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Abstract

We consider non-Abelian strings in N = 2 supersymmetric QCD with the
U(N) gauge group and Nf = N quark flavors deformed by a mass term for
the adjoint matter. This deformation breaks N = 2 supersymmetry down to
N = 1. Dynamics of orientational zero modes on the string world sheet are
described then by CP(N − 1) model with N = (0, 2) supersymmetry. We
study the string of a finite length L assuming compactification on a cylinder
(periodic boundary conditions). The world-sheet theory is solved in the large-
N approximation. At N = ∞ we find a rich phase structure in the (L, u)
plane where u is a deformation parameter. At large L and intermediate u we
find a phase with broken Z2N symmetry, N vacua and a mass gap. At large
values of L and u still larger we have the Z2N -symmetric phase with a single
vacuum and massless fermions. In both phases N = (0, 2) supersymmetry
is spontaneously broken. We also observe a phase with would-be broken
SU(N) symmetry at small L (it is broken only for N = ∞). In the latter
phase the mass gap vanishes and the vacuum energy is zero in the leading
1/N approximation. We expect that at large but finite N corrections O(1/N)
will break N = (0, 2) supersymmetry. Simultaneously, the phase transitions
will become rapid crossovers. Finally we discuss how the observed rich phase
structure matches the N = (2, 2) limit in which the world-sheet theory has
a single phase with the mass gap independent of L.



1 Introduction

Recently there was a considerable progress in the study of long confining
strings of a fixed length both on lattices [1, 2] and by constructing the effec-
tive theory on the string world sheet, see [3, 4]. In our recent paper [5] we
initiated a study of a closed non-Abelian string of a finite length L assum-
ing compactification on a cylinder with circumference L (periodic boundary
conditions).

Non-Abelian strings were first found in N = 2 supersymmetric gauge
theories [6, 7, 8, 9]. Later this construction was generalized to a wide class of
non-Abelian gauge theories, both supersymmetric and non-supersymmetric,
see [10, 11, 12, 13]. Both Abelian and non-Abelian strings have translational
modes associated with broken translation symmetries. The main feature of
the non-Abelian strings is the occurrence of extra moduli: orienational zero
modes associated with the color flux rotation in the internal space. Dynamics
of these orientational moduli is described by two-dimensional CP(N − 1)
model on the string world-sheet. The translational modes are completely
decoupled.

In [5] we studied both non-supersymmetric case as well as 1/2-BPS string
in N = 2 supersymmetric QCD. For non-supersymmetric case we found a
phase transition in the world-sheet theory in the N = ∞ limit. At large L
this theory develops a mass gap and is in the Coulomb/confinement phase.
Finite-length effects are exponentially suppressed. At small lengths it is in
the deconfinement phase.

N = 2 supersymmetric QCD has eight supercharges and, since our strings
are 1/2-BPS, the world-sheet CP(N−1) model hasN = (2, 2) supersymmetry.
In this case we found a single phase with a mass gap and unbroken supersym-
metry [5]. The mass gap turns out to be independent of the string length.

If we introduce a mass term for the adjoint matter in the bulk we break
bulk N = 2 supersymmetry down to N = 1 . The string remains BPS
saturated [14]. It was conjectured by Edalati and Tong [15] and confirmed
in [16] that the target space in the deformed model is CP (N − 1) × C.
The right-handed supertranslational modes become coupled to superorien-
tational ones, and the world sheet theory becomes heterotic model with
N = (0, 2) supersymmetry. It is important that this is a nonminimal model
(cf. [17]) well defined for all N .

In this paper we solve the above heterotic N = (0, 2) CP(N−1) model on
a cylinder with circumference L in the large-N approximation, assuming pe-
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riodic boundary conditions. Our solution is drastically different from the one
obtained in the N = (2, 2) case. First of all we observe three distinct phases
instead of one. Two phases (III and IV in Fig. 1) preserve the SU(N) global
symmetry. The finite-L effects are exponentially suppressed at large L and
intermediate values of the deformation parameter u, in much the same way
as in non-supersymmetric theory [5]. The parameter of deformation u is
related to the mass of the adjoint field in the bulk SQCD. The theory in
this phase has mass gap and N vacua; the discrete chiral Z2N symmetry is
spontaneously broken down to Z2.

As we increase u still keeping L large the theory undergoes a third order
phase transition into a phase with a single vacuum and unbroken Z2N . This
is a phase with massless fermions. A sketch of the full phase diagram of the
world sheet theory in the (L, u) plane is shown in Fig. 1.

SU(N) would be broken symmetric

broken

Z

Z

2N

2N

I

II III

IV
1

1/

=0 =0iD=0

(2,2) Supersymmetry 

Figure 1: (I) u < 1/N2 region corresponds to the N = (2, 2) solution re-
gardless of L; (II) u ≫ 1/N2 and L < 1/Λ region corresponds to the would
be broken SU(N) phase (nl fields develop VEV); (III) L > 1/Λ and large
u region represents the Z2N -symmetric phase with massless fermions; (IV)
L > 1/Λ and moderate u region represents Z2N -broken phase with massive
bosons and fermions.

2



As was the case for non-supersymmetric theory, we find a phase with
would-be broken SU(N) symmetry at small L. In the latter phase a mass
gap is zero in the leading approximation. Moreover, we find that the vac-
uum energy also vanishes at N = ∞. We expect corrections of higher
order in 1/N (or, perhaps, exponential corrections e−N ) to break N =
(0, 2) supersymmetry and lift the vacuum energy. We stress that SU(N) is
broken only when N = ∞. At large but finite N this and other phase
transitions turn into rapid crossovers.

We discuss how this rich phase structure evolves to the N = (2, 2) picture
with a single phase in the limit of zero deformation, u = 0.

In the N = (2, 2) problem supersymmetry is unbroken and we deal with a
single phase with an L independent mass gap (the latter property is dictated
by holomorphy [5]). The limit u → 0 turns out to be rather subtle. It turns
out that the relevant parameter which ensures the saddle point approxima-
tion used in the large-N method is uN2 rather than N . If the deformation
parameter u ∼ 1 the large-N limit ensures the validity of the quasiclassical
approximation in the effective one-loop action. However, at extremely small
u this approximation breaks down. To get a smooth u→ 0 limit we quantize
the holonomy of the two-dimensional gauge potential around the compact
spatial dimension of the string. The Polyakov line

exp

(

i

∫

dxkAk

)

(1.1)

depends only on time. Hence we consider a quantum-mechanical problem
averaging this operator over the appropriate wave functions. This gives us
the desired smooth u → 0 limit and we recover the N = (2, 2) result in the
narrow strip u ∼ 1/N2, see Fig. 1.

The paper is organized as follows. In Sec. 2 we review the large-N
solution of the heterotic CP(N − 1) model on the infinite two-dimensional
plane. In Sec. 3 we present the large-N solution for the heterotic string
compactified on a cylinder. In Sec. 4 we discuss the SU(N)-symmetric phase
with broken Z2N symmetry while in Sec. 5 we consider the Z2N unbroken
phase. In Sec. 6 we deal with the would be broken SU(N) phase. In Sec. 7
we discuss the u→ 0 limit at small L. Section 8 summarizes our conclusions.
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2 Heterotic N = (0, 2) CP(N − 1) model at

L = ∞

The heterotic N = (0, 2) CP(N − 1) model at L = ∞ was solved in [18] in
the large-N limit. In this section we will briefly review this solution. The
bosonic part of the action in the gauged formulation is

Sb =

∫

d2x
[

|∇kn
l|2 + 2|σ|2|nl|2 + iD(|nl|2 − r0) + 4|ω|2|σ|2

]

, (2.1)

where nl (l = 1, ...N) is a complex N -vector parametrizing the orientational
modes. Moreover,

∇k = ∂k − iAk .

Here Ak is the gauge potential, σ is a complex scalar field. The fields Ak,
σ and D belong to the gauge (vector) multiplet. These fields come without
kinetic terms and are auxiliary. Moreover, r0 is a coupling constant, while
ω is the N = (2, 2) deformation parameter. Eliminating D leads to the
constraint

|nl|2 = r0 . (2.2)

The fermionic part of the action is

Sf =

∫

d2x
[

ξ̄lRi(∇0 − i∇3)ξ
l
R + ξ̄lLi(∇0 + i∇3)ξ

l
L

+ i
√
2σξ̄lRξ

l
L + i

√
2n̄l(λRξ

l
L − λLξ

l
R)

+ i
√
2σ⋆ξ̄lLξ

l
R + i

√
2(λ̄Lξ̄

l
R − λ̄Rξ̄

l
L)n

l

+
1

2
ζ̄Ri∂LζR + (i

√
2ωλ̄LζR +H.c.)

]

, (2.3)

where ξlR,L are fermionic superpartners of nl (superorientational modes of
the string), λR,L are auxiliary fermions from the vector superfield, while ζR
is the right-handed supertranslational mode. In the N = (2, 2) model it was
decoupled. We do not include the bosonic translational modes describing
shifts of the string center. Nor do we include the left-handed supertransla-
tional mode ζL, because both decouple not only in the N = (2, 2) but in the
N = (0, 2) model as well [15, 16].
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The terms containing ζR or ω break N = (2, 2) down to N = (0, 2) . The
deformation parameter ω is complex and scales with N as [18]

ω ∼
√
N . (2.4)

It is determined by the mass parameter of the adjoint matter in the bulk
theory [16].

Integrating over λL,R leads to the constraints

n̄lξlL = 0 ,

ξ̄Rn
l = ωζR . (2.5)

Integrating over σ implies

σ = − i√
2(r0 + 2|ω|2)

ξ̄lLξ
l
R . (2.6)

Note that this model has an axial U(1) symmetry broken by the chiral
anomaly down to Z2N much in the same way as in the N = (2, 2) model
[19]. We find that σ develops a vacuum expectation value (VEV) which re-
sults in a spontaneous breaking of the discrete Z2N down to Z2. Moreover
as can be seen from (2.6), a non-zero VEV of the σ field corresponds to a
non-zero fermion bilinear condensate

〈

ξ̄lLξ
l
R

〉

.

Since both fields nl and ξl appear in the action quadratically we can
integrate them out. This produces the product of two determinants,

det−N
(

−∂2i + iD + 2|σ|2
)

detN
(

−∂2i + 2|σ|2
)

. (2.7)

The first determinant comes from the boson nl fields, while the second comes
from the fermion ξl fields. Note that if D = 0 the two contributions obviously
cancel each other, and supersymmetry is unbroken. Also, the non-zero values
of iD + 2|σ|2 and 2|σ|2 can be interpreted as non-zero values of the masses
of the nl and ξl fields, respectively. We put Ak = 0.

The final expression for the effective potential is (see [18])

Veff =

∫

d2x
N

4π

[

− (iD + 2|σ|2) ln iD + 2|σ|2
Λ2

+ iD

+ 2|σ|2 ln 2|σ|2
Λ2

+ 2|σ|2u
]

, (2.8)
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where the logarithmic ultraviolet divergence of the coupling constant is traded
for the finite scale Λ of the asymptotically free CP(N − 1) model. We also
introduced a dimensionless deformation parameter

u =
8π

N
|ω|2 , (2.9)

which does not scale with N .
To find the saddle point we minimize the potential with respect to D and

σ, which yields the following set of equations:

ln
iD + 2|σ|2

Λ2
CP

= 0 ,

ln
iD + 2|σ|2

2|σ|2 = u . (2.10)

The solution to these equations is

iD = Λ2(1− e−u) , and 2|σ|2 = Λ2e−u . (2.11)

The value ofD in this solution does not vanish, implying that supersymmetry
is spontaneously broken. We see that σ develops a VEV giving masses to the
nl fields and their fermion superpartners ξl. More exactly, the solution for σ
can also be written as

√
2σ = Λ exp

(

−u
2
+

2πik

N

)

, k = 0, ..., N − 1 , (2.12)

where the phase factor is not seen in Eq. (2.10). It comes as a result of a
chiral anomaly which breaks the chiral U(1) symmetry, U(1) → Z2N . The
field σ has the chiral charge 2. Thus a non-zero VEV of |σ| ensures that Z2N

symmetry is broken down to Z2 and there are N vacua presented in (2.12).
Substituting the solution (2.10) into (2.8) we obtain an expression for the

vacuum energy density

Vvac =
N

4π
Λ2(1− e−u) , (2.13)

which, as expected, vanishes in the limit u → 0 .
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3 N = (0, 2) model on a cylinder

The N = (2, 2) model on a cylinder was solved in the large-N limit in [5].
In this section we apply the same approach to N = (0, 2) model assuming
periodic boundary conditions both for bosons and fermions. Since the action
(2.1) and (2.3) is quadratic in nl and ξl we can integrate over these fields. We
assume that the compact dimension in the bulk theory is x1 and the string is
wrapped around this dimension. We will assume a nontrivial holonomy (1.1)
of Ak around this compact dimension. In the A0 = 0 gauge we will look for
a solution with A1 = const.

First consider the case when neither of the fields nl or ξl develop VEVs.
The expression for the effective potential is easily found,

V =
N

4π

(

iD − iD ln
m2

b

Λ2
−m2

f ln
m2

b

m2

f

+m2

fu

+ 8m2

f

∞
∑

k=1

K1(Lmfk)

Lmfk
cosLkA1

− 8m2

b

∞
∑

k=1

K1(Lmbk)

Lmbk
cosLkA1

)

, (3.1)

where we use an effective mass notation for the bosonic nl and fermionic ξl

fields,
m2

b = iD + 2|σ|2, m2

f = 2|σ|2, . (3.2)

Here K1(z) is the modified Bessel function of the second kind and the defor-
mation parameter u is related to the parameter ω as in (2.9). The first line
in (3.1) is the same as the one found in the case of the L = ∞ string (2.8),
while the second and third lines represent contributions arising due to the
finite length of the string. The potential (3.1) is periodic in the phase LA1,
with the period 2π, so we can assume that 0 ≤ LA1 < 2π.
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3.1 Saddle point approximation

To find VEVs of A1, of σ and iD we take derivatives of (3.1) with respect
to these fields. Then we obtain three equations,

VN,A1
= mb

∞
∑

k=1

K1(Lmbk) sinLkA1 −mf

∞
∑

k=1

K1(Lmfk) sinLkA1 ,

VN,σ⋆ = 2σ

[

− ln
m2

b

m2

f

+ 4

∞
∑

k=1

K0(Lmbk) cosLkA1

− 4

∞
∑

k=1

K0(Lmfk) cosLkA1 + u

]

,

VN,iD = − ln
m2

b

Λ2
+ 4

∞
∑

k=1

K0(Lmbk) cosLkA1 . (3.3)

One can see that the first equation is satisfied when either A1 = 0 or A1 =
π/L. However, unlike the bosonic theory [5], A1 = 0 corresponds to the
maximum of potential. The energy is lower if LA1 = π. This can be easily
understood. Consider the second and third lines in (3.1),

VA ∼ [mfK1(Lmf )−mbK1(Lmb)] cos(LA1) . (3.4)

On the one hand we know from the definition that mb ≥ mf . On the other
hand K1(x) decreases exponentially at large values of the argument. Thus,
at least for large L the potential EA = c× cos(LA1), where c > 0. Hence we
conclude that the minimum of the potential is at LA1 = π. This conclusion
is also supported by a numerical calculation, see Figs. 2,3. Below we assume
that

LA1 = π . (3.5)

As can be seen from the graphs in Figs. 2, 3 no solution with lower energy
exists for sufficiently small L and/or high enough value of the deformation
parameter. To explore this issue we need to find approximate analytical
solutions.
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Figure 2: V̄ ≡ 4πV vs string length L at the value of deformation parameter
u = 0.1. Solid line corresponds to A1 = π/L, while dashed line correcponds to
A1 = 0.

Figure 3: V̄ ≡ 4πV vs deformation parameter u at the sting length L = 4.5.

4 Z2N broken phase

Consider first the large-L domain or, more precisely, L ≫ 1/Λ. In addition
we assume that u is not very large. Then we use the second and third
equations in (3.3) to find the expressions for masses. Next, we use (3.1) to
find the vacuum energy.

We will show below that in the limit of large LΛ ≫ 1 and intermediate
u we have Lmb,f ≫ 1. If so, to find the boson and fermion masses we can
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apply the asymptotic behavior of the modified Bessel functions,

K0(z) ≈ K1(z) ≈
√

π

2z
e−z . (4.1)

Assuming that LA1 = π we arrive at the following expressions for masses:

m2

b ≈ Λ2

(

1−
√

8π

ΛL
e−ΛL

)

,

m2

f ≈ Λ2e−u

{

1−
√

8π

ΛL
e

u
4 e−ΛLe−u/2

}

. (4.2)

If L is large, LΛ ≫ 1, and the value of u is neither too large nor too small,
exponential corrections are small and mb,f are of order of Λ. This justifies
our approximation. As was already mentioned, mb and mf have a meaning
of masses for bosons nl and fermions ξl. Thus we have a non-vanishing mass
gap in this phase.

From (4.2) we find VEVs of D and σ,

iD ≈ Λ2

{

1− e−u −
√

8π

ΛL

(

e−ΛL − e−3u/4e−ΛLe−u/2
)

}

,

√
2σ ≈ Λ e−

u
2

{

1−
√

2π

ΛL
e

u
4 e−ΛLe−u/2

}

e
2πik
N , (4.3)

where k = 0, ..., (N − 1).
The presence of non-zero D signals that N = (0, 2) supersymmetry is

spontaneously broken. The vacuum energy is

E ≈ NLΛ2

4π

{

1− e−u +
2

ΛL

√

8π

ΛL

(

e−ΛL − e−u/4e−ΛLe−u/2
)

}

. (4.4)

The phase of σ in (4.3) is determined by the same phase factor as in
(2.12). We see that we have N degenerative vacua, in much the same way
as in the infinite volume case. The degeneracy is not due to supersymmetry
but due to the fact that the discrete chiral Z2N symmetry is broken down to
Z2.
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Our approximation assumes that both boson and fermion masses are large
as compared to 1/L. However, from (4.2) we see that mf exponentially
decreases at large u. Our approximation breaks down when we increase u
above the curve

LΛ ∼ e
u
2 . (4.5)

We will see in Sec. 5 that in fact on this curve σ becomes zero and the
theory goes into Z2N -symmetric phase.

4.1 Quantum mechanics: the u → 0 limit

It was shown in [5] that the VEV of the σ field in the CP(N −1) model with
N = (2, 2) supersymmetry does not depend on the string length. Since in
[5] L is not a holomorphic parameter, N = (2, 2) supersymmetry forbids the
effective twisted superpotential (which determines the σ VEV) to depend on
L.

The fact that L is not a holomorphic parameter in N = (2, 2) CP(N −1)
model is not a universal statement. Examples are known when L in combi-
nation with another variable form a holomorphic quantity. For instance, in
the case of N = 1 supergravity on R3 × S1 considered in [20] the radius of
S1 is combined with the dual photon field into one holomorphic parameter
which does enter the expression for the superpotential.

Our problem, however, does not fall in the above class. InN = (2, 2) CP(N−
1) there is no additional field to partner with the parameter L to make it
holomorphic. The conserved R charge in this model plays a custodial role,
see [5] and precludes L dependence of the superpotential.

More explicitly, one can expect that the effective twisted superpotential
can depend on dimensionless parameter σL, however U(1)R symmetry forbids
this dependence. This is because σ has U(1)R charge equal to 2 while L is
neutral 1. The L independence of the σ condensate ensues.

However, in the heterotic CP(N − 1) model supersymmetry is sponta-
neously broken. Thus one can expect the σ VEV to depend on the string
length. This is what we observe in Eq. (4.3). However, one can note that
the expressions for the boson and fermion masses (4.2) in the limit of van-
ishing u do not reduce to those obtained in the CP(N − 1) model with

1U(1)R symmetry is broken by chiral anomaly, however one can compensate for this
breaking if one assigns R charge equal to 2 to CP(N − 1) scale Λ.
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N = (2, 2) supersymmetry. It depends on the string length even if u = 0.
What is happening?

To resolve this puzzle in this section we note that the u → 0 limit turns
out to be in conflict with the quasiclassical approximation in the one-loop
effective action which we use in the large-N analysis. We will see below
that the relevant parameter is uN2. Thus, the change of regime we expect
to detect occurs at u ∼ 1/N2 and is not seen in the standard treatment.
We must remember that the value of LA1 is in its turn determined by a
quantum-mechanical problem. In other words, we must take into considera-
tion fluctuations of this quantal variable.

To detect this change of regimes we must consider a quantum-mechanical
problem for the Polyakov line (1.1) and average operators cos(LkA1) that
appear in the equations defining masses (3.3) over the ground state wave
function. The equations for the masses in the small-u limit become

ln
m2

b

Λ2
= 4

∞
∑

k=1

K0(Lmbk)χk ,

ln
m2

f

Λ2
= 4

∞
∑

k=1

K0(Lmfk)χk − u . (4.6)

where the χk is the average value of the operator cos(LkA1) defined as

χk =

∫ π

−π

LdA1|ψ|2 cos(LkA1) . (4.7)

Here ψ is the ground state wave function in quantum mechanics for LA1.
In this way we obtain the masses

m2

bπ ≈ Λ2

(

1 +

√

8π

ΛL
e−ΛLχ1

)

,

m2

fπ ≈ Λ2

(

1 +

√

8π

ΛL
e−ΛL

(

1 +
uΛL

2
− 3u

4

)

χ1 − u

)

, (4.8)

where we expand the expressions for masses mb and mf at large L and small
u. This expressions imply a smooth N = (2, 2) limit if χ1 vanishes with u.
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From equation (3.1) one can read off the action for the A1 quantal vari-
able,

S =

∫

dt

[

LȦ2
1

4e2
+

LN

4π

(

8m2

f

∞
∑

k=1

K1(Lmfk)

Lmfk
cos(LkA1)

−8m2

b

∞
∑

k=1

K1(Lmbk)

Lmbk
cos(LkA1)

)]

. (4.9)

In the large-L limit the equation for the wave function is given by

d2ψ

dφ2
+ (λ− 2q cos(2φ))ψ = 0 , (4.10)

where φ = LA1/2, and the parameter q is defined as follows:

q =
uN2e−ΛL

(2πΛL)3/2
ΛL , (4.11)

(please, observe its explicit dependence on uN2). This is the Mathieu equa-
tion. The solution for the wave function can be found numerically. The
averaged value of cos(LA1) is

χ1 = −0.99 at ΛL = 5 and uN2 = 109

χ1 = −0.85 at ΛL = 5 and uN2 = 105

χ1 = −10−3 at ΛL = 5 and uN2 = 101 . (4.12)

Thus we see that for large values of the deformation parameter the averaging
plays almost no role, and the saddle point approximation works well. How-
ever, as the deformation parameter gets smaller the averaged value of cosine
vanishes and the expression for fermion mass reduces to that obtained in the
N = (2, 2) model.

A more transparent albeit qualitative analysis can be carried out if we
use the harmonic oscillator approximation in our quantal problem. Then one
can find the averaged value of cosLA1 analytically,

χ1 ≈ −
√
uN2e−ΛL

(

2π

ΛL

)1/4

. (4.13)
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This result explicitly demonstrates vanishing of χ1 as the deformation pa-
rameter uN2 tends to zero. Thus we see that in the u → 0 limit the solution
of the N = (0, 2) model tends to that of the N = (2, 2) model in the interval
u ∈ [0, const/N2].

5 The Z2N unbroken phase

Now let us consider the region where u is large, i.e. u≫ log ΛL, see Eq. (4.5).
For the time being we assume that L is still large, L ≫ 1/Λ. We can find
approximate analytic solution for a curve in the (L, u) plane at which the Z2N

broken phase with N distinct vacua ceases to exist (see the phase diagram
in Fig. 1). This phase is terminated when the fermion mass (it is always
smaller or equal to the boson mass) reaches zero as we increase u. Assuming
that the fermion mass is close to zero so that Lmf ≪ 1 we can approximate
the sums of the Bessel functions in (3.3). Noting that cos(πk) = (−1)k we
use (A.3) with y = 0 to obtain the following expression for the fermion mass

(Lmf )
2S2 ≈ S1 + γ − ln

4π

ΛL
− u

2
, (5.1)

where S1,2 are defined in (A.3). Thus, the solution with non-zero mf exists
only below the curve

ΛL ≈ 4πeu/2−S1−γ . (5.2)

This formula gives a more accurate prediction for the curve (4.5) which was
obtained in the previous section. Moreover, the minimal string length is
ΛL ≈ 1.76. Numerical calculation also shows that the fermionic mass goes
to zero at finite values of both L and u, as can be seen from Fig. (4) and
(5).

Moreover it is clear from Figs. 4 and 6 that as L ≫ 1/Λ the fermionic
mass mf tends to Λe−u while iD tends to Λ2(1 − e−u), in agreement with
(4.2) and (4.3), respectively. One can also note that iD → 0 as u→ 0. This
is expected since the u = 0 limit corresponds to the N = (2, 2) model.

Above the curve (5.2), the only solution of the second equation in (3.3)
is

σ = 0 , (5.3)

while the boson mass

m2

b ≈ Λ2

(

1−
√

8π

ΛL
e−ΛL

)

(5.4)
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Figure 4: Fermion mass mf vs string length L at the value of the deformation
parameter u = 0.1.

Figure 5: Fermion mass mf vs deformation parameter u at L = 4.5.

is still given by the same expression as in the Z2N broken phase, see (4.2).
Note that the Z2N unbroken phase we have observed is quite remarkable.

On the phase transition line N vacua fuse to one, a family of split Z2N -
symmetric vacua does not emerge. We will discuss this circumstance later.
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i

Figure 6: iD vs L at the value of the deformation parameter u = 0.1.

ii

Figure 7: iD vs the deformation parameter u at L = 4.5.

5.1 The Lüscher term.

Using the expression (A.13) from Appendix we find that the vacuum energy
in this phase is independent on u and given by

E ≈ LNΛ2

4π

(

1 +
2

ΛL

√

8π

ΛL
e−ΛL

)

− πN

6L
. (5.5)

The second term here is the Lüscher term [22]. It arises due to massless
fermions. Note, that it equals to half of what we found for non-supersymmetric
theory [5] where it comes from bosons. The reason is that now the gauge
holonomy is non-trivial, A1 = π/L. Moreover, the same reason ensures that
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although the Lüscher term in (5.5) comes from fermions it still gives negative
contribution to the energy as compared to the non-supersymmetric case.

The vacuum energy (5.5) can be compared to the vacuum energy in the
Z2N broken phase below the curve (5.2) in the limit of Lmf ≪ 1,

E ≈ LNΛ2

4π

(

1 +
2

ΛL

√

8π

ΛL
e−ΛL

)

− πN

6L
− NS2

4πL
(Lmf )

4 . (5.6)

The energy difference is approximately given by the last term above. Equa-
tion (5.1) tells us that the energy difference behaves as ∼ (L− Lc(u))

2 near
the phase transition curve, where Lc(u) is given by (5.2).

In summary, we conclude that as we increase u and cross the curve (5.2)
our system goes through a line of third order phase transitions into the phase
with σ = 0. All N vacua coalesce in the σ plane and Z2N symmetry is
restored. In the infrared limit our theory in this phase flows to a conformal
limit which is a free theory of massless fermions ξl.

5.2 What happens with the Aµ auxiliary field in the
Z2N unbroken phase

As we move into the Z2N unbroken phase by increasing u we could, in prin-
ciple, observe two distinct scenarios: the N former vacua of the Z2N bro-
ken phase which fuse themselves into σ = 0 in phase III, in fact, split in
energy, with N − 1 of them becoming quasivacua, and only one of them
remaining as the true vacuum. This phase would be quite similar to the
Coulomb/confinement phase in the non-supersymmetric CP(N − 1) model
[21, 5].

The second option is to have just a unique vacuum at σ = 0, with no
accompanying family of quasivacua. One can decide between the two options
by analyzing the auxiliary field Aµ.

We need to evaluate the two diagrams shown in Fig. (8). The first
diagram comes from bosons nl. In much the same way as in the non-
supersymmetric CP(N − 1) model it produces a kinetic term for the photon
in the Lagrangian,

1

4e2
F 2

kl , (5.7)

where at large L the expression for the charge e2 is given by

1

e2
≈ N

12πΛ2
. (5.8)
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Figure 8: One loop diagrams that contribute to the photon kinetic term.

This makes U(1) gauge field dynamical [21]. In the non-supersymmetric
model this leads to confinement of electric charges. The reason is that the
static Coulomb potential in two dimensions is linear and ensures that the
charged nl states are linearly confined in the non-supersymmetric model [21].
Similar Coulomb/confining phase occur in the compactified non-supersymmetric
CP(N − 1) model at large L [5]. Confinement of nl states can be interpreted
as a small split between quasivacua involved in the θ-angle evolution [25, 26].
In this picture the nl states are interpreted as kinks interpolating between
true vacuum an the first quasivacuum.

On the other hand, in our N = (0, 2) theory we have also the second
diagram coming from massless fermions. It produces a mass term for the
photon

V (A1) =
N

2π

(

A1 −
π

L

)2

. (5.9)

Evaluation of the coefficient N/2π is presented in Appendix B. This term is
a manifestation of the chiral anomaly and appears in much the same way as
in the Schwinger model.

Therefore, the photon obtains a mass

mγ ≈
√
12Λ . (5.10)

The photon mass ensures the exponential fall-off of the electric potential
between charged sources. Thus, there is no confinement in the σ = 0 phase
of our (0,2) supersymmetric CP(N − 1) model.

This ensures the absence of fine vacuum structure with split quasivacua.
In fact there is no θ dependence in the theory with massless fermions, and the
argument of [25] does not apply. We have a single vacuum with the unbroken
Z2N symmetry and no family of quasivacua in the σ = 0 phase (i.e. phase
III in Fig. 1). This is a new phase in the CP(N − 1) model which was not
known before.
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6 Would be broken SU(N) phase

Now let us consider the region of small L. At small L the theory enters a
weak coupling regime so we expect the emergence of the classical picture in
the limit N → ∞. Classically CP(N −1) model has 2(N−1) massless states
which can be viewed as Goldstone states of the broken SU(N) symmetry. To
study this possibility much in the same way as in [5, 27] we assume that one
component of the field nl, say n1 ≡ n can develop VEV and we integrate over
all other components of nl in the external fields n, σ D and A1. However
now in order not to break supersymmetry by the boundary conditions we
have to leave out one component of ξ fields as well. Due to the constraint
(2.5) we can choose these components to be ξNL,R ≡ ξL,R. The expression for
the energy is

E =
LN

4π

[

iD − iD ln
m2

b

Λ2
−m2

f ln
m2

b

m2

f

+m2

fu

+ 8m2

f

∞
∑

k=1

K1(Lmfk)

Lmfk
cos(kLA1)− 8m2

b

∞
∑

k=1

K1(Lmbk)

Lmbk
cos(kLA1)

]

+ L
[

(m2

b + A2

1
)|n|2 + i

√
2σξ̄RξL + i

√
2σ⋆ξ̄LξR

]

+ iξ̄LξLLA1 − iξ̄RξRLA1

+ N

[

√

m2

f + A2
1
−
√

m2

b + A2
1

]

, (6.1)

where the first two lines are the same as in (3.1), the third and fourth lines
correspond to components which we left out of integration, and the last line
gives the contribution due to omission of the zero modes.

19



6.1 Saddle point approximation

Proceeding as in the SU(N) symmetric case we obtain the following set
equations that defines a stationary point

0 = (m2

b + A2

1
)n , (6.2)

0 =
√
2σξL − ξRA1 = σ⋆ξR + ξLA1 , (6.3)

|n|2 =
N

L

[ 1

2
√

m2

b + A2
1

+
L

4π
ln
m2

b

Λ2
− L

π

∞
∑

k=1

K0(Lmbk) cos(kLA1)
]

, (6.4)

0 = N
[2Lmb

π

∞
∑

k=1

K1(Lmbk) sin(kLA1)−
2Lmf

π

∞
∑

k=1

K1(Lmfk) sin(kLA1),

− A1
√

m2

b + A2
1

+
A1

√

m2

f + A2
1

]

+ 2LA1|n|2 + iLξ̄LξL − iLξ̄RξR (6.5)

0 = Li
√
2ξ̄LξR + 2σ

[

L|n|2 +N
(

− 1

2
√

m2

b + A2
1

+
1

2
√

m2

f + A2
1

+
L

π

∞
∑

k=1

K0(Lmbk) cos(kLA1)−
L

π

∞
∑

k=1

K0(Lmfk) cos(kLA1)
)

,

+
LN

4π

(

u− ln
m2

b

m2

f

)]

. (6.6)

From (6.2) we conclude that mb = A1 = 0. Then (6.5) does not have a
solution unless σ = 0. We also see that ξ̄L,R = ξL,R = 0 satisfies the above
system of equations. We find that nl field develops a vacuum expectation
value

|n|2 = N

2π

(

ln
4π

ΛL
− γ

)

, (6.7)

which implies in turn that this solution exists only for ΛL ≤ 7.05. The energy
is found to be zero as in the supersymmetric case, see phase I in Fig. (1).

This phase is similar to the dynamical regime we found previously in
the non-supersymmetric CP(N − 1) model [5]. In particular, the VEV of
nl breaks global SU(N) symmetry implying the presence of 2(N − 1) real
massless degrees of freedom. As we already mentioned the dynamics of the
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CP(N−1) model in this phase is determined by quasiclassical approximation
in the action (2.1). At small L the theory is at weak coupling because the
inverse coupling constant r is determined by

r =
N

2π
log

1

LΛ
. (6.8)

The constant r grows large at small L.
However, we do not expect exactly massless modes to appear in 1 +

1 dimensions because of Mermin-Wagner-Coleman’s theorem [23, 24]. We
found the above solution in the leading order in 1/N . It holds only in the
limit N = ∞. Thus, we should expect higher order corrections to modify the
result. In particular, the would-be Goldstone massless modes may acquire
small masses suppressed in the large N limit. As a consequence the energy
might be uplifted from zero.

The solution that we found is completely u-independent. Thus we expect
that the vacuum energy in the would be broken phase is given by Ebr which
is independent on u and suppressed at large N .

7 Quantum mechanics at small L:

u → 0 limit

Now we have to study the limit u → 0 at small L where the theory should
match the N = (2, 2) CP(N−1) model which has a single SU(N) symmetric
(Z2N broken) phase with the mass gap independent of L. Clearly the would
be broken SU(N) phase cannot explain this limit because it is u-independent.
Our analysis in this section has a qualitative nature. As we have already seen,
for the case of large L the transition occurs at uN2 ∼ 1 where the large-N
approximation strictly speaking is not applicable.

Below we argue that the SU(N) symmetric phase reappear again when
we go to the limit of extremely small u keeping L small, L≪ 1/Λ. Assuming
that both Lmb,f ≪ 1 in this phase we use (A.13) to find the expression for
the potential valid for LA1 close to π

V (Ã1) ≈
NL2

π
Ã2

1

(

m2

b −m2

f

)

S2 , (7.1)

where Ã1 ≡ A1−π/L. By analogy with (5.1) one can find the expression for
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the bosonic mass

(Lmb)
2S2 ≈ S1 + γ − ln

4π

ΛL
. (7.2)

Thus the expression for the potential is given by

V (Ã1) ≈
Nu

2π
Ã2

1 , (7.3)

Hence, as u gets smaller the potential becomes weaker and flatter. When
LA1 gets close to 0 or 2π the above expression becomes invalid. The results
of numerical calculations are given in Fig. (9). Two curves correspond to two
values of deformation parameter u = 0.05 and u = 0.1 (dashed curve). One
can see that the expression we derived is in a good agreement with numerical
results. As u gets smaller the amplitude of the potential also decreases.

1 2 3 4 5 6 LA1

0.1

0.1

0.2

0.3

V1

Figure 9: Dependence of potential V̄1 ≡
πL2

2N
V on the deformation parameter u.

We see that in the limit u → 0 the potential V (Ã1) becomes flat and we
have to average over A1 (instead of taking the saddle point value A1 = π/L)
in much the similar way as we did in Sec. 4.1 for the region of large L. The
averaging procedure gives us N = (2, 2) limit.

More exactly the vacuum energy in SU(N) symmetric phase at extremely
small u is given by

Esym ≈ uN

4π
Λ2L . (7.4)

Comparing this with the vacuum energy Ebr in the would be broken
SU(N) phase which is independent of u we see that at very small critical
uc ∼ 1/N2, the energy in the SU(N) unbroken phase becomes lower then
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that in the SU(N) broken phase, and the system undergoes a phase transition
into SU(N) symmetric phase, see Fig. 1. The SU(N) symmetric phase has a
perfectly smooth u→ 0 limit.

8 Conclusions

To summarize, we find three different phases, see Fig 1. At large L and
intermediate values of the deformation parameter u there is a phase with a
mass gap, N vacua and broken discrete Z2N symmetry. As we increase u a
reach a critical value (which grows with L) we find a phase transition to the
Z2N symmetric phase, with a unique vacuum. The line separating these two
SU(N) symmetric phases is a line of a third order phase transitions in the
large N limit.

As the string under consideration gets shorter we find a phase transi-
tion to a phase with the would be broken SU(N) symmetry (phase II). In
this phase we expect masses of the n fields to be much smaller than in two
SU(N) symmetric phases. In fact, at N = ∞ they vanish. At small L and
extremely small u we expect another phase transition from the would be
broken SU(N) phase into the SU(N) unbroken phase which has a smooth
u→ 0 limit.

Strictly speaking, our description of the underlying dynamics in terms of
the phase transitions is valid only at N = ∞. At large but finite N one can
expect that all phase transitions become rapid crossovers.
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Appendix A:

Relations for modified Bessel functions

In this Appendix we derive all the relations for the sums of modified Bessel
functions of the second kind used in the text. We will use the following
asymptotic behavior

K1(z) →
1

z
as z → 0 , (A.1)

as well as the properties of derivatives

K0(z)
′ = −K1(z) and K ′

1(z) = −K0(z)−
K1(z)

z
, (A.2)

and the following approximations, valid to order O(y2, z2) (see formula 8.526
in [28])

∞
∑

k=1

K0(zk) cos(yk) =
γ

2
+

1

2
ln

z

4π
+

π

2
√

z2 + y2
+ S0(2y

2 − z2) + δ0 ,

∞
∑

k=1

K0(zk)(−1)k cos(yk) =
γ

2
+

1

2
ln

z

4π
+
S1

2
+
S2

2
(2y2 − z2) + δ1 , (A.3)

where δ0,1 ∼ y2z2 and we defined the sums

S0 =

∞
∑

l=1

π

(2πl)3
≈ 0.015 , S1 =

∞
∑

l=1

1

l(2l − 1)
≈ 1.386 ,

S2 =

∞
∑

l=1

1

π2(2l − 1)3
≈ 0.107 . (A.4)

To find the sum involving cosine we notice that on one hand

d

dz

(

z

∞
∑

k=1

K1(zk)

k
cos(yk)

)

= −z
∞
∑

k=1

K0(zk) cos(yk) , (A.5)

and on the other hand

d

dy

(

∞
∑

k=1

K1(zk)

k
cos(yk)

)

= −
∞
∑

k=1

K1(zk) sin(yk) , (A.6)
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moreover the following relation also holds

d

dz

(

∞
∑

k=1

K0(zk) cos(yk)

)

= − d

dy

(

∞
∑

k=1

K1(zk) sin(yk)

)

, (A.7)

where we used (A.2) several times.
First using (A.5) and the expansion from (A.3) we find to order O(y2, z2)

∞
∑

k=1

K1(zk)

k
cos(yk) ≈ −π

√

z2 + y2

2z
− z(2γ − 1)

8
− z

4
ln

z

4π

− S0zy
2 +

f1(y)

z
(A.8)

where f1(y) depends on y.
Now using (A.7) and approximation (A.3) we find that

∞
∑

k=1

K1(zk) sin(yk) ≈
πy

2z
√

z2 + y2
− y

2z
+ 2S0zy + f2(z) , (A.9)

where f2(z) is a function which depends on z. Since LHS vanishes when
y = 0 and z 6= 0 we conclude that f2(z) = 0. Now from (A.6) we find that

∞
∑

k=1

K1(zk)

k
cos(yk) ≈ −π

√

z2 + y2

2z
+
y2

4z
− S0zy

2 + f3(z) , (A.10)

where f3(z) depends on z.
To fix f1(y) and f3(z) we use the property (A.1) and find that

∞
∑

k=1

K1(zk)

k
cos(yk) →

∞
∑

k=1

cos(yk)

zk2
=

1

z

(

y2

4
− πy

2
+
π2

6

)

. (A.11)

Thus we conclude that

∞
∑

k=1

K1(zk)

k
cos(yk) ≈ −π

√

z2 + y2

2z
+
y2

4z
+
π2

6z
− S0zy

2

− z(2γ − 1)

8
− z

4
ln

z

4π
. (A.12)
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In a similar way we find that

∞
∑

k=1

K1(zk)

k
(−1)k cos(yk) ≈ −z(2S1 + 2γ − 1)

8
− z

4
ln

z

4π

− π2

12z
+
y2

4z
− S2

2
zy2 . (A.13)

Appendix B:

Photon mass

In this Appendix we derive an expression for the photon mass. Due to gauge
invariance both the diagrams in Fig. (8) have to be of the form

Πij = Π(p2)
(

p2δij − pipj
)

. (B.1)

Below we show that for the second diagram Π(p2) has a pole which means
that photons acquire mass. We put p1 = 0 and evaluate Π11:

Π11 = − 1

L

[

∞
∑

k=−∞

∫

∞

−∞

dq0
2π

2q2
1
− 2q0(p0 + q0)− 2m2

1

(q20 + q21 +m2
1)(p

2
0 + 2p0q0 + q20 + q21 +m2

1)

− [m1 ↔ m2]
]

, (B.2)

where m1 is the fermion mass, which we put to zero at the end, m2 is the
mass of Pauli-Villars regulator, and q1 is a discrete momentum

q1 =
2πk

L
+ A1 =

π

L
(2k + 1) . (B.3)

We introduce Feynman parameter x and substitute integration variable q0 =
l − p0x

Π11 = − 1

L

[

∞
∑

k=−∞

∫

∞

−∞

∫

1

0

dldx

2π

2q21 − 2m2
1 + 2p20x(1− x)− 2l2

[l2 +m2
1 + q21 + xp20 − x2p20]

2
−[m1 ↔ m2]

]

,

(B.4)
where terms linear in l drop out. Integrating over l one finds

Π11 =
1

L

[

∞
∑

k=−∞

∫

1

0

dx
m2

1

[m2
1 + q21 + xp20 − x2p20]

3/2
− [m1 ↔ m2]

]

, (B.5)
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and since m1 = 0 the first term vanishes and only the contribution from the
regulator remains. To integrate over x we use third Euler’s substitution

√

−p20x2 + p20x+m2 + q21 =
√

−p20(x− x1)(x− x2) = t(x− x1) . (B.6)

One can easily check that neither of the roots belong to the interval x ∈
[0, 1] and thus this substitution is justified. After integration we obtain the
following sum

Π11 = − 1

L

∞
∑

k=−∞

m2
2

(q21 +m2
2 +

p2
0

4
)
√

q21 +m2
2

≈ − 1

L

∞
∑

k=−∞

m2
2

(q21 +m2
2)

3/2
, (B.7)

where we ignore p0 compared to m2. Evaluating this sum (see Appendix in
[5]) we finally obtain (setting m2 → ∞)

Π11 = −1

π
, (B.8)

which tells us that Π(p2) indeed contains a pole

Π(p2) = − 1

πp2
(B.9)

and the photon becomes massive.
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