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We explore how a recently developed analytical black-hole binary spacetime can be extended
using numerical simulations to go beyond the slow-inspiral phase. The analytic spacetime solves
the Einstein’s field equations approximately, with the approximation error becoming progressively
smaller the more separated the binary. To continue the spacetime beyond the slow-inspiral phase,
we need to transition. Such a transition was previously explored at smaller separations. Here, we
perform this transition at a separation of D = 20M (large enough that the analytical metric is
expected to be accurate), and evolve for six orbits. We find that small constraint violations can
have large dynamical effects, but these can be removed by using a constraint damping system like
the conformal covariant formulation of the Z4 system. We find agreement between the subsequent
numerical spacetime and the predictions of post-Newtonian theory for the waveform and inspiral
rate that is within the post-Newtonian truncation error.

PACS numbers: 04.25.dg, 04.30.Db, 04.25.Nx, 04.70.Bw

I. INTRODUCTION

The field of numerical relativity (NR) has progressed
at a remarkable rate since the breakthroughs of 2005 [1–
3], when it first became possible to simulate the late-
inspiral, plunge, merger, and ringdown of black-hole bi-
naries (BHBs). Recently, Lousto and Healy [4] completed
a long-term 50 orbit precessing BHB simulation using
the moving punctures approach and Szilagyi et al. [5]
completed the longest BHB simulation to date: the last
176 orbits for a non-spinning, intermediate mass ratio
(m1/m2 = 1/7), BHB using the generalized harmonic ap-
proach. This is a remarkable achievement, but the scaling
of the inspiral time with the initial separation T ∼ D4

means that evolving a binary through the long inspiral
is prohibitively expensive, even for highly efficient codes.
Such a simulation becomes even more expensive when
one is interested in performing long-term dynamical evo-
lutions of relativistic magnetohydrodynamics (MHD) cir-
cumbinary disks around inspiraling supermassive BHBs
(SMBHBs). This is because the circumbinary gas can
exhibit significant secular variations on the time scale of
hundreds to thousands of binary orbits.

In order to make these long-term simulations possible,
our group developed a complementary approach to treat
dynamical BHB spacetimes. In a series of papers [6–10]
we used an analytic spacetime that is an approximate
solution to the Einstein’s field equations in the inspiral
regime to describe the evolution of the accretion disks
surrounding the binary and each of the individual BHs.

Our initial approach [6], was one in which relativistic
effects were present but relatively small. In the situation

when gravity is weak [rg/r = GM/(rc2) � 1] and mo-
tions are slow [(v/c)2 � 1], the post-Newtonian (PN) ap-
proximation gives a very good description of spacetime.
One can then simply construct a PN metric which takes
energy loss from the binary into account, accurately mod-
eling both the mass loss and inspiral of the binary [11].
Using a spacetime accurate to 2.5PN order (i.e., includ-
ing terms up to ∼ (rg/r)

5/2), but describing the binary
orbital evolution to 3.5PN, we demonstrated that cir-
cumbinary disks can track the inspiral of a SMBHB un-
til the binary practically reaches the relativistic merger
regime [6]. The shortcoming of this approach was that
the PN metric was not valid very close to the BHs, and
consequently, we excised any material that fell within 1.5
binary separations. This prevented us from studying the
dynamics of the gas all the way down through the hori-
zons of each BH.

In a more recent paper [8], we extended the metric
to cover the full BHB spacetime up to the rapid plunge
state. We did this by extending the framework estab-
lished in Refs. [12–14] for constructing a spacetime metric
valid for initial data, i.e., a metric accurate for all spa-
tial points but in a very small time interval, to develop
a metric valid for arbitrary times. In this approach, the
near zone (NZ), i.e., a zone well outside the two BHs,
but less than a gravitational wavelength from the binary,
is still described using a PN expansion. In the far zone
(FZ), i.e., farther than one wavelength from the binary,
the metric is described by a post-Minkowskian (PM) ex-
pansion. Finally, near each BH, i.e., in the inner zone
(IZ), the metric is described using a perturbed Kerr (here
Schwarzschild) BH. The metrics covering the different
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zones are smoothly stitched together using asymptotic
expansions and transition functions in their overlapping
regions of validity.

This approach allows us to follow inspiraling SMB-
HBs over hundreds to thousands of binary orbits, the
timescale on which gas accumulates, without having to
solve the Einstein’s equations numerically. The numeri-
cal advantage here is that the numerical timestep is lim-
ited by fluid characteristic speeds, rather than the much
faster speed of light (this advantage is diminished if we
want to evolve gas right near the horizons).

Here, we explore the possibility of using a hybrid ap-
proach, i.e., use the analytic metric for the long inspiral
down to separations where our global spacetime metric is
still valid, and then transition to a full numerical simula-
tion using the analytic spacetime as initial data (the use
of PN techniques to generate initial data for BHBs was
first developed in Refs. [14–18]). The way to do this is
to convert our approximate spacetime prescription into
suitable initial data for 3 + 1 NR evolutions, evolve the
data forward in time, and compare the orbital evolution,
test particle trajectories, and gravitational radiation out-
put with our approximate solution.

Perhaps more well known is the complimentary ap-
proach of combining PN and other analytical techniques
with numerical waveforms to generate highly accurate
hybrid waveforms. Many authors have explored this and
we refer the reader to [5, 19–30] and references therein.

The main motivation of this paper is to develop
techniques to smoothly transition from an analytically
evolved spacetime to a numerically evolved one. By
smooth, here we mean that all families of geodesics pass-
ing through the transition region will have continuous
second derivatives. Here we are considering test particle
trajectories as stand-ins for fluid trajectories. In partic-
ular, if there is a jump in the second derivative of the
fluid, we can expect a quasi-equilibrium fluid configura-
tion to shock and therefore require a re-equilibration that
may take longer than the inspiral time. Of course, bulk
binary dynamics are important too. Therefore, we want
the physics of the inspiral (rate, orbital frequency) to be
as unaffected by the transition as possible.

We note that the use of PN techniques to generate
consistent initial data (i.e., data with the correct radia-
tion content) provides the final ingredient proposed in the
“Lazarus Approach” to generating waveforms [31, 32].
The proposal there was to transition from PN to NR
techniques and then from NR to perturbative techniques.

When using the global analytic metric as initial data,
the resulting initial data are essentially equivalent (there
is only a small difference in the NZ/FZ transition func-
tion and the two metric prescriptions coincide at t = 0) to
the initial data proposed in Johnson-McDaniel et al. [14],
and first evolved in Reifenberger and Tichy [33]. Reifen-
berger and Tichy compared evolutions of Bowen-York
data [34] to several different analytic initial data con-
structions, including Johnson-McDaniel et al.. Our work
here extends upon the work of Reifenberger and Tichy

in several ways. (i) We use the full 4-dimensional metric
of [8] to compare the dynamics of the numerically evolved
metric with the analytic one, (ii) we evolve binaries with
separations large enough that the PN metric and binary
dynamics are expected to be accurate, and (iii) we find
techniques to ameliorate the inaccuracies associated with
evolving these data that were discovered by Reifenberger
and Tichy. These inaccuracies arise from both constraint
violations, due to the fact that our global metric solves
the Einstein’s field equations only approximately, and in-
accuracy in the PN orbital angular momentum and inspi-
ral rate, which can lead to eccentricity in the numerical
binary evolution.

For the current work, we start the full numerical sim-
ulations when the binary is separated by D = 20M and
evolve for six orbits. As shown in Ref. [35], where the
authors there explored numerical simulations of Bowen-
York data at separations ranging from D = 100M to
D = 20M , there is good agreement between the predic-
tions of PN theory and numerical simulations at D =
20M . Additionally, simulations starting at D = 20M
down to merger are possible with our current codes, as
demonstrated in Ref. [4] (such a simulation would require
approximately 1 million CPU hours on an AMD Opteron
machine).

This paper is organized as follows. In Sec. II, we review
how the analytic BHB inspiral metric is constructed, as
well as how it is used to generate 3 + 1 initial data. In
Sec. III, we describe the techniques we used to numeri-
cally evolve the spacetime metric. In Sec. IV, we provide
details on how the simulations were performed and the
key outcomes of these simulations. In Sec. V, we compare
the results from the numerical simulation at separations
∼ 20M with the predictions of PN theory. Finally, in
Sec. VI we discuss our results both in terms of the accu-
racy of the binary dynamics (e.g., inspiral rate and or-
bital frequency) and in terms of gravitational waveform
generation.

Throughout this paper, we use the geometric unit sys-
tem, where G = c = 1, with the useful conversion factor
1M� = 1.477 km = 4.926× 10−6 s.

II. ANALYTIC BHB INSPIRAL METRIC

In this paper, we restrict our analysis to non-spinning
BHs in quasi-circular orbits. In this context, it is useful
to provide a brief review here of our approximate solu-
tion to the Einstein’s field equations of a BHB spacetime
in the inspiral regime [8]. The inclusion of spins, both
aligned [7] and unaligned in this spacetime framework
will be the subject of future studies.

This framework was first introduced in Refs. [12–14] as
initial data for BHB evolutions, and was generalized in
Ref. [8] to be a full BHB spacetime. In this framework,
the spacetime is constructed by asymptotically matching
metrics in three different zones characterizing three dif-
ferent spacetime regions of validity for different analytic
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FIG. 1. Schematic diagram of the zones. BH1 and BH2 are
denoted by solid black dots, where the orbital separation is
r12. The BZs are denoted with gray shells, the outer one rep-
resenting the FZ/NZ BZ and the two inner ones representing
the NZ/IZ BZs (see also Table I). The IZ, NZ and FZ are also
shown in the figure.

TABLE I. Location of the inner, near, and far zones, as well
as the buffer zones joining them. Here rin and rout are the
approximate inner and outer boundaries of a given zone, mi is
the mass of BH i, ri is the coordinate distance to BH i, r12 is
the binary separation, and λ is the wavelength of gravitational
radiation emitted by the binary.

Zone rin rout Region
IZ BH1 (r1) 0 � r12 ·
IZ BH2 (r2) 0 � r12 ·
NZ (rA) � mA � λ ·
FZ (r) � r12 ∞ ·
IZ-NZ BZ · · mA � rA � r12
NZ-FZ BZ · · r12 � r � λ

metrics: (i) a FZ where the spacetime can be described
by a two-body perturbed flat spacetime with outgoing
gravitational radiation and where retardation effects are
fully accounted for; (ii) a NZ which is less than one GW
length from the center of mass of the binary (but not
too close to each BH) that is described by a PN metric
(this includes retardation effects at a perturbative level
and binding interactions between the two BHs); and (iii)
IZs that are described by perturbed Schwarzschild (or
Kerr) BHs. The full spacetime is then constructed by
smoothly transitioning from zone to zone in the so-called
buffer zones (BZs). A schematic diagram of these zones,
and a table describing where the zone boundaries are lo-

TABLE II. The order of the various approximations used in
the global metric. The virial theorem implies that m/r is
taken to be O(v2/c2) and the O symbol denoted the highest
order term included in the expansion. Here gii and gtt refer
to the diagonal components of the metric, the rest are the
off-diagonal components. Note that the version of the first-
order metric used in Refs. [8, 9] differed from this table in
that gtt was only O(v/c)2 there and here we use resumma-
tion techniques on both the first and second order metrics (in
Refs. [8, 9] resummation was only used for the second-order
metric).

First order Second order
IZ multipole ` = 2 static ` = 2, ` = 3 static

NZ gtt O(v4/c4) O(v7/c7)
NZ gti O(v3/c3) O(v6/c6)
NZ gii O(v2/c2) O(v5/c5)
NZ gij 0 O(v5/c5)
FZ gtt O(v4/c4) O(v8/c8)
FZ gti O(v5/c5) O(v7/c7)
FZ gii O(v3/c3) O(v6/c6)
FZ gij O(v3/c3) O(v6/c6)

cated are provided in Fig. 1 and Table I (these figure and
table were also presented in Refs. [7, 8]).

In the sections below, we will refer to these initial data
as the second-order analytical metric. It is constructed by
asymptotically matching a 2.5PN metric in the NZ (the
matching is only done for terms up through O(v/c)4)
to a Schwarzschild metric with quadrupole (and its time
derivatives) and octupole tidal deformations in the IZ.
As explained in details in Ref. [8] this matching is ap-
proximate in the sense that it does not lead to a formal
second-order asymptotic matching in all metric compo-
nents for all times. However, as demonstrated there, it
does lead to a significant improvement against a lower-
order analytic metric, the first-order analytical metric,
which is constructed by asymptotically matching a 1PN
NZ metric (only terms of order O(v/c)2 are matched)
into a Schwarzschild metric with quadrupole tidal de-
formations. The matching for this first order metric is
exact. The metric in the FZ is constructed from the PM
expansion over a flat spacetime with source multipolar
decomposition, where the source multipoles are expanded
in the PN approximation up to 2.5PN. Note that in the
PM formalism the PN metric in the NZ and the multipo-
lar metric in the FZ are formally asymptotically matched
up to 2.5PN in the NZ-FZ BZ. The precise orders used
for the calculation of the metric pieces composing these
analytical metrics are given in Table II.

III. TECHNIQUES

We evolved the BHB initial data using the LazEv [36]
implementation of the moving puncture approach [2, 3]
with the conformal function W =

√
χ = exp(−2φ) sug-

gested by Ref. [37] and the Z4 [38–40] and BSSN [41–43]
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evolution systems. Here we use the conformal covariant
Z4 (CCZ4) implementation of Ref. [40]. Note that the
same technique has been recently applied to the evolution
of binary neutron stars [44, 45]. For the CCZ4 system,
we again used the conformal factor W . We used centered
eighth-order finite differencing for all spatial derivatives,
a fourth-order Runge Kutta time integrator, and both
fifth and seventh-order Kreiss-Oliger dissipation [46].

Our code uses the EinsteinToolkit [47–49] / Cac-
tus [50] / Carpet [51, 52] infrastructure. The Carpet
mesh refinement driver provides a “moving boxes” style
of mesh refinement. In this approach, refined grids of
fixed size are arranged about the coordinate centers of
both holes. The Carpet code then moves these fine
grids about the computational domain by following the
trajectories of the two BHs.

We use AHFinderDirect [53] to locate apparent
horizons. We also use the Antenna code [32] to calcu-
late the Weyl scalar ψ4.

We measure the distance between the two BHs using
the simple proper distance or SPD. The SPD is the proper
distance, on a given spatial slice, between the two BH
apparent horizons as measured along the coordinate line
joining the two centers. As such, it is gauge dependent,
but still gives reasonable results (see Ref. [35] for more
details).

To obtain initial data, we use eighth-order finite-
differencing of the analytic global metric to obtain the
4-metric and all its first derivatives at every point on
our simulation grid. The finite-differencing of the global
metric is constructed so that the truncation error is negli-
gible compared to the subsequent truncation errors in the
full numerical simulation (here we used finite-difference
step size of 10−4, which is 90 times smaller than our
smallest gridsize in any of the numerical simulations dis-
cussed below). We then reconstruct the spatial 3-metric
γij and extrinsic curvature Kij from the global metric
data. Note that with the exception of the calculation of
the extrinsic curvature, we do not use the global metric’s
lapse and shift. In order to evolve these data, we need
to remove the singularity at the two BH centers. Unlike
in the puncture formalism [54], the singularities here are
true curvature singularities. We stuff [55–57] the BH in-
teriors in order to remove the singularity. Our procedure
is to replace the singular metric well inside the horizons
with non-singular (but constraint violating) data through
the transformations

γij → f(r) γij i 6= j , (1)

γii → f(r) γii + (1− f(r))Ξ , (2)

Kij → f(r) Kij , (3)

where

f(r) =

 0 r < rmin

1 r > rmax

P (r) rmin ≤ r ≤ rmax

, (4)

r is the distance to a BH center, and P (r) is fifth-order
polynomial that obeys P (rmin) = P ′(rmin) = P ′′(rmin) =
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FIG. 2. The metric function W at t = 0 plotted versus x
showing the effects of stuffing the BH interior and the same
function at t = 165M (but plotted versus y). The more regu-
lar shape of W near the center of the BH at t = 165M is typi-
cal of moving punctures simulations (note that the puncture is
offset from the y-axis by 0.01M). For reference, the function
W for a Bowen-York puncture simulation (solid curve) when
the puncture cross the x axis for the second time is included
(the plot of the Bowen-York data has been shifted). Note how
at the stuffed W appears to evolve to be very similar to the
standard trumpet W typical of puncture initial data.

0, P (rmax) = 1, P ′(rmax) = P ′′(rmax) = 0, and Ξ is a
large number. The resulting data are therefore C2 glob-
ally. The parameters rmin, rmax, and Ξ are chosen such
that both transitions occur inside the BHs and so that
W varies smoothly with negligible shoulders in the tran-
sition region and is small at the centers. In Fig. 2 we
show the profile of the conformal factor W at t = 0M
and t = 165M . The former clearly shows the effects of
stuffing while the latter shows that the system appears
to evolve to the standard moving puncture gauge (i.e.,
the conformal function W takes on the usual profile for
a trumpet slicing just like it does when using puncture
initial data).

IV. SIMULATIONS

The initial data parameters for our BHB simulations
are given in Table III. To evolve the second-order ana-
lytical data we used the following grid structure. The
coarsest grid spanned 0 ≤ x ≤ 3200M , −3200M ≤ y ≤
3200M , and 0 ≤ z ≤ 3200M (we used π-rotation sym-
metry and z-reflection symmetry). The refinement levels
were centered on the two BHs with half-widths of 1600,
800, 440, 220, 110, 55, 25, 10, 5, 2, and 0.75. In the fig-
ures below we denote the resolution of the coarsest grid
by h. Our lowest resolution runs had a coarsest resolution
of h = h0 = 32M . We increased the resolution by suc-
cessive factors of 1.2 for the higher resolution runs. Our
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TABLE III. Initial data parameters. m1 and m2 are the
masses of the two BHs, D is the orbital separation, δΩorb

and δṙ are the modifications to the 3.5PN orbital frequency
and inspiral required to reduce the eccentricity, Ξ is a scale
factor (see text), and rH is the measured horizon radius.

m1/M 0.5 m2/M 0.5
D/M 20.00 M δΩorb 7.88515× 10−6

δṙ −1.54103× 10−4 rmin/M 0.05
rmax/M 0.25 Ξ 800
rH/M 0.484

standard choice, which we used for all long-term runs
shown below used a medium resolution of h = h0/1.2.
The highest resolution run had h = h0/1.2

3.
To demonstrate the smoothness of the transition from

analytical to numerical evolution we evolve a set of test
particles using both the second-order analytic metric and
the numerical evolution of the second-order analytic data.
Note that at t = 0 the 4-metrics associated with the two
evolution schemes are geometrically identical (i.e., only
differ by a coordinate transformation implicit in using
different choices for the lapse and shift at t = 0). How-
ever, because the evolution schemes are different, the
two spacetimes will have different effective stress ener-
gies (i.e., Gab will differ for the two spacetimes) even at
t = 0. Thus, even if the two spacetimes were initially
in the same coordinate system, higher-order time deriva-
tives (third and higher) of the geodesics will not agree.
Thus we only expect continuity of the force acting on the
geodesics as we transition from analytical to numerical
evolutions of the metric. As shown in Fig. 3, we do see a
relatively smooth transition at early times with the two
sets of geodesics initially agreeing quite well and then
deviating more significantly at later times. Importantly,
this latter deviation is due to two effects, differences in
the later time coordinate systems and differences in the
curvature. Plots of the same geodesics from the CCZ4
and BSSN evolutions are nearly identical.

Figure 3 provides evidence that the transition from
analytical to numerical evolutions is sufficiently smooth
that no sudden impulses are imparted to timelike
geodesics. However, we still need to demonstrate that
the subsequent dynamics are accurate. This will require
that the constraint violations do not significantly affect
the dynamics of the binary and that the binary remains
quasicircular.

A. Initial Hamiltonian and momentum constraint
violations

Evolutions of second-order analytical data with BSSN
were first performed in Tichy [33], where, like we do
here, they looked at mass conservation, inspiral time,
anomalous eccentricity, and constraint violations (see
also Ref. [17]). The conclusion there, as well as here, is
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FIG. 3. A set of timelike geodesics initially equally spaced in
x and normal to the t = 0 hypersurface (note one of the BHs
is centered at x = 10M at t = 0). Here the proper time of
each geodesic is plotted as a function of the geodesics spatial
position. The solid (black) curves correspond to geodesics
evolved on the numerical spacetime using BSSN, the (cyan)
dot-dashed curve correspond to the geodesics evolved on the
numerical spacetime using CCZ4, finally the (red) dotted
curved are for geodesics evolved with the second-order an-
alytical metric. The plot to the right zooms in on a typi-
cal geodesic near the start of the simulation. Note how the
numerical spacetime geodesics smoothly deviate from their
analytical spacetime counterparts and there is no noticeable
difference between the test particle trajectories for the BSSN
and CCZ4 spacetimes at these early times. The rapid change
in gauge near the start of the simulation is apparent in the
smooth change in the geodesic seen at a proper time of about
τ = 3M in the inset.

that residual constraint violations lead to relatively large
errors in the subsequent dynamics.

Our expectation is that inaccuracies in the second-
order analytic metric will decrease as the binary sepa-
ration is increased. To test this assumption, we need a
measure of the constraint violation that is related to the
dynamics of the binary. Since we can interpret violations
of the Hamiltonian constraint as an unphysical matter
field on our spacetime, a natural measure of the degree
of violation is the total amount of unphysical matter com-
pared to the total amount of physical mass (in this case
the total amount of physical mass is ≈ 1M). One sub-
tlety we have to contend with is that both positive and
negative mass densities are dynamically important and
there is no reason to expect their respective contribu-
tions to the total error will cancel. Thus we consider two
measures of the unphysical mass given by,

munphys. =
1

16π

∫
H√γdv , (5)

mabs. =
1

16π

∫
|H|√γdv , (6)

where H is the Hamiltonian constraint violation and the
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FIG. 4. The unphysical mass of the binary versus binary
separation D for the second-order analytical data (i.e., initial
data) as measured using the integrals munphys. and mabs.. The
horizontal axis is in units of D/M , where D is the separation
of the binary. The larger mass is mabs.. Note that while a
significant amount of unphysical matter is present, it is spread
out such that only a fraction of it is absorbed by the BHs (see
Fig. 5). Note also that there is a near equal amount of positive
and negative mass (which is why munphys. is about a factor of
20 smaller than mabs.. Rather than plotting munphys., we plot
−munphys. since the net unphysical mass is actually negative.

integral is over the cube centered on the origin with side
length 400M excluding the interiors of the horizons. The
former gives the net unphysical mass in the spacetime,
while the absolute value in the latter ensures that positive
and negative mass densities do not cancel.

We show both of these measures of unphysical mass
versus separation in Fig. 4. Note that there is a near
equal amount of positive and negative mass (which is why
munphys. is about a factor of 20 smaller than mabs.). The
magnitude of munphys. decreases with binary separation
as roughly (D/M)−1.8, while mabs. decreases at rate of
(D/M)−1.6. The masses were calculated at t = 0 for
three resolutions. In all cases, the truncation errors for
the highest resolution corresponded to an uncertainty in
second or higher significant digit in the mass.

At a separation of D = 20M , we find that munphys. =
0.001M , while mabs. = 0.033M (Bowen-York data for a
D = 20M binary solved using the TwoPunctures [58]
code with 403 collocation points gives |mabs.| < 7 ×
10−7M). Note that mabs. increases much more rapidly
than the power-law prediction with decreasing separa-
tion for D < 25M , but munphys. is only 30% larger than
the power-law prediction at D = 20M . It is important
to note that the BHs will not absorb this much mass as
their cross sections are quite small.

An important result from Fig. 4 is that while the un-
physical mass tends to zero at infinite binary separation,
for practical purposes, it is never small in the regime
where we would use NR evolutions. Thus we need a way
of removing the unphysical mass from the system.

We also examine how the quantity of unphysical mat-
ter (mabs.) depends on the locations of the inner/near

buffer zones. For our runs, we used the transition pa-
rameters of Ref. [14], which were optimized for a separa-
tion of D = 10M . Using these parameters, we find that
mabs. is 0.033M . By optimizing the parameters to reduce
mabs., we reduce this by only 4% to 0.032M . Interest-
ingly, while mabs. is reduced, the constraint violations are
more concentrated near the two BHs and thus allowing
for more absorption of constraint violating matter by the
BHs. Importantly, the constraint violations cannot be
significantly reduced by moving the locations of the zone
boundaries, since they are fixed analytic functions of the
masses and separation delimiting overlapping regions of
validity for different metric approximations.

It is important to not only determine how much un-
physical matter is present, but also where it is located.
To this end, we plot the Hamiltonian constraint viola-
tions on the equatorial plane for BHBs at separations
of D = 20M and D = 100M using both the standard
second-order analytical metric described in Sec. II and
the first-order version. The main difference between the
two is described in Table II. The Hamiltonian constraint
violations show a clear improvement as we switch from
the first order to the second order analytical metric, in-
dicating that it is the low PN order which dominates
the error. Perhaps unexpectedly, even at a separation of
D = 100M , the first order metric has mabs. = 0.02M ,
while the second order metric has mabs. = 0.001M . Ex-
amining Fig. 5, we see that the constraint violations are
concentrated in extended clouds well outside the horizons
in the buffer zone between the inner and near zones. Most
importantly, the first order metric shows a strong shell of
high constraint violation surrounding the two BHs. The
second-order metric, on the other hand, has a lower am-
plitude, more diffuse cloud of constraint violation that is
less likely to be absorbed.

B. Effects of the Hamiltonian and momentum
constraint violations

In this section we examine how the numerical evolu-
tion scheme can compound or mitigate issues associated
with initial constraint violations. To this end, we evolved
the second-order analytical data using both the BSSN
formulation [41–43] and the constraint damping CCZ4
approach.

Our initial explorations of the dynamics of the second-
order analytical data were based on the BSSN and CCZ4
systems. As shown in this section, we find that the CCZ4
is uniformly better than BSSN in evolving data with non-
trivial constraint violations.

One of the most important differences between the
BSSN and CCZ4 evolutions is in the horizon mass con-
servation. As shown in Fig. 6, the mass conservation of
the BHs was relatively poor for BSSN and substantially
better for CCZ4. In the figure, we see that the BSSN run
showed an initial increase in mass of 10−3M , followed by
a mass loss of similar magnitude. While a change of 2
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FIG. 5. The Hamiltonian constraint violation in the vicinity of the two BHs in the binary for binary separations of D = 20M
(top) and D = 100M (bottom). First order metrics are shown to the left and second order metrics to the right. The very small
white circles at the centers of the BHs are the horizons.

parts in 1000 may seem small, the effect of this mass
change on the orbital trajectory is quite large.

To determine the cause of the lack of conservation of
the (apparent) horizon mass, we compare the time deriva-
tive of the horizon mass dMH/dt = dM1,2/dt (M1 = M2

by symmetry) with the average value of the constraint on
the horizons HH and the flux of constraint violation into
the horizon CH (since the spacetime around the two hori-
zons is identical by symmetry, we only plot the constraint
violation averaged over one of the BHs). We define HH

and CH as

HH =

∮
H
√
σdAdB∮ √
σdAdB

, (7)

CH = −
∮
Cini
√
σdAdB , (8)

where H is the Hamiltonian constraint violation, Ci is
the momentum constraint violation, ni is the unit (out-
ward) normal to the horizon,

√
σdAdB is the proper area

element on the horizon, and the integrals are performed
over the surface of the horizon.

In Fig. 7, we show the constraint violation averaged
over the individual horizons for both BSSN and CCZ4.
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FIG. 6. The individual apparent horizon masses for a BHB
with initial separation of 20M for both CCZ4 (black) and
BSSN (red) evolutions of the second-order analytical data.
The BSSN curves show very large oscillations, while the CCZ4
curves show a much small linear growth. The large mass os-
cillations in the BSSN run are due to absorption of constraint
violations. Note how the effects changing the evolution sys-
tem from BSSN to CCZ4 are much larger than truncation
error effects.



8

FIG. 7. The Hamiltonian constraint averaged over the hori-
zon as a function of time. This linear log plot shows the
absolute value of the constraint violation for the BSSN and
CCZ4 evolutions of the second-order analytic metric, as well
as the evolution of Bowen-York data (BY) using CCZ4. The
BSSN, CCZ4, and BY data points are colored according to
the sign of the constraint violation. The lower plot shows the
early time behavior.

A large positive violation is observed at early times for
BSSN, which is followed by a negative constraint viola-
tion. This links well with the initial increase in horizon
mass for BSSN, which is followed by a later time decrease.
The CCZ4 constraints are a factor of 100 smaller and do
not appear to be correlated with the CCZ4 horizon mass.
Because of these results, all of our long-term simulations
used CCZ4.

Aside from an overall positive (constant) numerical
factor, plots of HH , CH , and dMH/dt are nearly iden-
tical for BSSN (see Fig. 8). This means that all three are
strongly correlating (i.e., dMH/dt ∝ CH ∝ HH). This
provides a compelling argument that it is the constraint
violations that cause the horizon masses to fluctuate. On
the other hand, for CCZ4, there is no compelling correla-
tion between dMH/dt and the (much smaller) constraint
violations (see Fig. 9).

Finally, we examine how the constraint violations in
the bulk of the simulation domain behave with time. As
shown in Fig. 10, the L2 norms of the constraint viola-
tions for CCZ4 and BSSN evolutions behave quite differ-
ently (here we restrict the L2 norm to the volume inside
a ball of radius 30M and outside the two horizons so
that the norm is dominated by constraint violations rel-
atively close to the binary). The CCZ4 constraints fall
to a much lower level (about a factor of 1000 smaller for
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FIG. 8. The Hamiltonian constraint averaged over the hori-
zon, the flux of the momentum constraint violations through
the horizon, and the time derivative of the horizon mass for
the BSSN simulation. The Hamiltonian and change of rate of
the horizon mass have been multiplied by constant positive
factors. Note the near perfect correlation of horizon mass
change and constraint violation on the horizon. In the figure,
solid curves correspond to a resolution of h0/1.2, while dotted
curves correspond to a resolution of h0/1.2

2.
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FIG. 9. The Hamiltonian constraint averaged over the horizon
and the time derivative of the horizon mass for the CCZ4
simulation. Note how unlike in Fig. 8, these two are not
correlated. Here both the constraint violation and ṁ appear
to be converging to a very small values but from opposite
directions.

the Hamiltonian and a factor of 100 for the momentum)
than BSSN. For comparison purposes, we also performed
equivalent evolutions with standard Bowen-York initial
data [34].

As shown in Fig. 11, we see clear convergence of the
L2 norm of the momentum constraint violation to zero
for CCZ4, while the Hamiltonian constraint violation,
though small, seems to bottom out at about 10−8. The
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FIG. 10. Time evolution of the L2 norms of the constraint
violations for BSSN and CCZ4 evolutions. Note how the
BSSN Hamiltonian constraint remains relatively high while
the CCZ4 constraints quickly fall to about 10−7. Also shown
is the L2 norms of the constraint violations for an evolution of
Bowen-York data with CCZ4. The Bowen-York data leads to
constraint violations that are on average a factor of 2 below
constraint violations for the new data.

Hamiltonian constraint for an equivalent Bowen-York run
bottoms out at roughly half this value. For this conver-
gence check, we only ran the highest resolution run for
350M due to computational costs.

The amount of unphysical mass that the BHs can ab-
sorb depends not only on the amount of unphysical mat-
ter, but also on the dynamics of the unphysical matter.
For BSSN, the constraint violations largely stay in place
(and can therefore be accreted) due the presence of a
zero-speed constraint mode in BSSN [39], while for CCZ4
the constraints quickly leave the vicinity of the BHs. The
very different behavior of BSSN and CCZ4 is shown in
Fig. 12.

The overall efficacy of using CCZ4 to drive the con-
straint violations to zero can be measured by examining
in detail how well the horizon masses are conserved. As
shown in Figs. 13 and 14, there is a relatively strong lin-
ear trend in the mass that, while converging to a small
value, is substantially larger than the Bowen-York re-
sult. Here we also see a significant advantage to using
higher-order dissipation. Note that even with the high-
est resolution runs, the horizon mass increase is an order
of magnitude larger than for Bowen-York data evolved
with CCZ4. Since the Bowen-York data were evolved
with the same evolution system and grid structure, it
appears that there are peculiarities associated with the
analytic initial data driving the mass increase (note, as
seen in Fig. 9, absorption of constraint violation seems
not to be the cause of this mass increase). One possi-
bility which we have not explored in detail here is that
the methods used to stuff the BHs may be affecting the
mass conservation. The other candidate would be resid-
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FIG. 11. The L2 norm of Hamiltonian constraint violations
and the L2 norm of the Euclidean magnitude of the momen-
tum constraint violations. The momentum constraints have
been rescaled by a factor of (h0/h)4, where h is base resolution
of a particular run and h0 is the base resolution of the coars-
est simulation. Note that the Hamiltonian violations have
not been rescaled. The spikes occurring roughly every 350M
are due to the high frequency initial gauge wave reflections
off the mesh refinement boundaries. Here too, the L2 norms
have been restricted to the interior of a sphere of radius 30M
about the origin and outside the two horizons

ual constraint violations. Even for our highest resolution
run, the average constraint violation on the horizon sur-
face at late time was 50% larger than for Bowen-York (the
global constraint violations were, on average, an order of
magnitude larger, as shown in Fig. 10). As observed in
Ref. [9], differences in accuracy of the spacetime at this
level will likely not be important for MHD simulations.

C. Eccentricity

As shown in Fig. 3, the transition from analytical to
numerical evolutions is relatively smooth, and, as shown
above, evolutions with CCZ4 drive the constraint viola-
tions down to acceptable levels (i.e., within a factor of
10 of the levels obtained by evolving the constraint sat-
isfying Bowen-York data). The last step required for a
successful continuation of the evolution is to ensure that
the binary remains quasicircular (the PN inspiral used
to generate the data is quasicircular). To accomplish
this, we applied the eccentricity reduction procedure of
Ref. [59] to our data (we found that we needed to set
MδΩorb = 7.88515 × 10−6 and δṙ = −1.54103 × 10−4).
After three iterations, we were left with a residual eccen-
tricity of e = 0.002, which was small enough for this test
(see, Fig. 15). In Fig. 15, we show the SPD versus time
for both CCZ4 and BSSN evolutions of the eccentricity-
reduced data, we also show a CCZ4 evolution of the orig-
inal data. From the figure, the non-physical dynamics
(overall increase in radius) of the BSSN evolution is ap-
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FIG. 12. The Hamiltonian constraint on the xy plane near the two BHs at t = 200M for the BSSN (left) and CCZ4 (right)
evolutions of the second-order analytical data starting at a separation of D = 20M . The scale is logarithmic and goes from
10−7 to 10−3. The absolute value of the constraint violations for the BSSN simulation match closely the violations on the
initial slice, while the CCZ4 violations are three orders of magnitude smaller. In each plot the interiors of the BHs have been
masked out. The constraint violations at t = 0 are given in the top right plot in Fig. 5.
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FIG. 13. The mass of the individual horizons versus time for
the CCZ4 simulations using the standard fifth-order dissipa-
tion, seventh-order dissipation, and fifth-order dissipation of
Bowen-York data. The linear trend in the mass, while con-
verging to a small value, is substantially larger than that for
Bowen-York.

parent. Note that we implement the eccentricity reduc-
tion by changing the initial orbital inspiral rate ṙ and
orbital frequency Ωorb used in the PN equations of mo-
tion. Changes to the inner-zone and far-zone metrics are
automatically handled by the matching procedure.

The eccentricity reduction here is complicated by the
fact that the amount of constraint violating fields ab-
sorbed by the BHs changes as the trajectories are mod-
ified. This in turn, leads to a more complicated depen-
dence of the eccentricity on the orbital parameters than
is seen for constraint satisfying data.
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FIG. 14. The rate of horizon mass increase versus time. Here
D5 indicates that fifth-order dissipation was used, while D7
indicates that seventh-order was used.

D. Waveform

The waveforms presented below are relatively short
(due to the expense of running the simulation to merger,
which would take about 6 months on 80 Opteron cores).
We will be comparing the numerical waveforms to PN
waveforms. For these “short” runs, the dominant error
is due to finite extraction radius. In Fig. 16, we show a
“late” segment of the waveform extracted at r = 800M ,
r = 1600M , a linear extrapolation (in l = 1/r) to r =∞
from these two waveforms, as well as the extrapolation to
r =∞ using the perturbative approach of Refs. [60, 61].
As expected, the dominant errors due to finite radius are
phase errors. Finally, in Fig. 17, we show the waveform
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1600 1700 1800 1900
t/M

-2e-05

-1e-05

0

1e-05

2e-05
rψ

4
(r=800M)

rψ
4
(r=1600M)

rψ
4
(pert)

rψ
4
(extrap)

FIG. 16. The (` = 2, m = 2) mode of the waveform (rψ4)
extracted at r = 800M and r = 1600M , a linear extrapolation
of these to r = ∞, and an extrapolation to r = ∞ using
perturbative techniques. Both the standard extrapolation in
r and the perturbative approach give very similar waveforms.

(post-initial burst) extracted at r = 800M for the reso-
lutions h = h0/1.2

2 and h = h0/1.2
3. We also show the

extrapolation of these waveforms using the techniques of
Refs. [60, 61]. As can be seen, the dominant error in
the waveform is the phase error due to finite extraction
radius.

V. COMPARISON TO PN

To gauge the accuracy of our transition from analyti-
cal to numerical evolutions, we compare the subsequent
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FIG. 17. The (` = 2, m = 2) mode of the waveform (rψ4)
extracted at r = 800M at two resolutions. Both the raw
waveform and the extrapolation to infinity are shown. The
dominant error is the extrapolation error which manifests it-
self predominately as a phase error.

dynamics of the binary with the predictions of PN.

In Fig. 18, we show the SPD versus time and PN sepa-
ration versus time. Since the SPD at t = 0 is larger than
20M we translate the SPD vertically. Note that the SPD
is not expected to be equal to the PN separation. The
SPD includes effects due to the non-flatness of the spa-
tial metric and measures how distant the two horizons
are to each other, while the PN separation extends from
the center of one BH to the other and the proper sepa-
ration corresponding to this would not be finite. While
it is interesting that the numerical SPD matched the PN
separation reasonably well, these are not gauge invari-
ant quantities. We also show the SPD for an equiva-
lent Bowen-York simulation (evolved with BSSN) first
reported in Ref. [35]. The Bowen-York run also had the
eccentricity reduction procedure applied.

To have a more gauge invariant measure of the accu-
racy of the evolution we compare the waveform (as ex-
tracted at 1600M) with the 3.5PN prediction for quasi-
circular orbits [62] (similar to what was done in Refs. [35]
and [24]). All waveforms are shown in Fig. 19.

When extracting at r = 1600M , we get very good
agreement between the raw (` = 2, m = 2) mode of ψ4

and the extrapolation to infinity using the techniques of
Ref. [60]. Note that the numerical waveform prior to the
burst of radiation is purely a function of the initial data.
The initial data used the 3.5PN equations of motion, thus
the agreement in the frequency at early time with 3.5PN
is expected. On the other hand the PM metric in the
FZ contains terms up to 2.5PN order, which naturally
leads to a lower order approximation for the wave ampli-
tude since it not only depends on the orbital parameters
but also on the metric perturbation order. After the ini-
tial data burst, the waveform becomes noisier but the
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FIG. 18. The SPD and PN separation versus time as calcu-
lated using a CCZ4 evolution of the new data and an older
BSSN evolution of Bowen-York data. The SPD is always
larger than the coordinate (and hence PN) separations. We
shift the SPDs downward by 3.25M so that they agree with
initial PN separation at t = 0.

agreement with 3.5PN is still quite good. The numerical
waveform amplitude, however, seems to be closer to the
average of 1.5PN and 3.5PN.

One important note is that the PN waveform given in
the initial data is slightly out of phase with the resulting
numerical waveform, as shown in Fig. 20. That is to say,
after translating the waveform in time by r∗ (the tor-
toise coordinate of the extraction observer), the PN and
NR waveforms agree quite well for the part of the wave-
form after the initial burst has hit the extraction sphere
(in the plot this would be from t = 0 to t = 2400M).
However, prior to this burst arriving at the observer (in
the plot, prior to t = 0), the PN and NR waveforms are
out of phase by 0.255 radians. This initial part of the NR
waveform is produced by the far-zone metric in the initial
data, while the latter part of the waveform is produced
by subsequent fully nonlinear binary dynamics. This will
have repercussions if one wants to smoothly attach a PN
waveform to the numerical waveform. It is important to
note that other than a translation by the tortoise coor-
dinate r∗ corresponding to the extraction radius, the NR
and PN waveforms have not been translated.

The phase error itself can be explained by how we con-
struct the metric in the far zone. In the far zone, the
metric at some point at a (coordinate) distance r from
the origin depends on the dynamics of the binary at a re-
tarded time given by the light propagation time from the
binary to that point. We use the expression tret = t− r,
which is the flat space retarded time. A more accurate
expression would include the mass of the spacetime. For a
Schwarzschild BH, in harmonic coordinates, the retarded
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FIG. 19. The frequency and magnitude of the (` = 2,m = 2)
mode of rψ4 as measured at r = 1600M in the full numerical
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1.5PN or 3.5PN expressions for ṙ and either the full 3.5PN
expression for h22 (as a function of r and ω) of Faye et al. [62],
or truncate to 1PN order. We use the 3PN expression for ω
in all cases.

time would be

tSch.ret = t−
[
(r +M) + 2M log

(
r +M

2M
− 1

)]
, (9)

whereM is mass of the spacetime. We thus find that for a
given waveform frequency ω, using the flat space retarded
time will introduce a phase error of approximately

δφ = ω

[
M + 2M log

(
r +M

2M
− 1

)]
. (10)

Since the binary’s orbital period here is MΩorb ≈ 0.01,
and the (` = 2,m = 2) mode of the waveform has twice
this frequency, we expect a phase error introduced by
the flat space retarded time of ≈ 0.287 rad, which is
reasonably close to our measured phase error of 0.255
rad.

One final note concerns the amplitude of the initial
data pulse in the waveform. As seen in Fig. 21, the ini-
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FIG. 20. The numerical waveform from the new data, a nu-
merical waveform from equivalent Bowen-York data, and the
PN waveform. Here the numerical waveforms are shifted by
r∗ (the tortoise coordinate at the extraction radius) and the
PN waveforms is unshifted. The phase agreement is good af-
ter t = 0 but breaks down prior to the initial data pulse (for
the new data) despite the fact that the NR frequency is in
close agreement with PN for the whole waveform. The jump
in phase between the early and late part of the waveform is
likely due to the use of the flat space retarded time in con-
structing the early waveform.

tial pulse of radiation is suppressed relative to equiva-
lent Bowen-York data. At r = 1600M , the suppression
roughly a factor of 2, while at the r = 400M extraction
radius, the suppression is closer to a factor of 3. This is
mostly due to the fact we have an initial data which mod-
els the astrophysical BHB system better and therefore
possess less spurious radiation content when compared to
the conformally flat BY initial data. Here, because the
resolution of the grid at r = 1600M , the high-frequency
gauge pulse (near t = −500M) is completely dissipated
away. The high-frequency components of the initial data
pulse are similarly suppressed.

VI. DISCUSSION

In order to perform accurate GRMHD simulations of
gas accreting onto a BHB, including the minidisks around
each BH, we need a spacetime that is accurate for the en-
tire lifetime of the binary, i.e., from the slow inspiral at
extremely large separation all the way to merger and re-
laxation of the remnant BH. Our goal, therefore, is to
produce a 4-dimensional metric that is accurate outside
the horizons at all times, of sufficient smoothness that
timelike geodesics vary smoothly (i.e., are C∞) except at
a single transition time where they are C2, and the sub-
sequent binary dynamics should match PN predictions to
a high degree in the vicinity of this transition time. To
do this, we extended an analytic metric that is accurate
when the binary’s separation is D � M by continuing
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FIG. 21. A plot of the real part of the (` = 2,m = 2) mode
of rψ4 (shifted in time by −r) for Bowen-York and the hy-
brid data here (denoted by PN). The waveforms extracted at
r = 400M show a high-frequency pulse near t = −100M due
to an unresolved gauge wave. This high-frequency pulse is
dissipated away and not visible in the waveform extracted at
r = 1600M .

the evolution using fully nonlinear numerical techniques
for closer separations.

The main questions we addressed here concerned how
we can accurately transition from using an analytically
evolved spacetime metric to a fully nonlinear numerically
evolved metric that describes the binary during the rapid
plunge and merger. At the transition, we used the an-
alytical spacetime metric to construct initial data for a
subsequent numerical evolution (as was previously done
in Reifenberger and Tichy [33]). Our work builds upon
Reifenberger and Tichy in two main ways. We start from
an analytic spacetime that can be extended arbitrarily
far into the past, and we can thus compare dynamics of
particles pre and post transition. We also perform the
transition at a binary separation of D ∼ 20M , where the
binary’s dynamics are still well described by PN theory
and errors introduce in the gas dynamics by the approx-
imate metric are washed out by MHD turbulence (see
Ref. [9] for an analysis of MHD evolutions on this ana-
lytical background for various separations).

In order for the transition from an analytical evolution
to a numerical one to be smooth enough, the binary’s
orbital dynamics could not change significantly as a re-
sult of the transition. The binary’s dynamics in the fully
nonlinear numerical simulation had two main sources of
error. First, constraint violations led to rapid unphysi-
cal oscillations in the orbital separation. Second, small
errors in the PN expressions for the orbital angular mo-
mentum and inspiral rate led to eccentricity in the bi-
nary. We were able to ameliorate the first source of error
by evolving with the constraint-damping CCZ4 [40] for-
mulation of Einstein’s equations, which causes constraint
violations to rapidly propagate away from the BHs, sig-
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nificantly reducing unphysical binary dynamics. In addi-
tion, by adding small changes to the initial inspiral rate
and orbital frequency, we significantly reduced the ec-
centricity of the numerical binary using the techniques
of [59].

We subsequently found that the NR evolution leads
to both the expected gravitational waveform, orbital fre-
quency, and binary inspiral rate (to within the truncation
error of the simulation). The remaining error we found
is a phase error in the early part of the waveform. This
phase error is about 0.255 rad. We ascribe this error to
our use of the flat-space retarded time in the far zone.
By not including effects due to the mass of the spacetime
we generate phase errors of the order of 0.287 rad in the
waveform. This error can itself be ameliorated by using
the Schwarzschild retarded time when constructing the
far zone metric, which is something we will explore in an
upcoming paper.
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