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Abstract

This letter provides a superfield based approach to constructing a collinear slice of N = 1 su-
perspace. The strategy is analogous to integrating out anti-collinear fermionic degrees-of-freedom
as was developed in the context of soft-collinear effective theory. The resulting Lagrangian can be
understood as an integral over collinear superspace, where half the supercoordinates have been inte-
grated out. The application to N = 1 super Yang-Mills is presented. Collinear superspace provides
the foundation for future explorations of supersymmetric soft-collinear effective theory.

Supersymmetry (SUSY) is a powerful framework for

exploring the properties of quantum field theory. There

are many examples of extraordinary results derived

for SUSY models, for instance the exact NSVZ β-

function [1], Seiberg duality [2], Seiberg-Witten the-

ory [3, 4], and the finiteness of N = 4 SUSY Yang-Mills

(SYM) [5]. Identifying models that manifest SUSY in

non-trivial ways has yielded many fruitful developments,

see [6–13] for recent examples. In this letter, we explore

a new class of N = 1 SUSY effective field theory (EFT)

models which live on a “collinear slice” of superspace;

defining this collinear superspace is the subject of this

letter.

The connection between collinear superspace and

gauge theories becomes apparent in the infrared (IR),

where the physics can be largely inferred from the pres-

ence of soft and collinear divergences. There is a rich

history associated with the IR structure of gauge theo-

ries. For example, a correspondence between the coeffi-

cients of Sudakov logs in Yang-Mills theory and the cusp

anomalous dimension of Wilson loops was discovered as

early as 1980 [14]. The importance of these IR effects

helped lead to the discovery of Soft-Collinear Effective

Theory (SCET) [15–22], which is a powerful formalism

developed for resumming the IR divergences occurring

for processes that are dominated by soft (low momen-

tum) and collinear degrees of freedom; see [23, 24] for

reviews. There exists an ever growing literature explor-

ing practical applications of SCET to heavy meson de-

cays [21, 22, 25, 26], LHC collisions [27–31], and even

WIMP dark matter systems [32–34]. Our purpose here

is to lay the groundwork for supersymmetrizing SCET, in

hopes of further illuminating non-trivial aspects of field

theory.

SCET can be understood in terms of a mode expan-

sion, where a power-counting parameter λ is used to sep-

arate degrees-of-freedom that are “near” a light-like di-

rection, thereby capturing the IR dynamics as an ex-

pansion in λ, from the “far” modes. Integrating out

these “anti-collinear” degrees-of-freedom yields the effec-

tive Lagrangian of SCET. Note that this procedure ob-

scures the underlying Lorentz invariance of the theory,

leaving behind the constraints known as reparameteriza-

tion invariance (RPI) [35]. Given its spacetime nature, it

is unclear that SUSY can be preserved in any meaningful

way. Our main result is to show how collinear superspace

packages a SCET Lagrangian in a language that makes

the SUSY of the EFT manifest.

To derive the collinear limit for a fermion requires in-

tegrating out the anti-collinear modes, which in prac-

tice are half of the full theory fermion helicity degrees

of freedom (the momenta of the EFT fields are also con-

strained). This procedure guides the construction here:

the EFT can be characterized in terms of half the su-

percharges for N = 1 SUSY – the other half of the su-

persymmetries are non-linearly realized. We refer to this

as “integrating out” half of superspace, which leave be-

hind a collinear subsurface of superspace. Our procedure

for deriving collinear superspace, which should be gen-

erally applicable to a wide class of SUSY EFTs, can be

described by the following algorithm:

General Algorithm

• Find projection operators that separate the superfield

into collinear/anti-collinear superfields [e.g. Eq. (10)].

• Starting with the superspace action for the full theory,

integrate out the entire anti-collinear superfield. This

will yield a constraint equation [e.g. Eq. (14)].

• Based on the constraint equation, guess an ansatz for

the equation of motion for the anti-collinear superfield

in terms of collinear degrees-of-freedom [e.g. Eq. (16)].

• Plug the ansatz into the full theory action to yield the

superspace action of the effective theory [e.g. Eq.(19)].

In what follows, we will apply this procedure to the ex-

plicit case of N = 1 SYM.
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To begin, we will provide some conventions. The

SUSY EFT is defined in Minkowski space with signa-

ture gµν = diag (+1,−1,−1,−1). The collinear direction

is taken along the ẑ light-cone direction: nµ = (1, 0, 0, 1).

The anti-collinear direction is defined by n2 = 0 = n̄2

and n · n̄ = 2. It is usually convenient to make the

explicit choice n̄µ = (1, 0, 0,−1). Four vectors are ex-

panded as pµ = (n · p, n̄ · p, ~p⊥), where “⊥” refers to the

two directions perpendicular to both n and n̄. A state is

collinear to the light-cone when it lives within a momen-

tum shell which scales as pµn ∼ (λ2, 1, λ), where λ ≪ 1 is

the SCET power counting parameter. The virtuality for

the collinear modes in the effective theory p2 ∼ λ2 can be

interpreted as closeness to the light cone. Similarly, an

anti-collinear momenta scales as pµn̄ ∼ (1, λ2, λ). Fields

also scale as powers of λ; the power counting rules can

be inferred from the appropriate kinetic terms, and must

be necessarily tracked when determining the order of a

given operator.

As discussed previously, studying the collinear fermion

EFT will provide insight for the derivation of collinear

superspace. A two-component left-handed Weyl

spinor can be decomposed into collinear and anti-

collinear momentum modes using projection operators;

u = (Pn + Pn̄)u = un + un̄, where

Pn =
n · σ
2

n̄ · σ̄
2

Pn̄ =
n̄ · σ
2

n · σ̄
2

. (1)

These also correspond to chiral projection operators that

distinguish the fermion’s spin states in the collinear

limit (a detailed discussion of two-component collinear

fermions will be given in a forthcoming paper [36]). The

anti-collinear modes un̄, which scale as O(λ2), are power

suppressed relative to the collinear ones un ∼ O(λ).

Therefore, un̄ should be integrated out using the clas-

sical equation of motion:

un̄ = − n̄ · σ
2

1

n̄ · D
(

σ̄ · D⊥

)

un, (2)

yielding the following Lagrangian for a charged collinear

fermion

Lu = i u†
n

(

n · D + σ̄ · D⊥

1

n̄ · D σ · D⊥

)

n̄ · σ̄
2

un , (3)

where D is the covariant derivative appropriately power

expanded when acting on collinear fields, and the non-

local operator is defined in terms of its momentum eigen-

values, see e.g. [23, 24].

The gauge bosons of the full theory can simply be ex-

panded as Aµ = Aµ
n+Aµ

n̄, with a corresponding gauge La-

grangian for each sector L = − 1

4
(Fµν

n )
2− 1

4
(Fµν

n̄ )
2
. Note

that the gauge field is decomposed into components that

scale as momentum along the collinear, anti-collinear,

and perpendicular directions. Thus the field strength

i g Fµν
n =

[

Dµ,Dν
]

scales inhomogeneously with λ. How-

ever, after contractions the gauge boson Lagrangian den-

sity does scale homogeneously: F 2 ∼ λ4. In what follows,

we focus on the collinear modes, as the soft modes can be

decoupled at leading power by a field redefinition [23, 24].

Collinear superspace is on-shell, i.e., only physical

degrees-of-freedom will be present in the Lagrangian.

To this end, it is convenient to work in Light Cone

Gauge (LCG) which corresponds to the non-(space-

time)-covariant gauge choice n̄ ·A = 0, see e.g. [37] for a

review. Additionally, the mode n · A is non-propagating

in this gauge (with respect to light-cone time) – it can be

integrated out by solving the classical equation of motion.

The two remaining bosonic physical degrees of freedom,

the transverse components of the gauge field, can be re-

cast as a complex scalar A, defined by

∂⊥ ·An⊥ ≡ −∂∗A− ∂A∗, (4)

where ∂ and ∂∗ are also implicitly defined by this equa-

tion [37]. Then L = − 1

4
F 2
n → A∗

2A+ Lint.

For concreteness, our focus here is on-shell N = 1

SYM. The fermionic degree of freedom un (the single

remaining spin state in the EFT after the SCET projec-

tion) is the collinear gaugino whose superpartner is the

bosonic light cone scalar A. In [36], we will provide a

detailed derivation of the corresponding collinear SCET

Lagrangian along with a demonstration that it passes

checks necessary for EFT consistency, e.g. RPI.

The N = 1 supercharges are defined by the graded

algebra
{

Qα, Q
†
α̇

}

= 2 σµ
αα̇ Pµ, where the spinor and anti-

spinor indices run over α, α̇ = 1, 2. Power counting the

generator of translations Pµ = i ∂µ as appropriate for

collinear momenta, yields the scaling of the algebra in

the EFT:

{

Qα, Q
†
α̇

}

= 2 i

[

n · ∂
√
2 ∂∗

√
2 ∂ n̄ · ∂

]

αα̇

∼
[

O(λ2) O(λ)

O(λ) O(1)

]

, (5)

from which we can infer

Q2 ∼ O(1) , Q1 ∼ O(λ) ,

Q†

2̇
∼ O(1) , Q†

1̇
∼ O(λ) .

(6)

To leading power, only one supercharge (Q2) is present

in the EFT. Expressing the supercharges as differential

operators in superspace, and expanding on the light cone

yields;

Q2 =
(

i ∂
∂θ2 − θ̄2̇ n̄ · ∂ −

√
2 θ̄1̇ ∂

)

,

Q1 =
(

i ∂
∂θ1 − θ̄1̇ n · ∂ −

√
2 θ̄2̇ ∂∗

)

,
(7)

with analogous expressions for the conjugate charges.
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Coordinate θ1 = θ2 θ†1̇ = θ†
2̇

θ2 = −θ1 θ†2̇ = −θ†
1̇

Scaling λ−1 λ−1 1 1

TABLE I. Power counting for the superspace coordinates.

Therefore the scaling of the momentum operator, and

the supercharges as given in Eq. (6), induce a non-trivial

scaling of the superspace coordinates, see Table I. Hence,

two out of the four N = 1 superspace Grassmann coor-

dinates have a high virtuality and should not play a role

in the EFT.

In terms of yµ = xµ + i θσµθ†, the superspace deriva-

tives are D̄α̇ = −∂/∂θ†α̇. Table I implies that they scale

as D̄
2̇
∼ O(1) and D̄

1̇
∼ O(λ). To leading order in λ,

{D2, D̄2̇
} = −i n̄ · ∂ ∼ O(1), while all other components

of the anti-commutator are suppressed.

Chiral and anti-chiral SCET superfields are defined

such that they obey the EFT chirality condition, D2Φ
† =

0 = D̄
2̇
Φ. The physical degrees of freedom of the SCET

LCG vector multiplet can be repackaged into a chiral su-

perfield. Enforcing the chirality condition in the EFT,

the chiral superfield Φ takes the form;

Φ = e−
i

2
θ†2̇θ2 n̄·∂

(

A∗ + θ2 u∗
n,2

)

= A∗ + θ2 u∗
n,2 −

i

2
θ†2̇ θ2 n̄ · ∂A∗ , (8)

where in the second line we have converted from yµ to

xµ coordinates, dropped terms that are subleading in λ,

and suppressed a gauge index in the case of non-Abelian

fields. There is only one complex fermionic degree of

freedom in Φ, and it obeys Pn u
∗
n = u∗

n,2, since the spin

up state has been projected out. Similarly, we have in-

tegrated out only one (spin-up) anti-collinear fermionic

degree of freedom; this depends on the specific choice for

n̄µ.

The (on-shell) SUSY transformations of the compo-

nent fields in the EFT follow from the SCET expansion

of the charges in Eq. (7). Additionally, they are consis-

tent with the expected component transformations of a

chiral superfield:

δηun,2 = i
√
2 η†2̇ n̄ · ∂A , δηA =

√
2 η2 un,2 , (9)

where we have used (n · σ)
22̇

= 2. The collinear SCET

Lagrangian is invariant under these transformations [36].

Now that we have explored some general aspects of

marrying SCET and SUSY, we will focus our attention

on a specific example. In the rest of this letter, we will

apply the general algorithm presented above to the free

Abelian gauge theory. Then we will conclude by quoting
the result for non-Abelian gauge theory [36].

Since SUSY is a good symmetry, the projection oper-

ators acting on the gauginos of a vector multiplet imply

that the entire superfield obeys the decomposition:

V = V † = Pn V + Pn̄ V = Vn + Vn̄ , (10)

where the projection operators are defined in Eq. (1).

Using un,1 = 0 = un̄,2, the collinear and anti-collinear

on-shell superfields are

Vn = −θ1 θ†1̇ n ·An −
√
2
(

θ1 θ†2̇A∗
n + θ2 θ†1̇ An

)

+ 2 i θ1 θ2 θ†2̇ u∗
n,2̇

− 2 i θ†1̇ θ†2̇ θ2 un,2 ,

Vn̄ = −θ1 θ†1̇ n ·An̄ − θ2 θ†2̇ n̄ ·An̄ −
√
2
(

θ1 θ†2̇ A∗
n̄ + θ2 θ†1̇ An̄

)

+ 2 i θ1 θ2 θ†1̇ u∗
n̄,1̇

− 2 i θ†1̇ θ†2̇ θ1 un̄,1 , (11)

where we have fixed the LCG condition n̄ ·An = 0.

The action for the Abelian theory is

S =

∫

d4xd2θWαWα + h.c. , (12)

where Wα is a chiral superfield which in Wess-Zumino

gauge is

Wα = − i

4
D̄D̄ Dα

(

Vn + Vn̄

)

, (13)

where DD = DαDα and D̄D̄ = D̄α̇D̄
α̇.

The anti-collinear vector superfield can be integrated

out using the variation of the superspace action. This

yields a superspace constraint equation, DαWα = 0,

which encodes the equation of motion for Vn̄;

(

−162+ 4 iDα
(

σ · ∂
)

αα̇
D̄α̇

)

(

Vn + Vn̄

)

= 0 . (14)

It is instructive to see that the equations of motion for

the component fields that are integrated out in the EFT,

un̄ and n ·An, are equivalent to this constraint equation.

To isolate the leading order fermionic components of the

vector superfield expanded in Eq. (11), apply D̄
2̇
to the

constraint equation:
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D̄
2̇
D2

(

σ · ∂
)

22̇
D̄2̇ Vn̄ = −D̄

2̇
D1

(

σ · ∂
)

12̇
D̄2̇ Vn ;

=⇒ un̄,1 =

√
2 ∂∗

n̄ · ∂ un,2 , (15)

which reproduces the expected equation of motion for

the anti-collinear gaugino, see Eq. (2). Additionally, it is

straightforward to show that Eq. (14) integrates out the

unphysical gauge polarization n·An, thereby reproducing

the LCG Lagrangian.

This motivates an ansatz for the equation of motion of

the anti-collinear vector superfield:

Vn̄ = −Vn − 1

n̄ · ∂D2 D̄1 D1

D̄
2̇
DD

(

D̄
2̇
D1 Vn

)

− 1

n̄ · ∂ D̄
2̇
D1 D̄1̇

D2 D̄D̄
(

D2 D̄1̇
Vn

)

. (16)

Both nontrivial terms are required to ensure the reality

condition Vn̄ = V †
n̄ . Dividing by superspace derivatives

is well-defined by taking a super-Fourier transform and

considering momentum and super-momentum eigenval-

ues. Eq. (16) satisfies the constraint equation Eq. (14).

Furthermore, it reproduces the component equations of

motion for unphysical degrees of freedom. For example,

projecting with D2D̄1D1 reproduces Eq. (15).

In the LCG EFT the remaining physical degrees of

freedom un and A form a chiral superfield. This can be

justified in superspace by taking projections on a vector

superfield Eq. (11), for instance

Φ ≡ D̄
2̇
D1 Vn

∣

∣

∣

θ1=0=θ†1̇

=
√
2A∗+ 2 i θ2u∗

n,2 + i
√
2 θ2θ†2̇ n̄ · ∂A∗, (17)

which obeys the chirality constraint D̄
2̇
Φ = 0; for

the anti-chiral multiplet, simply take the conjugate of

Eq. (17). Therefore, the ansatz for integrating out the

anti-collinear modes Eq. (16) can be expressed in terms

of the chiral and anti-chiral superfields.

After some manipulations, the action Eq. (12) is

S ∝
∫

d4xd4θ D̄
1̇
Dα

(

Vn + Vn̄

)

D̄
2̇
Dα

(

Vn + Vn̄

)

. Us-

ing Eq. (16) to integrate out the anti-collinear superfield

yields the EFT action1

L =

∫

d4θ

(

1

n̄ · ∂ D̄
1̇

D1 D̄ D̄
(

D2D̄1̇
Vn

)

)(

1

n̄ · ∂ D1

D̄1̇ DD
(

D̄
2̇
D1Vn

)

)

=

∫

dθ2 dθ†2̇ dθ†1̇ dθ1
1

D1 D̄1̇

(

D1 D̄D̄
(

D2D̄1̇
Vn

)) 1

(n̄ · ∂)2
(

D̄1̇ DD
(

D̄
2̇
D1Vn

))

=

∫

dθ2 dθ†2̇ Φ†
n

D̄D̄D2D̄2̇
DD

(n̄ · ∂)2
Φn =

∫

dθ2 dθ†2̇ Φ†
n

i2

n̄ · ∂Φn ⊂ i u∗
n,2

(

n · ∂ +
∂2

⊥

n̄ · ∂

)

un,2 +A∗
2A , (18)

which reproduces the expected equation of motion in the

free theory. We conclude that integrating out the anti-

collinear fermion translates into integrating out two su-

perspace coordinates, namely θ1 ∼ 1/λ and θ†1 ∼ 1/λ,

while θ2 ∼ 1 and θ†2 ∼ 1 remain in the EFT. Note that

in the above calculation we can identify the various pro-

jections of Vn with a chiral superfield by Eq. (17) in the

EFT.

Finally for completeness, we quote the result for the

collinear superspace LCG Lagrangian in N = 1 SYM.

This model is invariant under the SUSY transformations

Eq. (9) and meets additional requirements such as RPI

demonstrating that it is a consistent collinear EFT [36]:

L =

∫

dθ2dθ†2̇
[

Φ†a 2

n̄ · ∂Φ
a+2 g

(

fabcΦa Φ†b ∂⋆

n̄ · ∂Φ
c + h.c.

)

+2 g2 fabcfade 1

n̄ · ∂
(

ΦbD̄
2̇
Φ†c

) 1

n̄ · ∂
(

Φ†dD2Φ
e
)

]

. (19)

1 Recall that
∫
dθαDα(. . . ) is a total derivative in real space, and

therefore we can drop surface terms when using integration by
parts if we assume that they vanish sufficiently fast at infinity.
In SCET, integration by parts is well defined for the inverse
derivative operator 1/n̄ · ∂ because it can be cast in terms of

its momentum space representation. By analogy we extend this
argument and use integration by parts on 1/D operators in the
following calculation.
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Note that the form of this expression is what one would

have naively obtained by supersymmetrizing the pure

LCG Yang Mills Lagrangian [37]. In this sense, the on-

shell collinear EFT makes SUSY transparent. While sim-

ilar expressions to Eq. (19) do exist in the literature for

N = 4 SYM [5, 38], the present work simultaneously pro-

vides the first application to collinear fields along with

a general algorithm that can be used to derive the La-

grangian.

In conclusion, this letter has provided a framework for

studying SUSY in the collinear limit. A general algo-

rithm for deriving an EFT defined on collinear super-

space was proposed, and it was applied to the case of an

N = 1 Abelian superfield. We also provided the result

for a non-Abelian theory. In a followup work [36], we

will provide a more complete treatment of the EFT per-

spective, including a detailed discussion of the remain-

ing symmetries of the EFT, and an explanation of how

the Super-Poincare generators reduce to RPI. This will

provide the groundwork for many interesting extensions,

including models with a larger number of supercharges,

and even perhaps theories of collinear supergravity.
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