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It is known that in contrast with the E-mode polarization, the B-mode polarization of the

Cosmic Microwave Background cannot be generated by the Compton scattering in the case

of scalar mode of metric perturbation. However it is possible to generate the B-mode by

the Compton scattering in the case of tensor mode of metric perturbation. For this reason,

the ratio of tensor to scalar modes of metric perturbation (r ∼ CBl/CEl) is estimated by

comparing the B-mode power spectrum with the E-mode at least for small l. We study

the CMB polarization specially B-mode due to the weak interaction of Cosmic Neutrino

Background (CNB) and CMB, in addition to the Compton scattering in both cases of scalar

and tensor metric perturbations. It is shown that the power spectrum CBl of the B-mode

polarization receives some contributions from scalar and tensor modes, which have effects on

the value of r-parameter. We also show that the B-mode polarization power spectrum can

be used as an indirect probe into the CNB.
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I. INTRODUCTION

The tensor and scalar metric perturbations are described by their power spectra PT =

AT (
k
k
)nT−1 and Ps = AT (

k
k
)ns−1, nT,s and AT,s are their spectral indices and amplitudes. The

tensor-to-scalar ratio r = PT /PS and its value are very important to verify or constrain the

standard scenario of Big-Bang and inflation model. Comparing the curl-like mode (B-mode) with

divergence-like (E-mode) in linearly polarized CMB power spectra is one of the most important

methods measuring the r-parameter value. The detection of the B-mode signals induced by the

primordial gravitational waves can be one of the main targets in many ongoing and future CMB

experiments [8]. The BICEP2 collaboration detected the B-mode in the primordial cosmic mi-

crowave background (CMB) for the first time and announced r = 0.20+0.07
−0.05 (68%CL) [1]. This

result is not consistent with the Planck limit, r < 0.11(98%CL). Some authors speculated that

the observed B-mode polarization is the result of a primordial Faraday rotation of the E-mode

polarization [3, 4]. The BICEP2 data could be explained by the scalar and tensor modes from

primordial magnetic fields [2]. The interaction between CMB photons and CNB Neutrinos can

produce the B-mode spectrum [5] even with the scalar perturbation only. The Planck group pre-

sented discussions that the result of BICEP2 can be fully attributed to cosmic dust [6]. The recent

Bicep/Keck Array observation reported upper bounds on the tensor-to-scalar ratio, r0.05 < 0.09

and r0.05 < 0.07 at (95%) C.L. by using B-modes alone and combining the B-mode results with

Planck temperature analysis, respectively [7]. It is crucial to know all possible effects and interac-

tions can affect the r-parameter value. Therefore, continuing our previous work [5], we study the

B-mode spectrum by considering the CMB interacting with the CNB in both cases of scalar and

tensor metric perturbations in this article.

II. THE GENERATION OF POLARIZED CMB VIA SCATTERING.

Polarized CMB photons are described by the density and number operators

ρ̂ =
1

tr(ρ̂)

∫

d3p

(2π)3
ρij(p)Dij(p), (1)

where ρij(p) represents the general density-matrix in the space of polarization states with a fixed

energy-momentum “p”, correspondingly Dij(p) is the number operator whose expectation value

〈Dij(p) 〉 ≡ tr[ρ̂Dij(p)] = (2π)3δ3(0)(2p0)ρij(p). (2)
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The quantum Boltzmann equation for the time-evolution of the density matrix of the polarized

CMB photons reads as,

dρij
dt

=< [H0, ρij ] > −1

2

∫

dt < [H0, [H0, ρij ]] > (3)

where H0 is the effective Hamiltonian. The first term in the RHS is the forward scattering ampli-

tude and the second one represents the high-order collision terms. Equation (3) can be written as

[11],

(2π)3δ3(0)(2p0)
d

dt
ρij(p) = i〈

[

H0
I (t);Dij(p)

]

〉 − 1

2

∫

dt〈
[

Ho
I (t);

[

H0
I (0);Dij(p)

]]

〉, (4)

and H0
I (t) is the first order of the interacting Hamiltonian. The LHS of this equation is known as

the Liouville term dealing with the effects of gravitational perturbations around the homogeneous

cosmology. Using this equation, many authors investigated the effects of the Compton scattering

(electromagnetic interactions) on the anisotropy and polarization of CMB (see for example [11–

13]). We have studied in [5] the effects of the scattering between CMB photons and CNB neutrinos

in the case of scalar metric perturbation.

We adopt the Stokes parameters I, Q, U and V to describe the polarizations of CMB photons,

ρ̂ =





I +Q U − iV

U + iV I −Q



 , (5)

where the parameter I is total intensity, Q and U are intensities of linear polarizations, whereas the

parameter V indicates net circular polarization or the difference between left- and right-circular

polarizations intensities. The time evaluation of stocks parameters for linear polarization with

collision terms on the right side of Boltzmann equation (4), include the Compton scattering and

photon-neutrino interaction [5],

d

dt
(Q± iU) ≈ C±

eγ ∓ iκ̇±(Q± iU), (6)

where RHS of the first term C±
eγ comes from the effects of Compton scattering (see for example

[11–13]), whereas the second term comes from the photon-neutrino interaction and κ̇± is given by

κ̇± = −
√
2

6πk0
αGF

∫

dqfν(q)× εµνρσ ǫ
µ
2ǫ

ν
1k

ρqσ

=

√
2

6πk0
αGF

∫

dqfν(q)×
[

q0~k.(ǫ1 × ǫ2) + k0~q.(ǫ1 × ǫ2)
]

(7)

=

√
2

6π
αGF

[

nν
2

+

∫

dqfν(q)~q.(ǫ1 × ǫ2)

]

, (8)
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which is expressed in terms of the CNB neutrino number density nν and bulk velocity

qi =
1

nν

∫

dqqi fν . (9)

If we apply above equation for Cosmic Neutrino Background (CNB), the second term on the right

is much smaller than the first one due to the smallness of the CNB neutrino bulk velocity. For

the rest of paper, we consider κ̇± ≃
√
2

12παG
F nν . Note that the time evolution of CMB circular

polarization V - Stokes parameter was investigated in Ref. [10], and the total density I does not

vary in time.

Another point which must be mentioned is the fact that in the standard model, there is one species

of neutrinos, the left-handed Dirac neutrino field, whereas the left-handed Majorana neutrino field

has two species for it being a self-conjugated field. As a result, in the Majorana neutrino case, the

interacting Hamiltonian H0
I has an additional “conjugated” part, compared with the interacting

Hamiltonian H0
I in the Dirac neutrino case. These two parts have the same contribution to

dρij
dt

,

so that κ̇±|M in case of Majorana neutrino is twice larger than one in the Dirac neutrino case

κ̇±|M ≃ 2κ̇±, for more detail see [10]. For the rest, the subscript ”M” indicates Majorana neutrino,

while we don’t use any subscript for Dirac one

III. POWER SPECTRUM OF SCALAR MODES

As shown in [11, 12], the Compton scattering in the presence of scalar perturbation can be a

source for the E-mode of the CMB linear polarization. The B-mode one can only be generated by

the Compton scattering in the presence of tensor perturbation. However, the B-mode polarization

of CMB in scalar perturbation can be generated by the CMB-CNB interaction together with the

Compton scattering [5], and we generalize these results to the case of tensor perturbations in the

following. The scalar and tensor perturbations of metric are indicated by S and T superscript

respectively. In general, for a given mode of metric perturbation K, we can choose the coordinate

system where K ‖ ẑ and (ê1, ê2) = (êθ, êφ). Also for each plane wave, we describe the scattering

as the transport through a plane parallel medium [14, 15]. In the case of the scalar perturbation,

the Boltzmann equation (6) is given as [5],

d

dη
∆

(S)
I + iKµ∆

(S)
I + 4[ψ̇ − iKµφ] = τ̇ [−∆

(S)
I +∆

(S)
I0 + iµvb +

1

2
P2(µ)Π] (10)

d

dη
(Q(S) ± iU (S)) + iKµ(Q(S) ± iU (S)) = τ̇ [−(Q(S) ± iU (S))− 1

2
[1− P2(µ)]Π]

∓ i a(η) κ̇± (Q(S) ± iU (S)) (11)

Π = ∆
(S)
I2 +∆

(S)
P2 +∆

(S)
P0 ,
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where η is the conformal time. The differential optical depth for Compton scattering is denoted

by τ̇ = anexeσT , where a(η) is the expansion factor normalized to unity today, vb is baryon bulk

velocity, µ = K̂ · n̂ is the angle between the CMB photon direction n̂ and wave number K, ne is the

electron number density, xe is the ionization fraction and the Thomson cross section is indicated

by σT . The second term in R.H.S of above equation is the contribution of photon-neutrino forward

scattering with κ̇± coefficients. The source terms in these equations involve the multipole moments

of temperature and polarization which are defined as ∆(K,µ) =
∑

l(2l+1)(−i)l∆l(k)Pl(µ), where

Pl(µ) is the Legendre polynomial of order l. Temperature anisotropies ∆S
I respect to ∆S

P have

additional sources in metric perturbations φ and ψ and in baryon velocity term vb. By defining

∆
±(S)
P = Q(S) ± iU (S), we rewrite Eq.(11) as following,

d

dη

[

∆
±(S)
P eiKµη± iκ̃(η,µ) +τ̃(η)

]

= −eiKµη± iκ̃(η) +τ̃(η)

(

1

2
τ̇ [1− P2(µ)]Π

)

, (12)

where

κ̃(η, µ) =

∫ η

0
dη a(η) κ̇±, τ̃(η) =

∫ η

0
dη τ̇ . (13)

To obtain the value of ∆
±(S)
P (n̂) at present time η0 and direction n̂, in addition to integrate the

Boltzmann equation (11) along the line of sight [16], one needs to evolve the anisotropies until the

present epoch and integrate over all the Fourier modes K,

∆
±(S)
P (n̂) =

∫

d3Kξ(K)e±2iφK,n∆
±(S)
P

(η0,K, µ), κ(η) =

∫ η0

η

dη a(η) κ̇±(η)

∆
±(S)
P (η0,K, µ) =

3

4
(1− µ2)

∫ η0

0
dη eixµ±iκ(η)−τ Π(K, η) (14)

where x = K(η0 − η), φK,n is the angle needed to rotate the K and n̂ dependent basis to a fixed

frame in the Sky, and ξ(K) is a random variable used to characterize the initial amplitude of the

mode K which follows the statistical property

〈ξ∗(K1)ξ(K2)〉 = PS(K)δ(K1 −K2) (15)

which PS(K) is the initial power spectrum of scalar perturbation. Using Friedmann equation in the

matter dominate region, H2/H2
0 = Ω0

M (1 + z)3 + Ω0
Λ, H0 ≈ 74 km/s/Mpc, Ω0

M ≈ 0.27,Ω0
Λ ≈ 0.73,

and adη = −dz/H(1 + z), as well as the conservation of total neutrino number nν = n0ν(1 + z)3,

ones can calculate

κ(z) =

∫ η0

η

a dηκ̇± =

√
2

12π
αGFn0ν

∫ zlss

z

dz′
(1 + z′)2

H(z′)

=

√
2

12π
αGFn0ν

2H(z′)

3Ω0
MH

2
0

∣

∣

∣

zlss

z
, (16)
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where the present number-density of all flavor neutrinos and anti-neutrinos n0ν =
∑

(n0ν + n0ν̄) ≈
340 cm−3), and κ̄ is the time average value of κ(η)

κ̄ =
1

η0

∫ η0

0
dη κ̄ ≃

√
2

12π
αGF nν,0

nν,0
zlss

∫ zlss

0
dz

(1 + z)3

H(z)
∼ 0.1, (17)

where zlss ∼ 1100 indicates redshift at the last scattering surface, and also in the case of Majorana

neutrinos

κ̄|
M

≃ 2× κ̄ ∼ 0.2. (18)

One can separate the CMB polarization in terms of the curl-free part (E-mode)

∆
(S)
E (n̂) ≡ −1

2
[ð̄2∆

+(S)
P (n̂) + ð

2∆
−(S)
P (n̂)] (19)

and divergence-free part (B-mode)

∆
(S)
B (n̂) ≡ i

2
[ð̄2∆

+(S)
P (n̂)− ð

2∆
−(S)
P (n̂)] (20)

that ð and ð̄ are spin raising and lowering operators respectively. By assuming that scalar metric

perturbations are axially-symmetric around K so that ð2 = ð̄2 = ∂2µ, the E- and B-modes are given

as

∆
(S)
E (K, η0) = −

∫ η0

0
dηg(η)

3

4
Π(K, η)∂2µ

[

(1− µ2)2eixµ cos κ(η)
]

, (21)

∆
(S)
B (K, η0) =

∫ η0

0
dηg(η)

3

4
Π(K, η)∂2µ

[

(1− µ2)2eixµ sinκ(η)
]

, (22)

where g(η) = τ̇ e−τ . Note that the Compton scattering can not generate B-mode without taking

into account tensor type of metric perturbations [13, 17–19], and we check this in our calculations.

The polarized spectrum of CMB is then obtained by integrating over the initial power spectrum

of the metric perturbation. As a result, the power spectrum for E and B modes are given by

C
(S)
E,Bl =

1

2l + 1

(l − 2)!

(l + 2)!

∫

d3KPS(K)|
∑

m

∫

dΩY ∗
lm∆

(S)
E,B|2. (23)

By taking the photon-neutrino scattering into account, we showed [5] the C
(S)
Bl is not zero for

the scalar perturbation. The CMB polarized power spectra in multipole moments l are C
(S)
El =

C̄
(S)
E,l (cos

2 κ̄) and C
(S)
Bl = C̄

(S)
E,l (sin

2 κ̄). C̄
(S)
E,l is the value of E-mode polarized power spectrum

attributed to the Compton scattering in the case of scalar perturbation [12]:

C̄
(S)
E,l = (4π)2

(l + 2)!

(l − 2)!

∫

d3KPS(K)|3
4

∫ η0

0
dη g(η)Π(K, η)

jl
x2

|2. (24)

The term with κ̄ shows that the B-mode power spectrum can be generated not only by the Compton

scattering in the case of tensor mode perturbations [12], but also by the CMB-CNB interaction in

the case of scalar mode perturbation.
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IV. POWER SPECTRUM OF TENSOR PERTURBATION MODES

The method of analysis used in previous section for the scalar perturbation can be utilized for

the tensor perturbation. But the analysis is more complicate than that for the scalar perturbation

because there are two independent polarized states denoted by + and × for each Fourier mode. It

is convenient to use two linear combinations

ξ1 = (ξ+ − iξ×)/2, ξ2 = (ξ+ + iξ×)/2, (25)

where ξ’s are independent random variables and have the following statistical properties

〈ξ1∗( ~K1)ξ
1( ~K2)〉 = 〈ξ2∗( ~K1)ξ

2( ~K2)〉 =
Ph(K)

2
δ( ~K1 − ~K2) , 〈ξ1∗( ~K1)ξ

2( ~K2)〉 = 0 (26)

where Ph(K) is the primordial power spectrum of the gravitational wave. Also we define

∆̃
+(×)
P± (τ, n̂, ~K) = (∆̃

+(×)
Q ± i∆̃

+(×)
U )(τ, n̂, ~K). (27)

In the absence of CMB-CNB interaction, the polarizations generated by the gravitational wave

satisfy the following Boltzman equations [20, 21]:

˙̃∆
+(×)
P± + ikµ∆̃

+(×)
P± = −τ̇ [∆̃+(×)

P± + ψ(1± i)]. (28)

where τ̇ ≡ dτ
dη

and η is conformal time, the scaling factor a(η0) at present time η0 is unity, and

ψ ≡ [
1

10
∆̃

(T )
T0 +

1

7
∆̃

(T )
T2 +

3

7
∆̃

(T )
T4 − 3

5
∆̃

±(T )
Q0 +

6

7
∆̃

±(T )
Q2 − 3

70
∆̃

±(T )
Q4 ]. (29)

In the presence of CMB-CNB interaction, the Boltzmann equations for polarizations generated by

gravitational wave are modified

˙̃∆
+(×)
P± + ikµ∆̃

+(×)
P± = −τ̇ [∆̃+(×)

P± + ψ(1± i)]∓ ia(η)κ̇±∆̃
+(×)
P± . (30)

The above equation has the following solution [12]

∆̃
+(×)
P± (κ, η) =

∫

dηeixµ±iκ±iπ
4 SP (k, η) (31)

where SP (k, η) =
√
2τ̇(e−τ )ψ. For the tensor perturbation, the evolution equations take their

simplest form after the coordinate transformation [21, 22],

∆+
Q = (1 + µ2) cos(2φ)∆̃+

Q, ∆×
Q = (1 + µ2) sin(2φ)∆̃×

Q (32)

∆+
U = −2µ sin(2φ)∆̃+

I , ∆×
U = 2µ cos(2φ)∆̃×

U . (33)
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Tensor perturbations can be decomposed to the general form

(∆
(T )
Q ± i∆

(T )
U )(τ, n̂, ~K) = (∆+

Qξ
+ +∆×

Qξ
×)(τ, n̂, ~K)± i(∆+

U ξ
+ +∆×

Uξ
×)(τ, n̂, ~K)

(∆
(T )
Q ± i∆

(T )
U )(τ, n̂, ~K) = (1 + µ2) cos 2φ[ξ1 + ξ2]∆̃+

Q + (1 + µ2) sin 2φ[ξ1 − ξ2]i∆̃×
Q

± i(2µ)(− sin 2φ[ξ1 + ξ2]∆̃+
U + (1 + µ2) cos 2φ[ξ1 − ξ2]i∆×

U ). (34)

Substituting ∆̃Q = 1
2 (∆̃

+
P + ∆̃−

P ) and ∆̃U = (−i
2 )(∆̃+

P − ∆̃−
P ) into Eqs. (34), we obtain

(∆
(T )
Q ± i∆

(T )
U )(τ, n̂, ~K) = (1 + µ2)ξ1e2iφ(∆̃

+(T )
P + ∆̃

−(T )
P ) + (1 + µ2)ξ2e−2φ(∆̃

+(T )
P + ∆̃

−(T )
P )

± (−i)(2µ)(∆̃+(T )
P − ∆̃

−(T )
P )[−ξ1e2iφ − ξ2e−2iφ]. (35)

Using 2µ = 1
2 [(1 + µ)2 − (1 − µ)2] and 1 + µ2 = 1

2 [(1 + µ)2 + (1 − µ)2] and then similarly to the

scalar perturbation, we integrate along the line of sight

(∆
(T )
Q + i∆

(T )
U )(τ, n̂, ~K) =

1

2
[(1 + µ)2(1 + 2i) + (1− µ)2(1− 2i)][ξ1e2iφ + ξ2e−2iφ]∆̃+

p

+
1

2
[(1 + µ)2(1− 2i) + (1− µ)2(1 + 2i)][ξ1e2iφ + ξ2e−2iφ]∆̃−

p

(∆
(T )
Q − i∆

(T )
U )(τ, n̂, ~K) =

1

2
[(1 + µ)2(1− 2i) + (1− µ)2(1 + 2i)][ξ1e2iφ + ξ2e−2iφ]∆̃+

p

+
1

2
[(1 + µ)2(1 + 2i) + (1− µ)2(1− 2i)][ξ1e2iφ + ξ2e−2iφ]∆̃−

p . (36)

Using the spin raising and lowering operators twice as following,

ð̄
2[(1± µ)2(1− µ2)eixµ] = [−ε̂(x)± iβ̂(x)][(1 − µ2)eixµ]

ð
2[(1± µ)2(1− µ2)eixµ] = [−ε̂(x)± iβ̂(x)][(1 − µ2)eixµ] (37)

where ε̂(x) = −12 + x2[1 − ∂2x]− 8x∂x and β̂(x) = 8x+ 2x2∂x, we can separate the CMB linearly

polarizations in terms of E-modes ∆
(T )
E and B-modes ∆

(T )
B

∆
(T )
E (n̂) ≡ −1

2
[ð̄2∆

+(T )
P (n̂) + ð

2∆
−(T )
P ]

∆
(T )
B (n̂) ≡ i

2
[ð̄2∆

+(T )
P (n̂)− ð

2∆
−(T )
P ]. (38)

As a result, we obtain

∆
(T )
E (η, n̂,~k) =

√
2[(1− µ2)e2iϕξ1(~k) + (1− µ2)e−2iϕξ2(~k)]

∫ η0

0
dηeixµST

P (k, η)[ε̂(x) cos(κ(η) +
π

4
)]

∆
(T )
B (η, n̂,~k) =

√
2[(1− µ2)e2iϕξ1(~k)− (1− µ2)e−2iϕξ2(~k)]

∫ η0

0
dηeixµST

P (k, η)[β̂(x) sin(κ(η) +
π

4
)].

(39)

The E-mode power spectrum is given as

C
(T )
El = (4π)2

∫

k2dkPh(k)(

∫ η0

0
dηeixµS

(T )
P (k, η)[ε̂(x)

cos(κ(η) + π
4 )

cos π
4

]
jl(x)

x2
)2, (40)
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FIG. 1: The B-mode power spectrum l(l + 1)/2π CBl is plotted in terms of l and in unit (µK)2

for the tensor to scalar ratio r = 0.07 (1a) and r = 0.09 (1b) in the case of CNB as Dirac

neutrino. This file contains the LCDM power spectra that are derived from Planck (2013)

parameters. Above curves indicate B-mode power spectrum in the presence of different effects

such as the tensor perturbations (dashed line), lens effects (dotted line), the tensor perturbations

in additional to lens effects (dotted-dashed line), Dirac CNB-CMB interaction, Compton

scattering in the case of scalar perturbations (tiny solid line) and all mentioned effects (thick

solid curve) and the recent observed data (Bicep/Keck Array) is added [7].

which is the same as that in the standard scenario for CMB polarizations without considering the

CNB-CMB interactions, except for an additional factor (
cos(κ(η)+π

4
)

cos π
4

)2. This factor becomes unit

if the CNB-CMB interaction (κ → 0) is neglected and the result of standard scenario for CMB

polarizations for the E-mode can be yielded. Using similar method , we obtain the power spectrum

of B-mode

C
(T )
Bl = (4π)2

∫

k2dkPh(k)(

∫ η0

0
dηeixµS

(T )
P (k, η)[β̂(x)

sin(κ(η) + π
4 )

sin(π4 )
]
jl(x)

x2
)2. (41)

Similar to the E-mode power spectrum C
(T )
El , the B-mode power spectrum C

(T )
Bl is the same as a

result of the standard scenario for CMB polarizations, except an additional factor (
sin(κ(η)+π

4
)

sin(π
4
) )2

which becomes unit when κ → 0. The expressions for the power spectra of E and B modes are

different in κ-dependent terms, also in the ε̂ and β̂ operators, which is obtained after the angular

integrals.

V. CONCLUSION.

The generation of the B-mode spectrum of CMB photons in the both cases of scalar and

tensor perturbations is calculated by using Quantum Boltzmann Equation for the density matrix or



10

20 50 100 200 500

10-4

0.001

0.01

0.1

l Hr=0.07L

lH
l+

1L
�2
Π

C
B

l

(a)

20 50 100 200 500

10-4

0.001

0.01

0.1

l Hr=0.05L

lH
l+

1L
�2
Π

C
B

l

(b)

FIG. 2: The B-mode power spectrum l(l + 1)/2π CBl is plotted in terms of l and in unit (µK)2

for the tensor to scalar ratio r = 0.07 (2a) and r = 0.05 (2b) by considering CNB as Dirac or

Majorana neutrino. This file contains the LCDM power spectra that are derived from Planck

(2013) parameters. Above curves indicate B-mode power spectrum in the presence of different

effects such as Dirac CNB-CMB interaction and Compton scattering in the case of scalar

perturbations (dashed line), Majorana CNB-CMB interaction and Compton scattering in the

presence of scalar perturbations (dotted line), the tensor perturbation in additional to lens effects

(dotted-dashed line), all mentioned effects by considering CNB as Dirac neutrino (tiny solid

curve) or Majorana neutrino (thick solid curve) and the recent observed data (Bicep/Keck Array)

is added [7].

Stokes parameters of CMB photons, taking into account both CMB-CNB interaction and Compton

scattering. As shown in Eqs.(23), (40) and (41), the power spectra of E-mode and B-mode of CMB

polarizations are modified in the presence of CNB-CMB interaction by considering CNB as Dirac

or Majorana neutrino. The most important point is that the B-mode is generated by the CNB-

CMB interaction in the presence of scalar perturbation. The value of B-mode power spectrum in

presence of tensor perturbation and CNB-CNB interaction C
(T )
Bl is modified by an additional factor

(
sin(κ(η)+π

4
)

sin(π
4
) )2 which becomes unit (similar to standard scenario for generating CMB polarizations)

when κ→ 0. The generated B-mode spectrum is approximately proportional to ∝ (αGF H−1
0 n̄ν)

2,

where n̄ν is the average CNB number density from the last scattering up to present time. As

discussed in Ref. [10], for the reason of neutrinos being left-handed and their gauge-couplings

being parity violated, linearly polarized photons acquire their circular and magnetic-like linearly

polarizations by interacting with neutrinos. It is important to mention that cosmic neutrinos can

be either Dirac or Majorana types, the rate of B-mode generation κ̇± for the Dirac neutrino case

is about twice less than the rate for the Majorana neutrino case [10].
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The B-mode power spectrum of CMB for different cases is plotted in Figs.(1) and (2). The results

show that the contribution of CNB-CMB interactions (for both cases of Dirac or Majorana CNB)

have caused an enhancement in CBl for l > 300, which could be used to show not only for the

evidence for CNB, since the CNB neutrinos have not yet been directly detected, due to their

weak interactions and very low energy, but also may it helps to distinguish that CNB is Dirac or

Majorana neutrino.

To end this article, we would like to emphasize that the r-parameter is usually calculated by

comparing B-mode and E-mode power spectrum and assuming that the observed B-mode is totally

attributed to the Compton scattering in the presence of tensor perturbations Cob
Bl = CT

Bl. However

our calculations show that other interactions like CNB-CMB interaction can have contribution to

the B-mode power spectrum in the presence of scalar mode CS
Bl. For this situation the observed

B-mode contains a contribution from scalar perturbation in additional to tensor one, so due to this

fact we have

r ∝ CT
Bl/C

S
El ∝ (Cob

Bl −CS
Bl)/C

S
El (42)

As result the exact value of r-parameter is suppressed see Fig.(2). By using Eqs.(17,22,23) and

above equation, ones can approximately estimate

r ≃ r∗ − sin2 κ̄ ≃ r∗ − κ̄2, (43)

where r∗ is the standard tensor to scalar ratio without considering CNB-CMB interaction. As

above equation shows that r is approximately suppressed by κ̄2 which is about κ̄2 ∼ 0.01 in the

case of CNB as Dirac neutrino and κ̄2|
M

∼ 0.04 in the case of CNB as Majorana neutrino.
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