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ABSTRACT: We compute the Rényi entropy and the supersymmetric Rényi entropy
for the six-dimensional free (2,0) tensor multiplet. We make various checks on our
results, and they are consistent with the previous results about the (2,0) tensor
multiplet. As a by-product, we have established a canonical way to compute the
Rényi entropy for p-form fields in d-dimensions.



1. Introduction

Entanglement entropy (EE) and Rényi entropy have been intensively studied in re-
cent years. They not only play important roles in quantum information theory and
condensed matter physics, but also bring new insights into high energy physics.
For instance, in the context of conformal field theories the entanglement entropy
in even dimensions is related to the conformal anomaly [1], while both entangle-
ment entropy and Rényi entropy can be computed holographically [2,3]. Combining
the ideas of supersymmetric localization [4-6] and Rényi entropy, one can also de-
fine the supersymmetric refinement of the ordinary Rényi entropy on the branched
sphere [7]. Interestingly, the supersymmetric Rényi entropy enjoys universal rela-
tions with central charges in even dimensions, which provides a new way to derive
the Hofman-Maldacena bounds [§].

Let us briefly review these concepts. Suppose the space on which the theory is
defined can be divided into a piece A and its complement A = B, and correspondingly
the Hilbert space factorizes into a tensor product H = H4 ® Hp. The density matrix
over the whole Hilbert space is p; then the reduced density matrix is

pAi=trgp. (1.1)
The entanglement entropy is the von Neumann entropy of pa,
Spi=—trpalogpa, (1.2)

while the Rényi entropies are defined to be

Sp =

1_nlogtr(pA)". (1.3)

Assuming that a satisfactory analytic continuation of S, can be obtained, we can
alternatively express the entanglement entropy as the n — 1 limit of the Rényi

entropies:
1in%Sn =Sg. (1.4)

In ref. [1], Casini, Huerta and Myers proposed a way to compute the Rényi
entropy of a general CFT for a spherical entangling surface X in flat space RL4-1,
One first considers the causal development D of the ball enclosed by ¥ and then
observes that D can be conformally mapped to a “hyperbolic cylinder”, R x H¢d-1.



The curvature scale of H? ! matches the radius of ¥, R, and the vacuum of the CFT
in the original spacetime is mapped to a thermal bath in the hyperbolic cylinder with

temperature
1

TR
Further a unitary transformation connects the original reduced density matrix p and

T, (1.5)

the thermal density matrix pinerm:

0 =U" phermU . (1.6)

Since the definition (1.3) is invariant under unitary transformation, the Rényi entropy
across % in flat space is then equal to the Rényi entropy of piherm- Taking the n-th
power of pgherm 18 equivalent to setting the temperature to 7' = Ty/n. A similar Weyl
transformation can map the hyperbolic cylinder to de Sitter space. Writing the trace
in terms of Euclidean path integral, we have

Sh (log Z,[S}] - nlog Z;[S%]) (1.7)

-n
- ﬁ (log Z,[SE x H*'] - nlog Z;[S' x H*]) . (1.8)
These identities are generally true for both non-supersymmetric and supersymmetric
Rényi entropies of all CEFTs. However, these quantities defined in (1.7) and (1.8) in
general are UV divergent. One therefore has to extract “universal part” free of
ambiguities. More precisely, by “universal part” we mean the finite term in odd
dimensions but the log term in even dimensions. For further discussions on the
universal terms in both odd and even dimensions we refer to [1].

The concept supersymmetric Rényi entropy was first studied in three dimen-
sions [7,10,11], and later generalized to four dimensions [8,12,13] and five dimen-
sions [14,15]. By turning on certain background gauge fields (chemical potentials)
and using the supersymmetric localization technique, one can calculate the partition
function Z,, on the n-branched sphere, and define the supersymmetric Rényi entropy:

GSUSY _ logZ,,(p(n)) — nlogZ,(0)
" 1-n '

(1.9)

It is a supersymmetric refinement of the ordinary Rényi entropy, which is in general
non-supersymmetric because of the conic singularity. The quantities defined by (1.9)
are in general UV divergent, but one can extract universal parts free of ambiguities.
This becomes particularly clear in even dimensions. For instance, for A’ =4 SYM in
four dimensions, the log coefficient of supersymmetric Rényi entropy as a function
of n and three chemical potentials fiq, yi2, 3 (corresponding to three U(1) Cartans
of SO(6) R-symmetry respectively) has been shown to be protected from the inter-
actions [12]. It also received a precise check from the holographic computation of



the BPS 3-charge topological AdS black hole in five-dimensional gauged supergrav-
ity [12]. The above facts indicate that supersymmetric Rényi entropy may be used
as a new robust observable to understand superconformal field theories (SCFTs).

Our main concern in this work is six-dimensional (2,0) superconformal field the-
ories. While it is easy to identify a free Abelian tensor model that realizes (2,0)
superconformal symmetry, the existence of interacting (2,0) theories was only in-
ferred from their embedding into particular constructions in string theory [16-18]. It
is not yet understood how to formulate interacting (2,0) SCFTs. Furthermore, it is
believed that the relevant or marginal deformations preserving (2,0) supersymme-
try do not exist [19,20]. Therefore, as the initial start we will mainly focus on free
Abelian tensor multiplets in the present work.

There are some previous works on the Rényi entropy of 6d CFTs. In [21] and [22],
the shape dependence of entanglement entropy for general 6d CFTs was initially
studied ! and some concrete results of entanglement entropy for (2,0) theories were
also presented in [22]. Based on these works, in [24] the authors investigated the
shape dependence of Rényi entropy, where they pointed out that the n-dependence
of Rényi entropy across a non-spherical entangling surface (with vanishing extrinsic
curvature) is actually determined by that across a spherical one in flat space.

In this note we provide the first direct field-theoretic calculation of the Rényi en-
tropy and the supersymmetric Rényi entropy for the most interesting six-dimensional
SCFTs, the (2,0) theories. We compute the Rényi entropy S,, explicitly by carefully
analyzing the contribution of the two-form field with self-dual strength. The result
receives quite a few consistency checks. Namely, our Rényi entropy result at n =1
is consistent with [22,25], while the first derivative 0,5, at n =1 and the two-point
correlator of stress tensor [26] satisfy the relation proposed in [27]. Furthermore, the
second derivative 025, at n = 1 and the three-point correlator of stress tensor [26]
satisfy the relation proposed in [28]. We also obtain the supersymmetric counterparts
of the Rényi entropy for the tensor multiplet, which behave reasonably simple as a
function of n because of supersymmetry.

The note is organized as follows. In Section 2, we calculate the Rényi entropy for
the six-dimensional (2,0) tensor multiplet, and perform various checks on the result.
In Section 3, we turn on the chemical potential and compute the supersymmetric
Rényi entropy for several cases. We conclude in Section 4 and leave the explicit
analysis of Killing spinor equations in Appendix A.

2. Rényi entropy of 6d free CFT's

The Rényi entropy of 6d CFTs in RS associated with a 4d spherical entangling surface
S* can be computed using the thermal partition function on a hyperbolic space

See [23] for further investigations.



St x H5. The partition function Z(3) on S}g x H® can be computed from the heat
kernel of the gapless Laplacian A,

° dt

08 Z(8) =5 [~ T Kepan(t) 2.1)

where K (t) is defined as the trace of the kernel of the operator A

K@= ) = [d/GR @D, Kny)=(de®y) . (22)
Since Sé x HP is a direct product, the kernel is factorized,
Ks}ifo’ (1) = Ks}g (t) Kps () - (2.3)

The heat kernel on S! is given by

5 _82m?2
Ka (t) = e 4 24
SB( ) \/HWWZQ;EZ ( )

The hyperbolic space H? is homogeneous and therefore the volume Vi factorizes
Kys(t) = f PG Kys (z,2,1) = Vs Ks (0,1) | (2.5)

where Vi = m2log(R/e) is the regularized volume of HP. e is the UV cutoff of the
theory and R is the curvature radius of the hyperbolic space.
2.1 Complex scalar

The heat kernel of a complex scalar on HP® is given by

K50 (t) = Jﬁ (2 + %) | (2.6)

The free energy can be computed by (2.1)

F¥(B) 1= ~log 2(8) = 150055 (-87 = 1) 2.7

and the Rényi entropy is given by

nF(B=2r)-F(B=2nm) (n+1)@Bn*+1)(3n*+2)V;
i l1-n - 151207205 '

S5 (2.8)

This reproduces the Rényi entropy result of conformal scalars first presented in [29].



2.2 Weyl fermion

The heat kernel of a Weyl fermion on HP is given by (we have taken into account
2151/2 = 4 components)

Vs 20t 9
The free energy can be computed by (2.1) with anti-periodic boundary conditions
along S!
FI(B) = ——=—(4967* + 98072 32 + 9453 2.10
(8) = gago s (196" + 980732 + 94531) (2.10)

and the Rényi entropy is given by

o - (n+1) (1221n* + 27602 + 31) Vs
no 12096072n> '

(2.11)

This reproduces the Rényi entropy of massless fermions first presented in [28].

2.3 Two-form

One has to be careful about the heat kernel computation of Rényi entropy for p-
form fields. To do this, we employ the general results of eigenvalue distributions for
Hodge-de Rham operator of p-form fields in N-dimensional hyperbolic space [30],

Tr Ky (2,20 8) = Vi f X p(X) e PPt (2.12)
where p := 2= and the trace has been taken for both indices ji;-+u, and coordinates

x. The elgenvalue distribution p(\) is given by

=z

) - 200

(A2+ %) (N odd) , (2.13)
WAL D (p-pP] 5

Hat

where cy, g(p) and Qy are defined as

(2.14)

One may want to first reproduce the known Rényi entropy result of gauge field
in 4d by using (2.12). In that case, p=1 and N = 3. Therefore,

c3=—, glp=1)=2, Qo=4r. (2.15)
7r

The eigenvalue distribution p(\) is

A2 +1
— .

1(A) = (2.16)

™



The heat kernel of a 1-form field on H?3 is given by

2t +1

KHT-JB (t) = ng .

(2.17)

With this kernel the Rényi entropy can be computed by evaluating the partition

function (2.1)
v (n+1)BIn2+1) V4
S, = S0 . (2.18)

After adding up with a constant discrepancy between entanglement entropy .S,

and 4a4, where a4 is the standard gauge field a-anomaly coefficient, we are able to
reproduce the known Rényi entropy of a 4d gauge field

(91n3 +31n2+n+1) V3
SY_, = . 2.19
d=4 3607n3 (2.19)

Notice that the physical degrees of freedom of the 4d Abelian gauge field (photon) is

two, hence we learn from the 4d exercise that the formula (2.12) actually takes into
account all the physical degrees of freedom for the p-form field.

Now we turn to two-form field in 6d, which corresponds to p =2 and N =5. In
this case,

8 872
Cs =—, g(p:2):67 94:_' (220)
s 3
The eigenvalue distribution is
A2+1)(N2+4
() = ( 2);3 ) . (2.21)

The kernel of a 2-form field on HP is given by
2t(8t+5)+3

Ko (1) = Vo o5y (2.22)
With this kernel the Rényi entropy is obtained as
1 4 2+2
Sv, - (n+1)(87Tn*+3M?+2) Vs . (2.93)

504072nb

Notice that this should not be the final result of the Rényi entropy for a 2-form field
in 6d, as we have not yet considered the boundary contribution on the entangling
surface [31]. Since the boundary modes are staying on the fixed surface under the
n-orbifolding, their contribution is independent of n and then becomes a constant
shift. Therefore we can compute it at n = 1 and use the result for general n.

Let us first figure out the precise value of the complete entanglement entropy
of a 2-form field. Recall that the universal relation between the a-anomaly and

the entanglement entropy for a general CFT in even dimensions has been shown in
Ref. [1]

SEE = (—1)%_140,61 lOg(R) , (224)

€



where a4 is the A-type trace anomaly in d dimensions, i.e.,?
<Tuu> = an[n—2(_1)%adEd- (2.25)

E, and [, are the Euler density and the Weyl invariants of weight —d in d dimensions
respectively. Due to the linear relation (2.24), one can make use of the known results
of the a-anomalies, the ratios between the a-anomalies of one complex scalar field,
one Weyl fermion and one two-form field [25],2

., 5x2 191 221
s e = Ty g T T

(2.26)

On the other hand, the ratios between the entanglement entropies of one complex
scalar (2.8), one Weyl fermion (2.11) and one two-form field are supposed to be

2 Vs 191 V5

s .6l ogv oo 2 b, = Th.gv 2.27
n—1 n—1 n—1 756 7T2 7560 7T2 n—1 ( )

Demanding that (2.26) and (2.27) are equal (because of (2.24)), one can solve

. 221V

= —. 2.28

Now comparing this “correct” value with the n — 1 value of direct heat kernel result
(2.23), we obtain the discrepancy

221 229\ Vs 4345
AS' == | 5= - 2.9
5 (210 630) w2 630 72 (2.29)
Therefore, the correct Rényi entropy of a 2-form field in 6d should be
2 4 5
S =58+ ASY = (n+1) (37n®+2) + 877n" + 4349n° Vs 2.30)

5040n5 w2

This is one of our new results.

2.4 (2,0) tensor multiplet

A six-dimensional (2,0) tensor multiplet includes five real scalars, two Weyl fermions
and one 2-form field with self-dual strength. The 2-form field with self-dual strength
can also be considered as a chiral 2-form field which has half of the degrees of freedom.
Putting the contributions of all fields together, we get the Rényi entropy of the (2,0)
tensor multiplet

0 _e Sh o oer, Sh_ (n+1)(28n° +3) +313n! + 1305n° Vs
n - 2 n =

2 2880n5 w2

(2.31)

2We follow the convention in [1].
3The precise value of a-anomaly may be different under different normalizations. However, the
ratios are independent of the normalization.



The entanglement entropy of the (2,0) tensor multiplet is given by

v
S0 _ g0 TV (2.32)

el o 2
The first and second derivatives at n =1 are
1Vs

2020 _4Vs
Y s, - 1%

(2,0) -
0,57 = Lo

(2.33)

A few consistency checks are in order.

e The entanglement entropy (2.32) is consistent with the result (2.12) in [22] for
a spherical entangling surface S*, if one takes into account a factor difference
1ON3 [25] between the trace anomaly of (2,0) tensor multiplet and that of the
large-N theory of coincident M5-branes. It is also consistent with (2.29) in [25]
if one adopts the normalization condition —ﬁﬁ fgb‘ Eg =2.

e The first derivative —%% is consistent with the coefficient of the two-point
correlator of the stress tensor in the (2,0) tensor multiplet, which is given
by [26]

84
Cr = prl (2.34)

By consistency we mean the universal relation between the first derivative of
Rényi entropy at n =1 and Cr in any CFT as shown in [27]

m21T(df2)(d - 1)
(d+1)!

* | =—Vol(H1)

n=1—

Cr. (2.35)

Using (2.34) we indeed find that our result 8“57(‘2’0)‘71:1 =-15

relation (2.35) for d = 6.

satisfies the

4Vs
9 72

correlator of the stress tensor in the (2,0) tensor multiplet. The relation be-

e The second derivative is consistent with the coefficients of the three-point

tween S]”_; and the coefficients A, B and C in the three-point correlator of the
stress tensor was derived in [28]:

47Td+1
= Vol(H*) ((4d® - 10d + 8).A - dB - (10d - 8)C) .
1 3EEr =) TN ) (€ +8)4 ( )C)
(2.36)
The coefficients A, B and C for the (2,0) tensor multiplet are given in [26]:
26.34 181-24.32 59.23.33
A== 5279 b=- 5279 0 7T 52pd (2:37)

As discussed in [28], for the complex scalar there is a mismatch between the
known result for S!”_; and the one derived from the right hand side of (2.36). For

n



d = 6 this mismatch is compensated by a factor %g’ Since we have calculated

the Rényi entropies for the complex scalar and for the (2,0) tensor multiplet
explicitly, the expected result for (2.36) is given by
113 5

SRS [agsggm‘w _ gags,i\m]

11V;
=——. 2.

25 72 (2:38)
One can check that this indeed agrees with the right hand side of (2.36) by

using (2.37).

3. Supersymmetric Rényi entropy

Now we study the supersymmetric Rényi entropy of the free tensor multiplet. To pre-
serve supersymmetry, one has to turn on an R-symmetry background gauge field to
twist the boundary conditions for scalars and fermions along the replica direction [32].
In the manifold Séz%m
potential along Sé, therefore the heat kernel along the circle has a phase shift. The

x H®, this is equivalent to turning on an R-symmetry chemical

kernel (2.4) becomes

~ B _B2m?2 i »
Ko (t) = —/—— e @ Ti2mmp immf , 3.1
S}g( ) \/m m¢z();ez ( )

where f = 0 for scalars and f =1 for fermions. Using this twisted kernel one can
perform the same computations of partition functions as what has been done in
Section 2. These partition functions are functions of the chemical potential u. In
consideration of supersymmetry, p has to be a function of n and it should be vanishing
at n =1 since we do not need additional background field for the manifold S}s:zw x H®,
which is conformally equivalent to a round six-sphere. The explicit function p(n)
can be found by solving Killing spinor equation either on a branched S8 or on S}, x H?°
since it is invariant under Weyl transformation.
The supersymmetric Rényi entropy is defined as

SSUSY nFl(Ol)_—fn(M) . (3.2)

Similar to the case in 4d, it is also convenient to extract the extra contribution due
to the nontrivial chemical potential,

AS = S5USY g (3.3)

For a complex scalar,

Ve pA(p+1)? (=2p% =20+ 5n2 + 1)

A S
5'(w) 360m2(n — 1)n5



For a Weyl fermion,

~ Ve p (16p* = 2002 +135n* - 50 (2p% = 1) n? +7)

f
AST) 144072(n - 1)nd

(3.5)
Notice that AS/(u) is an even function of p, but AS*(u) is not. Also note that
the effective chemical potential for a dynamical field depends on the product of the
R-charge and the value of the background field.

3.1 R-symmetry chemical potential

Following the same way of the construction of 4d supersymmetric Rényi entropy, we
may first look at the Killing spinors on a branched six-sphere S8. By solving the
Killing spinor equations one can determine the R-symmetry chemical potential for
the Killing spinor, u(n). The explicit computation is performed in Appendix A, and
we find that for d = 6: 1

1u(n) = ”T . (3.6)
This same result has been obtained by explicit computations in d = 2,3,4,5 [7, 10,

12,15,33).

3.2 Supersymmetric Rényi entropy

The R-symmetry group of 6d (2,0) theories is SO(5), which has two U(1) Cartans.
To compute the supersymmetric Rényi entropy of the tensor multiplet we first look
at the R-charges (k1, ko) of the component fields under the two Cartans, as listed in
Table 1, where (¢!, 4?) and (¢3,9*) are two Weyl fermions, and ®! := ¢! +i¢? and
®2 := 3 + i are two complex scalars.

Table 1: charges under two U(1) Cartans

wl ,¢2 wS w4 B;w (I>1 (I>2 ¢5
ki o+ -2 -1+l 0 41 0 0
ke -1 +1 -1 +1 0 0 +1 0

3.2.1 A single U(1)

If we only turn on a single U(1) chemical potential, for instance A? = 0, by the
constraint (3.6) of the Killing spinor equation, the background field should be

Al=n-1. (3.7)

From Table 1, we see that there are two Weyl fermions charged |k;| = 1/2 and one
complex scalar charged ki = 1. The supersymmetric Rényi entropy is then computed

10



Sp=SE0 L AS (n=n-1)+2A8 (= (n-1)/2) = Y (

T2

6n+1)

Tom (3.8)

3.2.2 Two same U(1)’s

Now we turn on two U(1) chemical potentials with the same value, A! = A2. Since
the Killing spinors are charged under both two Cartans (we only consider the Killing
spinor with R-charges of the same sign |k; + ks| = 1), under the constraint (3.6) the

background field should be

Al= A? = ”T_l . (3.9)

From Tabel 1, we see that there are one Weyl fermion charged |k + k2| = 1 and two
complex scalars charged +1, so the supersymmetric Rényi entropy is

913+ 192 +n+1) Vs

Sy =SP4 2AS (= (n-1)/2) + AST (u=(n-1)/2) =

19272n3
(3.10)
3.2.3 Two generic U(1)’s
We can also consider two U(1) chemical potentials given by
Al=(n-1a, A?*=(n-1)(1-a), (3.11)

where a is a real deformation parameter. In this case, there are one complex scalar
with chemical potential A, one complex scalar with chemical potential A2 and two
Weyl fermions with chemical potential (A!— A2?)/2 and (A!+ A?)/2 respectively. The
supersymmetric Rényi entropy is

Al A2 Al 4 A2
Sy = S0 L AS (= AN + ASS (= A?) + ASY (= )+ ASH (= ; )
(Cgﬂs + CQ?’L2 + C’ln + CO) ‘/5
= 197773 , (3.12)
where the coeflicients are
Cy=a*-2a®+a*,
Ci = a-4a® +6a® - 3a*,
Cy =1+ 3a®-6a>+3a*,
Cs=6-a+2a°-a". (3.13)

For a = 1, the result is the same as Eq. (3.10) for the case with two same U(1)’s.

11



4. Discussion

In this note we have discussed the Rényi entropy and the supersymmetric Rényi
entropy for the six-dimensional (2,0) tensor multiplet with a spherical entangling
surface. The results are consistent with the existing results in the literature.

It would be interesting to go further to compute the supersymmetric Rényi en-
tropy for the interacting (2,0) theory and finally establish the TBH;/qSCFTg corre-
spondence following the same spirit of TBH,/qSCFT}3 [10] and TBH;5/qSCFT, [12].

As a by-product, we have calculated the Rényi entropy for a 2-form field in six
dimensions. This approach could be generalized to other cases with gauge symmetry;,
for instance higher forms or graviton. This opens up the possibility of computing
the (supersymmetric) Rényi entropy for more field theories.
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A. Killing spinors on S¢

As discussed in the introduction, in order to compute the supersymmetric Rényi
entropy, we need to solve the Killing spinor equation on the branched sphere. Let us
consider the branched six-sphere S¢ given by the metric

2
dsg ~

2 - dip? + sin®1 [dx2 +sin?y (dp2 +sin?p (d@2 +n2sin0 dr? + cos?0 d¢2))] , (A1)

where n is the branching parameter. The vielbeins are chosen to be

el =0dy, e! = (siny siny sinp df
e? = (sin dy , e’ = nlsiny siny sinpsind dr , (A.2)
e3 = siny siny dp, 5 = (siny siny sinp cosf d¢ .

12



The nonvanishing components of the spin connections are

wil = —w)lf = cost, wp' = —wy* = cosysiny sing,

wZ’l w13 = cosy siny, wg? = —wat = cosy sinp,

wZQ wg?’ = cosy, wgd = —wit = cosp,

w3l = —w!5 = pcosy siny sinpsing wgl = wéﬁ = cost) siny sinp cosd , (A.3)
w3? = —w? = ncosysinpsing , wgz = —wiﬁ = cos) sinp cosf ,

w3 = —w? = ncospsind wg?’ = —w;;”)ﬁ = cospcost ,

w3t = —w1 = ncosh, wg4 = —w;‘)ﬁ = —sinf.

The Killing spinor equation for the round S°

1 1
V;LC = 8,u§ + szbfyabg = —27%C (A4)

has the solution
3 1 1 1 1 1
¢ = e 3NY p3M2X 3723 37340 3 V45T p571360 Co, (A.5)

where (p is a constant spinor, and 7;; := 1(7;7; = 7;7%). For the branched sphere SS,
the Killing spinor equation becomes

O + %w Yo = =5 gwé (A.6)
In a special choice of the basis
Y1=019Ix1I,
YVo=0901®I,
V3=03001 1,
Ya=03®02®1, (A7)

Y5 =03® 03807,

Y6 =03®03® 02,

where o; (1 =1,2,3) are the Pauli matrices, and the constant spinor

( 0
C1
C1
0
0

C2

Co = (¢1, ¢ : constants) , (A.8)

Co

| 0

13



Eq. (A.6) is equivalent to the following Killing spinor equation, if we turn on a
background gauge field A, and require that the solution ¢ for the round S° remains
as a solution on the branched sphere S8:

1 , )
DyC = 0 + i + 1A = =576 (A.9)

where the background gauge field is

dr. (A.10)

If we choose a different Killing spinor with the same y-matrices and the same constant
spinor (p:
E: es Ny 6%712)( 6%7230 6%7349 6%745T 6%736¢ G, (A.11)

it satisfies another Killing spinor equation
= ~ 1 ab., F LA F i =
D,¢:=0,(+ 1Y YabC + 1A, = 2_€%§ (A.12)

with the same background gauge field A, as before.
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