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We present the numerical code precession: a new open-source python module to study the
dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a
comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles,
(ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-
averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae
obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-
hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation
codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and
cosmological simulations of structure formation. precession provides fast and reliable integration
methods to propagate statistical samples of black-hole binaries from/to large separations where
they form to/from small separations where they become detectable, thus linking gravitational-wave
observations of spinning black-hole binaries to their astrophysical formation history. The code is
also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific
precessing systems. precession can be installed from the python Package Index and it is freely
distributed under version control on github, where further documentation is provided.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.-w, 04.30.Tv, 04.70.Bw, 97.80.-d, 98.65.Fz

I. INTRODUCTION

Spinning black-hole (BH) binaries are remarkably in-
teresting physical systems lying at the edge of funda-
mental physics and astronomy. Astrophysical BHs are
described by the Kerr [1] solution of General Relativ-
ity and are fully characterized by their mass and angu-
lar momentum, or spin. In a binary system, couplings
between the BH spins and the binary’s orbital angular
momentum introduce secular dynamical features on top
of the binary’s orbital motion: the two spins and the
orbital plane precess about the direction of the total an-
gular momentum of the system [2, 3]. Meanwhile, energy
and momentum are slowly dissipated away in the form
of gravitational waves (GWs) and the orbital separation
consequently shrinks [4]. GW-driven inspiral may ulti-
mately lead to the merger of the two BHs.

The three phenomena highlighted above (orbit, pre-
cession and inspiral) take place on different timescales.
While the two BHs orbit about each other with pe-
riod torb ∼ (r/rg)3/2, the spins and the orbital an-

gular momentum precess at the rate tpre ∼ (r/rg)5/2

and GW radiation reaction only affects the dynamics
on times tRR ∼ (r/rg)4 (here r is the binary separa-
tion and rg = GM/c2 is the gravitational radius of the
total mass of the binary M). At separations r � rg,
the dynamics can be studied successfully using the post-
Newtonian (PN) approximation to General Relativity
(e.g. [5]) and the three timescales are widely separated:
torb � tpre � tRR. Multi-timescale analyses can be used
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in this regime to efficiently disentangle the various dy-
namical features [3, 6, 7]. The timescale hierarchy breaks
down, together with the entire PN approximation, at
separations r ∼ rg where the binary evolution can be
followed faithfully only using numerical-relativity simu-
lations (see e.g. [8]).

Spinning BHs now occupy a firm place in our under-
standing of the Universe. Astrophysical objects related
to very energetic phenomena started being interpreted as
BHs in the ’60s [9, 10] following the identification of the
first quasar [11] and the discovery of the first X-ray binary
[12, 13]. BHs are observed in two separated mass regimes:
stellar-mass BHs, which are the endpoints of the life of
some massive stars [14], and supermassive BHs, which
reside at the center of most galaxies and help regulate
their evolution [15]. Although challenging, robust spin
measurements from electromagnetic observations are now
possible in both mass regimes [16, 17].

BHs have been long predicted to form binary systems:
stellar-mass BH binaries are expected to form in the field
from the evolution of massive binary stars [18] and dy-
namically in dense stellar clusters [19]; supermassive BH
binaries are a natural by-product of hierarchical struc-
ture formation and galaxy mergers [20, 21]. BH binaries
are now an observational reality. Following challenging
electromagnetic observations (see e.g. [22] for a convinc-
ing candidate), the spectacular detection of GW150914
[23] from the LIGO interferometers [24] now constitutes
irrefutable astrophysical evidence of a merging stellar-
mass BH binary. Merging supermassive BH binaries are
the main targets of the future space-based GW interfer-
ometer eLISA [25, 26] and current Pulsar Timing Arrays
[27–30].

Spin precession is a crucial ingredient to both BH
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physics and GW astronomy. Although precessional mod-
ulations in the emitted GW signal require development
of more elaborate waveforms [31–33], they constitute a
promising channel to extract astrophysical information
from GW observations [34–36]. Moreover, PN spin pre-
cession introduces complex dynamics to the final stage of
BH inspirals [37, 38] and greatly affects the properties of
the BH remnants following binary mergers [39, 40].

In this paper, we present the numerical code
precession: an open-source python module to study
spinning BH binaries in the PN regime. In a nut-
shell, precession performs BH binary inspirals tracking
their precessional dynamics using both standard orbit-
averaged and new precession-averaged approaches. It
also conveniently implements fitting formulae obtained
from numerical-relativity simulations to predict mass,
spin and recoil of BH remnants following binary merg-
ers. precession combines the flexibility of the high-level
programming language python with existing scientific
libraries written in C and Fortran to bypass speed bot-
tlenecks.

Our code finds application in a variety of astrophys-
ical problems. Population synthesis models to predict
GW rates (e.g. [41]) still lack the PN evolution of the
BH spins which has been shown to critically depend
on the binary formation channel [34]. Galaxy merger
trees (e.g. [42, 43]) and large-scale cosmological simu-
lations (e.g. [44, 45]) do not typically evolve the spin
directions in the PN regime, although these are criti-
cal to address, e.g., the galaxy/BH occupation fraction
[46, 47] and the detectability of recoiling BHs [48, 49].
We provide PN integrators to extend existing treatments
of the astrophysical evolution of the BH spins [50–53]
through the GW driven regime of the binary inspiral.
The methods implemented in precession to analyze the
BH spin dynamics could provide initial parameters to
numerical-relativity simulations (e.g. [54, 55]) targeting
specific precessing systems. GW parameter-estimation
codes (e.g. [56]) may also benefit from our formulation
of the spin-precession problem in terms of timescale sep-
arations. precession can easily propagate BH binaries
backwards from GW observation to arbitrarily large sep-
aration, thus reconstructing their entire inspiral history.
Our multi-timescale formulation of the problem could
also help in the ongoing effort of building efficient GW
templates for precessing systems [57]. Overall, we be-
lieve that precession will be a useful tool to interpret
numerical results and GW observations of precessing BH
binaries and facilitate more accurate modeling of their
astrophysical environments.

This paper is organized as follows. Sec. II provides
a general overview of the code; Sec. III is devoted to
the spin precession dynamics; Sec. IV describes the in-
tegration of the PN equations of motion to perform
BH inspirals; Sec. V summarizes the implementation of
numerical-relativity fitting formulae to predict the prop-
erties of post-merger BHs; Sec. VI contains various prac-
tical examples to use precession; Sec. VII highlights our

conclusions and anticipates future features of the code.
From now on, equations are written in geometrical units
(c = G = 1). As specified in Sec. II A, code units also set
the binary’s total mass to 1.

II. CODE OVERVIEW

In this section we give a general overview of the code.
Sec. II A describes code installation; Sec. II B presents
a minimal working example; Sec. II C provides details
on documentation and source distribution; Sec. II D de-
scribes units and parallel programming features.

A. Installation

precession is a python [58] module
and is part of the python Package Index:
pypi.python.org/pypi/precession. The code
can be installed in a single line through the package
management system pip:

pip install precession

Useful options to the command above include --user for
users without root privileges and --upgrade to update a
pre-existing installation. The scientific libraries numpy
[59], scipy [60], matplotlib [61] and parmap [62] are
specified as prerequisites and, if not present, will be in-
stalled/updated together with precession. precession
has been tested on python 2.7 distributions; porting to
python 3 is under development.

Once precession has been installed, it has to be im-
ported typing

import precession

from within a python console or script. The main mod-
ule precession contains ∼ 80 functions for a total of
∼ 1700 code lines. The submodule precession.test
consists of ∼ 300 code lines divided in 7 examples rou-
tines. If needed, this has to be imported separately typ-
ing

import precession.test

All functions and examples that should be called by the
user are described in this paper.

B. A first working example

A minimal working example of some features of
precession is shown in Fig. 1. We encourage the reader
to execute this code snippet typing

precession.test.minimal()

We initialize a BH binary at the extremely large sepa-
ration of 10 billion gravitational radii (r = 1010M) and
evolve it down to small separations (r = 10M) where the
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Source code:

t0=time.time()

q=0.75 # Mass ratio

chi1=0.5 # Primary’s spin magnitude

chi2=0.95 # Secondary’s spin magnitude

print "Take a BH binary with q=%.2f, chi1=%.2f and

chi2=%.2f" %(q,chi1,chi2)↪→
sep=numpy.logspace(10,1,10) # Output separations

t1= numpy.pi/3. # Spin orientations at r_vals[0]

t2= 2.*numpy.pi/3.

dp= numpy.pi/4.

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2)

t1v,t2v,dpv=precession.evolve_angles(t1,t2,dp,sep,q,S1,S2)

print "Perform BH binary inspiral"

print "log10(r/M) \t theta1 \t theta2 \t deltaphi"

for r,t1,t2,dp in zip(numpy.log10(sep),t1v,t2v,dpv):

print "%.0f \t\t %.3f \t\t %.3f \t\t %.3f" %(r,t1,t2,dp)

t=time.time()-t0

print "Executed in %.3fs" %t

Screen output:

Take a BH binary with q=0.75, chi1=0.50 and chi2=0.95

Perform BH binary inspiral

log10(r/M) theta1 theta2 deltaphi

10 1.047 2.094 -2.330

9 1.047 2.094 1.811

8 1.047 2.095 2.341

7 1.046 2.095 2.827

6 1.050 2.093 0.351

5 1.055 2.089 -0.211

4 1.046 2.095 -1.588

3 0.991 2.133 -2.271

2 0.909 2.190 -1.903

1 0.505 2.439 -1.188

Executed in 5.526s

FIG. 1. Source code (top) and screen output (bottom) of
the example test.minimal described in Sec. II B. We select
a BH binary at r = 1010M and track the directions of the
two spins and the orbital angular momentum [cf. Eqs.(1)-
(4)] during its PN inspiral till r = 10M . We use precession-
averaged PN equations, which require random samplings of
the precessional phase, see Sec. IV (different code executions
will therefore return different values of the spin angles). The
execution time reported is obtained using a single core of a
2013 Intel i5-3470 3.20GHz CPU. These lines can be executed
typing precession.test.minimal().

PN approximation breaks down. The integration is per-
formed using precession-averaged PN equations of mo-
tion, as described later in Sec. IV B. The evolution of
the BH spins along such an enormous separation range
is computed in less than 6 seconds using a single core of
a standard off-the-shelf desktop machine.

C. Documentation and source distribution

This paper describes the numerical code precession
in its v1.0 release. The code is under active development
and additional features will be added regularly. Earlier

versions of the code were used in the following published
results: [6, 7, 47, 63–66].

The source code is distributed under git version-
control system at

github.com/dgerosa/precession (code),

and it is released under the CC BY 4.0 license. Exten-
sive code documentation can be generated automatically
in html format from the python’s docstrings using the
text processor pdoc [67]. Documentation is regularly up-
loaded to a dedicated branch of the git repository and
it is available at

dgerosa.github.io/precession (documentation).

The same information can also be accessed
using python’s built-in help system, e.g.
help(precession.function). Additional resources and
results are available at davidegerosa.com/precession.

D. Units and parallel features

All quantities in the code must be specified in total-
mass units, i.e. c = G = M = 1. For instance, the code
variable for the binary separation r stands for rc2/GM ;
equivalently, the angular-momentum magnitude variable
L stands for cL/GM2.
precession includes some parallel programming fea-

tures. Embarrassingly parallel tasks, such as computing
several PN inspirals (Sec. IV), are sent to different cores
to speed up the computation. By default, precession
autodetects the number of available cores in the execut-
ing machine and splits the operations accordingly. Par-
allel execution can be controlled using the global inte-
ger variable CPUs, which specifies the number of parallel
processes. For instance, serial execution can be enforced
setting CPUs=1 (cf. Sec. VI F).

Outputs of some functions are automatically stored,
such that further executions of code scripts do not re-
quire full recalculation. The location of the output direc-
tory is controlled by the global string variable storedir,
which is set by default to "./precession checkpoints".
The output directory is automatically created if needed,
or can be created manually using make temp. Stored
datafiles can be deleted using empty temp.

III. SPIN PRECESSION

In this section we present how to use precession to
study BH binaries on the spin precession timescale where
GW emission can be neglected. After introducing double-
spinning BH binaries (Sec. III A), we describe two useful
parametrizations of the precession dynamics (Sec. III B)
and discuss their constraints (Sec. III B). Time evolution
of BH binaries along their precession cycles is described
in Sec. III D. Finally, Sec. III E shows how to classify BH
binaries according to their precessional morphologies.

https://github.com/dgerosa/precession
https://creativecommons.org/licenses/by/4.0/
https://dgerosa.github.io/precession
http://davidegerosa.com/precession
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A. Black-hole binaries in the post-Newtonian
regime

Throughout this paper we only consider BH binaries
on quasi-circular orbits. Astrophysical BH binaries are
expected to circularize at large separation [4, 68] and
the first GW detection confirms this finding [69]. How-
ever, eccentricity may be relevant for stellar-mass BH
binaries formed in globular clusters [19] and supermas-
sive BH binaries interacting with dense stellar environ-
ments [70, 71]. Generalization to eccentric orbits is an
important extension of precession, which is left to fu-
ture work.

We use standard notation where the component masses
m1 and m2 are combined into total mass M = m1 +m2,
mass ratio q = m2/m1 ≤ 1 and symmetric mass ra-
tio η = m1m2/M

2 = q/(1 + q)2; the spin magnitudes
Si = m2

iχi (hereafter i = 1, 2) are given in terms of the
dimensionless spin parameters 0 ≤ χi ≤ 1. The mag-
nitude of the orbital angular momentum L is related to
the binary separation r through the Newtonian expres-
sion L = m1m2

√
r/M . The utility get fixed provides

the component masses mi and the spin magnitudes Si

in terms of q and χi in code units; similarly, get L re-
turns the Newtonian expression for the magnitude of the
orbital angular momentum.

Before proceeding with the code implementation, we
point out that precession is explicitly designed to
handle genuine double-spin physics. Non-spinning and
single-spin binaries (i.e. χ1 = 0 and/or χ2 = 0) rep-
resent singular cases that cannot be handled with the
present version of the code. In practice, these systems
can be well approximated by setting χi & 0.001.

precession loses accuracy in the extreme-mass-ratio
limit q → 0 (where other methods are required to study
the dynamics, e.g. [72]) and the equal-mass limit q → 1
[where the parametrization chosen to describe the pre-
cession cycle breaks down, e.g. Eq. (9)]. Our results
have been well tested in the regime 0.005 . q . 0.995.
precession currently features an alternative implemen-
tation to study the strictly equal-mass case q = 1, which
exploits additional constants of motion [73, 74]. These
findings will be presented elsewhere [75].

B. Parametrization of double spin precession

The time evolution of the three vectors S1, S2 and L in
an inertial frame is a nine-parameter problem. However,
only four parameters are needed to describe the relative
orientations of the three momenta [76–78]. One of these
parameters is the orbital separation r (or equivalently the
magnitude L), which is constant on tpre and decreases on
tRR because of GW emission. Two possible choices for
the remaining three degrees of freedom are:

1. The spin directions can be described in terms of

three angles

cos θ1 = Ŝ1 · L̂ , (1)

cos θ2 = Ŝ2 · L̂ , (2)

cos ∆Φ =
Ŝ1 × L̂

|Ŝ1 × L̂|
· Ŝ2 × L̂

|Ŝ2 × L̂|
, (3)

where the sign of ∆Φ is chosen such that

sgn ∆Φ = sgn{L · [(S1 × L)× (S2 × L)]}. (4)

In words, θ1 and θ2 are the angles between the two
spins and the orbital angular momentum (tilt an-
gles) and ∆Φ is the angle between the projections
of the two spins onto the orbital plane (see Fig. 1 in
[78]). Despite being very intuitive, this description
makes the understanding of the underlying phe-
nomenology rather complicated because all three
variables (θ1, θ2,∆Φ) vary on both the precession
and the inspiral timescales.

2. A more physical choice can be made to exploit the
timescale separation tpre � tRR. The magnitude
of the total angular momentum

J = |L + S1 + S2| (5)

is conserved on the timescale tpre where GW emis-
sion can be neglected. Moreover, the projected ef-
fective spin [73, 79]

ξ ≡M−2[(1 + q)S1 + (1 + q−1)S2] · L̂ , (6)

is a constant of motion of the (orbit-averaged) 2PN
spin-precession and 2.5PN radiation-reaction equa-
tions (cf. Sec. IV A) and is therefore conserved on
both tpre and tRR. This implies that the entire dy-
namics on tpre can be encoded in a single variable,
which can be chosen1 to be the magnitude of the
total spin [6]

S = |S1 + S2| . (7)

The two descriptions –in terms of (θ1, θ2,∆Φ) and
(ξ, J, S)– are related by the following sets of transfor-

1 Equivalently, one can choose the angle ϕ′ defined in Eq. (9) of [7].
precession contains additional routines to analyze the dynamics
in terms of this angle. The most relevant functions are called
get varphi and region selection.
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mations

S = [S2
1 + S2

2 + 2S1S2(sin θ1 sin θ2 cos ∆Φ

+ cos θ1 cos θ2)]1/2 ,

J = [L2 + S2 + 2L(S1 cos θ1 + S2 cos θ2)]1/2 ,

ξ =
1 + q

qM2
(qS1 cos θ1 + S2 cos θ2) ;

(8)



cos θ1 =
1

2(1− q)S1

[
J2 − L2 − S2

L
− 2qM2ξ

1 + q

]
,

cos θ2 =
q

2(1− q)S2

[
−J

2 − L2 − S2

L
+

2M2ξ

1 + q

]
,

cos ∆Φ =
1

sin θ1 sin θ2

(
S2 − S2

1 − S2
2

2S1S2
− cos θ1 cos θ2

)
;

(9)

which are implemented in from the angles and
parametric angles. Similarly, Eqs. (1)-(4) can be eval-

uated using build angles. The angle θ12 = arccos Ŝ1·Ŝ2

between the two spins can be computed using both sets
of variables:

cos θ12 =
S2 − S2

1 − S2
2

2S1S2

= sin θ1 sin θ2 cos ∆Φ + cos θ1 cos θ2 . (10)

Eqs. (8) and (9) do not depend on the sign of ∆Φ. This
reflects the symmetry of the dynamics between the first
and second half of the precession cycle (cf. Sec. III D).
If the spin vectors are available in the current computa-
tion (e.g. from orbit-averaged evolutions, see Sec. IV A),
precession evaluates the sign of ∆Φ directly from
Eq. (4). If this is not the case, sgn ∆Φ must be speci-
fied by the user according to the evolution of S, as in the
example of Sec. VI B. In case of precession-averaged in-
spirals (Sec. IV C), the sign of ∆Φ is assigned randomly.

C. Geometrical constraints

The physical range of the three angles (θ1, θ2,∆Φ) is
given by the independent constraints θ1 ∈ [0, π], θ1 ∈
[0, π] and ∆Φ ∈ [−π, π]. Geometrical constraints on ξ,
J , S can be derived from Eqs. (6)-(7) and read:

−(1 + q)(S1 + S2/q) ≤ M2ξ ≤ (1 + q)(S1 + S2/q) ,
(11)

max(0, L− S1 − S2, |S1 − S2| − L) ≤ J ≤ L+ S1 + S2 ,
(12)

|S1 − S2| ≤ S ≤ S1 + S2 . (13)

Eqs. (11), (12) and (13) are returned by xi lim, J lim
and Sso limits, respectively. These constraints are not
independent of each other. For a given J satisfying
Eq. (12), the magnitude S = |S1 + S2| = |J − L| has
to satisfy

max(|J−L|, |S1−S2|) ≤ S ≤ min(J+L, S1+S2) , (14)

which is given by St limits. Allowed values of ξ are
then given by

min
S
ξ−(S) ≤ ξ ≤ max

S
ξ+(S) , (15)

where ξ± are the effective potentials for BH binary spin
precession [6]

ξ±(S) = {(J2 − L2 − S2)[S2(1 + q)2 − (S2
1 − S2

2)(1− q2)]

± (1− q2)
√

[J2 − (L− S)2][(L+ S)2 − J2]

×
√

[S2 − (S1 − S2)2][(S1 + S2)2 − S2]}
/

(4qM2S2L) .

(16)

In Ref. [7] we proved that ξ+ (ξ−) admits a single maxi-
mum (minimum) within the range of S given by Eq. (14)
for any value of J satisfying Eq. (12)2. The extremiza-
tion of the effective potentials is performed in xi allowed
using scipy.optimize.fminbound with a bracketing in-
terval given by Eq. (14). Analogously, J allowed com-
putes the allowed range of J for any value of ξ satisfying
Eq. (11). If needed, the effective potentials of Eq. (16)
can be evaluated directly using xi plus and xi minus;
their derivatives dξ±/dS are implemented in dxidS plus
and dxidS minus.

Once consistent values of J and ξ have been selected
(cf. Sec. VI A for a practical example), the binary dy-
namics on tpre is fully encoded in the evolution of S. The
magnitude S oscillates between the two solutions S± of
the equations ξ±(S) = ξ. A precession cycle therefore
consists of a complete oscillation S− → S+ → S−. The
radical equations ξ±(S) = ξ are solved in Sb limits us-
ing scipy.optimize.brentq. From experiments in wide
regions of the parameter space, we report a numerical
accuracy of ∆S±/M

2 ∼ 10−8.
The two roots S± coincide at the extrema of the ef-

fective potentials ξ = minS ξ−(S) and ξ = maxS ξ+(S),
where consequently the magnitude of the total spin S re-
mains constant. These are peculiar configurations where
the relative orientation of S1, S2 and L does not evolve
on tpre. It is straightforward to prove that they are char-
acterized by sin ∆Φ = 0: the three angular momenta
share the same plane and jointly precess about the di-
rection of J. These solutions have been discovered more
than a decade ago by Schnittman [76] and called spin-
orbit resonances (for other studies see [80, 81]). One
can prove that extremizing the effective potential ξ± is
equivalent to solving Eq. (3.5) of [76]. Two spin-orbit
resonances are present for any value of ξ: they are char-
acterized by ∆Φ = 0 and ∆Φ = π and correspond to the
largest and lowest values of J compatible with the chosen
ξ (cf. Fig. 5 in [7]). The angles θ1 and θ2 correspond-
ing to both resonances ∆Φ = 0, π can be evaluated using
resonant finder.

2 One can also prove that minS ξ−(S) = maxS ξ+(S) if and only
if J = L+S1 +S2 or J = max(0, L−S1−S2, |S1−S2| −L) [7].
Only one value of ξ is allowed in these peculiar cases and can be
evaluated using xi at Jlim.
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The values of J and ξ corresponding to the four
(anti)aligned configurations cos θi = ±1 are returned by
aligned configurations. The thresholds of the pre-
cessional instability discovered in [63] are returned by
updown.

D. Binary evolution on the precession timescale

The rate of variation of S between the two extrema S±

dS

dt
= −3(1− q2)

2q

S1S2

S

(η2M3)3

L5

(
1− ηM2ξ

L

)
× sin θ1 sin θ2 sin ∆Φ (17)

= ±3

2
ηM

[
1− ξ

( r

M

)−1/2]( r

M

)−5/2
×
√

(ξ+ − ξ)(ξ − ξ−) (18)

follows directly from the 2PN spin-precession equations
[here reported in Eqs. (24-26), see [3]] and can be eval-
uated using dSdt. The solutions S± of the equations
ξ±(S) = ξ correspond to turning points in the evolution
of S, i.e. dS/dt = 0. The time evolution of a BH binary
during (half of) a precession cycle is given by the integral

t(S) =

∫ S

S−

dS′

|dS′/dt| , S ∈ [S−, S+] . (19)

The integrand |dt/dS|−1 is regular everywhere in S ∈
(S−, S+), while the limits

lim
S→S±

1

|dS/dt| ∝
1√

|S − S±|
(20)

ensure integrability3 at S±. The numerical inte-
gration of Eq. (19) is performed in t of S and its
inverse S of t, using standard quadrature through
scipy.integrate.quad. Eq. (19) can used to
reparametrize the binary dynamics in terms of time (cf.
Sec. VI B). The precessional period τ is defined as the
time for a complete precession cycle S− → S+ → S−

τ = 2

∫ S+

S−

dS′

|dS′/dt| , (21)

and can be computed using precessional period.

The direction of J is constant as long as radiation reac-
tion is being neglected. The orbital angular momentum

3 The only exception is the up-down configuration (cos θ1 = 1,
cos θ2 = −1) in its instability region, where τ →∞ [63].

L precesses about that fixed direction at a rate [6]

Ωz =
J

2

(
η2M3

L2

)3{
1 +

3

2η

(
1− ηM2ξ

L

)
− 3(1 + q)

2q

(
1− ηM2ξ

L

)
[4(1− q)L2(S2

1 − S2
2)

− (1 + q)(J2 − L2 − S2)(J2 − L2 − S2 − 4ηM2Lξ)]

× [J2 − (L− S)2]−1[(L+ S)2 − J2]−1
}
. (22)

The vector L therefore spans an angle

α = 2

∫ S+

S−

Ωz
dS

|dS/dt| (23)

about J during each precession cycle. Eqs. (22) and (23)
can be evaluated using Omegaz and alphaz, respectively.
The azimuthal angle of the projection of L onto a plane
orthogonal to J can be tracked using alpha of S, cf.
Eq. (30) of [7]. The conditions α = 2πn (n integer) cor-
respond to configurations where the precession frequency
of L about J and that of the two spins are in resonance
with each other [82]. Tools to analyze such peculiar con-
figurations will be made available in future versions of
the code.

E. Spin morphologies

As discussed at great length in [7], the precessional be-
havior of spinning BH binaries can be classified in terms
of three different morphologies. These are related to the
evolution of ∆Φ during a precession cycle. In particular,
three situations are possibile:

1. ∆Φ circulates through the full range [−π,+π];

2. ∆Φ librates about 0 (and never reaches ±π);

3. ∆Φ librates about ±π (and never reaches 0).

Examples of BH binaries in the different morphologies
are studied in Sec. VI A. The spin-orbit resonances ξ =
minS(ξ−) and ξ = maxS(ξ+) can be interpreted as the
limits of the two librating morphologies: as the preces-
sion amplitude (S+ − S−) goes to zero, ∆Φ approaches
one of the resonant configurations and locks onto either
0 or ±π [76]. The spin morphology is an interesting dy-
namical feature of BH binaries because, while it charac-
terizes spin precession, it does not vary on the precession
timescale (i.e., it is independent of S). Radiation reac-
tion causes morphological transitions which are promis-
ing GW observables [65, 78]. Morphological classification
is implemented in find morphology.

The loop formed by the two effective potentials ξ± of
Eq. (16) encloses all binary configurations (ξ, S) compati-
ble with fixed values of r, J , q and Si. Regions of binaries
with different morphologies can coexist in this plane in
the following way (see Fig. 4 of [7]):
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1. a single region where all binaries librate about
∆Φ = ±π;

2. two regions of binaries librating about ∆Φ = ±π
separated by a third region of circulating binaries;

3. three different regions, where binaries librate about
∆Φ = 0, circulate and librate about ∆Φ = ±π.

This distinction is performed by phase xi. A useful tool
is provided in phase checker, which ensures that the
output of phase xi satisfies the constraints of Sec. III C.

IV. GRAVITATIONAL-WAVE DRIVEN
INSPIRAL

In this section we illustrate how to use precession
to compute BH inspirals. We provide a standard inte-
grator of the orbit-averaged PN equations (Sec. IV A)
and a framework to evolve binaries using our innovative

precession-averaged approach (Sec. IV B). A key ingredi-
ent is the statistical resampling of the precessional phase,
which is illustrated in Sec. IV C. Finally, we present a new
hybrid approach where precessional cycles are tracked
only during the last part of the inspiral (Sec. IV D).

A. Orbit-averaged evolutions

GW emission dissipates energy and angular momen-
tum, thus decreasing the binary separation. Following
the seminal studies of Apostolatos et al. [2] and Kidder
[3], the PN equations of motion for precessing systems
have historically been studied averaging over the orbital
motion [73, 76, 83–86], which exploits the inequalities
torb � tpre and torb � tRR. We provide a numerical in-
tegrator for the following set of orbit-averaged PN equa-
tions:

dS1

dt
= Ω1 × S1,

dS2

dt
= Ω2 × S2,

dL̂

dt
= − v

ηM2

d

dt
(S1 + S2); (24)

MΩ1 = ηv5
(

2 +
3q

2

)
L̂ +

v6

2M2

[
S2 − 3

(
L̂ · S2

)
L̂− 3q

(
L̂ · S1

)
L̂
]

; (25)

MΩ2 = ηv5
(

2 +
3

2q

)
L̂ +

v6

2M2

[
S1 − 3

(
L̂ · S1

)
L̂− 3

q

(
L̂ · S2

)
L̂

]
; (26)

dv

dt
=

32

5

η

M
v9

{
1− v2 743 + 924η

336
+ v3

[
4π −

∑
i=1,2

χi(Ŝi · L̂)

(
113

12

m2
i

M2
+

25

4
η

)]
+ v4

[
34103

18144
+

13661

2016
η +

59

18
η2

+
ηχ1χ2

48

(
721(Ŝ1 · L̂)(Ŝ2 · L̂)− 247(Ŝ1 · Ŝ2)

)
+

1

96

∑
i=1,2

(miχi

M

)2 (
719(Ŝi · L̂)2 − 233

)]
− v5π 4159 + 15876η

672

+ v6

[
16447322263

139708800
+

16

3
π2 − 1712

105
(γE + ln 4v) +

(
451

48
π2 − 56198689

217728

)
η +

541

896
η2 − 5605

2592
η3

]

+ v7π

[
− 4415

4032
+

358675

6048
η +

91495

1512
η2

]
+O(v8)

}
; (27)

where v =
√
M/r is the orbital velocity and γE ' 0.577

is Euler’s constant. The spin-precession equations (24)-
(26) are accurate up to 2PN; corrections to the radiation-
reaction equation (27) are included up 3.5PN (2PN) for
(non-)spinning terms [2–4, 68, 73, 85–92]. Higher-order
PN corrections to spin precession [93–95] and radiation
reaction [96, 97] are not implemented in the current ver-
sion of precession. The importance of such additional
corrections on the conservation of ξ and their quantita-
tive effect at small separations are still unclear and surely
merit further investigation.

Orbit-averaged inspirals require the integration of nine
coupled ordinary differential equations (ODEs) for the

components of L, S1 and S2. Although the time t at
a given separation r is crucial to calculate the emitted
GW signal, it is not relevant for most astrophysical pur-
poses, where only the evolution of the spin orientations is
needed. For this reason, precession performs PN inte-
grations using the separation r as independent variable.
In practice, we integrate dL/dr = dL/dt × (dv/dt)−1 ×
1/2
√
rM , where L is any of the components of L, S1

and S2. Integrations are performed using the lsoda al-
gorithm [98] implemented in scipy.integrate.odeint.
lsoda combines adaptive nonstiff and stiff methods and
monitors the ODE integrations to switch between the two
as needed.
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We provide three convenient wrappers of the orbit-
averaged PN integrator, which differ in their input and
output parameters.

1. orbit averaged evolves the relative orientation of
the three momenta given in terms of (ξ, J, S). The
initial configurations must be compatible with the
constraints presented in Sec. III C.

2. orbit angles evolves BH binary configurations
specified by the angles (θ1, θ2,∆Φ).

3. orbit vectors tracks the evolution of the nine
components of L of S1 and S2 in an inertial frame.

In the first two cases, the integration is carried out in a
reference frame (x̂, ŷ, ẑ) defined by J·x̂ = J·ŷ = L·ŷ = 0
at the initial separation; generic configurations can be
projected to this frame using Jframe projection. In the
third case, the integration frame is specified by the input
parameters. Examples are shown in Sec. VI D. Paral-
lelization is implemented in all wrappers to evolve distri-
butions of BH binaries on multiple cores (cf. Sec. VI F).
If needed, the right-hand side of Eqs. (25)-(27) can be
accessed explicitly calling orbav eqs.

B. Precession-averaged evolutions

Refs. [6, 7] introduced an alternative way to evolve
spinning BH binaries, which explicitly exploits the
timescale hierarchy tpre � tRR. The three parameters
(ξ, J, S) describing the relative orientations of the BH
spins naturally accommodate the timescales of the prob-
lem:

• ξ is conserved on both tpre and tRR;

• J is conserved on tpre but varies on tRR;

• S varies on both tpre and tRR.

The oscillations of S on tpre can be averaged over to
study the binary evolution on times t ∼ tRR. The secular
variation of J on tRR is given at 1PN by

dJ

dr
=

1

4rJ

J2 + L2 −
∫ S+

S−
S2|dS/dt|−1dS∫ S+

S−
|dS/dt|−1dS

 . (28)

This approach reduces the PN evolution of a BH binary
to a single ODE. The price paid to achieve this simpli-
fication is the loss of information on the evolution of S
(cf. Sec. IV C below).

The integration domain of Eq. (28) can be extended to
arbitrarily large separations using auxiliary variables

κ =
J2 − L2

2L
, u =

1

2L
, (29)

such that Eq. (28) reduces to

dκ

du
=

∫ S+

S−
S2|dS/dt|−1dS∫ S+

S−
|dS/dt|−1dS

, (30)

which can be integrated from/to u = 0 (r/M = ∞).
While J ∼ L ∝ √r diverges in the large separation limit,
the asymptotic value of κ

κ∞ = lim
r/M→∞

κ = lim
r/M→∞

(S1 + S2) · L̂ (31)

converges and becomes equivalent to the projection of
the total spin along the orbital angular momentum. κ∞
is therefore bounded by

−(S1 + S2) ≤κ∞ ≤ S1 + S2, (32)

as given by kappainf lim. BH binary configurations at
infinitely large separation are specified by pairs (ξ, κ∞)
satisfying Eqs. (11) and (32), see Sec. VI A. The al-
lowed range of these two parameters can be computed
using kappainf allowed and xiinf allowed. θ1 and θ2
asymptote to finite values at large separation, and can
be expressed in terms of ξ and κ∞:

cos θ1∞ ≡ lim
r/M→∞

cos θ1 =
κ∞(1 + q−1)−M2ξ

S1(q−1 − q) , (33)

cos θ2∞ ≡ lim
r/M→∞

cos θ2 =
M2ξ − κ∞(1 + q)

S2(q−1 − q) . (34)

Transformations between (ξ, κ∞) and (θ1∞, θ2∞) are im-
plemented in thetas inf and from the angles inf.
precession provides three different wrappers to inte-

grate Eqs. (28) and (30):

1. evolve J evolves the binary between two finite sep-
arations ri and rf . The initial condition J(ri) must
satisfy the geometrical constraints of Sec. III C.

2. evolve J infinity integrates Eq. (30) from
r/M = ∞ (u = 0) down to some final separation
rf . The initial configuration has to be specified in
terms of κ∞.

3. evolve J backwards evolves a binary specified at
some separation ri back to past infinity and returns
its asymptotic condition κ∞.

Practical examples are provided in Sec. VI D. Integra-
tions are performed using the lsoda algorithm [98]
wrapped in scipy.integrate.odeint. Parallelization
is implemented to run arrays of binaries simultaneously
(cf. Sec. VI F). The right-hand side of Eqs. (28) and (30)
can be evaluated directly using dJdr and dkappadu.

When performing precession-averaged evolutions, we
recommend avoiding binary configurations very close to
the limits reported in Eqs. (11)-(15). Numerical errors
arising from the integration of Eq. (28) may push some
of the parameters out of their range of validity, which
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prevents any further evolution. precession is rather
solid with respect to such errors: tolerances as small
as ∆J/M2 ∼ ∆ξ ∼ 10−6 from the limits reported in
Eqs. (11)-(15) are typically sufficient to ensure smooth
integrations.

C. Phase resampling and binary transfer

Precession-averaged integrations do not track the evo-
lution of the precessional phase. This is a well justified
approach for most astrophysical applications. Interac-
tions with the astrophysical environment determine the
spin orientation at large separation where GW emission
is inefficient to drive the dynamics [34, 50, 51, 53, 64, 99–
103]. The inequality tpre � tRR implies that BH binaries
undergo a very large number of precession cycles before
entering the GW-driven regime, such that the informa-
tion of the initial phase is lost in practice.

An estimate of the magnitude of the total spin S is
nonetheless available at a statistical level from the dy-
namics on the shorter times t ∼ tpre. The probability of
finding a binary with some total spin magnitude S is pro-
portional to dt/dS of Eq. (17). We sample the probability
distribution P (S) = 2|dS/dt|−1/τ (with S ∈ [S−, S+])
using the cumulative distribution method (e.g. [104]),
which is suitable to handle integrable singularities (cf.
Eq. 20). We first select a random number ε ∈ [0, 1] and
then solve the integral equation

2

τ

∫ S

S−

dS′

|dS′/dt| = ε (35)

for S ∈ [S−, S+]. The algorithm is implemented in
samplingS and tested in Sec. VI C below.

Phase resampling is essential to transfer the spin orien-
tations of BH binaries from large separation where they
form down to the regime close to merger. The complete
procedure is implemented in evolve angles, and can be
summarized as follows.

1. We specify a binary with mass ratio q, spin magni-
tudes S1, S2 and spin orientations (θ1, θ2,∆Φ) at
some initial separation ri.

2. We convert the initial configuration to (ξ, J, S) but
only consider (ξ, J), thus explicitly losing memory
of S.

3. The configuration (ξ, J) is evolved down to some
final separation rf integrating Eq. (28) for J (ξ
stays constant).

4. Given the final configuration (ξ, J) at rf , we
randomly extract a value S from a distribution
weighted by |dS/dt|−1.

5. The final set of parameters (ξ, J, S) is converted
back to (θ1, θ2,∆Φ). The sign of ∆Φ is randomly
chosen.

This procedure allows for direct comparison between
orbit-averaged and precession-averaged evolutions. Such
a comparison is carried out in Sec. VI E as a test of the
code. Tests performed on distributions of binaries have
been reported by [7], where precession-averaged binary
transfers have been found to be in excellent statistical
agreement with orbit-averaged evolutions. Discrepan-
cies between the two approaches become relevant only
at r ∼ 10M , where tpre becomes comparable to tRR.
However, the entire PN approach loses accuracy at such
small separations [77, 105, 106] and the binary evolution
can be followed faithfully only using numerical-relativity
simulations.

Neglecting and resampling the precessional phase lead
to a substantial computational speed up. A concrete ex-
ample is provided in Sec. VI F: even starting at moderate
separation ∼ 104M , precession-averaged integrations are
faster by about a factor ∼ 70 when compared to orbit-
averaged evolutions4. Orbit-averaged integrations be-
come impractical at separations significantly larger than
∼ 104M , while precession-averaged evolutions can be
carried out to/from infinitely large separation.

D. Hybrid evolutions

Although optimal for statistical studies, phase resam-
pling may be inaccurate in situations where individual
precession cycles need to be resolved. precession can
perform hybrid PN integrations combining the two ap-
proaches in hybrid:

1. A precession-averaged integration is used at large
separations, down to a certain separation threshold
rt.

2. The precessional phase is extracted at rt by resam-
pling the total spin magnitude S.

3. This binary configuration at rt is used to initialize
an orbit-averaged integration to resolve individual
precession cycles at separations r < rt.

The transition radius rt may correspond, for instance,
to a typical separation where the emitted GW frequency

ft =
√
M/π2r3t enters the lower end of the sensitivity

window of a specific detector. For convenience, we pro-
vide utilities to convert binary separation and emitted
GW frequency in rtof and ftor.

4 Precession-averaged evolutions may occasionally stall and take
longer to run. This is due to a wrong initial guess of the integra-
tion step attempted by lsoda and can be cured increasing the h0

optional parameter of scipy.integrate.odeint. With the cur-
rent default option, stalling happens roughly once every million
inspirals.
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V. BLACK-HOLE REMNANTS

precession implements numerical-relativity fitting
formulae to estimate final mass (Sec. V A), spin
(Sec. V B) and recoil (Sec. V C) of BHs following binary
mergers. The importance of spin precession in estimating
these properties is stressed in Sec. V D.

The fitting formulae are typically written down using
the following weighted combinations of the BH spins

∆ =
qχ2Ŝ2 − χ1Ŝ1

1 + q
, χ̃ =

q2χ2Ŝ2 + χ1Ŝ1

(1 + q)2
, (36)

and their projections parallel/perpendicular to the or-

bital angular momentum: χ̃‖ = χ̃ · L̂, χ̃⊥ = |χ̃× L̂|,
∆‖ = ∆ · L̂, ∆⊥ = |∆× L̂|.

A. Final mass

The energy radiated in GWs during the inspiral and
merger of a BH binary decreases the mass of the BH rem-
nant Mf below the binary’s total mass M . Estimates
of Mf can be computed analytically in the test-particle
limit q → 0 [107] and numerically in the strong-field
regime q ' 1 [74, 108, 109]. An interpolation between
these two regimes is given in [110] and reads

Mf

M
= 1− η(1 + 4η) (1− EISCO)

− 16η2
[
p0 + 4p1χ̃‖

(
χ̃‖ + 1

)]
. (37)

Here Eisco is the energy per unit mass of an effective
particle of spin χ̃ at the innermost stable circular orbit
[111]:

Eisco =

√
1− 2

3risco
, (38)

risco = 3 + Z2 − sign(χ̃‖)
√

(3− Z1)(3 + Z1 + 2Z2) ,

(39)

Z1 = 1 +
(

1− χ̃2
‖

)1/3 [(
1 + χ̃‖

)1/3
+
(
1− χ̃‖

)1/3]
,

(40)

Z2 =
√

3χ̃2
‖ + Z2

1 . (41)

The parameters p0 = 0.04827 and p1 = 0.01707 have
been obtained by [110] fitting 186 numerical-relativity
simulations from various groups. Mf can be computed
calling finalmass.

B. Final spin

A convenient expression for the spin Sf = M2
fχf of

the BH remnant is given in [112], where test-particle
results [107, 113] and numerical-relativity simulations

[74, 109, 114] are interpolated. Their expression for the
dimensionless spin χf is implemented in finalspin and
reads

χf = min

(
1,

∣∣∣∣χ̃ +
q

(1 + q)2
` L̂

∣∣∣∣) , (42)

` = 2
√

3 + t2η + t3η
2 + s4

(1 + q)4

(1 + q2)2
χ̃2

+ (s5η + t0 + 2)
(1 + q)2

1 + q2
χ̃‖ , (43)

with t0 = −2.8904, t2 = −3.51712, t3 = 2.5763, s4 =
−0.1229 and s5 = 0.4537.

Various alternative prescriptions for the final spin have
been compared in [39], where the critical importance of
accounting for PN spin precession in estimating χf is
demonstrated (see also the discussion by [112] on this
point).

C. Black-hole recoil

If GWs are emitted anisotropically during inspiral and
merger, linear momentum is dissipated in a preferential
direction and the center of mass recoils in the opposite
direction. BH recoil (or kick) velocities vk can be as large
as ∼ 5000 km/s, which exceeds the escape velocities of
the most massive galaxies [115]. Kicks are generated by
asymmetries in either the masses or the spins of the two
merging BHs. The mass asymmetry contribution to the
kick velocity vm lies in the orbital plane, while the spin
contribution has components vs‖ and vs⊥ directed paral-
lel and perpendicular to the orbital angular momentum.
The magnitude of the kick velocity vk can be modeled as
[116]

vk =
√
v2m + 2vmvs⊥ cos ζ + v2s⊥ + v2s‖ , (44)

where ζ is the angle between the mass term and the
orbital-plane spin term. We have implemented the fol-
lowing expressions for vm, vs⊥ and vs‖:

vm = Aη2
1− q
1 + q

(1 +Bη) , (45)

vs⊥ = Hη2∆‖ , (46)

vs‖ = 16η2[∆⊥(V11 + 2VAχ̃‖ + 4VBχ̃
2
‖ + 8VC χ̃

3
‖)

+ 2χ̃⊥∆‖(C2 + 2C3χ̃‖)] cos Θ , (47)

where the coefficients are extracted from numerical-
relativity simulations: A = 1.2 × 104 km/s, B = −0.93
[117], H = 6.9 × 103 km/s [118], V11 = 3677.76 km/s,
VA = 2481.21 km/s, VB = 1792.45 km/s, VC =
1506.52 km/s [119], C2 = 1140 km/s, C3 = 2481 km/s
[120], ζ = 145◦ [118]. The main contribution to vk comes
from the term proportional to V11 in Eq. (47). This effect,
known as “superkick”, enters vk weighted by ∆⊥ and it
is dominant if binaries merge with θi ∼ π/2 and ∆Φ ∼ π
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[116, 121]. The additional corrections VA,B,C (C2,3) are
known as “hangup-kicks” (“cross-kicks”) and increase vk
for moderate misalignments θi ∼ 50◦ [120, 122]. The
additional parameter Θ is the angle between the direc-
tion of ∆ × L̂ and the infall direction of the two holes
“at merger”, offset by ∼ 200◦ [123, 124]. In practice,
Θ depends on the initial separation of the BH binary in
each numerical-relativity simulation. Following previous
studies [49, 119, 125], precession deals with this depen-
dency assuming Θ to be uniformly distributed in [0, π].
Possible PN effects on the probability distribution of Θ
are not taken into account.

Eq. (44) can be evaluated using finalkick and pre-
dicts a maximum kick velocity vk ∼ 0.017c ∼ 5000 km/s.

D. Importance of spin precession

Spin precession plays a crucial role in determining the
properties of the BH remnant. The fitting formulae here
presented should only be applied at separations r . 10M
comparable to the initial conditions of the numerical-
relativity simulations used in their calibration. The PN
inspiral before merger profoundly modifies the spin orien-
tations and therefore the estimated properties of the final
BH. Ref. [39] showed that PN spin precession introduces
a fundamental uncertainty in predicting the final spin
because χf depends on the precessional phase at merger,
which is only available at a statistical level. This point
is even more crucial for kick predictions. Large kicks
are expected to be less (more) likely if binaries merge
with ∆Φ ∼ 0 (∼ π) [116, 121] and, consequently, phase
transitions towards the librating morphologies during the
early inspiral substantially suppress (enhance) the recoil
[40, 125]. Ref. [7] found that binary morphologies close
to merger are closely related to the spin configurations
at large separations, which opens up the possibility of
exploiting future BH kick measurements to constrain the
astrophysical processes behind BH binary formation and
evolution [36, 47–49, 52, 102, 126].

The expressions for final mass, spin and recoil currently
implemented in precession are the same already pre-
sented in [47]; other recent findings (e.g. [74, 127–129])
will be implemented in future versions of the code.

VI. EXAMPLES

This section contains several practical examples to use
precession. All tests presented here are available in
the python submodule precession.test which has to
be loaded explicitly with the command:

import precession.test

The source code of the example routines are reported in
Figs. 2-7. The outcome of their executions are presented
as screen outputs or graphical plots in Figs. 8-13. Each
example is described in a dedicated subsection: Sec. VI A

shows how to select consistent BH binary configurations
and study their dynamics on tpre; in Sec. VI B, we study
the precessional cycles of three BH binaries and classify
their spin morphologies; in Sec. VI C, we test our algo-
rithm to resample the precessional phase; Sec. VI D shows
how to compute PN inspirals and evaluate numerical-
relativity fitting formulae to estimate the properties of
the post-merger BH; finally, in Sec. VI E and VI F we
compare binary dynamics and computational speed of
orbit-averaged and precession-averaged integrations.

A. Selection of consistent parameters

The function test.parameter selection illustrates
how to select consistent parameters and characterize the
binary dynamics on the precession timescale. The test is
executed with

precession.test.parameter_selection()

The source code and the screen output are reported in
Figs. 2 and 8 respectively.

We first show how to select values of (ξ, J, S) that sat-
isfy the geometrical constraints described in Sec. III C,
and how to convert these values to (θ1, θ2,∆Φ). Sec-
ondly, we compute several quantities that characterize
BH spin precession: the angles θi corresponding to the
spin-orbit resonances, the precessional period τ , the total
precession rate α and the spin morphology. Finally, we
illustrate how to select consistent parameters at infinitely
large separation r/M →∞ (cf. Sec. IV B).

B. Evolutions of the spin angles on a precession
cycle

The function test.spin angles provides an example
to study the binary evolution over one single precession
cycle. The test is executed with

precession.test.spin_angles()

The source code is reported in Fig. 3; the resulting plot
is shown in Fig. 9.

The separation r and the magnitude of the total an-
gular momentum J are approximately constant on times
t ∼ tpre. Combined with the conservation of ξ, this im-
plies that the precessional dynamics can be parametrized
using a single parameter. We first parametrize the pre-
cession cycles using the magnitude of the total spin S.
Time evolutions are then obtained by integrating dS/dt
according to Eq. (19). The magnitude S undergoes a full
oscillation between two values S− and S+ in a time τ [cf.
Eq. (21)], which defines the precession period. As shown
in Fig. 9, the evolution of the tilt angles θi is qualitatively
similar for all binaries. On the other hand, three different
situations are possible for ∆Φ and exemplify the notion
of precessional morphology. As already pointed out in
Sec. III B, the sign of ∆Φ must be specified by the user:
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one has ∆Φ ≤ 0 (∆Φ ≥ 0) in the first (second) half of
the precession cycle where S increases (decreases).

C. Sampling of the precessional phase

The routine test.phase sampling tests our procedure
to statistically sample values of S weighted by |dS/dt|−1
(cf. Sec. IV C). The test is executed with

precession.test.phase_sampling()

The source code is reported in Fig. 4; the resulting plot
is shown in Fig. 10.

After selecting a BH binary configuration
(q, χ1, χ2, r, J, ξ), we extract multiple values of
S ∈ [S−, S+] using samplingS. The obtained dis-
tribution is normalized, binned, and compared with the
continuum limit P (S) = 2|dS/dt|−1/τ . As a consistency
check, we also convert our sample to t(S) using Eq. (19)
and verify that these values are distributed uniformly.
This example also demonstrates that the singularities of
P (S) at S± [cf. Eq. (20)] are integrable and result in a
smooth probability distribution of t.

D. Wrappers of the PN integrators

The example test.PNwrappers shows how to perform
PN inspirals using the ODE integrators implemented in
precession. The test is executed with

precession.test.PNwrappers()

The source code and the screen output are reported in
Figs. 5 and 11, respectively.

We first specify a BH binary at some initial separation
ri by providing values of the angles (θ1, θ2,∆Φ), which
are then converted to (ξ, J, S), cf. Sec. III B. This sys-
tem is first evolved down to a final separation rf < ri
integrating the orbit-averaged PN equations of motion
(25)-(27). The integration is performed using the three
wrappers presented in Sec. IV A to extract the final con-
figuration in terms of (θ1, θ2,∆Φ), (ξ, J, S), and the nine
components of L, S1, S2. The same evolution is then per-
formed using the precession-averaged approach outlined
in Sec. IV B. In contrast to orbit-averaged integrations,
ξ is not evolved explicitly and it is assumed to be con-
stant. The final value of J is obtained by integrating
Eq. (28). The evolution of S is not tracked explicitly,
but can be resampled (cf. Sec. IV C) to obtain a statis-
tical estimate of the angles (θ1, θ2,∆Φ) at rf . We then
show how to perform integrations to/from r/M → ∞,
where the projection of the total spin κ∞ is asymptot-
ically constant. Finally, we evolve the same BH binary
using a hybrid approach, stitching together precession-
averaged and orbit-averaged integrations at some sepa-
ration rt. We complete this exercise with the evaluation
of the numerical-relativity fitting formulae to estimate
the properties of the post-merger BH remnant (Sec. V).
Formulae are applied at rf , after the PN evolution.

E. Comparison between orbit-averaged and
precession-averaged integrations

The example test.compare evolutions compares a
single PN evolution performed using orbit-averaged and
precession-averaged integrations. The test is executed
with

precession.test.compare_evolutions()

The source code is reported in Fig. 6; the resulting plot
is shown in Fig. 12.

Conservation of the effective spin ξ on the preces-
sional time [73, 79] is a crucial assumption underly-
ing our precession-averaged approach. On the other
hand, orbit-averaged integrations confirm this feature
as a by-product. We detect extremely small deviations
∆ξ/ξ ∼ 10−11 between the two approaches (cf. top panel
of Fig. 12), which fully corroborates our assumption, at
least at the PN order we implemented. Variations of ξ
due to additional PN corrections [93–95] still need to be
explored. Note that ξ is not conserved on the orbital
timescale (only on tpre and tRR), but those variations are
not captured by either of our methods. The evolution of
J is also very accurate, with deviations of the order of
∆J/J ∼ 10−3 during the entire integration (Fig. 12, mid-
dle panel). The precession-average approach gradually
loses accuracy at small separations, where the precession
time tpre becomes comparable to the inspiral time tRR.
Precession-averaged integrations require a resampling of
the precessional phase S at each output separation. Re-
sampled values are in excellent statistical agreement with
the orbit-averaged result (lower panel of Fig. 12). The
envelope of the orbit-averaged evolution of S is well de-
scribed by the S± curves given by ξ±(S) = ξ, cf. Eq. (16).

F. Parallel computation and timing

Our last example, test.timing, compares the compu-
tational efficiency of the PN integrators implemented in
precession. The test is executed with

precession.test.timing()

The source code and the screen output are reported in
Figs. 7 and 13, respectively.

We compute the CPU time needed to evolve a sam-
ple of N = 100 BH binaries from ri = 104M to rf =
10M using orbit-averaged and precession-averaged inte-
grations. In particular, we time the orbit-averaged in-
tegrator wrapped inside orbit angles (cf. Sec. IV A)
against the precession-averaged evolution implemented in
evolve angles (cf. Sec. IV B). The latter includes both
the numerical integration of Eq. (28) and a final resam-
pling of the magnitude S. To better illustrate the parallel
implementation of the integrators, we perform the same
computation twice: in the first iteration, integrations are
performed in parallel on all the available cores (default);
in the second iteration, we enforce a strictly serial execu-
tion. On average, a single BH inspiral takes ∼ 3 minutes
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(∼ 3 seconds) when evolved using orbit- (precession-)
averaged integrations. The computational performances
obtained here are in good agreement with [7], where the
dependence of the CPU time on the initial separation ri
is also studied (see their Fig. 9).

VII. CONCLUSIONS

We have presented design and usage of the numeri-
cal open-source code precession. Our code provides
various numerical tools to study the precessional dynam-
ics of BH binaries, evolve BH binaries along their GW-
driven inspirals and estimate the properties of the sin-
gle BHs resulting from binary mergers. precession is
distributed in the form of a python module to com-
bine flexibility, ease-of-use and numerical efficiency. The
code can be straightforwardly installed from the python
Package Index through pip, and it is distributed under
version control at github.com/dgerosa/precession.
Extensive documentation is regularly maintained at
dgerosa.github.io/precession. Further information
is available at davidegerosa.com/precession.

precession is under active development and several
features will be added in future versions. Possible ex-
tensions include (i) generalization to eccentric orbits, (ii)
explicit treatment of single-spin and non-spinning bina-
ries, (iii) reparametrization of the dynamics in the equal-
mass limit [75], (iv) implementation of the latest fitting
formulae to numerical-relativity simulations, (v) addi-
tion of higher-order PN corrections, and (vi) inclusion
of numerical tools to study the resonant configurations
α = 2πn [82]. On the computational side, precession
will be ported to python 3, and its parallel comput-
ing features further refined. Additional computational
speed-up could be achieved using static compilers such
as cython [130]. Compatibility and/or integration with
the LIGO Algorithm Library5 software is also an impor-
tant future development.

The numerical tools described in this paper facilitate

the implementation of spinning BH binary inspirals in
a variety of astrophysical studies, ranging from popu-
lation synthesis models to galaxy merger trees. More-
over, precession provides flexible tools to interpret GW
observations and numerical-relativity simulations of BH
binaries in light of multi-timescale PN techniques. As
merging BH binaries have entered the realm of obser-
vations, we hope that our numerical efforts –here made
available to the scientific community– will help under-
standing these fascinating physical systems straddling
the boundaries between fundamental physics and astron-
omy.
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print "\n *Parameter selection at finite separations*"

q=0.8 # Must be q<=1. Check documentation for q=1.

chi1=1. # Must be chi1<=1

chi2=1. # Must be chi2<=1

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2) # Total-mass units M=1

print "We study a binary with\n\tq=%.3f m1=%.3f m2=%.3f\n\tchi1=%.3f S1=%.3f\n\tchi2=%.3f S2=%.3f" %(q,m1,m2,chi1,S1,chi2,S2)

r=100*M # Must be r>10M for PN to be valid

print "at separation\n\tr=%.3f" %r

xi_min,xi_max=precession.xi_lim(q,S1,S2)

Jmin,Jmax=precession.J_lim(q,S1,S2,r)

Sso_min,Sso_max=precession.Sso_limits(S1,S2)

print "The geometrical limits on xi,J and S are\n\t%.3f<=xi<=%.3f\n\t%.3f<=J<=%.3f\n\t%.3f<=S<=%.3f"

%(xi_min,xi_max,Jmin,Jmax,Sso_min,Sso_max)↪→
J= (Jmin+Jmax)/2.

print "We select a value of J\n\tJ=%.3f " %J

St_min,St_max=precession.St_limits(J,q,S1,S2,r)

print "This constrains the range of S to\n\t%.3f<=S<=%.3f" %(St_min,St_max)

xi_low,xi_up=precession.xi_allowed(J,q,S1,S2,r)

print "The allowed range of xi is\n\t%.3f<=xi<=%.3f" %(xi_low,xi_up)

xi=(xi_low+xi_up)/2.

print "We select a value of xi\n\txi=%.3f" %xi

test=(J>=min(precession.J_allowed(xi,q,S1,S2,r)) and J<=max(precession.J_allowed(xi,q,S1,S2,r)))

print "Is our couple (xi,J) consistent?", test

Sb_min,Sb_max=precession.Sb_limits(xi,J,q,S1,S2,r)

print "S oscillates between\n\tS-=%.3f\n\tS+=%.3f" %(Sb_min,Sb_max)

S=(Sb_min+Sb_max)/2.

print "We select a value of S between S- and S+\n\tS=%.3f" %S

t1,t2,dp,t12=precession.parametric_angles(S,J,xi,q,S1,S2,r)

print "The angles describing the spin orientations are\n\t(theta1,theta2,DeltaPhi)=(%.3f,%.3f,%.3f)" %(t1,t2,dp)

xi,J,S = precession.from_the_angles(t1,t2,dp,q,S1,S2,r)

print "From the angles one can recovery\n\t(xi,J,S)=(%.3f,%.3f,%.3f)" %(xi,J,S)

print "\n *Features of spin precession*"

t1_dp0,t2_dp0,t1_dp180,t2_dp180=precession.resonant_finder(xi,q,S1,S2,r)

print "The spin-orbit resonances for these values of J and xi are\n\t(theta1,theta2)=(%.3f,%.3f) for

DeltaPhi=0\n\t(theta1,theta2)=(%.3f,%.3f) for DeltaPhi=pi" %(t1_dp0,t2_dp0,t1_dp180,t2_dp180)↪→
tau = precession.precession_period(xi,J,q,S1,S2,r)

print "We integrate dt/dS to calculate the precessional period\n\ttau=%.3f" %tau

alpha = precession.alphaz(xi,J,q,S1,S2,r)

print "We integrate Omega*dt/dS to find\n\talpha=%.3f" %alpha

morphology = precession.find_morphology(xi,J,q,S1,S2,r)

if morphology==-1: labelm="Librating about DeltaPhi=0"

elif morphology==1: labelm="Librating about DeltaPhi=pi"

elif morphology==0: labelm="Circulating"

print "The precessional morphology is: "+labelm

sys.stdout = os.devnull # Ignore warnings

phase,xi_transit_low,xi_transit_up=precession.phase_xi(J,q,S1,S2,r)

sys.stdout = sys.__stdout__ # Restore warnings

if phase==-1: labelp="a single DeltaPhi~pi phase"

elif phase==2: labelp="two DeltaPhi~pi phases, a Circulating phase"

elif phase==3: labelp="a DeltaPhi~0, a Circulating, a DeltaPhi~pi phase"

print "The coexisting phases are: "+labelp

print "\n *Parameter selection at infinitely large separation*"

print "We study a binary with\n\tq=%.3f m1=%.3f m2=%.3f\n\tchi1=%.3f S1=%.3f\n\tchi2=%.3f S2=%.3f" %(q,m1,m2,chi1,S1,chi2,S2)

print "at infinitely large separation"

kappainf_min,kappainf_max=precession.kappainf_lim(S1,S2)

print "The geometrical limits on xi and kappa_inf are\n\t%.3f<=xi<=%.3f\n\t %.3f<=kappa_inf<=%.3f"

%(xi_min,xi_max,kappainf_min,kappainf_max)↪→
print "We select a value of xi\n\txi=%.3f" %xi

kappainf_low,kappainf_up=precession.kappainf_allowed(xi,q,S1,S2)

print "This constrains the range of kappa_inf to\n\t%.3f<=kappa_inf<=%.3f" %(kappainf_low,kappainf_up)

kappainf=(kappainf_low+kappainf_up)/2.

print "We select a value of kappa_inf\n\tkappa_inf=%.3f" %kappainf

test=(xi>=min(precession.xiinf_allowed(kappainf,q,S1,S2)) and xi<=max(precession.xiinf_allowed(kappainf,q,S1,S2)))

print "Is our couple (xi,kappa_inf) consistent?", test

t1_inf,t2_inf=precession.thetas_inf(xi,kappainf,q,S1,S2)

print "The asymptotic (constant) values of theta1 and theta2 are\n\t(theta1_inf,theta2_inf)=(%.3f,%.3f)" %(t1_inf,t2_inf)

xi,kappainf = precession.from_the_angles_inf(t1_inf,t2_inf,q,S1,S2)

print "From the angles one can recovery\n\t(xi,kappa_inf)=(%.3f,%.3f)" %(xi,kappainf)

FIG. 2. Source code of test.parameter selection, described in Sec. VI A. The screen output is reported in Fig. 8.
In this example we (i) select consistent parameters at finite separation, (ii) compute several quantities to characterize
the precessional dynamics and (iii) select consistent parameters at infinitely large separation. This test is run typing
precession.test.parameter selection().
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fig=pylab.figure(figsize=(6,6)) # Create figure object and axes

ax_t1=fig.add_axes([0,1.95,0.9,0.5]) # first (top)

ax_t2=fig.add_axes([0,1.3,0.9,0.5]) # second

ax_dp=fig.add_axes([0,0.65,0.9,0.5]) # third

ax_t12=fig.add_axes([0,0,0.9,0.5]) # fourth (bottom)

q=0.7 # Mass ratio. Must be q<=1.

chi1=0.6 # Primary spin. Must be chi1<=1

chi2=1. # Secondary spin. Must be chi2<=1

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2) # Total-mass units M=1

r=20*M # Separation. Must be r>10M for PN to be valid

J=0.94 # Magnitude of J: Jmin<J<Jmax as given by J_lim

xi_vals=[-0.41,-0.3,-0.22] # Effective spin: xi_low<xi<xi_up as given by xi_allowed

for xi,color in zip(xi_vals,[’blue’,’green’,’red’]): # Loop over three binaries

tau = precession.precession_period(xi,J,q,S1,S2,r) # Period

morphology = precession.find_morphology(xi,J,q,S1,S2,r) # Morphology

if morphology==-1: labelm="${\\rm L}0$"

elif morphology==1: labelm="${\\rm L}\\pi$"

elif morphology==0: labelm="${\\rm C}$"

Sb_min,Sb_max=precession.Sb_limits(xi,J,q,S1,S2,r) # Limits in S

S_vals = numpy.linspace(Sb_min,Sb_max,1000) # Create array, from S- to S+

S_go=S_vals # First half of the precession cycle: from S- to S+

t_go=map(lambda x: precession.t_of_S(S_go[0],x, Sb_min,Sb_max,xi,J,q,S1,S2,r,0,sign=-1.),S_go) # Compute time values. Assume t=0

at S-↪→
t1_go,t2_go,dp_go,t12_go=zip(*[precession.parametric_angles(S,J,xi,q,S1,S2,r) for S in S_go]) # Compute the angles.

dp_go=[-dp for dp in dp_go] # DeltaPhi<=0 in the first half of the cycle

S_back=S_vals[::-1] # Second half of the precession cycle: from S+ to S-

t_back=map(lambda x: precession.t_of_S(S_back[0],x, Sb_min,Sb_max, xi,J,q,S1,S2,r,t_go[-1],sign=1.),S_back) # Compute time, start

from the last point of the first half t_go[-1]↪→
t1_back,t2_back,dp_back,t12_back=zip(*[precession.parametric_angles(S,J,xi,q,S1,S2,r) for S in S_back]) # Compute the angles.

DeltaPhi>=0 in the second half of the cycle↪→

for ax,vec_go,vec_back in zip([ax_t1,ax_t2,ax_dp,ax_t12], [t1_go,t2_go,dp_go,t12_go], [t1_back,t2_back,dp_back,t12_back]): # Plot

all curves↪→
ax.plot([t/tau for t in t_go],vec_go,c=color,lw=2,label=labelm)

ax.plot([t/tau for t in t_back],vec_back,c=color,lw=2)

# Options for nice plotting

(...)

fig.savefig("spin_angles.pdf",bbox_inches=’tight’) # Save pdf file

FIG. 3. Source code of test.spin angles, described in Sec. VI B. The resulting plot is shown in Fig. 9. This example illustrates
how to study the evolution of the angles θ1, θ2, ∆Φ and θ12 over a single precession cycle S− → S+ → S−. The precessional
dynamics is first parametrized using S, and then plotted in terms of the time t integrating dS/dt from Eq. (17). We assume
S = S− at t = 0 and match the two halves of the precession cycle at S = S+. Note that the sign of ∆Φ has to be specified by
the user. Three binaries are considered here; their precessional morphology is evaluated and used to fill the plot legend. This
test is run typing precession.test.spin angles(). Additional plotting options present in the source code have been omitted.
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fig=pylab.figure(figsize=(6,6)) #Create figure object and axes

ax_tS=fig.add_axes([0,0,0.6,0.6]) #bottom-left

ax_td=fig.add_axes([0.65,0,0.3,0.6]) #bottom-right

ax_Sd=fig.add_axes([0,0.65,0.6,0.3]) #top-left

q=0.5 # Mass ratio. Must be q<=1.

chi1=0.3 # Primary spin. Must be chi1<=1

chi2=0.9 # Secondary spin. Must be chi2<=1

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2) # Total-mass units M=1

r=200.*M # Separation. Must be r>10M for PN to be valid

J=3.14 # Magnitude of J: Jmin<J<Jmax as given by J_lim

xi=-0.01 # Effective spin: xi_low<xi<xi_up as given by xi_allowed

Sb_min,Sb_max=precession.Sb_limits(xi,J,q,S1,S2,r) # Limits in S

tau=precession.precession_period(xi,J,q,S1,S2,r) # Precessional period

d=2000 # Size of the statistical sample

precession.make_temp() # Create store directory, if necessary

filename=precession.storedir+"/phase_resampling.dat" # Output file name

if not os.path.isfile(filename): # Compute and store data if not present

out=open(filename,"w")

out.write("# q chi1 chi2 r J xi d\n") # Write header

out.write( "# "+’ ’.join([str(x) for x in (q,chi1,chi2,r,J,xi,d)])+"\n")

# S and t values for the S(t) plot

S_vals=numpy.linspace(Sb_min,Sb_max,d)

t_vals=numpy.array([abs(precession.t_of_S(Sb_min,S,Sb_min,Sb_max,xi,J,q,S1,S2,r)) for S in S_vals])

# Sample values of S from |dt/dS|. Distribution should be flat in t.

S_sample=numpy.array([precession.samplingS(xi,J,q,S1,S2,r) for i in range(d)])

t_sample=numpy.array([abs(precession.t_of_S(Sb_min,S,Sb_min,Sb_max,xi,J,q,S1,S2,r)) for S in S_sample])

# Continuous distributions (normalized)

S_distr=numpy.array([2.*abs(precession.dtdS(S,xi,J,q,S1,S2,r)/tau) for S in S_vals])

t_distr=numpy.array([2./tau for t in t_vals])

out.write("# S_vals t_vals S_sample t_sample S_distr t_distr\n")

for Sv,tv,Ss,ts,Sd,td in zip(S_vals,t_vals,S_sample,t_sample,S_distr,t_distr):

out.write(’ ’.join([str(x) for x in (Sv,tv,Ss,ts,Sd,td)])+"\n")

out.close()

else: # Read

S_vals,t_vals,S_sample,t_sample,S_distr,t_distr=numpy.loadtxt(filename,unpack=True)

# Rescale all time values by 10^-6, for nicer plotting

tau*=1e-6; t_vals*=1e-6; t_sample*=1e-6; t_distr/=1e-6

ax_tS.plot(S_vals,t_vals,c=’blue’,lw=2) # S(t) curve

ax_td.plot(t_distr,t_vals,lw=2.,c=’red’) # Continous distribution P(t)

ax_Sd.plot(S_vals,S_distr,lw=2.,c=’red’) # Continous distribution P(S)

ax_td.hist(t_sample,bins=60,range=(0,tau/2.),normed=True,histtype=’stepfilled’, color="blue",alpha=0.4,orientation="horizontal") #

Histogram P(t)↪→
ax_Sd.hist(S_sample,bins=60,range=(Sb_min,Sb_max),normed=True,histtype=’stepfilled’, color="blue",alpha=0.4) # Histogram P(S)

# Options for nice plotting

(...)

fig.savefig("phase_resampling.pdf",bbox_inches=’tight’) # Save pdf file

FIG. 4. Source code of test.phase resampling, described in Sec. VI C. The resulting plot is shown in Fig. 10. We extract
N=2000 values of the precessional phase S from the probability distribution P (S) = 2|dS/dt|−1/τ in [S−, S+]. The procedure
is illustrated in Sec. IV C and is a key step to perform precession-averaged inspirals. We verify that the distribution t(S)
constructed from the sampled values of S is uniform in [0, τ/2]. This test is run typing precession.test.phase resampling().
Data are stored in precession.storedir. Additional plotting options present in the source code have been omitted.
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q=0.9 # Mass ratio. Must be q<=1.

chi1=0.5 # Primary spin. Must be chi1<=1

chi2=0.5 # Secondary spin. Must be chi2<=1

print "We study a binary with\n\tq=%.3f, chi1=%.3f, chi2=%.3f" %(q,chi1,chi2)

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2) # Total-mass units M=1

ri=1000*M # Initial separation.

rf=10.*M # Final separation.

rt=100.*M # Intermediate separation for hybrid evolution.

r_vals=numpy.logspace(numpy.log10(ri),numpy.log10(rf),10) # Output requested

t1i=numpy.pi/4.; t2i=numpy.pi/4.; dpi=numpy.pi/4. # Initial configuration

xii,Ji,Si=precession.from_the_angles(t1i,t2i,dpi,q,S1,S2,ri)

print "Configuration at ri=%.0f\n\t(xi,J,S)=(%.3f,%.3f,%.3f)\n\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)"

%(ri,xii,Ji,Si,t1i,t2i,dpi)↪→

print " *Orbit-averaged evolution*"

print "Evolution ri=%.0f --> rf=%.0f" %(ri,rf)

Jf,xif,Sf=precession.orbit_averaged(Ji,xii,Si,r_vals,q,S1,S2)

print "\t(xi,J,S)=(%.3f,%.3f,%.3f)" %(xif[-1],Jf[-1],Sf[-1])

t1f,t2f,dpf=precession.orbit_angles(t1i,t2i,dpi,r_vals,q,S1,S2)

print "\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)" %(t1f[-1],t2f[-1],dpf[-1])

Jvec,Lvec,S1vec,S2vec,Svec=precession.Jframe_projection(xii,Si,Ji,q,S1,S2,ri)

Lxi,Lyi,Lzi=Lvec; S1xi,S1yi,S1zi=S1vec; S2xi,S2yi,S2zi=S2vec

Lx,Ly,Lz,S1x,S1y,S1z,S2x,S2y,S2z=precession.orbit_vectors(Lxi,Lyi,Lzi,S1xi,S1yi,S1zi,S2xi,S2yi,S2zi,r_vals,q)

print "\t(Lx,Ly,Lz)=(%.3f,%.3f,%.3f)\n\t(S1x,S1y,S1z)=(%.3f,%.3f,%.3f)\n\t(S2x,S2y,S2z)=(%.3f,%.3f,%.3f)"

%(Lx[-1],Ly[-1],Lz[-1],S1x[-1],S1y[-1],S1z[-1],S2x[-1],S2y[-1],S2z[-1])↪→

print " *Precession-averaged evolution*"

print "Evolution ri=%.0f --> rf=%.0f" %(ri,rf)

Jf=precession.evolve_J(xii,Ji,r_vals,q,S1,S2)

print "\t(xi,J,S)=(%.3f,%.3f,-)" %(xii,Jf[-1])

t1f,t2f,dpf=precession.evolve_angles(t1i,t2i,dpi,r_vals,q,S1,S2)

print "\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)" %(t1f[-1],t2f[-1],dpf[-1])

print "Evolution ri=%.0f --> infinity" %ri

kappainf=precession.evolve_J_backwards(xii,Jf[-1],rf,q,S1,S2)

print "\tkappainf=%.3f" %kappainf

Jf=precession.evolve_J_infinity(xii,kappainf,r_vals,q,S1,S2)

print "Evolution infinity --> rf=%.0f" %rf

print "\tJ=%.3f" %Jf[-1]

print " *Hybrid evolution*"

print "Prec.Av. infinity --> rt=%.0f & Orb.Av. rt=%.0f --> rf=%.0f" %(rt,rt,rf)

t1f,t2f,dpf=precession.hybrid(xii,kappainf,r_vals,q,S1,S2,rt)

print "\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)" %(t1f[-1],t2f[-1],dpf[-1])

print " *Properties of the BH remnant*"

Mfin=precession.finalmass(t1f[-1],t2f[-1],dpf[-1],q,S1,S2)

print "\tM_f=%.3f" %Mfin

chifin=precession.finalspin(t1f[-1],t2f[-1],dpf[-1],q,S1,S2)

print "\tchi_f=%.3f, S_f=%.3f" %(chifin,chifin*Mfin**2)

vkick=precession.finalkick(t1f[-1],t2f[-1],dpf[-1],q,S1,S2)

print "\tvkick=%.5f" %(vkick) # Geometrical units c=1

FIG. 5. Source code of test.PNwrappers, described in Sec. VI D. The screen output is reported in Fig. 11. This example shows
how to use the various routines to perform PN inspiral. After specifying a BH binary at ri, we evolve it down to rf using both
orbit-averaged and precession-averaged integrations. We then extract the asymptotic configuration κ∞ and show how to match
precession-averaged and orbit-averaged evolutions to construct hybrid inspirals. We also estimate mass, spin and recoil of the
post-merger BH. This test is run typing precession.test.PNwrappers(). Data are stored in the directory specified through
precession.storedir.
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fig=pylab.figure(figsize=(6,6)) # Create figure object and axes

L,Ws,Wm,G=0.85,0.15,0.3,0.03 # Sizes

ax_Sd=fig.add_axes([0,0,L,Ws]) # bottom-small

ax_S=fig.add_axes([0,Ws,L,Wm]) # bottom-main

ax_Jd=fig.add_axes([0,Ws+Wm+G,L,Ws]) # middle-small

ax_J=fig.add_axes([0,Ws+Ws+Wm+G,L,Wm]) # middle-main

ax_xid=fig.add_axes([0,2*(Ws+Wm+G),L,Ws]) # top-small

ax_xi=fig.add_axes([0,Ws+2*(Ws+Wm+G),L,Wm]) # top-main

q=0.8 # Mass ratio. Must be q<=1.

chi1=0.6 # Primary spin. Must be chi1<=1

chi2=1. # Secondary spin. Must be chi2<=1

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2) # Total-mass units M=1

ri=100.*M # Initial separation.

rf=10.*M # Final separation.

r_vals=numpy.linspace(ri,rf,1001) # Output requested

Ji=2.24 # Magnitude of J: Jmin<J<Jmax as given by J_lim

xi=-0.5 # Effective spin: xi_low<xi<xi_up as given by xi_allowed

Jf_P=precession.evolve_J(xi,Ji,r_vals,q,S1,S2) # Pr.av. integration

Sf_P=[precession.samplingS(xi,J,q,S1,S2,r) for J,r in zip(Jf_P[0::10],r_vals[0::10])] # Resample S (reduce output for clarity)

Sb_min,Sb_max= zip(*[precession.Sb_limits(xi,J,q,S1,S2,r) for J,r in zip(Jf_P,r_vals)]) # Envelopes

S=numpy.average([precession.Sb_limits(xi,Ji,q,S1,S2,ri)]) # Initialize S

Jf_O,xif_O,Sf_O=precession.orbit_averaged(Ji,xi,S,r_vals,q,S1,S2) # Orb.av. integration

Pcol,Ocol,Dcol=’blue’,’red’,’green’

Pst,Ost=’solid’,’dashed’

ax_xi.axhline(xi,c=Pcol,ls=Pst,lw=2) # Plot xi, pr.av. (constant)

ax_xi.plot(r_vals,xif_O,c=Ocol,ls=Ost,lw=2) # Plot xi, orbit averaged

ax_xid.plot(r_vals,(xi-xif_O)/xi*1e11,c=Dcol,lw=2) # Plot xi deviations (rescaled)

ax_J.plot(r_vals,Jf_P,c=Pcol,ls=Pst,lw=2) # Plot J, pr.av.

ax_J.plot(r_vals,Jf_O,c=Ocol,ls=Ost,lw=2) # Plot J, orb.av

ax_Jd.plot(r_vals,(Jf_P-Jf_O)/Jf_O*1e3,c=Dcol,lw=2) # Plot J deviations (rescaled)

ax_S.scatter(r_vals[0::10],Sf_P,facecolor=’none’,edgecolor=Pcol) # Plot S, pr.av. (resampled)

ax_S.plot(r_vals,Sb_min,c=Pcol,ls=Pst,lw=2) # Plot S, pr.av. (envelopes)

ax_S.plot(r_vals,Sb_max,c=Pcol,ls=Pst,lw=2) # Plot S, pr.av. (envelopes)

ax_S.plot(r_vals,Sf_O,c=Ocol,ls=Ost,lw=2) # Plot S, orb.av (evolved)

ax_Sd.plot(r_vals[0::10],(Sf_P-Sf_O[0::10])/Sf_O[0::10],c=Dcol,lw=2) # Plot S deviations

# Options for nice plotting

(...)

fig.savefig("compare_evolutions.pdf",bbox_inches=’tight’) # Save pdf file

FIG. 6. Source code of test.compare evolutions, described in Sec. VI E. The resulting plot is shown in Fig. 12. We compare
precession-averaged and orbit-averaged integrations of a single BH binary. We perform the two integrations from ri = 100M to
rf = 10M and extract values of ξ, J and S along the inspiral. Relative differences between the two approaches are computed
and plotted as a function of the binary separation. This test is run typing precession.test.PNwrappers(). Data are stored
in the directory specified through precession.storedir. Additional plotting options present in the source code have been
omitted.
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BHsample=[] # Construct a sample of BH binaries

N=100

for i in range(N):

q=random.uniform(0,1)

chi1=random.uniform(0,1)

chi2=random.uniform(0,1)

M,m1,m2,S1,S2=precession.get_fixed(q,chi1,chi2)

t1=random.uniform(0,numpy.pi)

t2=random.uniform(0,numpy.pi)

dp=random.uniform(0,2.*numpy.pi)

BHsample.append([q,S1,S2,t1,t2,dp])

q_vals,S1_vals,S2_vals,t1i_vals,t2i_vals,dpi_vals=zip(*BHsample) # Traspose python list

ri=1000*M # Initial separation

rf=10*M # Final separation

r_vals=[ri,rf] # Intermediate output separations not needed here

print "Integrating a sample of N=%.0f BH binaries from ri=%.0f to rf=%.0f using %.0f CPUs" %(N,ri,rf,multiprocessing.cpu_count()) #

Parallel computation used by default↪→
t0=time.time()

precession.orbit_angles(t1i_vals,t2i_vals,dpi_vals,r_vals,q_vals,S1_vals,S2_vals)

t=time.time()-t0

print "Orbit-averaged: parallel integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" %(t,t/N)

t0=time.time()

precession.evolve_angles(t1i_vals,t2i_vals,dpi_vals,r_vals,q_vals,S1_vals,S2_vals)

t=time.time()-t0

print "Precession-averaged: parallel integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" %(t,t/N)

precession.empty_temp() # Remove previous checkpoints

precession.CPUs=1 # Force serial computation

print "\nIntegrating a sample of N=%.0f BH binaries from ri=%.0f to rf=%.0f using %.0f CPU" %(len(BHsample),ri,rf,precession.CPUs)

t0=time.time()

precession.orbit_angles(t1i_vals,t2i_vals,dpi_vals,r_vals,q_vals,S1_vals,S2_vals)

t=time.time()-t0

print "Orbit-averaged: serial integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" %(t,t/N)

t0=time.time()

precession.evolve_angles(t1i_vals,t2i_vals,dpi_vals,r_vals,q_vals,S1_vals,S2_vals)

t=time.time()-t0

print "Precession-averaged: serial integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" %(t,t/N)

precession.empty_temp() # Remove previous checkpoints

FIG. 7. Source code of test.timing described in Sec. VI F; the screen output is reported in Fig. 13. We compute the CPU time
needed to evolve a sample of N = 100 binaries from ri = 104M to rf = 10M using both orbit-averaged and precession-averaged
integrations. By default, precession performs PN inspirals in parallel using all available cores. The two computations are
repeated enforcing a strictly serial execution. This test is run typing precession.test.timing(). Data are stored in the
directory specified through precession.storedir.
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*Parameter selection at finite separations*

We study a binary with

q=0.800 m1=0.556 m2=0.444

chi1=1.000 S1=0.309

chi2=1.000 S2=0.198

at separation

r=100.000

The geometrical limits on xi,J and S are

-1.000<=xi<=1.000

1.963<=J<=2.975

0.111<=S<=0.506

We select a value of J

J=2.469

This constrains the range of S to

0.111<=S<=0.506

The allowed range of xi is

-0.131<=xi<=0.073

We select a value of xi

xi=-0.029

Is our couple (xi,J) consistent? True

S oscillates between

S-=0.114

S+=0.448

We select a value of S between S- and S+

S=0.281

The angles describing the spin orientations are

(theta1,theta2,DeltaPhi)=(1.622,1.571,2.041)

From the angles one can recovery

(xi,J,S)=(-0.029,2.469,0.281)

*Features of spin precession*

The spin-orbit resonances for these values of J and xi are

(theta1,theta2)=(1.100,2.254) for DeltaPhi=0

(theta1,theta2)=(2.572,0.155) for DeltaPhi=pi

We integrate dt/dS to calculate the precessional period

tau=3037166.882

We integrate Omega*dt/dS to find

alpha=23.660

The precessional morphology is: Circulating

The coexisting phases are: a DeltaPhi~0, a Circulating, a

DeltaPhi~pi phase↪→

*Parameter selection at infinitely large separation*

We study a binary with

q=0.800 m1=0.556 m2=0.444

chi1=1.000 S1=0.309

chi2=1.000 S2=0.198

at infinitely large separation

The geometrical limits on xi and kappa_inf are

-1.000<=xi<=1.000

-0.506<=kappa_inf<=0.506

We select a value of xi

xi=-0.029

This constrains the range of kappa_inf to

-0.065<=kappa_inf<=0.033

We select a value of kappa_inf

kappa_inf=-0.016

Is our couple (xi,kappa_inf) consistent? True

The asymptotic (constant) values of theta1 and theta2 are

(theta1_inf,theta2_inf)=(1.623,1.571)

From the angles one can go back to

(xi,kappa_inf)=(-0.029,-0.016)

FIG. 8. Screen output of test.parameter selection, de-
scribed in Sec. VI A. The source code is reported in Fig. 2.
In this example we (i) select consistent parameters at fi-
nite separation, (ii) compute several quantities to charac-
terize the precessional dynamics and (iii) select consistent
parameters at infinitely large separation. Outputs have been
rounded to 3 decimal digits for clarity. This test is run typing
precession.test.parameter selection().
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FIG. 9. Resulting plot obtained from test.spin angles, de-
scribed in Sec. VI B. The source code is reported in Fig. 3.
We study the precessional dynamics of three binary BHs with
mass ratio q = 0.7, dimensionless spin χ1 = 0.6, χ2 = 1, to-
tal angular momentum J = 0.94M2 at separation r = 20M .
The evolution of the angles θ1, θ2, ∆Φ and θ12 (top to bot-
tom) is plotted against the time t normalized to the pre-
cessional period τ . The configurations shown here are char-
acterized by different values of the effective spin ξ and be-
long to the three different morphologies: the binary with
ξ = −0.41 (blue) is librating about ∆Φ = 0 (L0); the binary
with ξ = −0.3 (green) is circulating through the full range
∆Φ ∈ [−π, π] (C), and the binary with ξ = −0.22 (red)
is librating about ∆Φ = ±π (Lπ). This test is run typing
precession.test.spin angles().
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FIG. 10. Resulting plot obtained from
test.phase resampling, described in Sec. VI C. The
source code is reported in Fig. 4. The bottom left panel
shows the evolution of S on the precession time for a BH
binary with q = 0.5, χ1 = 0.3, χ2 = 0.9, J = 3.14M2,
ξ = −0.01 and r = 200M . The binary evolves from
S− ' 0.033 (t = 0) to S+ ' 0.232 (t = τ/2 ' 3.53× 106M).
We extract a sample of N = 2000 values of S from a prob-
ability distribution proportional to |dS/dt|−1. Histograms
of the extracted distribution of S and t are shown in the
top and right panels, respectively, where red lines mark
the continuum limit. This procedure efficiently extracts
BH binaries according to their time spent at each spin
configuration and demonstrates the correct handling of the
(integrable) singularities of |dS/dt|−1 at S±. This test is run
typing precession.test.phase resampling().

We study a binary with q=0.900, chi1=0.500, chi2=0.500

Configuration at ri=1000

(xi,J,S)=(0.354,8.063,0.241)

(theta1,theta2,deltaphi)=(0.785,0.785,0.785)

*Orbit-averaged evolution*

Evolution ri=1000 --> rf=10

(xi,J,S)=(0.354,0.974,0.229)

(theta1,theta2,deltaphi)=(1.032,0.397,-0.952)

(Lx,Ly,Lz)=(0.077,-0.091,0.779)

(S1x,S1y,S1z)=(-0.085,0.065,0.088)

(S2x,S2y,S2z)=(0.013,0.031,0.107)

*Precession-averaged evolution*

Evolution ri=1000 --> rf=10

(xi,J,S)=(0.354,0.974,-)

(theta1,theta2,deltaphi)=(0.573,0.978,-1.624)

Evolution ri=1000 --> infinity

kappainf=0.178

Evolution infinity --> rf=10

J=0.974

*Hybrid evolution*

Prec.Av. infinity --> rt=100 & Orb.Av. rt=100 --> rf=10

(theta1,theta2,deltaphi)=(0.639,0.926,-1.691)

*Properties of the BH remnant*

M_f=0.938

chi_f=0.797, S_f=0.701

vkick=0.00330

FIG. 11. Screen output of test.PNwrappers, described in
Sec. VI D. The source code is reported in Fig. 5. After se-
lecting a binary at the initial separation ri, we (i) perform
orbit-averaged integrations from ri to a final separation rf ;
(ii) perform precession-averaged integrations from ri to rf ,
from ri to r/M =∞ and from r/M =∞ to rf , (iii) perform
hybrid integrations from r/M =∞ to rf matched at a sepa-
ration threshold rt and (iv) extract the properties of the BH
remnant applying fitting formulae at rf . Outputs have been
rounded to 3 decimal digits for clarity; output lines regarding
the location of the stored data files have been omitted. This
test is run typing precession.test.PNwrappers().
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FIG. 12. Resulting plot obtained with the test func-
tion test.compare evolutions, described in Sec. VI E. The
source code is reported in Fig. 6. We choose a BH bi-
nary with q = 0.8, χ1 = 0.6, χ2 = 1, J = 2.24M2

and ξ = −0.5 at ri = 100M and we compare its PN in-
spiral till rf = 10M using precession-averaged and orbit-
averaged integrations. The evolutions of ξ (top), J (mid-
dle) and S (bottom) are shown in the larger subpanels.
Results for J and ξ show excellent agreement between
precession-averaged (solid blue) and orbit-averaged (dashed
red) integrations. Precession-averaged integrations do not
track the evolution of the total spin magnitude S, but es-
timates (blue circles) can be obtained by sampling S be-
tween S− and S+ (blue solid lines); results are in statistical
agreement with the orbit-averaged result (dashed red line).
Smaller subpanels (solid green lines) show the relative dif-
ference between the two approaches. This test is run typing
precession.test.compare evolutions().

*Integrating a sample of N=100 BH binaries from ri=10000 to

rf=10 using 4 CPUs*↪→
Orbit-averaged: parallel integrations

total time t=5298.677s

time per binary t/N=52.987s

Precession-averaged: parallel integrations

total time t=73.742s

time per binary t/N=0.737s

*Integrating a sample of N=100 BH binaries from ri=10000 to

rf=10 using 1 CPU*↪→
Orbit-averaged: serial integrations

total time t=18276.063s

time per binary t/N=182.761s

Precession-averaged: serial integrations

total time t=244.989s

time per binary t/N=2.450s

FIG. 13. Screen output of test.timing, described in
Sec. VI F. The source code is reported in Fig. 7. We time
the performances of orbit angles and evolve angles us-
ing both parallel (first iteration) and serial (second iteration)
computation. Times reported here are obtained using a 2013
Intel i5-3470 3.20GHz 4 cores CPU. Output lines regarding
the location of the stored data files are omitted for clarity.
This test is run typing precession.test.timing().
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