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We provide a unified description of the flip-flop and the anti-alignment instability effects in spin-
ning black hole binaries in terms of real and imaginary flip-flop frequencies. We find that this
instability is only effective for mass ratios 0.5 < q < 1. We find analytic expressions that determine
the region of parameter space for which the instability occurs in terms of maps of the spin magni-
tudes and mass ratio (α1, α2; q). This restricts the priors of parameter estimation techniques for the
observation of gravitational waves from quasi-aligned spinning binary black holes and it is relevant
for their astrophysical modeling and final recoil computations.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

With advanced LIGO’s [1] first detection confirm-
ing general relativity’s predictions of gravitational waves
from the merging of binary black holes (BBH) [2–4] and
the beginning of the Gravitational Wave Astronomy era,
one of the most important tasks will be to determine the
physical parameters of these BBH systems. Highly pre-
cessing effects near merger are particularly challenging to
model. These effects depend strongly on the spin orien-
tations and magnitudes of each individual black hole.

The strongest dynamical effect of the spins on the orbit
of BBH is the hangup effect [5], that depending on the
spin components along the orbital angular momentum
(aligned or counteraligned) delays or prompts the merger
of BBH with respect to the nonspinning case.

Two recent studies shed light on interesting effects of
spin precession: i) the individual spin of a black hole
may completely flip directions along the orbital angular
momentum during the latest inspiral phase of the BBHs
[6, 7] and ii) for certain antialigned configurations the
black hole spin components along the orbital angular mo-
mentum can evolve into large deviations even from small
initial angular misalignments [8].

In this letter we provide a unified description of these
two phenomena which gives new insight on the origin of
the misalignment instability and confirms its existence in
higher order post-Newtonian expansions and full numeri-
cal simulations. We also discuss some of the consequences
of this phenomenon for astrophysical modeling, gravita-
tional waves parameter estimation, and computation of
gravitational recoils.

II. POST NEWTONIAN SPIN DYNAMICS

Gerosa et al. [8] have found that a binary black hole
configuration with the larger black hole spin α2 along the

orbital angular momentum ~L and the smaller hole spin
α1 counteraligned to it is unstable under polar angular

perturbations when their separation is in between rud± =
(
√
α2 ±

√
qα1)4M/(1− q)2. This result was found using

the orbit averaging approximation [9]. Here we perform a
study of these spin dynamics by numerically integrating
higher order post-Newtonian (3.5PN) equation of motion
and spin evolutions (2.5PN) as given in [10, 11].

Each panel of Fig. 1 displays the results of 121 inte-
grations of the PN spin and equations of motion for a
labeled mass ratio q = m1/m2 < 1 and covering the
−1 ≤ α1L ≤ 0 and 0 ≤ α2L ≤ 1 quadrant of the aligned
spin parameter space (except q = 0.95 which has 76 inte-
grations.) The integrations start from quasi-circular or-
bits at a large enough initial binary separation such that
the spins are stable, ie r > Rc given in Eq. (3) (with the
total mass of the system M = m1+m2), and we stop at a
fiducial r = 11M , where PN evolutions are still reliable.

We choose the spin of the large black hole ~S2 = ~α2m
2
2

initially aligned with the orbital angular momentum ~L

and the spin of the smaller black hole ~S1 = ~α1m
2
1 one

degree from exact anti-alignment, i.e. 179 degrees from
the L̂-direction (we also verified it for 5 to 30 degrees
misalignments). The instability occurs either when the
larger or the smaller (or both) black hole spin is slightly

misaligned with L̂. The instability depopulates the up-
per left corner of the spin parameter space, with succes-
sively larger portions from q = 0.5 to q = 1, and strongly
changes the spin components along L̂ bringing the binary
system to strong precession.

From the initially large separations, when the system is
stable and spins oscillate at the flip-flop frequency, Ωff ,
the binary separation shrinks due to gravitational radia-
tion and eventually reaches a critical separation, see up-
per panel in Fig. 2. At this point the polar oscillations of
the spin begin to grow fast in an out-spiral fashion (see
lower panels).

As seen in the middle panels of Fig. 2, the spin
misalignment reaches large values at later times (and
smaller separations), but the cosine of the angles θ1L
and θ2L that the spins form with L̂-direction bare a re-
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FIG. 1. Snapshots of the spin components along the orbital
angular momentum at a binary separation r/M = 11. The in-
tegration of the PN evolution equations for each binary mass
ratio q, started at r > Rc with a uniform distribution of spins
in the range 0 ≤ α2L ≤ 1 for the large BH and −1 ≤ α1L ≤ 0
for the small BH, which was antialigned with the orbital angu-
lar momentum by 179-degrees. The color indicates the origi-
nal value of the spins. The black curve models the depopula-
tion region as given in Eq. (4).
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FIG. 2. Evolution of a binary with mass ratio q = 0.75, large
BH spin α2L = 1 initially aligned, and small BH spin α1L

∼=
−1 antialigned with the orbital angular momentum by 179-
degrees. The upper panels display the onset of the instability
from stable flip-flop oscillations. The middle panels display
the development of the instability as the binary separation
shrinks. Here cos θiL = SiL/Si with i = 1, 2 for the small,
large holes respectively. The lower panels display a polar view
of the onset of the misalignment instability.

lation that preserves (mostly) ~S0 · L̂ as expected [12], i.e.
q cos θ1L + cos θ2L = 1− q for this case with α2L = 1 and
α1L
∼= −1 .

We will show next that the critical radii separating
the two stability regimes can be described in terms of
the vanishing of the flip-flop frequency Ωff , separating
real and imaginary values, and corresponding to stable
and unstable phases respectively.

III. FLIP-FLOP INSTABILITY

In Ref. [7] we give the following expression for the flip-
flop frequency; the frequency of polar oscillations (with

respect to L̂) of the spins in a binary system

Ω2
ff =

9

4

(1− q)2M3

(1 + q)
2
r5

+ 9
(1− q) (S1L̂ − S2L̂)M3/2

(1 + q)r11/2

− 9

4

(1− q) (3 + 5 q)S1L̂
2

q2r6
+

9

2

(1− q)2 S1L̂ S2L̂

qr6
(1)

+
9

4

(1− q) (5 + 3 q)S2L̂
2

r6
+

9

4

S2
0

r6
+ 9

(1− q)2M4

(1 + q)
2
r6

,
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FIG. 3. The instability region, between R±
c , as a function

of the mass ratio, q, as the binary transitions from real to
imaginary flip-flop frequencies (blue curve) for maximal spins
α1L = −1 and α2L = +1. For comparison also plotted are
rud± from [8] (red curve) and use of the reduced to Newtonian
order angular momentum LN (cyan curve in inset) in (A11)
of [7]. The dots correspond to 3.5PN evolutions from large
initial separations.

where ~S0/M
2 = (1 + q)

[
~S1/q + ~S2

]
.

The instability of Ref. [8] can be interpreted in terms
of an imaginary flip-flop frequency, when the oscillations
become exponentially growing modes. In fact, we ob-
served in Fig. 2 that, at large separations, the binary
oscillates at the frequency given in Eq. (1). Thus, the
critical radius, Rc, for which the onset of the instability
occurs satisfies

Ωff (q, ~α1, ~α2, Rc) = 0. (2)

The solution of this quadratic equation for antialigned
spins leads to two roots R±

c .

R±
c = 2M

A± 2(α2L − q2α1L)
√
B

(1− q2)2
, (3)

A = (1 + q2)(α2
2L + q2α2

1L),
−2q(1 + 4q + q2)α1Lα2L − 2(1− q2)2

B = 2(1 + q)
[
(1− q)q2α2

1L − (1− q)α2
2L

−2q(1 + q)α1Lα2L − 2(1− q)2(1 + q)
]
.

We display these in Fig. 3 for the case of maximally spin-
ning holes, i.e. α1L

∼= −1 and α2L = +1, as a function of
the mass ratio q, as this case leads to the most unstable
configuration (see Fig. 1). The instability occurs only
above a given mass ratio, and in practice this leads to
important effects only for q ' 1/2. There is no solution

for instabilities in the other quadrants, thus they only
occur when the small black hole is near anti-alignment

and the large black hole is near alignment with ~L.
We also verified that the large oscillations shown in the

middle panels of Fig. 2, after the instability brought the
spins to strong misalignments, are due to the frequency
(1) becoming real again, and then back to imaginary suc-
cessively.

We can now determine analytically the border between
stable and unstable configurations in the spin parameter
space. For a given q, there is a minimal Rc for which the
instability has enough time to act and change notably the
components of the spins along L̂. We call this minimal
(dimensionless) radius Reff . By inserting r/M = Reff

into equation (2) we can solve the resulting quadratic
equation for αB

2 (q, α1L) = α±
2 (q, α1L;Reff )

αB
2 (q, α1) =

(1− q2)
√
Reff − q(1 + q2)α1L

3− q2

∓1

2

(1− q2)

(3− q2)

√
C, (4)

C = 16q2α2
1L − 2(1− q2)Reff + 8(q2 − 3),

−8q
√
Reff (1 + 2q − q2)α1L/(1− q).

Applying this formula to the border of the depopulated
regions in Fig. 1 leads to a simple fit to all q-cases studied
here giving Reff = (25−17 q)/(1−q). This Reff is larger
for q ∼ 1 than for q ∼ 1/2 since the smaller the mass ratio
the longer it takes radiation reaction to shrink the binary
as the energy radiated near merger scales roughly with
η2 = q2/(1 + q)4 [13]. This shows that while the instabil-
ity acts on the shorter precession time scale, the process
of misaligning continues to act on the longer radiation
reaction time scale until merger (See Fig. 2).

We note that above q = 0.85 the second root αB
2 , be-

gins to also limit the upper part of the panel. In the
q = 1 limit the two α±

2 roots agree, merging into a diag-
onal straight line α2L = −α1L, representing the fact that
for q = 1, the spins have 180-degrees flip-flop oscillations
with Ωff (q = 1) = 3

2
S0

r3 (see Eq. (2)).

IV. FULL NUMERICAL EVOLUTIONS

Post-Newtonian evolutions do not accurately account
for the final plunge, merger and ringdown of binary black
holes. We hence stopped our PN evolutions at a fiducial
separation of r = 11M . We have then performed a few
representative full numerical simulations using the tech-
niques in [3] to follow up those post-Newtonian integra-
tions. The parameters of the five continued simulations
are given in Table I.

After the completion of the evolution down to merger, the properties of the final black hole remnant are displayed
in table II. Notably, the measured recoil velocity is very different from that expected if the spins would remain aligned
(this prediction based on the formulae in [13]). The differences are not only due to the magnitude of the recoil, but
notably, the velocity component along the original orbital angular momentum, which vanishes for the aligned spins
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TABLE I. Initial data parameters and system details for full numerical evolutions. The initial coordinate separation is D = 11M
and the intrinsic spins are αx,y,z

1,2 . The eccentricity measured at the end of the inspiral is ef , and N is the number of orbits just
before merger. # labels the PN runs that started at binary separation r = 500M with normalized spins (az1, a

z
2).

# (az1, a
z
2) q αx

1 αy
1 αz

1 αx
2 αy

2 αz
2 N ef

1 (−0.8, 0.8) 0.70 0.7738 0.1876 -0.0775 0.6162 0.4183 0.2921 8.7 0.0037

2 (−0.4, 0.8) 0.75 -0.3205 0.2392 0.0070 -0.5926 -0.2040 0.4971 9.6 0.0009

3 (−0.6, 0.6) 0.75 0.5467 0.2462 -0.0223 0.4724 0.3311 0.1651 8.4 0.0024

4 (−0.8, 0.8) 0.75 0.0559 0.7598 -0.2440 -0.2564 0.6676 0.3585 8.6 0.0052

5 (−0.8, 0.4) 0.75 -0.4617 -0.4859 -0.4367 0.0581 -0.3765 0.1220 7.4 0.0040

TABLE II. Remnant properties of the merged black hole. The final mass mrem and spin αrem (normalized to total initial mass)
are measured from the horizon, and the recoil velocity (in km/s) is calculated from the gravitational waveforms. Comparison
with predicted aligned spins values mpre, αx,y,z

pre , V xy
pre, is based on [13]

# mrem mpre αx
rem αy

rem αz
rem αz

pre V x
rem V y

rem V z
rem V xy

pre

1 0.9445 0.9456 0.2577 0.1529 0.7495 0.7742 -3.9 28.7 -133.7 260.7

2 0.9408 0.9409 -0.1868 -0.0322 0.7927 0.7994 273.5 -24.9 -775.8 187.7

3 0.9485 0.9486 0.1945 0.1208 0.7220 0.7388 138.1 -11.2 557.8 200.4

4 0.9468 0.9462 -0.0717 0.2790 0.7537 0.7601 5.9 117.0 241.7 282.9

5 0.9534 0.9546 -0.0639 -0.1565 0.6656 0.6752 47.6 -11.1 386.4 201.7

configuration, now becomes the largest. Differences are also observed in the final spin magnitude and orientation,
while the differences in the total energy radiated are less notable.

V. DISCUSSION

We have provided a unified description of the polar
oscillations and instabilities of the black hole spins in a
binary system. Analytic expressions for the radius of the
onset of instabilities and the region of parameter space
affected by instabilities are also given. These expressions
lead to restrictions of the prior distributions of aligned
spins affecting the parameter estimations of gravitational
wave observations from binary black holes by removing
the unstable region from the posterior probability distri-
butions.

Our study of the onset of instability strictly applies
to small (differential) angles deviating from anti-aligned

spins with ~L. Notably, we find that this picture re-
mains valid for relatively large angular deviations. The
depletion of the upper corner in the (α1L, α2L) param-

eter space, remains true for angles off the L̂-axis of
35, 45, 50-degrees for mass ratios q = 0.6, 0.75, 0.90 re-
spectively. Those results are summarized in Fig. 4 by a
color map that dissects binaries with different spin com-
ponents along and perpendicular to L̂ at large initial sep-
arations and then near merger. The 67,240 evolutions
(41× 41× 40), corresponds to different initial choices of
(cos θ1, cos θ2,∆φ). Both black holes are maximally spin-

ning.
These results implies that using (anti-)aligned spin

models should remain a good approximation to more gen-
eral systems for a large portion of the parameter space if
the instability depletion is taken into account for quasi-
antialigned spins, since the main binary dynamical effect
is dominated by the hangup [5] that depends on the spin

components along L̂.
In a scenario where accretion [14, 15] nearly anti-align

spinning binaries at large separations, the spin instabili-
ties studied here may lead to larger gravitational recoils
than expected from their almost counteraligned precur-
sors, leading to black hole remnants with thousand of
km/s recoil velocities.
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FIG. 4. Upper: Initial configuration of a binary with mass ra-
tio q = 0.75 at r = 500M of separation. Color labels angular
deviations of the spins from the orbital angular momentum
direction L̂. Lower: The spin orientations near merger at
r = 11M displaying a replenish of the unstable region from
the highly misaligned spins.
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