c2 =

14α2

45m4
. (2)

Another expected extension to Maxwell’s theory comes
from Born-Infeld electrodynamics[5], a nonlinear classi-
cal field theory that accepts additional, less emphasized,
symmetries found in the source-free Maxwell’s equations
as canon. By constraining nonlinear electromagnetic the-
ory to respect either electromagnetic duality[6], or a vac-
uum response which lacks birefringence[7][8], separately
leads to the same electrodynamics.

L = −β2

√

1 +
2F
β2

− G2

β4
+ β2 (3)

An additional consequence of these restrictions is the
appearance of a critical maximal field strength, β, anal-
ogous to the Schwinger Field of QED. Solving the equa-
tions of motion for a point charge leads to a finite field
strength everywhere, in stark contrast to Maxwell’s equa-
tions.
It is worth remarking that the nonlinearities present

in BI Electrodynamics arise through an entirely different
paradigm as those found in EH: they are not caused by
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coupling with virtual fluctuations of the electron’s quan-
tum field vacuum state. If one does seek a microscopic
explanation, BI electrodynamics can be viewed as arising
in the context of certain string theories. In particular, if
the universe is regarded as a D3-brane, open strings at-
tached to the brane may couple to a U(1) field at the end
of the string, so that the lowest-order contribution to the
partition function, after integrating out the string degrees
of freedom allowed by the Dirichlet boundary conditions
in the path integral, is given by an action containing the
BI Lagrangian[9]. If we expand this Lagrangian around
weak field strengths, we recover the Maxwell Lagrangian
plus corrections of the same form as above.

L ≈ −F +
F2

2β2
+

G2

2β2
(4)

There have been numerous previous and ongoing at-
tempts to measure possible nonlinearities that may ex-
ist in electrodynamics. One experiment in particular,
PVLAS[10], captures some crucial ingredients that will
be useful for future discussion. The PVLAS experiment
has set the existing experimental limit on QED type vac-
uum nonlinearities. Their null results have verified the
absence of nonlinearities up to field strengths of 4.3×1013

Vcm−1, compared to the Schwinger Field of 1.3 × 1016

Vcm−1.
The PVLAS experiment is comprised of a low intensity

laser repeatedly passing through, and perpendicular to,
a strong magnetic field.

B

k

FIG. 1: Basic schematic of the PVLAS experiment.
Due to the birefringent nature of the vacuum in
the presence of the background magnetic field,
the incoming laser suffers a rotation of its
polarizaion, as well as an induced ellipsoidity.

Because of the strong magnetic field, QED predicts
that the vacuum will become birefringent: the compo-
nent of the laser’s electric field propagating parallel and
perpendicular to the magnetic field will travel at differ-
ent velocities, causing the two components to become
out of phase, and the polarization of the beam to rotate.
This difference in propagation velocities can be traced
back mathematically to the difference between c1 and c2
found in the EH Lagrangian. BI Electrodynamics, on the
other hand, predicts that while the beam will experience
a non-trivial index of refraction, because of the equality
of coefficients of the nonlinear terms, its vacuum response
will be isotropic. There will be no rotation of polariza-
tion. Thus, this experiment can separate the effects of

these two types of nonlinearities. It simply measures the
birefringence of the QED vacuum and is completely in-
sensitive to BI effects. It would be advantageous to have
an experimental setup that could effectively filter out ei-
ther QED or BI effects, but in general be sensitive to
both[11].
A number of experiments have been proposed to probe

electromagnetic nonlinearities using high intensity lasers.
Most of the proposed experiments, however, suffer from
the same insensitivities as PVLAS. Both Heinzl et al [12]
and Piazza et al [13], for example, exploit the birefrin-
gence of the quantum vacuum to obtain their experimen-
tal signature. To be sensitive to BI type nonlinearities,
other types of optical processes are necessary. One pos-
sible process that will be discussed in this paper is Four
Wave Mixing (FWM).
The remainder of this article will be dedicated to de-

scribing how FWM can not only detect, but also distin-
guish between Born-Infeld type theories and QED related
nonlinearities. The absence of birefringence found in BI,
indicative of a larger class of polarization dependence,
will be instrumental in distinguishing different nonlinear
theories from one another. The ratio of the coefficients of
the nonlinear terms in the Lagrangian will be crucial in
determining the polarization of electromagnetic radiation
produced in nonlinear optical processes.
First, a textbook example of Four Wave Mixing[14], a

third order nonlinear optical effect, will be described as
proof of principle. These ideas will be applied to more
experimentally realizable set-ups that utilize FWM to
produce detectable amounts of electromagnetic radiation.

II. FOUR WAVE MIXING

Four wave mixing is a third order nonlinear optical pro-
cess in which the polarized nonlinear medium oscillates at
the three incoming waves’ frequencies and, in turn, pro-
duces electromagnetic radiation at sums and differences
of the incoming frequencies. This is simple to imagine in
terms of a real nonlinear optical material, where actual
molecules are participating in this harmonic motion. In
the present cases, the picture of what is actually oscil-
lating is less clear. In the case of QED, virtual fluctu-
ations of the electron’s quantum field are driven at the
incoming beams frequencies, and in turn re-radiate as a
fourth beam. In the BI paradigm, the fields themselves
act as the oscillating medium, and as a direct source of
radiation. It is a testament to the method of effective
Lagrangians that these two disparate physical processes
can be expressed in the same formalism.
With FWM in mind as a destination, a suitable wave

equation can be developed[15]. The general electromag-
netic Lagrangian can be rewritten in terms of two pa-
rameters, ξ, that sets the scale of the nonlinearity, and
Υ, that represents the ratio of the coefficients of the two
nonlinear terms. For QED, Υ = 7/4, and for BI, Υ = 1.

L = −F + ξ(F2 +ΥG2) (5)
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With these definitions, the Euler-Lagrange equations
produce the two dynamical Maxwell-like equations of mo-
tion,

∂b
∂L
∂Fab

= 0 ⇒ ∂bF
ab = ξ∂b(FF ab +ΥGF̃ ab) ≡ ∂bP

ab,

(6)
along with the two equations that follow from the Bianchi
identities,

∂aFbc + ∂cFab + ∂bFca = 0. (7)

The polarization tensor, analogous to the field tensor,
encodes the vacuum’s induced electric polarization and
magnetization, P 0i = P i & P ij = 1

2ǫ
ijkMk, and is writ-

ten out explicitly as

P = ξ[2(E2 − B
2)E+ 4Υ(E ·B)B]

M = ξ[−2(E2 − B
2)B+ 4Υ(E ·B)E]. (8)

The wave equation for the electric and magnetic fields
is derived by the usual procedure of applying the deriva-
tive operator, ∂c to the Bianchi identity and inserting the
dynamical equations.

∂2F ab = ∂b∂cP
ca − ∂a∂cP

cb (9)

The electric field component of the wave equation is

�E = [∇(∇ ·P)− ∂

∂t
(
∂

∂t
P+∇×M)]. (10)

For the case of FWM, there will be three ‘strong’
beams producing a fourth, weaker in field strength, by
order ξ. The resulting effect on the original three beams
is of order ξ2 and will be neglected. The direction and
frequency of the produced beam, k4, can be determined
through energy and momentum conservation.

k1 + k2 = k3 + k4 ω1 + ω2 = ω3 + ω4 (11)

It is plain to see that the direction of the produced radi-
ation, set by momentum conservation considerations and
independent of the medium, will be identical for both
QED & BI nonlinearities.
Let the beams be plane waves whose amplitudes

change relatively slowly compared to their harmonic com-
ponent. All non-resonant terms, those not satisfying en-
ergy momentum conservation as required by Equation
(11), will rapidly oscillate and average to zero, leaving
only the single term on the right hand side of Equation
(10).

�E4 = ξω2
4GE1 E2 E

∗

3 e
i(k4·r−ω4t) (12)

Its solution in the far field approximation is

E4 =
ξω2

4

r
Gei(k4·r−ω4t)

∫

V

(E1 E2 E
∗

3 ) |tR eik4(k̂4−r̂)·r′dV ′,

(13)

where the integration is performed over the interaction
region at the retarded time. In the case of incoming plane
waves, the direction of propagation is defined by a delta
function in the k4 direction. More realistic beam profiles
will produce more of a directional spread, but for an order
of magnitude prediction this assumption is sufficient.

1. Textbook Example

For the first case, consider a one dimensional degener-
ate FWM that produces radiation at the same frequency
as the incoming waves. In this case, beams 1 and 3 will

γ3

γ4

k1

k2

k
4

k
3

FIG. 2: One-dimensional FWM setup.
The polarizations of the individual beams, γi,
are defined with respect to the ẑ axis such that
they are positive in the clockwise direction
when looking along the ki direction.

propagate in the positive x̂ direction, beam 2 will be in
the negative x̂ direction, and beam 4 will be produced in
the negative x̂ direction.
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FIG. 3: One-dimensional Polarization Dependence.
The polarization, γ4, and magnitude, G2, of the
produced beam are plotted as a function of the
polarization of the third beam, γ3, where the
polarizations of the first two beams are held
fixed at γ1 = 0 and γ2 = π/2.

Calculation of the polarization vector direction is in-
volved, and a good description can be found in Lund-
ström[16] as well as the appendix. As an example, con-
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sider the case where γ1 = 0 & γ2 = π/2 while γ3 is the
independant variable:

G1d = 2Υcosγ3ŷ+ (Υ− 1)sinγ3ẑ. (14)

There are some interesting results to take note of in this
example. From studying Fig. 3, it is plain to see that the
two types of nonlinearities predict very different polar-
ization behavior for the produced radiation. Because of
the coefficient of the second term in Equation (14), the
polarization of the BI produced radiation is always con-
strained to be in the ŷ direction. This interesting con-
finement is particular to these experimental conditions
and would not necessarily happen for different incoming
directions and polarizations. In an actual experiment,
ideally the two effects to produce radiation polarized at
right angles to one another. Unfortunately, at the angle
at which this occurs, γ3 ≃ π/2, the magnitude of G1d

for both the BI and QED is lowest.

A. FWM in Three Dimensions

The previous example, while illustrating the effect,
does not lend itself well to an actual experiment. An im-
mediate issue is that the produced radiation must be gen-
erated in a direction different from the incoming beams
in order to set up a suitable detector. This can only be
accomplished by fully utilizing the three dimensions. In
addition, the experiment should also produce at least a
modest value for the magnitude of G3d.
One such set up, as illustrated in Fig. 4, has been pre-

viously described[17],[18] with

k1 = kx̂

k2 = kŷ

k3 =
k

2
ẑ

k4 = k(x̂+ ŷ− 1

2
ẑ). (15)

The polarization vector is computed in a similar fash-
ion to the one dimensional case discussed above. Rotat-
ing the coordinate system so that the x̂

′ is parallel to k4

causes G3d to lie entirely in the ŷ
′ − ẑ

′ plane, yielding

G3d
′ =

1

48
√
5
[(−20 + Υ)cosγ2 + 8(2−Υ)sinγ2]ŷ

′

+
1

24
√
5
[(20−Υ)cosγ2 + 2(2−Υ)sinγ2]ẑ

′. (16)

This calculation was performed with both γ1 and γ3 equal
to zero.
Feasibility calculations utilizing the Astra Gemini

(1021Wcm−2 at 3 shots per minute) system were per-
formed by Lundin et al [17] taking into account noise con-
siderations because of imperfect vacuum, such as pon-
deromotive forces, Compton scattering, and collective
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FIG. 4: Three-dimensional FWM setup.
The polarization vectors, γ1 & γ2, are defined
the same as before while γ3 is defined with
respect to the x̂ axis such that it is positive in
the clockwise direction when looking along the
k3 direction.
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FIG. 5: Three-dimensional Polarization Dependence.
The polarization, γ4, and magnitude, G2, of the
produced beam are plotted as a function of the
polarization of the second beam, γ2, where the
polarizations of the other two beams are held
fixed at zero angle.

plasma effects. For the case of QED nonlinearites, they
predict detectable levels of approximately 0.07 photons
produced per shot, approximately three orders of magni-
tude above calculated noise levels.

As shown in Fig. 5, the effect of both types of nonlin-
earities are nearly identical for most of the input beam
polarizations. However, for γ2 ≃ −π

8 , the two types of
nonlinearities produce radiation polarized at right angles,
offering a chance to distinguish between the two signals.
A filter can be positioned to only allow one polarization
through to the detector. In this sense, FWM provides
a unique opportunity, not only test nonlinear electrody-
namics, but also to distinguish between different types of
nonlinearities.



5

III. CONCLUSION

An experiment has been presented that is sensitive to
both types of nonlinearities, QED & BI. Because of the
different resulting polarizations, it is possible to filter one
from another. The open question at this point, is at what
scale do BI effects take place? Unlike QED effects where
the energy scale is set by the rest mass and charge of the
electron, BI type nonlinearities do not have a definite,
agreed upon energy scale at which they become impor-
tant. A similar situation arises in special relativity, where
belief in locality demands a finite maximal velocity, but
offers no insight as to what that velocity might be.
Born and Infeld, by postulating that the electron’s

mass was entirely electromagnetic, arrived at a value of
1.2×1018 Vcm−1 [5] for their critical field strength. Fur-
ther research on BI electrodynamics lay fallow for decades
until its remarkable wave propagation properties were
discovered [7],[8], [19], and research refocused on possi-
ble limits of field strengths attainable in nature. Rafelski
et al [20], by considering the spectra of atoms with heavy
nuclei, raised the lower bound to 1.7×1020 Vcm−1. More
recent work [21],[22] has refined their methods to explore
spectra of light Hydrogen like atoms to obtain similar
lower bounds.
With the noise limit of the Astra Gemini system as dis-

cussed in [17], a null result of the experiment proposed in
this article would provide a lower bound for the BI critical
field strength of approximately 5× 1017 Vcm−1. This re-
sult would be a welcome corroboration of the other lower
bounds deduced through indirect methods. If BI theory
is the effective electrodynamics of a stringy fundamen-
tal physics, its effects wouldn’t be expected to become
important until the Planck scale, 1060 Vcm−1, although
there is some discussion[23] that they could emerge at
the slightly more modest scale of 1044 Vcm−1.
Near future laser facilities can be expected to observe

vacuum nonlinearities. ELI, in particular, is purposely
being constructed in order to study high field physics.
The author hopes this article will act as a reminder to re-
searchers in this field that the phenomenology of vacuum
nonlinearities such as FWM, vacuum birefringence, and
diffraction[24] are all general features of nonlinear elec-
trodynamics, and that quantum mechanics is only one of
many such mechanisms that can produce these effects.
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Appendix: Derivation of the Geometric Factor

The right hand side of Equation (9) can be organized
as

∂2F ab = ξGabcfrspqmn∂c∂fFrsFpqFmn (A.1)

Gabcfrspqmn =
1

2
(δrpδsq(δbf δcmδan − δafδbmδcn)

+
Υ

2
ǫrspq(δbf ǫcamn − δaf ǫbcmn)). (A.2)

Expressing the field tensors on the r.h.s. of (A.1) as plane
wave fields described in the one and three dimensional
example respectively yields the following geometrical fac-
tors. To transform to the primed coordinate system in
the three dimensional case, the appropriate rotational
matrix needs to be applied to G3d.

G1d = {Υ [cosγ3 sin(γ1 + γ2) + cosγ1 sin(γ2 + γ3)]

− sinγ1 cos(γ2 + γ3)− sinγ3 cos(γ1 + γ2)}ey
+ {Υ [sinγ3 sin(γ1 + γ2) + sinγ1 sin(γ2 + γ3)]

+ cosγ1 cos(γ2 + γ3) + cosγ3 cos(γ1 + γ2)}ez.
(A.3)
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G3d = −1

2
{[(1

2
sinγ3 − cosγ3)cos(γ1 + γ2) + (

1

8
sinγ2 −

1

4
cos γ2) cos(γ1 + γ3) + (

1

4
sin γ1 +

1

8
cos γ1) sin(γ2 + γ3)]

+ Υ[(− sin γ3 −
1

2
cos γ3) sin(γ1 + γ2) + (−1

8
cos γ2 −

1

4
sin γ2) sin(γ1 + γ3) + (

1

4
cos γ1 −

1

8
sin γ1) cos(γ2 + γ3)]}ex

− 2

9
{[(1

2
cos γ3 − sin γ3) cos(γ1 + γ2) + (

1

8
cos γ2 −

1

4
sin2) cos(γ1 + γ3) + (−1

4
cos γ1 −

1

8
sin γ1) sin(γ2 + γ3)]

+ Υ[(cos γ3 +
1

2
sin γ3) sin(γ1 + γ2) + (

1

8
sin γ2 +

1

4
cos γ2) sin(γ1 + γ3) + (

1

4
sin γ1 −

1

8
cos γ1) cos(γ2 + γ3)]}ey

+
4

9
{[ 1
2
(cos γ3 + sin γ3) cos(γ1 + γ2) +

1

8
(sin γ2 + cos γ2) cos(γ1 + γ3) +

1

8
(cos γ1 − sin γ1) sin(γ2 + γ3)]

+ Υ[
1

2
(sin γ3 − cos γ3) sin(γ1 + γ2) +

1

8
(sin γ2 − cos γ2) sin(γ1 + γ3) +

1

8
(− cos γ1 − sin γ1) cos(γ2 + γ3)]}ez

(A.4)

[1] M. Marklund, J. Lundin, Eur. Phys. Jour. D, 55, 319
(2009)

[2] L.D. Landau and E. M. Lifshitz, The Classical Theory of

Fields §26, Butterworth and Heinemann (1939)
[3] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936)
[4] J. Schwinger, Phys. Rev., 82, 664 (1951)
[5] M. Born and L. Infeld, Proc. R. Soc. London, Ser A 144,

425 (1934)
[6] G. W. Gibbons and D. A. Rasheed, Nucl. Phys. B, 454,

185 (1995)
[7] J. Plebanski, Lecture Notes on Nonlinear Electrodynam-

ics Nordita (1970)
[8] G. Boillat, Jour. Math. Phys., 2, 941 (1970)
[9] E.S. Fradkin and A.A. Tseytlin, Phys. Let. B, 163, 123

(1985)
[10] PVLAS Coll., Phys. Rev. D, 78, 032006 (2008)
[11] The author is aware of one other experimental proposal

that could distinguish between different nonlinear theo-
ries and would place a similar bound on the BI critical
field. V. I. Denisov, Phys. Rev. D, 61, 036004 (2000)

[12] T. Heinzl, B. Liesfeld, K. Amthor, H. Schwoerer, R.
Sauerbrey, A. Wipf, Opt. Comm., 267, 318 (2006)

[13] A. Di Piazza, K. Z. Hatsagortsyan, C. H. Keitel, Phys.

Rev. Lett. 97, 083603 (2006)
[14] R. W. Boyd, Nonlinear Optics §6.1, Academic Press

(1992)
[15] N. N. Rozanov, Sov. Phys. JETP 76, 991 (1993)
[16] E. Lundström, M.S., Ume̊a Univ., (2005) arXiv:hep-

ph/0512033
[17] J. Lundin, M. Marklund, E. Lundström, G. Brodin, J.

Collier, R. Bingham, J. T. Mendonça, P. Norreys, Phys.
Rev. A, 74, 043821 (2006)

[18] E. Lundström, G. Brodin, J. Lundin, M. Marklund, R.
Bingham, J. Collier, J. T. Mendonça, P. Norreys, Phys.
Rev. Lett. 96, 083602 (2006)

[19] Z. Bialynicka-Birula, I. Bialynicka-Birula, Phys. Rev. D,
2, 2341 (1970)

[20] J. Rafelski, L. P. Fulcher, W. Greiner, Phys. Rev. A, 7,
903 (1971)

[21] H. Carley, M. K. H. Kiessling, Phys. Rev. Lett. 96,
030402 (2006)

[22] J. Franklin, T. Garon, Phys. Lett. A, 375, 1391 (2011)
[23] I. Antoniadis, arXiv:0710.4267v2
[24] B. King, A. Di Piazza, C. H. Keitel, Nature Phot. 4 92

(2010)


