aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

precession: Dynamics of spinning black-hole binaries with
python
Davide Gerosa and Michael Kesden
Phys. Rev. D 93, 124066 — Published 27 June 2016
DOI: 10.1103/PhysRevD.93.124066

http://dx.doi.org/10.1103/PhysRevD.93.124066

PRECESSION. Dynamics of spinning black-hole binaries with python

Davide Gerosal'* and Michael Kesden?: |

! Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
2 Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA

We present the numerical code PRECESSION: a new open-source PYTHON module to study the
dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a
comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles,
(ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-
averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae
obtained from numerical-relativity simulations. PRECESSION is a ready-to-use tool to add the black-
hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation
codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and
cosmological simulations of structure formation. PRECESSION provides fast and reliable integration
methods to propagate statistical samples of black-hole binaries from/to large separations where
they form to/from small separations where they become detectable, thus linking gravitational-wave
observations of spinning black-hole binaries to their astrophysical formation history. The code is
also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific
precessing systems. PRECESSION can be installed from the PYTHON Package Index and it is freely

distributed under version control on GITHUB, where further documentation is provided.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.-w, 04.30.Tv, 04.70.Bw, 97.80.-d, 98.65.Fz

I. INTRODUCTION

Spinning black-hole (BH) binaries are remarkably in-
teresting physical systems lying at the edge of funda-
mental physics and astronomy. Astrophysical BHs are
described by the Kerr [1] solution of General Relativ-
ity and are fully characterized by their mass and angu-
lar momentum, or spin. In a binary system, couplings
between the BH spins and the binary’s orbital angular
momentum introduce secular dynamical features on top
of the binary’s orbital motion: the two spins and the
orbital plane precess about the direction of the total an-
gular momentum of the system [2, 3]. Meanwhile, energy
and momentum are slowly dissipated away in the form
of gravitational waves (GWs) and the orbital separation
consequently shrinks [4]. GW-driven inspiral may ulti-
mately lead to the merger of the two BHs.

The three phenomena highlighted above (orbit, pre-
cession and inspiral) take place on different timescales.
While the two BHs orbit about each other with pe-
riod torp ~ (r/rg)3/2, the spins and the orbital an-
gular momentum precess at the rate tpe ~ (r/r,)%?
and GW radiation reaction only affects the dynamics
on times tgr ~ (r/ry)* (here r is the binary separa-
tion and r, = GM/c? is the gravitational radius of the
total mass of the binary M). At separations r > g,
the dynamics can be studied successfully using the post-
Newtonian (PN) approximation to General Relativity
(e.g. [5]) and the three timescales are widely separated:
torb K tpre <K trr. Multi-timescale analyses can be used

* d.gerosa@damtp.cam.ac.uk
T kesden@utdallas.edu

in this regime to efficiently disentangle the various dy-
namical features [3, 6, 7]. The timescale hierarchy breaks
down, together with the entire PN approximation, at
separations r ~ 71, where the binary evolution can be
followed faithfully only using numerical-relativity simu-
lations (see e.g. [8]).

Spinning BHs now occupy a firm place in our under-
standing of the Universe. Astrophysical objects related
to very energetic phenomena started being interpreted as
BHs in the '60s [9, 10] following the identification of the
first quasar [11] and the discovery of the first X-ray binary
[12, 13]. BHs are observed in two separated mass regimes:
stellar-mass BHs, which are the endpoints of the life of
some massive stars [14], and supermassive BHs, which
reside at the center of most galaxies and help regulate
their evolution [15]. Although challenging, robust spin
measurements from electromagnetic observations are now
possible in both mass regimes [16, 17].

BHs have been long predicted to form binary systems:
stellar-mass BH binaries are expected to form in the field
from the evolution of massive binary stars [18] and dy-
namically in dense stellar clusters [19]; supermassive BH
binaries are a natural by-product of hierarchical struc-
ture formation and galaxy mergers [20, 21]. BH binaries
are now an observational reality. Following challenging
electromagnetic observations (see e.g. [22] for a convinc-
ing candidate), the spectacular detection of GW150914
[23] from the LIGO interferometers [24] now constitutes
irrefutable astrophysical evidence of a merging stellar-
mass BH binary. Merging supermassive BH binaries are
the main targets of the future space-based GW interfer-
ometer eLISA [25, 26] and current Pulsar Timing Arrays
[27-30].

Spin precession is a crucial ingredient to both BH

mailto:d.gerosa@damtp.cam.ac.uk
mailto:kesden@utdallas.edu

physics and GW astronomy. Although precessional mod-
ulations in the emitted GW signal require development
of more elaborate waveforms [31-33], they constitute a
promising channel to extract astrophysical information
from GW observations [34-36]. Moreover, PN spin pre-
cession introduces complex dynamics to the final stage of
BH inspirals [37, 38] and greatly affects the properties of
the BH remnants following binary mergers [39, 40].

In this paper, we present the numerical code
PRECESSION: an open-source PYTHON module to study
spinning BH binaries in the PN regime. In a nut-
shell, PRECESSION performs BH binary inspirals tracking
their precessional dynamics using both standard orbit-
averaged and new precession-averaged approaches. It
also conveniently implements fitting formulae obtained
from numerical-relativity simulations to predict mass,
spin and recoil of BH remnants following binary merg-
ers. PRECESSION combines the flexibility of the high-level
programming language PYTHON with existing scientific
libraries written in C and FORTRAN to bypass speed bot-
tlenecks.

Our code finds application in a variety of astrophys-
ical problems. Population synthesis models to predict
GW rates (e.g. [41]) still lack the PN evolution of the
BH spins which has been shown to critically depend
on the binary formation channel [34]. Galaxy merger
trees (e.g. [42, 43]) and large-scale cosmological simu-
lations (e.g. [44, 45]) do not typically evolve the spin
directions in the PN regime, although these are criti-
cal to address, e.g., the galaxy/BH occupation fraction
[46, 47] and the detectability of recoiling BHs [48, 49].
We provide PN integrators to extend existing treatments
of the astrophysical evolution of the BH spins [50-53]
through the GW driven regime of the binary inspiral.
The methods implemented in PRECESSION to analyze the
BH spin dynamics could provide initial parameters to
numerical-relativity simulations (e.g. [54, 55]) targeting
specific precessing systems. GW parameter-estimation
codes (e.g. [56]) may also benefit from our formulation
of the spin-precession problem in terms of timescale sep-
arations. PRECESSION can easily propagate BH binaries
backwards from GW observation to arbitrarily large sep-
aration, thus reconstructing their entire inspiral history.
Our multi-timescale formulation of the problem could
also help in the ongoing effort of building efficient GW
templates for precessing systems [57]. Overall, we be-
lieve that PRECESSION will be a useful tool to interpret
numerical results and GW observations of precessing BH
binaries and facilitate more accurate modeling of their
astrophysical environments.

This paper is organized as follows. Sec. II provides
a general overview of the code; Sec. III is devoted to
the spin precession dynamics; Sec. IV describes the in-
tegration of the PN equations of motion to perform
BH inspirals; Sec. V summarizes the implementation of
numerical-relativity fitting formulae to predict the prop-
erties of post-merger BHs; Sec. VI contains various prac-
tical examples to use PRECESSION; Sec. VII highlights our

conclusions and anticipates future features of the code.
From now on, equations are written in geometrical units
(¢ =G =1). As specified in Sec. ITA, code units also set
the binary’s total mass to 1.

II. CODE OVERVIEW

In this section we give a general overview of the code.
Sec. IT A describes code installation; Sec. IIB presents
a minimal working example; Sec. II C provides details
on documentation and source distribution; Sec. II D de-
scribes units and parallel programming features.

A. Installation

PRECESSION is a PYTHON [58] module
and is part of the PYTHON Package Index:
pPypi.python.org/pypi/precession. The code

can be installed in a single line through the package
management system pip:

pip install precession

Useful options to the command above include --user for
users without root privileges and --upgrade to update a
pre-existing installation. The scientific libraries NUMPY
[59], scIpy [60], MATPLOTLIB [61] and PARMAP [62] are
specified as prerequisites and, if not present, will be in-
stalled /updated together with PRECESSION. PRECESSION
has been tested on PYTHON 2.7 distributions; porting to
PYTHON 3 is under development.

Once PRECESSION has been installed, it has to be im-
ported typing

import precession

from within a PYTHON console or script. The main mod-
ule precession contains ~ 80 functions for a total of
~ 1700 code lines. The submodule precession.test
consists of ~ 300 code lines divided in 7 examples rou-
tines. If needed, this has to be imported separately typ-
ing

import precession.test

All functions and examples that should be called by the
user are described in this paper.

B. A first working example

A minimal working example of some features of
PRECESSION is shown in Fig. 1. We encourage the reader
to execute this code snippet typing

precession.test.minimal ()

We initialize a BH binary at the extremely large sepa-
ration of 10 billion gravitational radii (r = 1019M) and
evolve it down to small separations (r = 10M) where the

https://pypi.python.org/pypi/precession

Source code:

tO=time.time()
q=0.75 # Mass ratio
chil=0.5 # Primary’s spin magnitude
chi2=0.95 # Secondary’s spin magnitude
print "Take a BH binary with g=%.2f, chil=%.2f and
— chi2=}.2f" %(q,chil,chi2)
sep=numpy . logspace(10,1,10) # Output separations
t1= numpy.pi/3. # Spin orientations at r_vals[0]
t2= 2.*numpy.pi/3.
dp= numpy.pi/4.
M,m1,m2,S1,S2=precession.get_fixed(q,chil,chi2)
tlv,t2v,dpv=precession.evolve_angles(tl,t2,dp,sep,q,51,S2)
print "Perform BH binary inspiral"
print "logl0(r/M) \t thetal \t theta2 \t deltaphi"
for r,t1,t2,dp in zip(numpy.loglO(sep),tlv,t2v,dpv):
print "%.0f \t\t %.3f \t\t %.3f \t\t %.3f" %(r,t1,t2,dp)
t=time.time () -t0
print "Executed in %.3fs" Jt

Screen output:

Take a BH binary with q=0.75, chil=0.50 and chi2=0.95
Perform BH binary inspiral

logl0(r/M) thetal theta2 deltaphi
10 1.047 2.094 -2.330
9 1.047 2.094 1.811
8 1.047 2.095 2.341
7 1.046 2.095 2.827
6 1.050 2.093 0.351
5 1.055 2.089 -0.211
4 1.046 2.095 -1.588
3 0.991 2.133 -2.271
2 0.909 2.190 -1.903
1 0.505 2.439 -1.188
Executed in 5.526s

FIG. 1. Source code (top) and screen output (bottom) of
the example test.minimal described in Sec. IIB. We select
a BH binary at r = 10'°M and track the directions of the
two spins and the orbital angular momentum [cf. Egs.(1)-
(4)] during its PN inspiral till » = 10M. We use precession-
averaged PN equations, which require random samplings of
the precessional phase, see Sec. IV (different code executions
will therefore return different values of the spin angles). The
execution time reported is obtained using a single core of a
2013 Intel i5-3470 3.20GHz CPU. These lines can be executed

typing precession.test.minimal().

PN approximation breaks down. The integration is per-
formed using precession-averaged PN equations of mo-
tion, as described later in Sec. IV B. The evolution of
the BH spins along such an enormous separation range
is computed in less than 6 seconds using a single core of
a standard off-the-shelf desktop machine.

C. Documentation and source distribution

This paper describes the numerical code PRECESSION
in its v1.0 release. The code is under active development
and additional features will be added regularly. Earlier

versions of the code were used in the following published
results: [6, 7, 47, 63-66].

The source code is distributed under GIT version-
control system at

github.com/dgerosa/precession (code),

and it is released under the CC BY 4.0 license. Exten-
sive code documentation can be generated automatically
in html format from the PYTHON’s docstrings using the
text processor PDOC [67]. Documentation is regularly up-
loaded to a dedicated branch of the GIT repository and
it is available at

dgerosa.github.io/precession (documentation).

The same information can also be accessed
using PYTHON’s built-in help system, e.g.
help(precession.function). Additional resources and
results are available at davidegerosa.com/precession.

D. Units and parallel features

All quantities in the code must be specified in total-
mass units, i.e. ¢ = G = M = 1. For instance, the code
variable for the binary separation r stands for rc?/GM:;
equivalently, the angular-momentum magnitude variable
L stands for ¢cL/GM?.

PRECESSION includes some parallel programming fea-
tures. Embarrassingly parallel tasks, such as computing
several PN inspirals (Sec. IV), are sent to different cores
to speed up the computation. By default, PRECESSION
autodetects the number of available cores in the execut-
ing machine and splits the operations accordingly. Par-
allel execution can be controlled using the global inte-
ger variable CPUs, which specifies the number of parallel
processes. For instance, serial execution can be enforced
setting CPUs=1 (cf. Sec. VIF).

Outputs of some functions are automatically stored,
such that further executions of code scripts do not re-
quire full recalculation. The location of the output direc-
tory is controlled by the global string variable storedir,
which is set by default to "./precession_checkpoints".
The output directory is automatically created if needed,
or can be created manually using make temp. Stored
datafiles can be deleted using empty_temp.

III. SPIN PRECESSION

In this section we present how to use PRECESSION to
study BH binaries on the spin precession timescale where
GW emission can be neglected. After introducing double-
spinning BH binaries (Sec. IIT A), we describe two useful
parametrizations of the precession dynamics (Sec. I1IB)
and discuss their constraints (Sec. IIIB). Time evolution
of BH binaries along their precession cycles is described
in Sec. III D. Finally, Sec. III E shows how to classify BH
binaries according to their precessional morphologies.

https://github.com/dgerosa/precession
https://creativecommons.org/licenses/by/4.0/
https://dgerosa.github.io/precession
http://davidegerosa.com/precession

A. Black-hole binaries in the post-Newtonian
regime

Throughout this paper we only consider BH binaries
on quasi-circular orbits. Astrophysical BH binaries are
expected to circularize at large separation [4, 68] and
the first GW detection confirms this finding [69]. How-
ever, eccentricity may be relevant for stellar-mass BH
binaries formed in globular clusters [19] and supermas-
sive BH binaries interacting with dense stellar environ-
ments [70, 71]. Generalization to eccentric orbits is an
important extension of PRECESSION, which is left to fu-
ture work.

We use standard notation where the component masses
my and msy are combined into total mass M = mq + ms,
mass ratio ¢ = my/m; < 1 and symmetric mass ra-
tio n = mima/M? = q/(1 + ¢q)?; the spin magnitudes
S; = m?x; (hereafter i = 1,2) are given in terms of the
dimensionless spin parameters 0 < x; < 1. The mag-
nitude of the orbital angular momentum L is related to
the binary separation r through the Newtonian expres-
sion L = mymao+/r/M. The utility get_fixed provides
the component masses m; and the spin magnitudes S;
in terms of ¢ and x; in code units; similarly, get L re-
turns the Newtonian expression for the magnitude of the
orbital angular momentum.

Before proceeding with the code implementation, we
point out that PRECESSION is explicitly designed to
handle genuine double-spin physics. Non-spinning and
single-spin binaries (i.e. x1 = 0 and/or x2 = 0) rep-
resent singular cases that cannot be handled with the
present version of the code. In practice, these systems
can be well approximated by setting x; = 0.001.

PRECESSION loses accuracy in the extreme-mass-ratio
limit ¢ — 0 (where other methods are required to study
the dynamics, e.g. [72]) and the equal-mass limit ¢ — 1
[where the parametrization chosen to describe the pre-
cession cycle breaks down, e.g. Eq. (9)]. Our results
have been well tested in the regime 0.005 < ¢ < 0.995.
PRECESSION currently features an alternative implemen-
tation to study the strictly equal-mass case ¢ = 1, which
exploits additional constants of motion [73, 74]. These
findings will be presented elsewhere [75].

B. Parametrization of double spin precession

The time evolution of the three vectors S1, So and L in
an inertial frame is a nine-parameter problem. However,
only four parameters are needed to describe the relative
orientations of the three momenta [76-78]. One of these
parameters is the orbital separation r (or equivalently the
magnitude L), which is constant on ¢, and decreases on
trr because of GW emission. Two possible choices for
the remaining three degrees of freedom are:

1. The spin directions can be described in terms of

three angles

cos b = Ql ~IA47 (1)
cosby =S, - L, (2)
cos AD — Si xL SzxL 3)

BRI
where the sign of A® is chosen such that
sgn AP = sgn{L - [(S; x L) x (S2 x L)]}. (4)

In words, #; and 6, are the angles between the two
spins and the orbital angular momentum (#ilt an-
gles) and A® is the angle between the projections
of the two spins onto the orbital plane (see Fig. 1 in
[78]). Despite being very intuitive, this description
makes the understanding of the underlying phe-
nomenology rather complicated because all three
variables (01,02, A®) vary on both the precession
and the inspiral timescales.

2. A more physical choice can be made to exploit the
timescale separation tp.. < trgr. The magnitude
of the total angular momentum

J=|L+8S;+8S;| (5)

is conserved on the timescale ¢, where GW emis-
sion can be neglected. Moreover, the projected ef-
fective spin [73, 79]

E=M72[(1+¢)S1+(1+¢ 1S, L, (6)

is a constant of motion of the (orbit-averaged) 2PN
spin-precession and 2.5PN radiation-reaction equa-
tions (cf. Sec. IV A) and is therefore conserved on
both tpr. and tgr. This implies that the entire dy-
namics on ¢,y can be encoded in a single variable,
which can be chosen! to be the magnitude of the
total spin [6]

S =181 +82]. (7)

The two descriptions —in terms of (61,602, A®) and
(&, J,5)— are related by the following sets of transfor-

I Equivalently, one can choose the angle ¢ defined in Eq. (9) of [7].
PRECESSION contains additional routines to analyze the dynamics
in terms of this angle. The most relevant functions are called
get_varphi and region_selection.

mations
S = [S? 4 52 + 25, S5(sin 6; sin O cos AD
+ cos b cos 03)]/?
J = [L2 + S? + 2L(51 cos B + S3 cos 92)]1/2 , (8)
g =

14¢
qM?

(¢Sy cos By + S5 cosbs) ;

1 {J2—L2—S2 2qM2§}
cosb, = - ,

2(1-¢q)% L 1+4q
q [_ J2_I2_§? 2M2§}

0 =
2T 90—)5, L Ty

- 51 - 53

1 52
Ad =
o8 sin 91 sin 92 (251 SQ

— cos 01 cos 92> ;
(9)

which are implemented in from_ the_angles and

parametric_angles. Similarly, Egs. (1)-(4) can be eval-

uated using build_angles. The angle 612 = arccos S1-S2

between the two spins can be computed using both sets

of variables:

S? - 5252

2515
= sin 01 sin 65 cos A® + cos 01 cos by . (10)

COS 912 =

Egs. (8) and (9) do not depend on the sign of A®. This
reflects the symmetry of the dynamics between the first
and second half of the precession cycle (cf. Sec. IIID).
If the spin vectors are available in the current computa-
tion (e.g. from orbit-averaged evolutions, see Sec. IV A),
PRECESSION evaluates the sign of A® directly from
Eq. (4). If this is not the case, sgn A® must be speci-
fied by the user according to the evolution of S, as in the
example of Sec. VIB. In case of precession-averaged in-
spirals (Sec. IV C), the sign of A® is assigned randomly.

C. Geometrical constraints

The physical range of the three angles (61,62, A®) is
given by the independent constraints 6, € [0,7], 6, €
[0,7] and AP € [—m, 7]. Geometrical constraints on &,
J, S can be derived from Egs. (6)-(7) and read:

—(L+q)(S1 + S2/q) < M?¢ < (1+q)(S1+ S2/q),
(11)
maX(O7L—Sl—SQ,|Sl—SQ|—L) S J §L+51+SQ,
(12)
|Sl—52‘ <S5 <S8 +8;. (13)

Eqgs. (11), (12) and (13) are returned by xi 1lim, J lim
and Sso_limits, respectively. These constraints are not
independent of each other. For a given J satisfying
Eq. (12), the magnitude S = |Sy + S2| = |J — L] has
to satisfy

max(|J—L|,|S1—52|) < S <min(J+L,S;+52), (14)

which is given by St_limits. Allowed values of & are

then given by
ming_(S) <€ < max€.(S), (15)
where &1 are the effective potentials for BH binary spin
precession [6]
€x(8) = {(J2 = L2 = S)[S2(1 +) — (52— SH(1 - ¢?)]
+ (1=)P~ (L= 9)2L+8)? - T

X \/[52 — (Sl — 32)2][(51 + 52)2 — 52]}/(4(]M252L) .
(16)

In Ref. [7] we proved that &, (§_) admits a single maxi-
mum (minimum) within the range of S given by Eq. (14)
for any value of J satisfying Eq. (12)2. The extremiza-
tion of the effective potentials is performed in xi_allowed
using scipy.optimize.fminbound with a bracketing in-
terval given by Eq. (14). Analogously, J_allowed com-
putes the allowed range of J for any value of £ satisfying
Eq. (11). If needed, the effective potentials of Eq. (16)
can be evaluated directly using xi_plus and xi minus;
their derivatives d¢1 /dS are implemented in dxidS plus
and dxidS_minus.

Once consistent values of J and £ have been selected
(cf. Sec. VIA for a practical example), the binary dy-
namics on ty,,, is fully encoded in the evolution of S. The
magnitude S oscillates between the two solutions Sy of
the equations £4(S) = £ A precession cycle therefore
consists of a complete oscillation S_ — S, — S_. The
radical equations £1(S5) = £ are solved in Sb_limits us-
ing scipy.optimize.brentq. From experiments in wide
regions of the parameter space, we report a numerical
accuracy of ASy/M? ~ 1078.

The two roots Si coincide at the extrema of the ef-
fective potentials &€ = ming £_(S) and & = maxg &, (5),
where consequently the magnitude of the total spin .S re-
mains constant. These are peculiar configurations where
the relative orientation of S1, So and L does not evolve
on tpre. It is straightforward to prove that they are char-
acterized by sin A® = 0: the three angular momenta
share the same plane and jointly precess about the di-
rection of J. These solutions have been discovered more
than a decade ago by Schnittman [76] and called spin-
orbit resonances (for other studies see [80, 81]). One
can prove that extremizing the effective potential &1 is
equivalent to solving Eq. (3.5) of [76]. Two spin-orbit
resonances are present for any value of &: they are char-
acterized by A® = 0 and AP = 7 and correspond to the
largest and lowest values of J compatible with the chosen
¢ (cf. Fig. 5 in [7]). The angles #; and 63 correspond-
ing to both resonances A® = 0, 7 can be evaluated using
resonant_finder.

2 One can also prove that ming é_(S) = maxg &4 (S) if and only
if J=L+S1+S20rJ= maX(O,Lfsl —Sa, |51 7SQ| 7L) [7]
Only one value of £ is allowed in these peculiar cases and can be
evaluated using xi_at_J1lim.

The values of J and & corresponding to the four
(anti)aligned configurations cosf; = +1 are returned by
aligned configurations. The thresholds of the pre-
cessional instability discovered in [63] are returned by
updown.

D. Binary evolution on the precession timescale

The rate of variation of S between the two extrema Sy

ds _ 3(1—¢*) 518 (n*M?)° (1 B nM2§>

dt 29 S L5 L
x sin 0 sin 65 sin AP (17)
3 ro\—1/2 r\—5/2
= EqnM [1 -¢(57) } (37)
x V(g —9E—-¢) (18)

follows directly from the 2PN spin-precession equations
[here reported in Egs. (24-26), see [3]] and can be eval-
uated using dSdt. The solutions Si of the equations
£+(S) = & correspond to turning points in the evolution
of S, i.e. dS/dt = 0. The time evolution of a BH binary
during (half of) a precession cycle is given by the integral

S dsl
HS) = /S 4 jdt]

The integrand |dt/dS|™! is regular everywhere in S €
(S_,S4), while the limits

Sel[S_,S4. (19)

1

1
lim o
s—sy |dS/dt] /]S — Si]

ensure integrability® at Sy. The numerical inte-
gration of Eq. (19) is performed in t of S and its
inverse S_of t, using standard quadrature through
scipy.integrate.quad. Eq. (19) can wused to
reparametrize the binary dynamics in terms of time (cf.
Sec. VIB). The precessional period 7 is defined as the
time for a complete precession cycle S_ — Sy — S_

(20)

s+ ’
ds
7'—2/3_ 7|d5’/dt|7 (21)

and can be computed using precessional period.

The direction of J is constant as long as radiation reac-
tion is being neglected. The orbital angular momentum

3 The only exception is the up-down configuration (cosf; = 1,
cos B2 = —1) in its instability region, where 7 — oo [63].

L precesses about that fixed direction at a rate [6]

J (n?M3\? 3 nM2¢
Q=2 1+ (1-
2 (L?) + 2n L

3(1+q) (1 . ’7MQf> [4(1 - q)L2(S2 - 3)

2q L

— (14 q)(J* = L? - S*)(J? — L? — S — 4nM*>L¢))
x [J2 = (L—=9)*"'[(L+8)* - JQ]—l} . (22)
The vector L therefore spans an angle
5+ ds
=2 Q. 23
“ /s |dS/dt] (23)

about J during each precession cycle. Eqgs. (22) and (23)
can be evaluated using Omegaz and alphaz, respectively.
The azimuthal angle of the projection of L onto a plane
orthogonal to J can be tracked using alpha of_S, cf.
Eq. (30) of [7]. The conditions « = 27n (n integer) cor-
respond to configurations where the precession frequency
of L about J and that of the two spins are in resonance
with each other [82]. Tools to analyze such peculiar con-
figurations will be made available in future versions of
the code.

E. Spin morphologies

As discussed at great length in [7], the precessional be-
havior of spinning BH binaries can be classified in terms
of three different morphologies. These are related to the
evolution of A® during a precession cycle. In particular,
three situations are possibile:

1. A® circulates through the full range [—m, +7);
2. A® librates about 0 (and never reaches +7);
3. A® librates about +7 (and never reaches 0).

Examples of BH binaries in the different morphologies
are studied in Sec. VI A. The spin-orbit resonances £ =
ming(§_) and £ = maxg(&;) can be interpreted as the
limits of the two librating morphologies: as the preces-
sion amplitude (S; — S_) goes to zero, A® approaches
one of the resonant configurations and locks onto either
0 or £7 [76]. The spin morphology is an interesting dy-
namical feature of BH binaries because, while it charac-
terizes spin precession, it does not vary on the precession
timescale (i.e., it is independent of S). Radiation reac-
tion causes morphological transitions which are promis-
ing GW observables [65, 78]. Morphological classification
is implemented in find morphology.

The loop formed by the two effective potentials 1 of
Eq. (16) encloses all binary configurations (&, S) compati-
ble with fixed values of , J, g and S;. Regions of binaries
with different morphologies can coexist in this plane in
the following way (see Fig. 4 of [7]):

1. a single region where all binaries librate about
AP = +m;

2. two regions of binaries librating about A® = 47
separated by a third region of circulating binaries;

3. three different regions, where binaries librate about
A® = 0, circulate and librate about A® = 4.

This distinction is performed by phase xi. A useful tool
is provided in phase_checker, which ensures that the
output of phase_xi satisfies the constraints of Sec. III C.

IV. GRAVITATIONAL-WAVE DRIVEN
INSPIRAL

In this section we illustrate how to use PRECESSION
to compute BH inspirals. We provide a standard inte-
grator of the orbit-averaged PN equations (Sec. IV A)
and a framework to evolve binaries using our innovative

precession-averaged approach (Sec. IV B). A key ingredi-
ent is the statistical resampling of the precessional phase,
which is illustrated in Sec. IV C. Finally, we present a new
hybrid approach where precessional cycles are tracked
only during the last part of the inspiral (Sec. IV D).

A. Orbit-averaged evolutions

GW emission dissipates energy and angular momen-
tum, thus decreasing the binary separation. Following
the seminal studies of Apostolatos et al. [2] and Kidder
[3], the PN equations of motion for precessing systems
have historically been studied averaging over the orbital
motion [73, 76, 83-86], which exploits the inequalities
torb K tpre and tor, < trr. We provide a numerical in-
tegrator for the following set of orbit-averaged PN equa-
tions:

dS; dS, dL. v d
D1 _ g, x8 P2 _q,x8 e v S); 24
a S = x Sy p = — i G (S 8a); (24)
3q 00 N N
_ 5 _
MQy = <2+ :) L+ [sz 3<L s2)L 3¢ (L sl)L}, (25)
3\ . o 3 .3
_ 5 _ I
Mg = v <2+ o >L+ oI [sl 3 (L sl) L (L 52) L} : (26)
dv 327 , L TA3+ 924 4 W . (113m? 25 ,[34103 13661 50
22 e 2 A — (S, L) (== k22 it bt B
it~ 5 M { e M 2 e e) | st o167 T s

nX1X2
T 96
16447322263 16 1712
6 DX20225S | Do 202 In4
[130708800 T 37~ 105 (B tIndv)+
4415 358675 91495
7| 2 sy L.
ot = dose T eoas T e | O)}’

where v = /M /r is the orbital velocity and yg ~ 0.577
is Euler’s constant. The spin-precession equations (24)-
(26) are accurate up to 2PN; corrections to the radiation-
reaction equation (27) are included up 3.5PN (2PN) for
(non-)spinning terms [2—4, 68, 73, 85-92]. Higher-order
PN corrections to spin precession [93-95] and radiation
reaction [96, 97] are not implemented in the current ver-
sion of PRECESSION. The importance of such additional
corrections on the conservation of & and their quantita-
tive effect at small separations are still unclear and surely
merit further investigation.

Orbit-averaged inspirals require the integration of nine
coupled ordinary differential equations (ODEs) for the

51,

672

(721(81 - L)(8z - L) - 247(8: - 8)) + s > (m”"')2 (719(8: - 1) - 233)] _ 5 109+ 15876

| 56198680\ 541 , 5605
217728)" 896" T 25092

(27)

(

components of L, S; and Ss. Although the time ¢ at
a given separation 7 is crucial to calculate the emitted
GW signal, it is not relevant for most astrophysical pur-
poses, where only the evolution of the spin orientations is
needed. For this reason, PRECESSION performs PN inte-
grations using the separation r as independent variable.
In practice, we integrate dL/dr = dL/dt x (dv/dt)~! x
1/2v/rM, where L is any of the components of L, Sy
and Ss. Integrations are performed using the lsoda al-
gorithm [98] implemented in scipy.integrate.odeint.
1soda combines adaptive nonstiff and stiff methods and
monitors the ODE integrations to switch between the two
as needed.

We provide three convenient wrappers of the orbit-
averaged PN integrator, which differ in their input and
output parameters.

1. orbit_averaged evolves the relative orientation of
the three momenta given in terms of (£, J,S). The
initial configurations must be compatible with the
constraints presented in Sec. ITIC.

2. orbit_angles evolves BH binary configurations
specified by the angles (01, 62, AD).

3. orbit_vectors tracks the evolution of the nine
components of L of S; and S5 in an inertial frame.

In the first two cases, the integration is carried out in a
reference frame (X,y,2) defined by J - x=J-y=L-y =0
at the initial separation; generic configurations can be
projected to this frame using Jframe projection. In the
third case, the integration frame is specified by the input
parameters. Examples are shown in Sec. VID. Paral-
lelization is implemented in all wrappers to evolve distri-
butions of BH binaries on multiple cores (cf. Sec. VIF).
If needed, the right-hand side of Eqgs. (25)-(27) can be
accessed explicitly calling orbav_egs.

B. Precession-averaged evolutions

Refs. [6, 7] introduced an alternative way to evolve
spinning BH binaries, which explicitly exploits the
timescale hierarchy ¢,.. < tgrr. The three parameters
(&, J,S) describing the relative orientations of the BH
spins naturally accommodate the timescales of the prob-
lem:

e ¢ is conserved on both ¢, and trR;
e J is conserved on ty. but varies on tgrg;
e S varies on both .. and tgg.
The oscillations of S on ty. can be averaged over to

study the binary evolution on times t ~ tgr. The secular
variation of J on trg is given at 1PN by

5% 82|dS/dt| 1 dS

a1 (o,
= T L2 ~
[5+|ds)dt|~1ds

dr — 4rd

This approach reduces the PN evolution of a BH binary
to a single ODE. The price paid to achieve this simpli-
fication is the loss of information on the evolution of S
(cf. Sec. IV C below).

The integration domain of Eq. (28) can be extended to
arbitrarily large separations using auxiliary variables

J? - L2 1
/@—72L , U—ﬁ, (29)

such that Eq. (28) reduces to

dn * 92|dS/dt|dS 0
du [F1ds/dt-1dS

which can be integrated from/to v = 0 (r/M = o).
While J ~ L o +/r diverges in the large separation limit,
the asymptotic value of k

lim k= lim (S;+8S2)-L (31)
r/M—o0 r/M—oc0

Roo =

converges and becomes equivalent to the projection of
the total spin along the orbital angular momentum. kKo
is therefore bounded by

—(S1+ 52) <hoo <81+ 52, (32)

as given by kappainf lim. BH binary configurations at
infinitely large separation are specified by pairs (£, Keo)
satisfying Eqgs. (11) and (32), see Sec. VIA. The al-
lowed range of these two parameters can be computed
using kappainf_allowed and xiinf_allowed. #; and 65
asymptote to finite values at large separation, and can
be expressed in terms of £ and Kuo:

Hoo(]- + qil) - M?g

o = i 0, = . (33

R R
M?¢ — ko(1+¢)

Oro = i 0y = . 34

cos By r/}\}lrgoo cos 65 S0 —0) (34)

Transformations between (£, koo) and (0100, 0200) are im-
plemented in thetas_inf and from_the_angles_inf.

PRECESSION provides three different wrappers to inte-
grate Egs. (28) and (30):

1. evolve_J evolves the binary between two finite sep-
arations r; and ry. The initial condition J(r;) must
satisfy the geometrical constraints of Sec. IIT C.

2. evolve_ J infinity integrates Eq. (30) from
r/M = oo (u = 0) down to some final separation
r¢. The initial configuration has to be specified in
terms of Koo

3. evolve_J backwards evolves a binary specified at
some separation r; back to past infinity and returns
its asymptotic condition K.

Practical examples are provided in Sec. VID. Integra-
tions are performed using the lsoda algorithm [98]
wrapped in scipy.integrate.odeint. Parallelization
is implemented to run arrays of binaries simultaneously
(cf. Sec. VIF). The right-hand side of Egs. (28) and (30)
can be evaluated directly using dJdr and dkappadu.
When performing precession-averaged evolutions, we
recommend avoiding binary configurations very close to
the limits reported in Egs. (11)-(15). Numerical errors
arising from the integration of Eq. (28) may push some
of the parameters out of their range of validity, which

prevents any further evolution. PRECESSION is rather
solid with respect to such errors: tolerances as small
as AJ/M? ~ A& ~ 107° from the limits reported in
Egs. (11)-(15) are typically sufficient to ensure smooth
integrations.

C. Phase resampling and binary transfer

Precession-averaged integrations do not track the evo-
lution of the precessional phase. This is a well justified
approach for most astrophysical applications. Interac-
tions with the astrophysical environment determine the
spin orientation at large separation where GW emission
is inefficient to drive the dynamics [34, 50, 51, 53, 64, 99—
103]. The inequality tpre < trr implies that BH binaries
undergo a very large number of precession cycles before
entering the GW-driven regime, such that the informa-
tion of the initial phase is lost in practice.

An estimate of the magnitude of the total spin S is
nonetheless available at a statistical level from the dy-
namics on the shorter times ¢ ~ ¢,... The probability of
finding a binary with some total spin magnitude S is pro-
portional to dt/dS of Eq. (17). We sample the probability
distribution P(S) = 2|dS/dt|~t/7 (with S € [S_,S])
using the cumulative distribution method (e.g. [104]),
which is suitable to handle integrable singularities (cf.
Eq. 20). We first select a random number € € [0, 1] and
then solve the integral equation

S !
2 a5 . (35)
T Jg_ |dS’/dt|
for S € [S_,S4]. The algorithm is implemented in
samplingS and tested in Sec. VIC below.
Phase resampling is essential to transfer the spin orien-
tations of BH binaries from large separation where they
form down to the regime close to merger. The complete

procedure is implemented in evolve_angles, and can be
summarized as follows.

1. We specify a binary with mass ratio ¢, spin magni-
tudes Sp, Sz and spin orientations (67,62, A®) at
some initial separation r;.

2. We convert the initial configuration to (&, J,S) but
only consider (&, J), thus explicitly losing memory

of S.

3. The configuration (£, J) is evolved down to some
final separation ry integrating Eq. (28) for J (¢
stays constant).

4. Given the final configuration (&,J) at ry, we
randomly extract a value S from a distribution
weighted by |dS/dt|~!.

5. The final set of parameters (£, J,S) is converted
back to (01,02, A®). The sign of A® is randomly
chosen.

This procedure allows for direct comparison between
orbit-averaged and precession-averaged evolutions. Such
a comparison is carried out in Sec. VIE as a test of the
code. Tests performed on distributions of binaries have
been reported by [7], where precession-averaged binary
transfers have been found to be in excellent statistical
agreement with orbit-averaged evolutions. Discrepan-
cies between the two approaches become relevant only
at r ~ 10M, where t,.. becomes comparable to trg.
However, the entire PN approach loses accuracy at such
small separations [77, 105, 106] and the binary evolution
can be followed faithfully only using numerical-relativity
simulations.

Neglecting and resampling the precessional phase lead
to a substantial computational speed up. A concrete ex-
ample is provided in Sec. VIF: even starting at moderate
separation ~ 10*M, precession-averaged integrations are
faster by about a factor ~ 70 when compared to orbit-
averaged evolutions®. Orbit-averaged integrations be-
come impractical at separations significantly larger than
~ 10*M, while precession-averaged evolutions can be
carried out to/from infinitely large separation.

D. Hybrid evolutions

Although optimal for statistical studies, phase resam-
pling may be inaccurate in situations where individual
precession cycles need to be resolved. PRECESSION can
perform hybrid PN integrations combining the two ap-
proaches in hybrid:

1. A precession-averaged integration is used at large
separations, down to a certain separation threshold
Tt.

2. The precessional phase is extracted at r; by resam-
pling the total spin magnitude S.

3. This binary configuration at r; is used to initialize
an orbit-averaged integration to resolve individual
precession cycles at separations r < ry.

The transition radius r; may correspond, for instance,
to a typical separation where the emitted GW frequency
fi = /M/72r} enters the lower end of the sensitivity
window of a specific detector. For convenience, we pro-
vide utilities to convert binary separation and emitted
GW frequency in rtof and ftor.

4 Precession-averaged evolutions may occasionally stall and take
longer to run. This is due to a wrong initial guess of the integra-
tion step attempted by 1soda and can be cured increasing the h0
optional parameter of scipy.integrate.odeint. With the cur-
rent default option, stalling happens roughly once every million
inspirals.

V. BLACK-HOLE REMNANTS

PRECESSION implements numerical-relativity fitting
formulae to estimate final mass (Sec. V A), spin
(Sec. VB) and recoil (Sec. V C) of BHs following binary
mergers. The importance of spin precession in estimating
these properties is stressed in Sec. V D.

The fitting formulae are typically written down using
the following weighted combinations of the BH spins

¢*x282 + x181

A — QXQS2_XISI 7
(1+q)?

1+g¢ (36)

;X =
and their projections parallel/perpendicular to the or-
bital angular momentum: x| =Xx-L, x. =[x x L],
Aj=A-L A =|AxL|

A. Final mass

The energy radiated in GWs during the inspiral and
merger of a BH binary decreases the mass of the BH rem-
nant My below the binary’s total mass M. Estimates
of My can be computed analytically in the test-particle
limit ¢ — 0 [107] and numerically in the strong-field
regime ¢ ~ 1 [74, 108, 109]. An interpolation between
these two regimes is given in [110] and reads

My

1—-n(l+4 1-F
i n(1+4n)(1SCO)

—16n° [po + 4p1x) (X +1)] - (37)

Here FEisco is the energy per unit mass of an effective
particle of spin x at the innermost stable circular orbit
[111]:

2

Eisco = 1- 3 ; (38)
ISCO
Tisco = 3+ Z2 — Sign(f(l\)\/(:; — 23+ Z1+222),
(39)
9\ 1/3 _\1/3 . \1/3
zi=1+(1-x) " [@+x)+ 0-x)"
(40)
Zy = \/3X] + Z3. (41)

The parameters pg = 0.04827 and p; = 0.01707 have
been obtained by [110] fitting 186 numerical-relativity
simulations from various groups. My can be computed
calling finalmass.

B. Final spin

A convenient expression for the spin Sy = M?X ¢ of
the BH remnant is given in [112], where test-particle
results [107, 113] and numerical-relativity simulations

10

[74, 109, 114] are interpolated. Their expression for the
dimensionless spin X is implemented in finalspin and
reads

. ~ q 3
_ Llx+ —2 i), 42
o (e iped]) @
_ 2 (1+q9)*
1+q)?°
+ (s5m +to + Q)QXH : (43)

1+ ¢?

with t¢ = —2.8904, to = —3.51712, t3 = 2.5763, s4 =
—0.1229 and s5 = 0.4537.

Various alternative prescriptions for the final spin have
been compared in [39], where the critical importance of
accounting for PN spin precession in estimating x is
demonstrated (see also the discussion by [112] on this
point).

C. Black-hole recoil

If GWs are emitted anisotropically during inspiral and
merger, linear momentum is dissipated in a preferential
direction and the center of mass recoils in the opposite
direction. BH recoil (or kick) velocities vy can be as large
as ~ 5000 km/s, which exceeds the escape velocities of
the most massive galaxies [115]. Kicks are generated by
asymmetries in either the masses or the spins of the two
merging BHs. The mass asymmetry contribution to the
kick velocity v, lies in the orbital plane, while the spin
contribution has components vy and vs, directed paral-
lel and perpendicular to the orbital angular momentum.
The magnitude of the kick velocity vy, can be modeled as
[116]

v = \/ygn + 20,,v51 cos(+ v?L + UEH) (44)

where (is the angle between the mass term and the
orbital-plane spin term. We have implemented the fol-
lowing expressions for vp,, vs and vy :

l1—gq
m = An*——(1+ Bn), 45
v Uy q(+ Bn) (45)
vsL = Hi? Ay, (46)
vl = 160°[AL (Vi1 +2VaX) +4VaX] + 8Vex))
42X 1 A)(Ca + 2C3x))] cos O, (47)

where the coefficients are extracted from numerical-
relativity simulations: A = 1.2 x 10* km/s, B = —0.93
[117], H = 6.9 x 10® km/s [118], Vi; = 3677.76 km/s,
Vi = 2481.21 km/s, Vg = 179245 km/s, Vo =
1506.52 km/s [119], Cy = 1140 kmm/s, C5 = 2481 km/s
[120], ¢ = 145° [118]. The main contribution to vj comes
from the term proportional to Vi1 in Eq. (47). This effect,
known as “superkick”, enters v weighted by A, and it
is dominant if binaries merge with 6; ~ /2 and A® ~ 7

[116, 121]. The additional corrections V4 g ¢ (Ca,3) are
known as “hangup-kicks” (“cross-kicks”) and increase vy,
for moderate misalignments 6; ~ 50° [120, 122]. The
additional parameter © is the angle between the direc-
tion of A x L and the infall direction of the two holes
“at merger”, offset by ~ 200° [123, 124]. In practice,
© depends on the initial separation of the BH binary in
each numerical-relativity simulation. Following previous
studies [49, 119, 125], PRECESSION deals with this depen-
dency assuming O to be uniformly distributed in [0, 7].
Possible PN effects on the probability distribution of ©
are not taken into account.

Eq. (44) can be evaluated using finalkick and pre-
dicts a maximum kick velocity v, ~ 0.017¢ ~ 5000 km/s.

D. Importance of spin precession

Spin precession plays a crucial role in determining the
properties of the BH remnant. The fitting formulae here
presented should only be applied at separations r < 10M
comparable to the initial conditions of the numerical-
relativity simulations used in their calibration. The PN
inspiral before merger profoundly modifies the spin orien-
tations and therefore the estimated properties of the final
BH. Ref. [39] showed that PN spin precession introduces
a fundamental uncertainty in predicting the final spin
because x; depends on the precessional phase at merger,
which is only available at a statistical level. This point
is even more crucial for kick predictions. Large kicks
are expected to be less (more) likely if binaries merge
with A® ~ 0 (~ m) [116, 121] and, consequently, phase
transitions towards the librating morphologies during the
early inspiral substantially suppress (enhance) the recoil
[40, 125]. Ref. [7] found that binary morphologies close
to merger are closely related to the spin configurations
at large separations, which opens up the possibility of
exploiting future BH kick measurements to constrain the
astrophysical processes behind BH binary formation and
evolution [36, 47-49, 52, 102, 126].

The expressions for final mass, spin and recoil currently
implemented in PRECESSION are the same already pre-
sented in [47]; other recent findings (e.g. [74, 127-129])
will be implemented in future versions of the code.

VI. EXAMPLES

This section contains several practical examples to use
PRECESSION. All tests presented here are available in
the PYTHON submodule precession.test which has to
be loaded explicitly with the command:

import precession.test

The source code of the example routines are reported in
Figs. 2-7. The outcome of their executions are presented
as screen outputs or graphical plots in Figs. 8-13. Each
example is described in a dedicated subsection: Sec. VI A

11

shows how to select consistent BH binary configurations
and study their dynamics on tp,e; in Sec. VIB, we study
the precessional cycles of three BH binaries and classify
their spin morphologies; in Sec. VIC, we test our algo-
rithm to resample the precessional phase; Sec. VI D shows
how to compute PN inspirals and evaluate numerical-
relativity fitting formulae to estimate the properties of
the post-merger BH; finally, in Sec. VIE and VIF we
compare binary dynamics and computational speed of
orbit-averaged and precession-averaged integrations.

A. Selection of consistent parameters

The function test.parameter_selection illustrates
how to select consistent parameters and characterize the
binary dynamics on the precession timescale. The test is
executed with

precession.test.parameter_selection()

The source code and the screen output are reported in
Figs. 2 and 8 respectively.

We first show how to select values of (¢, .J,S) that sat-
isfy the geometrical constraints described in Sec. III C,
and how to convert these values to (61,602, A®). Sec-
ondly, we compute several quantities that characterize
BH spin precession: the angles 6; corresponding to the
spin-orbit resonances, the precessional period 7, the total
precession rate a and the spin morphology. Finally, we
illustrate how to select consistent parameters at infinitely
large separation r/M — oo (cf. Sec. IV B).

B. Evolutions of the spin angles on a precession
cycle

The function test.spin_angles provides an example
to study the binary evolution over one single precession
cycle. The test is executed with

precession.test.spin_angles()

The source code is reported in Fig. 3; the resulting plot
is shown in Fig. 9.

The separation r and the magnitude of the total an-
gular momentum J are approximately constant on times
t ~ tpre. Combined with the conservation of £, this im-
plies that the precessional dynamics can be parametrized
using a single parameter. We first parametrize the pre-
cession cycles using the magnitude of the total spin S.
Time evolutions are then obtained by integrating dS/dt
according to Eq. (19). The magnitude S undergoes a full
oscillation between two values S_ and Sy in a time 7 [cf.
Eq. (21)], which defines the precession period. As shown
in Fig. 9, the evolution of the tilt angles 6; is qualitatively
similar for all binaries. On the other hand, three different
situations are possible for A® and exemplify the notion
of precessional morphology. As already pointed out in
Sec. III B, the sign of A® must be specified by the user:

one has A® < 0 (AP > 0) in the first (second) half of
the precession cycle where S increases (decreases).

C. Sampling of the precessional phase

The routine test.phase_sampling tests our procedure
to statistically sample values of S weighted by |dS/dt|~!
(cf. Sec. IV C). The test is executed with

precession.test.phase_sampling()

The source code is reported in Fig. 4; the resulting plot
is shown in Fig. 10.

After selecting a BH binary configuration
(¢, x1,x2,7,J,§), we extract multiple values of
S € [S-,S4] using samplingS. The obtained dis-
tribution is normalized, binned, and compared with the
continuum limit P(S) = 2|dS/dt|~!/7. As a consistency
check, we also convert our sample to ¢(S) using Eq. (19)
and verify that these values are distributed uniformly.
This example also demonstrates that the singularities of
P(S) at Sy [cf. Eq. (20)] are integrable and result in a
smooth probability distribution of ¢.

D. Wrappers of the PN integrators

The example test.PNwrappers shows how to perform
PN inspirals using the ODE integrators implemented in
PRECESSION. The test is executed with

precession.test.PNwrappers()

The source code and the screen output are reported in
Figs. 5 and 11, respectively.

We first specify a BH binary at some initial separation
r; by providing values of the angles (01,602, A®), which
are then converted to (¢, J,S), cf. Sec. IIIB. This sys-
tem is first evolved down to a final separation ry < r;
integrating the orbit-averaged PN equations of motion
(25)-(27). The integration is performed using the three
wrappers presented in Sec. IV A to extract the final con-
figuration in terms of (0,02, A®), (£, J,S), and the nine
components of L, S1, So. The same evolution is then per-
formed using the precession-averaged approach outlined
in Sec. IV B. In contrast to orbit-averaged integrations,
£ is not evolved explicitly and it is assumed to be con-
stant. The final value of J is obtained by integrating
Eq. (28). The evolution of S is not tracked explicitly,
but can be resampled (cf. Sec. IV C) to obtain a statis-
tical estimate of the angles (61,62, A®) at ry. We then
show how to perform integrations to/from r/M — oo,
where the projection of the total spin ks is asymptot-
ically constant. Finally, we evolve the same BH binary
using a hybrid approach, stitching together precession-
averaged and orbit-averaged integrations at some sepa-
ration r;. We complete this exercise with the evaluation
of the numerical-relativity fitting formulae to estimate
the properties of the post-merger BH remnant (Sec. V).
Formulae are applied at 7y, after the PN evolution.

12

E. Comparison between orbit-averaged and
precession-averaged integrations

The example test.compare_evolutions compares a
single PN evolution performed using orbit-averaged and
precession-averaged integrations. The test is executed
with

precession.test.compare_evolutions()

The source code is reported in Fig. 6; the resulting plot
is shown in Fig. 12.

Conservation of the effective spin £ on the preces-
sional time [73, 79] is a crucial assumption underly-
ing our precession-averaged approach. On the other
hand, orbit-averaged integrations confirm this feature
as a by-product. We detect extremely small deviations
AE/€ ~ 1071 between the two approaches (cf. top panel
of Fig. 12), which fully corroborates our assumption, at
least at the PN order we implemented. Variations of &
due to additional PN corrections [93-95] still need to be
explored. Note that £ is not conserved on the orbital
timescale (only on tpre and trr), but those variations are
not captured by either of our methods. The evolution of
J is also very accurate, with deviations of the order of
AJ/J ~ 1073 during the entire integration (Fig. 12, mid-
dle panel). The precession-average approach gradually
loses accuracy at small separations, where the precession
time t,.c becomes comparable to the inspiral time tgrg.
Precession-averaged integrations require a resampling of
the precessional phase S at each output separation. Re-
sampled values are in excellent statistical agreement with
the orbit-averaged result (lower panel of Fig. 12). The
envelope of the orbit-averaged evolution of S is well de-
scribed by the Sy curves given by £1(S) = &, cf. Eq. (16).

F. Parallel computation and timing

Our last example, test.timing, compares the compu-
tational efficiency of the PN integrators implemented in
PRECESSION. The test is executed with

precession.test.timing()

The source code and the screen output are reported in
Figs. 7 and 13, respectively.

We compute the CPU time needed to evolve a sam-
ple of N = 100 BH binaries from r; = 10*M to ry =
10M using orbit-averaged and precession-averaged inte-
grations. In particular, we time the orbit-averaged in-
tegrator wrapped inside orbit_angles (cf. Sec. IV A)
against the precession-averaged evolution implemented in
evolve_angles (cf. Sec. IV B). The latter includes both
the numerical integration of Eq. (28) and a final resam-
pling of the magnitude S. To better illustrate the parallel
implementation of the integrators, we perform the same
computation twice: in the first iteration, integrations are
performed in parallel on all the available cores (default);
in the second iteration, we enforce a strictly serial execu-
tion. On average, a single BH inspiral takes ~ 3 minutes

(~ 3 seconds) when evolved using orbit- (precession-)
averaged integrations. The computational performances
obtained here are in good agreement with [7], where the
dependence of the CPU time on the initial separation r;
is also studied (see their Fig. 9).

VII. CONCLUSIONS

We have presented design and usage of the numeri-
cal open-source code PRECESSION. Our code provides
various numerical tools to study the precessional dynam-
ics of BH binaries, evolve BH binaries along their GW-
driven inspirals and estimate the properties of the sin-
gle BHs resulting from binary mergers. PRECESSION is
distributed in the form of a PYTHON module to com-
bine flexibility, ease-of-use and numerical efficiency. The
code can be straightforwardly installed from the PYTHON
Package Index through pip, and it is distributed under
version control at github.com/dgerosa/precession.
Extensive documentation is regularly maintained at
dgerosa.github.io/precession. Further information
is available at davidegerosa.com/precession.

PRECESSION is under active development and several
features will be added in future versions. Possible ex-
tensions include (i) generalization to eccentric orbits, (ii)
explicit treatment of single-spin and non-spinning bina-
ries, (iii) reparametrization of the dynamics in the equal-
mass limit [75], (iv) implementation of the latest fitting
formulae to numerical-relativity simulations, (v) addi-
tion of higher-order PN corrections, and (vi) inclusion
of numerical tools to study the resonant configurations
a = 2mn [82]. On the computational side, PRECESSION
will be ported to PYTHON 3, and its parallel comput-
ing features further refined. Additional computational
speed-up could be achieved using static compilers such
as CYTHON [130]. Compatibility and/or integration with
the LIGO Algorithm Library® software is also an impor-
tant future development.

The numerical tools described in this paper facilitate

13

the implementation of spinning BH binary inspirals in
a variety of astrophysical studies, ranging from popu-
lation synthesis models to galaxy merger trees. More-
over, PRECESSION provides flexible tools to interpret GW
observations and numerical-relativity simulations of BH
binaries in light of multi-timescale PN techniques. As
merging BH binaries have entered the realm of obser-
vations, we hope that our numerical efforts —here made
available to the scientific community— will help under-
standing these fascinating physical systems straddling
the boundaries between fundamental physics and astron-
omy.
ACKNOWLEDGMENTS

We are grateful to Ulrich Sperhake, Emanuele Berti,
Richard O’Shaughnessy, Alberto Sesana, Daniele Tri-
fir6, Antoine Klein, Tyson Littenberg, Jakub Vosmera,
Xinyu Zhao, Will Farr, Enrico Barausse and Guillame
Faye for several fruitful discussions. This work was in-
spired by [131]. D.G. is supported by the UK STFC
and the Isaac Newton Studentship of the University
of Cambridge. Partial support is also acknowledged
from the Royal Astronomical Society, Darwin College
of the University of Cambridge, the Cambridge Philo-
sophical Society, the H2020 ERC Consolidator Grant
No. MaGRaTh-646597, the H2020-MSCA-RISE-2015
Grant No. StronGrHEP-690904, the STFC Consolida-
tor Grant No. ST/L000636/1, the SDSC Comet and
TACC Stampede clusters through NSF-XSEDE Award
Nos. PHY-090003, the Cambridge High Performance
Computing Service Supercomputer Darwin using Strate-
gic Research Infrastructure Funding from the HEFCE
and the STFC, and DiRAC’s Cosmos Shared Memory
system through BIS Grant No. ST/J005673/1 and STFC
Grant Nos. ST/H008586/1, ST/K00333X/1. M. K. is
supported by Alfred P. Sloan Foundation Grant No. FG-
2015-65299. This work was made possible by the open-
source programming language PYTHON [58] and the re-
lated tools NUMPY [59], scIpy [60], MATPLOTLIB [61],
PARMAP [62] and PDOC [67]. Version-control distribution
through GIT and GITHUB is also acknowledged.

[1] R. P. Kerr, PRL 11, 237 (1963).

[2] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.
Thorne, PRD 49, 6274 (1994).

3] L. E. Kidder, PRD 52, 821 (1995), gr-qc/9506022.

[4] P. C. Peters and J. Mathews, Physical Review 131, 435
(1963).

[5] E. Poisson and C. M. Will, Gravity (Cambridge Univer-
sity Press, 2014).

[6] M. Kesden, D. Gerosa, R. O’Shaughnessy, E. Berti, and
U. Sperhake, PRL 114, 081103 (2015), arXiv:1411.0674

[gr-qc].

5 LAL, www.lsc-group.phys.uwm.edu/lal.

[7] D. Gerosa, M. Kesden, U. Sperhake, E. Berti,
and R. O’Shaughnessy, PRD 92, 064016 (2015),
arXiv:1506.03492 [gr-qc].

8] F. Pretorius, (2007), arXiv:0710.1338 [gr-qc|.

9] E. E. Salpeter, ApJ 140, 796 (1964).

0] Y. B. Zel’dovich, Soviet Physics Doklady 9, 195 (1964).

1] M. Schmidt, Nature 197, 1040 (1963).

2] B. L. Webster and P. Murdin, Nature 235, 37 (1972).

3] C. T. Bolton, Nature 235, 271 (1972).

4] J. Casares and P. G. Jonker, Space Sci. Rev. 183, 223
(2014), arXiv:1311.5118 [astro-ph.HE].

[15] J. Kormendy and D. Richstone, ARA&A 33, 581 (1995).

[16] C. S. Reynolds, Classical and Quantum Gravity 30,

244004 (2013), arXiv:1307.3246 [astro-ph.HE].

https://pypi.python.org/pypi/precession
https://pypi.python.org/pypi/precession
https://github.com/dgerosa/precession
https://dgerosa.github.io/precession
http://davidegerosa.com/precession
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRevD.49.6274
http://dx.doi.org/10.1103/PhysRevD.52.821
http://arxiv.org/abs/gr-qc/9506022
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1103/PhysRevLett.114.081103
http://arxiv.org/abs/1411.0674
http://arxiv.org/abs/1411.0674
www.lsc-group.phys.uwm.edu/lal
http://dx.doi.org/10.1103/PhysRevD.92.064016
http://arxiv.org/abs/1506.03492
http://arxiv.org/abs/0710.1338
http://dx.doi.org/10.1086/147973
http://dx.doi.org/10.1038/1971040a0
http://dx.doi.org/10.1038/235037a0
http://dx.doi.org/10.1038/235271b0
http://dx.doi.org/10.1007/s11214-013-0030-6
http://dx.doi.org/10.1007/s11214-013-0030-6
http://arxiv.org/abs/1311.5118
http://dx.doi.org/10.1146/annurev.aa.33.090195.003053
http://dx.doi.org/10.1088/0264-9381/30/24/244004
http://dx.doi.org/10.1088/0264-9381/30/24/244004
http://arxiv.org/abs/1307.3246

[17] M. C. Miller and J. M. Miller, Phys. Rep. 548, 1 (2015),
arXiv:1408.4145 [astro-ph.HE].

[18] K. A. Postnov and L. R. Yungelson, Living Reviews in
Relativity 17 (2014), arXiv:1403.4754 [astro-ph.HE].

[19] M. J. Benacquista and J. M. B. Downing, Living Re-
views in Relativity 16 (2013), arXiv:1110.4423 [astro-
ph.SR].

[20] S. D. M. White and M. J. Rees, MNRAS 183, 341
(1978).

[21] M. C. Begelman, R. D. Blandford, and M. J. Rees,
Nature 287, 307 (1980).

[22] C. Rodriguez, G. B. Taylor, R. T. Zavala, A. B. Peck,
L. K. Pollack, and R. W. Romani, ApJ 646, 49 (2006),
astro-ph/0604042.

(23] B. P. Abbott et al, PRL 116, 061102 (2016),
arXiv:1602.03837 [gr-qc].

[24] B. P. Abbott et al., (2016), arXiv:1602.03838 [gr-qc].

[25] P. A. Seoane et al., (2013), arXiv:1305.5720 [astro-
ph.CO]J.

[26] A. Klein, E. Barausse, A. Sesana, A. Petiteau, E. Berti,
S. Babak, J. Gair, S. Aoudia, I. Hinder, F. Ohme, and
B. Wardell, PRD 93, 024003 (2016), arXiv:1511.05581
[gr-qc].

[27] F. Jenet et al.,, (2009), arXiv:0909.1058 [astro-ph.IM].

[28] R. N. Manchester et al., PASA 30, €017 (2013),
arXiv:1210.6130 [astro-ph.IM].

[29] M. Kramer and D. J. Champion, Classical and Quantum
Gravity 30, 224009 (2013).

[30] R. N. Manchester, Classical and Quantum Gravity 30,
224010 (2013), arXiv:1309.7392 [astro-ph.IM].

[31] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder,
A. H. Mroué, H. P. Pfeiffer, M. A. Scheel, and
B. Szildgyi, PRD 89, 084006 (2014), arXiv:1307.6232
[gr-qc].

[32] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa,
F. Ohme, G. Pratten, and M. Piirrer, PRL 113, 151101
(2014), arXiv:1308.3271 [gr-qc]|.

[33] K. Chatziioannou, N. Cornish, A. Klein, and N. Yunes,
PRD 89, 104023 (2014), arXiv:1404.3180 [gr-qc].

[34] D. Gerosa, M. Kesden, E. Berti, R. O’Shaughnessy, and
U. Sperhake, PRD 87, 104028 (2013), arXiv:1302.4442
[gr-qc.

[35] K. Chatziioannou, N. Cornish, A. Klein, and N. Yunes,
ApJ 798, L17 (2015), arXiv:1402.3581 [gr-qc].

[36] B. P. Abbott et al, ApJ 818, L22 (2016),
arXiv:1602.03846 [astro-ph.HE].

[37] C. O. Lousto and J. Healy, PRL 114, 141101 (2015),
arXiv:1410.3830 [gr-qc].

[38] C. O. Lousto, J. Healy, and H. Nakano, PRD 93,
044031 (2016), arXiv:1506.04768 [gr-qc].

[39] M. Kesden, U. Sperhake, and E. Berti, PRD 81, 084054
(2010), arXiv:1002.2643 [astro-ph.GA].

[40] M. Kesden, U. Sperhake, and E. Berti, ApJ 715, 1006
(2010), arXiv:1003.4993 [astro-ph.CO].

[41] K. Belczynski, V. Kalogera, F. A. Rasio, R. E. Taam,
A. Zezas, T. Bulik, T. J. Maccarone, and N. Ivanova,
ApJS 174, 223-260 (2008), astro-ph/0511811.

[42] M. Volonteri, F. Haardt, and P. Madau, ApJ 582, 559
(2003), astro-ph/0207276.

[43] E. Barausse, MNRAS 423, 2533
arXiv:1201.5888.

[44] V. Springel et al., Nature 435, 629 (2005), astro-
ph/0504097.

(2012),

14

[45] M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Si-
jacki, D. Xu, G. Snyder, S. Bird, D. Nelson, and
L. Hernquist, Nature 509, 177 (2014), arXiv:1405.1418.

[46] M. Volonteri, F. Haardt, and K. Giiltekin, MNRAS
384, 1387 (2008), arXiv:0710.5770.

[47) D. Gerosa and A. Sesana, MNRAS 446, 38 (2015),
arXiv:1405.2072.

[48] S. Komossa, Advances in Astronomy 2012, 364973
(2012), arXiv:1202.1977 [astro-ph.CO].

[49] L. Blecha, D. Sijacki, L. Z. Kelley, P. Torrey, M. Vogels-
berger, D. Nelson, V. Springel, G. Snyder, and L. Hern-
quist, MNRAS 456, 961 (2016), arXiv:1508.01524.

[50] K. Belczynski, R. E. Taam, E. Rantsiou, and M. van
der Sluys, ApJ 682, 474 (2008), astro-ph/0703131.

[61] T. Fragos, M. Tremmel, E. Rantsiou, and K. Bel-
czynski, ApJ 719, L79 (2010), arXiv:1001.1107 [astro-
ph.HE].

[52] E. Berti and M. Volonteri, ApJ 684, 822-828 (2008),
arXiv:0802.0025.

[63] A. Sesana, E. Barausse, M. Dotti, and E. M. Rossi,
ApJ 794, 104 (2014), arXiv:1402.7088.

[54] M. A. Scheel, M. Boyle, T. Chu, L. E. Kidder, K. D.
Matthews, and H. P. Pfeiffer, PRD 79, 024003 (2009),
arXiv:0810.1767 [gr-qc].

[65] S. Ossokine, M. Boyle, L. E. Kidder, H. P. Pfeiffer,
M. A. Scheel, and B. Szildgyi, PRD 92, 104028 (2015),
arXiv:1502.01747 [gr-qc].

[56] J. Veitch et al, PRD 91,
arXiv:1409.7215 [gr-qc].

[57] K. Chatziioannou, N. Cornish, A. Klein, and N. Yunes,
(2016), in preparation.

[58] G. van Rossum and J. de Boer, CWI Quarterly 4, 283
(1991).

[59] S. van der Walt, S. Colbert, and G. Varoquaux, Com-
puting in Science Engineering 13, 22 (2011).

[60] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open
source scientific tools for Python (2001) www.scipy.org.

[61] J. D. Hunter, Computing in Science and Engineering 9,
90 (2007).

[62] S. Oller-Moreno, parmap: FEasy parallelization in
Python (2015) pypi.python.org/pypi/parmap.

[63] D. Gerosa, M. Kesden, R. O’Shaughnessy, A. Klein,
E. Berti, U. Sperhake, and D. Trifird, PRL 115, 141102
(2015), arXiv:1506.09116 [gr-qc|.

[64] D. Gerosa, B. Veronesi, G. Lodato, and G. Rosotti,
MNRAS 451, 3941 (2015), arXiv:1503.06807.

[65] D. Trifirdo, R. O’Shaughnessy, D. Gerosa, E. Berti,
M. Kesden, T. Littenberg, and U. Sperhake, PRD 93,
044071 (2016), arXiv:1507.05587 [gr-qc].

[66] D. Gerosa and C. J. Moore, (2016), in preparation.

[67] A. Gallant, pdoc (2014) pypi.python.org/pypi/pdoc.

[68] P. C. Peters, Physical Review 136, 1224 (1964).

[69]

[70]

042003 (2015),

B. P. Abbott et al., (2016), arXiv:1602.03840 [gr-qc].
A. Sesana, ApJ 719, 851 (2010), arXiv:1006.0730 [astro-
ph.CO]J.

[71] C. Roedig and A. Sesana, Journal of Physics Conference
Series 363, 012035 (2012), arXiv:1111.3742.

[72] E. Poisson, A. Pound, and I. Vega, Living Reviews in
Relativity 14 (2011), arXiv:1102.0529 [gr-qc].

[73] E. Racine, PRD 78, 044021 (2008), arXiv:0803.1820 [gr-
qe].

[74] C. O. Lousto and Y. Zlochower, PRD 89, 104052 (2014),
arXiv:1312.5775 [gr-qc].

http://dx.doi.org/10.1016/j.physrep.2014.09.003
http://arxiv.org/abs/1408.4145
http://arxiv.org/abs/1403.4754
http://arxiv.org/abs/1110.4423
http://arxiv.org/abs/1110.4423
http://dx.doi.org/10.1093/mnras/183.3.341
http://dx.doi.org/10.1093/mnras/183.3.341
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1086/504825
http://arxiv.org/abs/astro-ph/0604042
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://arxiv.org/abs/1602.03838
http://arxiv.org/abs/1305.5720
http://arxiv.org/abs/1305.5720
http://dx.doi.org/10.1103/PhysRevD.93.024003
http://arxiv.org/abs/1511.05581
http://arxiv.org/abs/1511.05581
http://arxiv.org/abs/0909.1058
http://dx.doi.org/10.1017/pasa.2012.017
http://arxiv.org/abs/1210.6130
http://dx.doi.org/10.1088/0264-9381/30/22/224009
http://dx.doi.org/10.1088/0264-9381/30/22/224009
http://dx.doi.org/10.1088/0264-9381/30/22/224010
http://dx.doi.org/10.1088/0264-9381/30/22/224010
http://arxiv.org/abs/1309.7392
http://dx.doi.org/ 10.1103/PhysRevD.89.084006
http://arxiv.org/abs/1307.6232
http://arxiv.org/abs/1307.6232
http://dx.doi.org/ 10.1103/PhysRevLett.113.151101
http://dx.doi.org/ 10.1103/PhysRevLett.113.151101
http://arxiv.org/abs/1308.3271
http://dx.doi.org/10.1103/PhysRevD.89.104023
http://arxiv.org/abs/1404.3180
http://dx.doi.org/ 10.1103/PhysRevD.87.104028
http://arxiv.org/abs/1302.4442
http://arxiv.org/abs/1302.4442
http://dx.doi.org/10.1088/2041-8205/798/1/L17
http://arxiv.org/abs/1402.3581
http://dx.doi.org/10.3847/2041-8205/818/2/L22
http://arxiv.org/abs/1602.03846
http://dx.doi.org/10.1103/PhysRevLett.114.141101
http://arxiv.org/abs/1410.3830
http://dx.doi.org/10.1103/PhysRevD.93.044031
http://dx.doi.org/10.1103/PhysRevD.93.044031
http://arxiv.org/abs/1506.04768
http://dx.doi.org/10.1103/PhysRevD.81.084054
http://dx.doi.org/10.1103/PhysRevD.81.084054
http://arxiv.org/abs/1002.2643
http://dx.doi.org/10.1088/0004-637X/715/2/1006
http://dx.doi.org/10.1088/0004-637X/715/2/1006
http://arxiv.org/abs/1003.4993
http://dx.doi.org/ 10.1086/521026
http://arxiv.org/abs/astro-ph/0511811
http://dx.doi.org/10.1086/344675
http://dx.doi.org/10.1086/344675
http://arxiv.org/abs/astro-ph/0207276
http://dx.doi.org/10.1111/j.1365-2966.2012.21057.x
http://arxiv.org/abs/1201.5888
http://dx.doi.org/10.1038/nature03597
http://arxiv.org/abs/astro-ph/0504097
http://arxiv.org/abs/astro-ph/0504097
http://dx.doi.org/10.1038/nature13316
http://arxiv.org/abs/1405.1418
http://dx.doi.org/10.1111/j.1365-2966.2008.12911.x
http://dx.doi.org/10.1111/j.1365-2966.2008.12911.x
http://arxiv.org/abs/0710.5770
http://dx.doi.org/10.1093/mnras/stu2049
http://arxiv.org/abs/1405.2072
http://dx.doi.org/10.1155/2012/364973
http://dx.doi.org/10.1155/2012/364973
http://arxiv.org/abs/1202.1977
http://dx.doi.org/ 10.1093/mnras/stv2646
http://arxiv.org/abs/1508.01524
http://dx.doi.org/10.1086/589609
http://arxiv.org/abs/astro-ph/0703131
http://dx.doi.org/10.1088/2041-8205/719/1/L79
http://arxiv.org/abs/1001.1107
http://arxiv.org/abs/1001.1107
http://dx.doi.org/10.1086/590379
http://arxiv.org/abs/0802.0025
http://dx.doi.org/10.1088/0004-637X/794/2/104
http://arxiv.org/abs/1402.7088
http://dx.doi.org/ 10.1103/PhysRevD.79.024003
http://arxiv.org/abs/0810.1767
http://dx.doi.org/10.1103/PhysRevD.92.104028
http://arxiv.org/abs/1502.01747
http://dx.doi.org/10.1103/PhysRevD.91.042003
http://arxiv.org/abs/1409.7215
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
https://pypi.python.org/pypi/parmap
http://dx.doi.org/ 10.1103/PhysRevLett.115.141102
http://dx.doi.org/ 10.1103/PhysRevLett.115.141102
http://arxiv.org/abs/1506.09116
http://dx.doi.org/10.1093/mnras/stv1214
http://arxiv.org/abs/1503.06807
http://dx.doi.org/ 10.1103/PhysRevD.93.044071
http://dx.doi.org/ 10.1103/PhysRevD.93.044071
http://arxiv.org/abs/1507.05587
https://pypi.python.org/pypi/pdoc
http://dx.doi.org/10.1103/PhysRev.136.B1224
http://arxiv.org/abs/1602.03840
http://dx.doi.org/10.1088/0004-637X/719/1/851
http://arxiv.org/abs/1006.0730
http://arxiv.org/abs/1006.0730
http://dx.doi.org/10.1088/1742-6596/363/1/012035
http://dx.doi.org/10.1088/1742-6596/363/1/012035
http://arxiv.org/abs/1111.3742
http://arxiv.org/abs/1102.0529
http://dx.doi.org/10.1103/PhysRevD.78.044021
http://arxiv.org/abs/0803.1820
http://arxiv.org/abs/0803.1820
http://dx.doi.org/10.1103/PhysRevD.89.104052
http://arxiv.org/abs/1312.5775

[75] J. Vosmera and D. Gerosa, (2016), in preparation.

[76] J. D. Schnittman, PRD 70, 124020 (2004), astro-
ph/0409174.

[77] A. Buonanno, Y. Chen, and T. Damour, PRD 74,
104005 (2006), gr-qc/0508067.

[78] D. Gerosa, R. O’Shaughnessy, M. Kesden, E. Berti, and
U. Sperhake, PRD 89, 124025 (2014), arXiv:1403.7147
[gr-qc].

[79] T. Damour, PRD 64, 124013 (2001), gr-qc/0103018.
[80] A. Gupta and A. Gopakumar, Classical and Quantum
Gravity 31, 105017 (2014), arXiv:1312.0217 [gr-qc].
[81] A. C. M. Correia, MNRAS 457, L49 (2016),

arXiv:1511.01890 [gr-qc].

[82] X. Zhao, M. Kesden, and D. Gerosa, (2016), in prepa-
ration.

[83] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner,
PRD 79, 104023 (2009), arXiv:0810.5336 [gr-qc].

[84] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner,
PRD 84, 049901 (2011).

[85] G. Faye, L. Blanchet, and A. Buonanno, PRD 74,
104033 (2006), gr-qc/0605139.

[86] L. Blanchet, A. Buonanno,
104034 (2006), gr-qc/0605140.

[87] L. E. Kidder, C. M. Will, and A. G. Wiseman, PRD
47, RA183 (1993), gr-qc/9211025.

[88] E. Poisson, PRD 57, 5287 (1998), gr-qc/9709032.

[89] L. A. Gergely, PRD 61, 024035 (2000), gr-qc/9911082.

90] L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, PRD

65, 061501 (2002), gr-qc/0105099.

[91] L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, PRD
71, 129902 (2005).

[92] L. Blanchet, T. Damour, G. Esposito-Fare¢se, and B. R.
Iyer, PRL 93, 091101 (2004), gr-qc/0406012.

[93] S. Marsat, A. Bohé, G. Faye, and L. Blanchet,
Classical and Quantum Gravity 30, 055007 (2013),
arXiv:1210.4143 [gr-qc].

[94] A. Bohé, S. Marsat, G. Faye, and L. Blanchet,
Classical and Quantum Gravity 30, 075017 (2013),
arXiv:1212.5520 [gr-qc].

[95] A. Bohé, G. Faye, S. Marsat, and E. K. Porter,
Classical and Quantum Gravity 32, 195010 (2015),
arXiv:1501.01529 [gr-qc].

[96] T. Damour, P. Jaranowski, and G. Schifer, PRD 89,
064058 (2014), arXiv:1401.4548 [gr-qc].

[97] L. Bernard, L. Blanchet, A. Bohé, G. Faye, and
S. Marsat, (2015), arXiv:1512.02876 [gr-qc].

[98] A. Hindmarsh, ODEPACK, a systematized collection of
ODE solvers (Lawrence Livermore National Laboratory,
1982).

[99] V. Kalogera, ApJ 541, 319 (2000), astro-ph/9911417.

[100] T. Bogdanovié, C. S. Reynolds, and M. C. Miller, ApJ
661, L147 (2007), astro-ph/0703054.

[101] M. Dotti, M. Volonteri, A. Perego, M. Colpi,
M. Ruszkowski, and F. Haardt, MNRAS 402, 682
(2010), arXiv:0910.5729 [astro-ph.HE].

[102] G. Lodato and D. Gerosa, MNRAS 429, 1.30 (2013),
arXiv:1211.0284.

[103] M. C. Miller and J. H. Krolik, ApJ 774, 43 (2013),
arXiv:1307.6569 [astro-ph.HE].

[104] G. Cowan, Statistical data analysis (Oxford: Clarendon
Press, 1997).

[105] A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan,
and B. S. Sathyaprakash, PRD 80, 084043 (2009),

and G. Faye, PRD 74,

15

arXiv:0907.0700 [gr-qc].

[106] M. Campanelli, C. O. Lousto, H. Nakano, and Y. Zlo-
chower, PRD 79, 084010 (2009), arXiv:0808.0713 [gr-
qc].

[107] M. Kesden, PRD 78, 084030 (2008), arXiv:0807.3043.

[108] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake,
M. Hannam, S. Husa, and B. Briigmann, PRD 76,
064034 (2007), gr-qc/0703053.

[109] W. Tichy and P. Marronetti, PRD 78, 081501 (2008),
arXiv:0807.2985 [gr-qc].

[110] E. Barausse, V. Morozova, and L. Rezzolla, ApJ 758,
63 (2012), arXiv:1206.3803 [gr-qc].

[111] J. M. Bardeen, in Black Holes (Les Astres Occlus),
edited by C. Dewitt and B. S. Dewitt (1973) pp. 215
239.

[112] E. Barausse and L. Rezzolla, ApJ 704, L40 (2009),
arXiv:0904.2577 [gr-qc].

[113] A. Buonanno, L. E. Kidder, and L. Lehner, PRD 77,
026004 (2008), arXiv:0709.3839.

[114] L. Rezzolla, E. Barausse, E. N. Dorband, D. Pollney,
C. Reisswig, J. Seiler, and S. Husa, PRD 78, 044002
(2008), arXiv:0712.3541 [gr-qc|.

[115] D. Merritt, M. Milosavljevi¢, M. Favata, S. A. Hughes,
and D. E. Holz, ApJ 607, L9 (2004), astro-ph/0402057.

[116] M. Campanelli, C. Lousto, Y. Zlochower, and D. Mer-
ritt, ApJ 659, L5 (2007), gr-qc/0701164.

[117] J. A. Gonzdlez, U. Sperhake, B. Briigmann, M. Han-
nam, and S. Husa, PRL 98, 091101 (2007), gr-
qc/0610154.

[118] C. O. Lousto and Y. Zlochower, PRD 77, 044028 (2008),
arXiv:0708.4048 [gr-qc].

[119] C. O. Lousto, Y. Zlochower, M. Dotti, and M. Volon-
teri, PRD 85, 084015 (2012), arXiv:1201.1923 [gr-qc].

[120] C. O. Lousto and Y. Zlochower, PRD 87, 084027 (2013),
arXiv:1211.7099 [gr-qc].

[121] J. A. Gonzédlez, M. Hannam, U. Sperhake,
B. Briigmann, and S. Husa, PRL 98, 231101
(2007), gr-qc/0702052.

[122] C. O. Lousto and Y. Zlochower, PRL 107, 231102
(2011), arXiv:1108.2009 [gr-qc].

[123] B. Briigmann, J. A. Gonzédlez, M. Hannam,
S. Husa, and U. Sperhake, PRD 77, 124047 (2008),
arXiv:0707.0135 [gr-qc].

[124] C. O. Lousto and Y. Zlochower, PRD 79, 064018 (2009),
arXiv:0805.0159 [gr-qc].

[125] E. Berti, M. Kesden, and U. Sperhake, PRD 85, 124049
(2012), arXiv:1203.2920 [astro-ph.HE].

[126] M. Volonteri, K. Giiltekin, and M. Dotti, MNRAS 404,
2143 (2010), arXiv:1001.1743.

[127] J. Healy, C. O. Lousto, and Y. Zlochower, PRD 90,
104004 (2014), arXiv:1406.7295 [gr-qc].

[128] Y. Zlochower and C. O. Lousto, PRD 92, 024022 (2015),
arXiv:1503.07536 [gr-qc].

[129] S. Husa, S. Khan, M. Hannam, M. Piurrer, F. Ohme,
X. J. Forteza, and A. Bohé, PRD 93, 044006 (2016),
arXiv:1508.07250 [gr-qc].

[130] K. W. Smith, Cython - A Guide for Python Program-
mers (O’Reilly Media, 2015).

[131] J. Bovy, ApJS 216, 29 (2015), arXiv:1412.3451.

http://dx.doi.org/10.1103/PhysRevD.70.124020
http://arxiv.org/abs/astro-ph/0409174
http://arxiv.org/abs/astro-ph/0409174
http://dx.doi.org/10.1103/PhysRevD.74.104005
http://dx.doi.org/10.1103/PhysRevD.74.104005
http://arxiv.org/abs/gr-qc/0508067
http://dx.doi.org/10.1103/PhysRevD.89.124025
http://arxiv.org/abs/1403.7147
http://arxiv.org/abs/1403.7147
http://dx.doi.org/10.1103/PhysRevD.64.124013
http://arxiv.org/abs/gr-qc/0103018
http://dx.doi.org/10.1088/0264-9381/31/10/105017
http://dx.doi.org/10.1088/0264-9381/31/10/105017
http://arxiv.org/abs/1312.0217
http://dx.doi.org/10.1093/mnrasl/slv198
http://arxiv.org/abs/1511.01890
http://dx.doi.org/ 10.1103/PhysRevD.79.104023
http://arxiv.org/abs/0810.5336
http://dx.doi.org/ 10.1103/PhysRevD.84.049901
http://dx.doi.org/10.1103/PhysRevD.74.104033
http://dx.doi.org/10.1103/PhysRevD.74.104033
http://arxiv.org/abs/gr-qc/0605139
http://dx.doi.org/10.1103/PhysRevD.74.104034
http://dx.doi.org/10.1103/PhysRevD.74.104034
http://arxiv.org/abs/gr-qc/0605140
http://dx.doi.org/10.1103/PhysRevD.47.R4183
http://dx.doi.org/10.1103/PhysRevD.47.R4183
http://arxiv.org/abs/gr-qc/9211025
http://dx.doi.org/10.1103/PhysRevD.57.5287
http://arxiv.org/abs/gr-qc/9709032
http://dx.doi.org/10.1103/PhysRevD.61.024035
http://arxiv.org/abs/gr-qc/9911082
http://dx.doi.org/10.1103/PhysRevD.65.061501
http://dx.doi.org/10.1103/PhysRevD.65.061501
http://arxiv.org/abs/gr-qc/0105099
http://dx.doi.org/10.1103/PhysRevD.71.129902
http://dx.doi.org/10.1103/PhysRevD.71.129902
http://dx.doi.org/10.1103/PhysRevLett.93.091101
http://arxiv.org/abs/gr-qc/0406012
http://dx.doi.org/10.1088/0264-9381/30/5/055007
http://arxiv.org/abs/1210.4143
http://dx.doi.org/10.1088/0264-9381/30/7/075017
http://arxiv.org/abs/1212.5520
http://dx.doi.org/10.1088/0264-9381/32/19/195010
http://arxiv.org/abs/1501.01529
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://arxiv.org/abs/1401.4548
http://arxiv.org/abs/1512.02876
http://dx.doi.org/10.1086/309400
http://arxiv.org/abs/astro-ph/9911417
http://dx.doi.org/10.1086/518769
http://dx.doi.org/10.1086/518769
http://arxiv.org/abs/astro-ph/0703054
http://dx.doi.org/10.1111/j.1365-2966.2009.15922.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15922.x
http://arxiv.org/abs/0910.5729
http://dx.doi.org/10.1093/mnrasl/sls018
http://arxiv.org/abs/1211.0284
http://dx.doi.org/10.1088/0004-637X/774/1/43
http://arxiv.org/abs/1307.6569
http://dx.doi.org/10.1103/PhysRevD.80.084043
http://arxiv.org/abs/0907.0700
http://dx.doi.org/10.1103/PhysRevD.79.084010
http://arxiv.org/abs/0808.0713
http://arxiv.org/abs/0808.0713
http://dx.doi.org/10.1103/PhysRevD.78.084030
http://arxiv.org/abs/0807.3043
http://dx.doi.org/ 10.1103/PhysRevD.76.064034
http://dx.doi.org/ 10.1103/PhysRevD.76.064034
http://arxiv.org/abs/gr-qc/0703053
http://dx.doi.org/10.1103/PhysRevD.78.081501
http://arxiv.org/abs/0807.2985
http://dx.doi.org/10.1088/0004-637X/758/1/63
http://dx.doi.org/10.1088/0004-637X/758/1/63
http://arxiv.org/abs/1206.3803
http://dx.doi.org/10.1088/0004-637X/704/1/L40
http://arxiv.org/abs/0904.2577
http://dx.doi.org/10.1103/PhysRevD.77.026004
http://dx.doi.org/10.1103/PhysRevD.77.026004
http://arxiv.org/abs/0709.3839
http://dx.doi.org/10.1103/PhysRevD.78.044002
http://dx.doi.org/10.1103/PhysRevD.78.044002
http://arxiv.org/abs/0712.3541
http://dx.doi.org/10.1086/421551
http://arxiv.org/abs/astro-ph/0402057
http://dx.doi.org/10.1086/516712
http://arxiv.org/abs/gr-qc/0701164
http://dx.doi.org/10.1103/PhysRevLett.98.091101
http://arxiv.org/abs/gr-qc/0610154
http://arxiv.org/abs/gr-qc/0610154
http://dx.doi.org/10.1103/PhysRevD.77.044028
http://arxiv.org/abs/0708.4048
http://dx.doi.org/10.1103/PhysRevD.85.084015
http://arxiv.org/abs/1201.1923
http://dx.doi.org/10.1103/PhysRevD.87.084027
http://arxiv.org/abs/1211.7099
http://dx.doi.org/10.1103/PhysRevLett.98.231101
http://dx.doi.org/10.1103/PhysRevLett.98.231101
http://arxiv.org/abs/gr-qc/0702052
http://dx.doi.org/10.1103/PhysRevLett.107.231102
http://dx.doi.org/10.1103/PhysRevLett.107.231102
http://arxiv.org/abs/1108.2009
http://dx.doi.org/10.1103/PhysRevD.77.124047
http://arxiv.org/abs/0707.0135
http://dx.doi.org/10.1103/PhysRevD.79.064018
http://arxiv.org/abs/0805.0159
http://dx.doi.org/10.1103/PhysRevD.85.124049
http://dx.doi.org/10.1103/PhysRevD.85.124049
http://arxiv.org/abs/1203.2920
http://dx.doi.org/10.1111/j.1365-2966.2010.16431.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16431.x
http://arxiv.org/abs/1001.1743
http://dx.doi.org/10.1103/PhysRevD.90.104004
http://dx.doi.org/10.1103/PhysRevD.90.104004
http://arxiv.org/abs/1406.7295
http://dx.doi.org/10.1103/PhysRevD.92.024022
http://arxiv.org/abs/1503.07536
http://dx.doi.org/ 10.1103/PhysRevD.93.044006
http://arxiv.org/abs/1508.07250
http://dx.doi.org/10.1088/0067-0049/216/2/29
http://arxiv.org/abs/1412.3451

16

print "\n *Parameter selection at finite separations*"

q=0.8 # Must be g<=1. Check documentation for g=1.

chil=1. # Must be chil<=1

chi2=1. # Must be chi2<=1

M,ml,m2,51,S2=precession.get_fixed(q,chil,chi2) # Total-mass units M=1

print "We study a binary with\n\tq=%.3f mi=%.3f m2=%.3f\n\tchil=),.3f S1=%.3f\n\tchi2=},.3f 852=),.3f" %(q,m1,m2,chil,S1,chi2,S2)
r=100*M # Must be r>10M for PN to be valid

print "at separation\n\tr=%.3f" %r

xi_min,xi_max=precession.xi_lim(q,S1,52)

Jmin, Jnax=precession.J_lim(q,S1,82,r)

Sso_min,Sso_max=precession.Sso_limits(Sl,S?)

print "The geometrical limits on xi,J and S are\n\t%.3f<=xi<=%.3f\n\t%.3£f<=J<=Y.3f\n\t}.3£<=S<=%.3f"
< %(xi_min,xi_max,Jmin, Jmax,Sso_min,Sso_max)

J= (Jmin+Jmax)/2.

print "We select a value of J\n\tJ=%.3f " %J

St_min,St_max=precession.St_limits(J,q,S1,S2,r)

print "This constrains the range of S to\n\t%.3f<=8<=%.3f" % (St_min,St_max)
xi_low,xi_up=precession.xi_allowed(J,q,S1,S2,r)

print "The allowed range of xi is\n\t%.3f<=xi<=%.3f" %(xi_low,xi_up)

xi=(xi_low+xi_up)/2.

print "We select a value of xi\n\txi=}.3f" %xi

test=(J>=min(precession.J_allowed(xi,q,S1,52,r)) and J<=max(precession.J_allowed(xi,q,S1,S2,r)))
print "Is our couple (xi,J) consistent?", test
Sb_min,Sb_max=precession.Sb_limits(xi,J,q,S1,S2,r)

print "S oscillates between\n\tS-=7,.3f\n\tS+=/,.3f" %(Sb_min,Sb_max)

S=(Sb_min+Sb_max) /2.

print "We select a value of S between S- and S+\n\tS=%.3f" %S
t1,t2,dp,t12=precession.parametric_angles(S,J,xi,q,51,82,r)

print "The angles describing the spin orientations are\n\t(thetal,theta2,DeltaPhi)=(%.3f,%.3f,%.3f)" %(t1,t2,dp)
xi,J,8 = precession.from_the_angles(t1,t2,dp,q,S1,S2,r)

print "From the angles one can recovery\n\t(xi,J,8)=(%.3f,%.3f,%.3£)" %(xi,J,S)

print "\n *Features of spin precessionx"
t1_dp0,t2_dp0,t1_dp180,t2_dp180=precession.resonant_finder(xi,q,S1,S2,r)

print "The spin-orbit resonances for these values of J and xi are\n\t(thetal,theta2)=(%.3f,%.3f) for
— DeltaPhi=0\n\t(thetal,theta2)=(%.3f,%.3f) for DeltaPhi=pi" %(t1_dp0,t2_dp0,t1_dp180,t2_dp180)
tau = precession.precession_period(xi,J,q,Sl,S2,r)

print "We integrate dt/dS to calculate the precessional period\n\ttau=%.3f" Jtau

alpha = precession.alphaz(xi,J,q,S1,S2,r)

print "We integrate Omega*dt/dS to find\n\talpha=Y.3f" ’%alpha

morphology = precession.find_morphology(xi,J,q,S1,52,r)

if morphology==-1: labelm="Librating about DeltaPhi=0"

elif morphology==1: labelm="Librating about DeltaPhi=pi"

elif morphology==0: labelm="Circulating"

print "The precessional morphology is: "+labelm

sys.stdout = os.devnull # Ignore warnings
phase,xi_transit_low,xi_transit_up=precession.phase_xi(J,q,S1,S2,r)

sys.stdout = sys.__stdout__ # Restore warnings

if phase==-1: labelp="a single DeltaPhi”pi phase"

elif phase==2: labelp="two DeltaPhi”pi phases, a Circulating phase"

elif phase==3: labelp="a DeltaPhi”0, a Circulating, a DeltaPhi“pi phase"

print "The coexisting phases are: "+labelp

print "\n *Parameter selection at infinitely large separation*"

print "We study a binary with\n\tqg=%.3f m1=%.3f m2=Y.3f\n\tchil=%.3f S1=%.3f\n\tchi2=%.3f 82=%.3f" %(q,m1,m2,chil,S1,chi2,S2)
print "at infinitely large separation"

kappainf_min,kappainf_max=precession.kappainf_1im(S1,S2)

print "The geometrical limits on xi and kappa_inf are\n\t%.3f<=xi<=},.3f\n\t J.3f<=kappa_inf<=},.3f"

— %(xi_min,xi_max,kappainf_min,kappainf_max)

print "We select a value of xi\n\txi=}.3f" %xi

kappainf_low,kappainf_up=precession.kappainf_allowed(xi,q,S1,52)

print "This constrains the range of kappa_inf to\n\t}.3f<=kappa_inf<=%.3f" %(kappainf_low,kappainf_up)
kappainf=(kappainf_low+kappainf_up)/2.

print "We select a value of kappa_inf\n\tkappa_inf=%.3f" }kappainf
test=(xi>=min(precession.xiinf_allowed(kappainf,q,S1,52)) and xi<=max(precession.xiinf_allowed(kappainf,q,S1,52)))

print "Is our couple (xi,kappa_inf) consistent?", test

t1_inf,t2_inf=precession.thetas_inf (xi,kappainf,q,S1,S2)

print "The asymptotic (constant) values of thetal and theta2 are\n\t(thetal_inf,theta2_inf)=(%.3f,%.3f)" %(ti_inf,t2_inf)
xi,kappainf = precession.from_the_angles_inf(t1_inf,t2_inf,q,51,82)

print "From the angles one can recovery\n\t(xi,kappa_inf)=(%.3f,%.3£)" %(xi,kappainf)

FIG. 2. Source code of test.parameter_selection, described in Sec. VIA. The screen output is reported in Fig. 8.
In this example we (i) select consistent parameters at finite separation, (ii) compute several quantities to characterize
the precessional dynamics and (iii) select consistent parameters at infinitely large separation. This test is run typing
precession.test.parameter_selection().

17

fig=pylab.figure(figsize=(6,6)) # Create figure object and axes
ax_tl=fig.add_axes([0,1.95,0.9,0.5]) # first (top)
ax_t2=fig.add_axes([0,1.3,0.9,0.5]) # second
ax_dp=fig.add_axes([0,0.65,0.9,0.5]) # third
ax_t12=fig.add_axes([0,0,0.9,0.5]) # fourth (bottom)

q=0.7 # Mass ratio. Must be g<=1.

chil=0.6 # Primary spin. Must be chil<=1

chi2=1. # Secondary spin. Must be chi2<=1
M,m1,m2,81,S2=precession.get_fixed(q,chil,chi2) # Total-mass units M=1

r=20%M # Separation. Must be r>10M for PN to be valid

J=0.94 # Magnitude of J: Jmin<J<Jmax as given by J_lim

xi_vals=[-0.41,-0.3,-0.22] # Effective spin: xi_low<xi<xi_up as given by xi_allowed

for xi,color in zip(xi_vals, [’blue’,’green’,’red’]): # Loop over three binaries

tau = precession.precession_period(xi,J,q,S1,S2,r) # Period

morphology = precession.find_morphology(xi,J,q,S1,S2,r) # Morphology

if morphology==-1: labelm="${\\rm L}0$"

elif morphology==1: labelm="${\\rm L}\\pi$"

elif morphology==0: labelm="${\\rm C}$"
Sb_min,Sb_max=precession.Sb_limits(xi,J,q,S1,82,r) # Limits in S

S_vals = numpy.linspace(Sb_min,Sb_max,1000) # Create array, from S- to S+
S_go=S_vals # First half of the precession cycle: from S- to S+

t_go=map(lambda x: precession.t_of_S(S_go[0],x, Sb_min,Sb_max,xi,J,q,51,82,r,0,sign=-1.),S_go) # Compute time values. Assume t=0

— at S-

t1_go,t2_go,dp_go,t12_go=zip(* [precession.parametric_angles(S,J,xi,q,51,82,r) for S in S_gol) # Compute the angles.
dp_go=[-dp for dp in dp_go] # DeltaPhi<=0 in the first half of the cycle

S_back=S_vals[::-1] # Second half of the precession cycle: from S+ to S-

t_back=map(lambda x: precession.t_of_S(S_back[0],x, Sb_min,Sb_max, xi,J,q,S1,S82,r,t_gol[-1],sign=1.),S_back) # Compute time, start

— from the last point of the first half t_go[-1]
t1_back,t2_back,dp_back,t12_back=zip(* [precession.parametric_angles(S,J,xi,q,51,S2,r) for S in S_back]) # Compute the angles.
< DeltaPhi>=0 in the second half of the cycle

for ax,vec_go,vec_back in zip([ax_tl,ax_t2,ax_dp,ax_t12], [tl1_go,t2_go,dp_go,t12_gol, [tl_back,t2_back,dp_back,t12_back]): # Plot

— all curves
ax.plot([t/tau for t in t_gol],vec_go,c=color,lw=2,label=1labelm)
ax.plot([t/tau for t in t_back],vec_back,c=color,lw=2)

Options for nice plotting
...
fig.savefig("spin_angles.pdf",bbox_inches=’tight’) # Save pdf file

FIG. 3. Source code of test.spin_angles, described in Sec. VI B. The resulting plot is shown in Fig. 9. This example illustrates
how to study the evolution of the angles 01, 2, A® and 012 over a single precession cycle S_ — Sy — S_. The precessional
dynamics is first parametrized using S, and then plotted in terms of the time ¢ integrating dS/dt from Eq. (17). We assume
S = S— at t = 0 and match the two halves of the precession cycle at S = S+. Note that the sign of A® has to be specified by
the user. Three binaries are considered here; their precessional morphology is evaluated and used to fill the plot legend. This
test is run typing precession.test.spin_angles(). Additional plotting options present in the source code have been omitted.

18

fig=pylab.figure(figsize=(6,6)) #Create figure object and axes
ax_tS=fig.add_axes([0,0,0.6,0.6]) #bottom-left
ax_td=fig.add_axes([0.65,0,0.3,0.6]) #bottom-right
ax_Sd=fig.add_axes([0,0.65,0.6,0.3]) #top-left

q=0.5 # Mass ratio. Must be q<=1.

chil=0.3 # Primary spin. Must be chil<=1

chi2=0.9 # Secondary spin. Must be chi2<=1
M,m1,m2,51,S2=precession.get_fixed(q,chil,chi2) # Total-mass units M=1
r=200.*M # Separation. Must be r>10M for PN to be valid

J=3.14 # Magnitude of J: Jmin<J<Jmax as given by J_lim

xi=-0.01 # Effective spin: xi_low<xi<xi_up as given by xi_allowed
Sb_min,Sb_max=precession.Sb_limits(xi,J,q,S1,S2,r) # Limits in S
tau=precession.precession_period(xi,J,q,81,82,r) # Precessional period
d=2000 # Size of the statistical sample

precession.make_temp() # Create store directory, if necessary
filename=precession.storedir+"/phase_resampling.dat" # Output file name
if not os.path.isfile(filename): # Compute and store data if not present
out=open(filename,"w")
out.write("# q chil chi2 r J xi d\n") # Write header
out.write("# "+’ ’.join([str(x) for x in (q,chil,chi2,r,J,xi,d)])+"\n")

S and t values for the S(t) plot

S_vals=numpy.linspace(Sb_min,Sb_max,d)
t_vals=numpy.array([abs(precession.t_of_S(Sb_min,S,Sb_min,Sb_max,xi,J,q,51,82,r)) for S in S_vals])

Sample values of S from |dt/dS|. Distribution should be flat in t.

S_sample=numpy.array ([precession.samplingS(xi,J,q,S1,S2,r) for i in range(d)])

t_sample=numpy.array ([abs(precession.t_of_S(Sb_min,S,Sb_min,Sb_max,xi,J,q,81,52,r)) for S in S_sample])
Continuous distributions (normalized)
S_distr=numpy.array([2.*abs(precession.dtdsS(S,xi,J,q,S1,82,r)/tau) for S in S_vals])
t_distr=numpy.array([2./tau for t in t_vals])

out.write("# S_vals t_vals S_sample t_sample S_distr t_distr\n")
for Sv,tv,Ss,ts,Sd,td in zip(S_vals,t_vals,S_sample,t_sample,S_distr,t_distr):
out.write(’ ’.join([str(x) for x in (Sv,tv,Ss,ts,Sd,td)])+"\n")
out.close()
else: # Read
S_vals,t_vals,S_sample,t_sample,S_distr,t_distr=numpy.loadtxt(filename,unpack=True)

Rescale all time values by 107-6, for nicer plotting
tau*=1e-6; t_vals*=1e-6; t_sample*=le-6; t_distr/=le-6

ax_tS.plot(S_vals,t_vals,c=’blue’,lw=2) # S(t) curve

ax_td.plot(t_distr,t_vals,lw=2.,c=’red’) # Continous distribution P(t)

ax_Sd.plot(S_vals,S_distr,lw=2.,c=’red’) # Continous distribution P(S)

ax_td.hist(t_sample,bins=60,range=(0,tau/2.) ,normed=True,histtype=’stepfilled’, color="blue",alpha=0.4,orientation="horizontal") #
— Histogram P(t)

ax_Sd.hist(S_sample,bins=60,range=(Sb_min,Sb_max) ,normed=True,histtype=’stepfilled’, color="blue",alpha=0.4) # Histogram P(S)

Options for nice plotting
...
fig.savefig("phase_resampling.pdf",bbox_inches=’tight’) # Save pdf file

FIG. 4. Source code of test.phase_resampling, described in Sec. VIC. The resulting plot is shown in Fig. 10. We extract
N=2000 values of the precessional phase S from the probability distribution P(S) = 2|dS/dt|~*/7 in [S—, S+]. The procedure
is illustrated in Sec. IV C and is a key step to perform precession-averaged inspirals. We verify that the distribution ¢(.S)
constructed from the sampled values of S is uniform in [0, 7/2]. This test is run typing precession.test.phase resampling().
Data are stored in precession.storedir. Additional plotting options present in the source code have been omitted.

19

q=0.9 # Mass ratio. Must be g<=1.

chil=0.5 # Primary spin. Must be chil<=1

chi2=0.5 # Secondary spin. Must be chi2<=1

print "We study a binary with\n\tq=%.3f, chil=%.3f, chi2=J.3f" %(q,chil,chi2)
M,ml,m2,51,S2=precession.get_fixed(q,chil,chi2) # Total-mass units M=1
ri=1000*M # Initial separation.

rf=10.%M # Final separation.

rt=100.*M # Intermediate separation for hybrid evolution.

r_vals=numpy .logspace (numpy.logl0(ri) ,numpy.logl0(rf),10) # Output requested
tli=numpy.pi/4.; t2i=numpy.pi/4.; dpi=numpy.pi/4. # Initial configuration
xii,Ji,Si=precession.from_the_angles(tli,t2i,dpi,q,Sl,SQ,ri)

print "Configuration at ri=%.0f\n\t(xi,J,S)=(%.3f,%.3f,%.3f)\n\t(thetal,theta2,deltaphi)=(%.3f,%.3f,%.3f)"
— h(ri,xii,Ji,Si,t1i,t2i,dpi)

print " *0rbit-averaged evolutionx"

print "Evolution ri=%.0f --> rf=%.0f" %(ri,rf)

Jf,xif ,Sf=precession.orbit_averaged(Ji,xii,Si,r_vals,q,S1,S2)

print "\t(xi,J,S)=(%.3f,%.3f,%.3f)" %(xif[-1],Jf[-1]1,8£[-11)
t1f,t2f,dpf=precession.orbit_angles(t1i,t2i,dpi,r_vals,q,S1,S2)

print "\t(thetal,theta2,deltaphi)=(%.3f,%.3f,%.3f)" %(t1f[-1],t2f[-1],dpf[-1])
Jvec,Lvec,S1vec,S2vec,Svec=precession.Jframe_projection(xii,Si,Ji,q,S81,52,ri)

Lxi,Lyi,Lzi=Lvec; S1xi,S1yi,S1zi=Sivec; S2xi,S2yi,S2zi=S2vec
Lx,Ly,Lz,Slx,Sly,Slz,SQx,S2y,S2z=precession.orbit_vectors(in,Lyi,in,Slxi,Slyi,Slzi,SQxi,SQyi,Sin,r_vals,q)
print "\t(Lx,Ly,Lz)=(%.3f,%.3f,%.3£)\n\t(S1x,S81y,812z)=(%.3f,%.3£,%.3£)\n\t (52x,52y,52z)=(%.3£,%.3£f,%.3f) "
— %(x[-1],Ly[-1],Lz[-1],81x[-1],S1y[-1],S1z[-1],82x[-1],82y[-1],82z[-1])

print " *Precession-averaged evolution*"

print "Evolution ri=%.0f --> rf=%.0f" %(ri,rf)
Jf=precession.evolve_J(xii,Ji,r_vals,q,S1,S2)

print "\t(xi,J,S)=(%.3f,%.3f,-)" %(xii,Jf[-1])
t1f,t2f,dpf=precession.evolve_angles(tli,t2i,dpi,r_vals,q,Sl,S2)
print "\t(thetal,theta2,deltaphi)=(%.3f,%.3f,%.3f)" %(t1f[-1]1,t2f[-1],dpf[-1])
print "Evolution ri=%.0f --> infinity" %ri
kappainf=precession.evolve_J_backwards(xii,Jf[-1],rf,q,S1,52)
print "\tkappainf=%.3f" }kappainf
Jf=precession.evolve_J_infinity(xii,kappainf,r_vals,q,S1,S2)
print "Evolution infinity --> rf=Y.0f" Y%rf

print "\tJ=},.3f" %Jf[-1]

print " *Hybrid evolution*"

print "Prec.Av. infinity --> rt=%.0f & Orb.Av. rt=),.0f --> rf=J.0f" %(rt,rt,rf)
t1f,t2f,dpf=precession.hybrid(xii,kappainf,r_vals,q,S1,52,rt)

print "\t(thetal,theta2,deltaphi)=(%.3f,%.3f,%.3f)" %(t1f[-1],t2f[-1],dpf[-1])

print " *Properties of the BH remnantx*"
Mfin=precession.finalmass(t1f[-1],t2f[-1],dpf[-1],q,S1,82)
print "\tM_f=%.3f" YMfin
chifin=precession.finalspin(t1f[-1],t2f[-1],dpf[-1],q,S1,52)
print "\tchi_f=%.3f, S_f=%.3f" %(chifin,chifin*Mfin**2)
vkick=precession.finalkick(t1f[-1],t2f[-1],dpf[-1],q,51,52)
print "\tvkick=%.5f" %(vkick) # Geometrical units c=1

FIG. 5. Source code of test.PNwrappers, described in Sec. VI D. The screen output is reported in Fig. 11. This example shows
how to use the various routines to perform PN inspiral. After specifying a BH binary at r;, we evolve it down to 7 using both
orbit-averaged and precession-averaged integrations. We then extract the asymptotic configuration ko and show how to match
precession-averaged and orbit-averaged evolutions to construct hybrid inspirals. We also estimate mass, spin and recoil of the
post-merger BH. This test is run typing precession.test.PNwrappers(). Data are stored in the directory specified through
precession.storedir.

20

fig=pylab.figure(figsize=(6,6)) # Create figure object and axes
L,Ws,Wm,G=0.85,0.15,0.3,0.03 # Sizes
ax_Sd=fig.add_axes([0,0,L,Ws])
ax_S=fig.add_axes([0,Ws,L,Wm])
ax_Jd=fig.add_axes([0,Ws+Wm+G,L,Ws])
ax_J=fig.add_axes([0,Ws+Ws+Wm+G,L,Wm])

bottom-small
bottom-main
middle-small

#
#
#
middle-main
#
#

ax_xid=fig.add_axes ([0, 2% (Ws+Wm+G) ,L,Ws]) top-small
ax_xi=fig.add_axes([0,Ws+2*(Ws+Wm+G) ,L,Wm]) top-main
q=0.8 # Mass ratio. Must be g<=1.

chil=0.6 # Primary spin. Must be chil<=1

chi2=1. # Secondary spin. Must be chi2<=1

M,m1,m2,81,S2=precession.get_fixed(q,chil,chi2) # Total-mass units M=1
ri=100.*M # Initial separation.

rf=10.%*M # Final separation.

r_vals=numpy.linspace(ri,rf,1001) # Output requested

Ji=2.24 # Magnitude of J: Jmin<J<Jmax as given by J_lim

xi=-0.5 # Effective spin: xi_low<xi<xi_up as given by xi_allowed

Jf_P=precession.evolve_J(xi,Ji,r_vals,q,Sl,SQ) # Pr.av. integration

Sf_P=[precession.samplingS(xi,J,q,S1,82,r) for J,r in zip(Jf_P[0::10],r_vals[0::10])] # Resample S (reduce output for clarity)
Sb_min,Sb_max= zip(*[precession.Sb_limits(xi,J,q,S1,S2,r) for J,r in zip(Jf_P,r_vals)]) # Envelopes

S=numpy .average ([precession.Sb_limits(xi,Ji,q,81,82,ri)]) # Initialize S
Jf_0,xif_0,Sf_O=precession.orbit_averaged(Ji,xi,S,r_vals,q,S1,82) # Orb.av. integration

Pcol,0col,Dcol="blue’,’red’,’green’

Pst,0st=’so0lid’,’dashed’

ax_xi.axhline(xi,c=Pcol,ls=Pst,lw=2) # Plot xi, pr.av. (constant)
ax_xi.plot(r_vals,xif _0,c=0col,ls=0st,lw=2) # Plot xi, orbit averaged
ax_xid.plot(r_vals, (xi-xif_0)/xi*lell,c=Dcol,lw=2) # Plot xi deviations (rescaled)
ax_J.plot(r_vals,Jf_P,c=Pcol,1ls=Pst,1lw=2) # Plot J, pr.av.
ax_J.plot(r_vals,Jf_0,c=0col,1ls=0st,lw=2) # Plot J, orb.av

ax_Jd.plot(r_vals, (Jf_P-Jf_0)/Jf_0*1e3,c=Dcol,lw=2) # Plot J deviations (rescaled)
ax_S.scatter(r_vals[0::10],Sf_P,facecolor="none’,edgecolor=Pcol) # Plot S, pr.av. (resampled)
ax_S.plot(r_vals,Sb_min,c=Pcol,ls=Pst,lw=2) # Plot S, pr.av. (envelopes)
ax_S.plot(r_vals,Sb_max,c=Pcol,ls=Pst,lw=2) # Plot S, pr.av. (envelopes)
ax_S.plot(r_vals,Sf_0,c=0col,1s=0st,1lw=2) # Plot S, orb.av (evolved)
ax_Sd.plot(r_vals[0::10], (Sf_P-Sf_0[0::10])/Sf_0[0::10],c=Dcol,lw=2) # Plot S deviations

Options for nice plotting
...
fig.savefig("compare_evolutions.pdf",bbox_inches=’tight’) # Save pdf file

FIG. 6. Source code of test.compare_evolutions, described in Sec. VI E. The resulting plot is shown in Fig. 12. We compare
precession-averaged and orbit-averaged integrations of a single BH binary. We perform the two integrations from r; = 100M to
ry = 10M and extract values of £, J and S along the inspiral. Relative differences between the two approaches are computed
and plotted as a function of the binary separation. This test is run typing precession.test.PNwrappers(). Data are stored
in the directory specified through precession.storedir. Additional plotting options present in the source code have been
omitted.

21

BHsample=[] # Construct a sample of BH binaries
N=100
for i in range(N):
g=random.uniform(0,1)
chil=random.uniform(0,1)
chi2=random.uniform(0,1)
M,m1,m2,S1,S2=precession.get_fixed(q,chil,chi2)
t1l=random.uniform(0,numpy.pi)
t2=random.uniform(0,numpy.pi)
dp=random.uniform(0,2.*numpy.pi)
BHsample.append([q,S1,82,t1,t2,dpl)
q_vals,S1_vals,S2_vals,tli_vals,t2i_vals,dpi_vals=zip(*BHsample) # Traspose python list

ri=1000*M # Initial separation
rf=10*M # Final separation
r_vals=[ri,rf] # Intermediate output separations not needed here

print "Integrating a sample of N=J,.0f BH binaries from ri=%.0f to rf=%.0f using %.0f CPUs" %(N,ri,rf,multiprocessing.cpu_count()) #
— Parallel computation used by default

tO=time.time()

precession.orbit_angles(tli_vals,t2i_vals,dpi_vals,r_vals,q_vals,S1_vals,S2_vals)

t=time.time()-t0

print "Orbit-averaged: parallel integrations\n\t total time t=7.3fs\n\t time per binary t/N=%.3fs" %(t,t/N)

tO=time.time ()

precession.evolve_angles(tli_vals,t2i_vals,dpi_vals,r_vals,q_vals,Sl_vals,SQ_vals)

t=time.time ()-t0

print "Precession-averaged: parallel integrations\n\t total time t=},.3fs\n\t time per binary t/N=J.3fs" %(t,t/N)

precession.empty_temp() # Remove previous checkpoints

precession.CPUs=1 # Force serial computation

print "\nlIntegrating a sample of N=%.0f BH binaries from ri=%.0f to rf=),.0f using %.0f CPU" %(len(BHsample),ri,rf,precession.CPUs)
tO=time.time()

precession.orbit_angles(tli_vals,tZi_vals,dpi_vals,r_vals,q_vals,Sl_vals,SQ_vals)

t=time.time()-t0O

print "Orbit-averaged: serial integrations\n\t total time t=%.3fs\n\t time per binary t/N=7,.3fs" %(t,t/N)
tO=time.time ()

precession.evolve_angles(tli_vals,tQi_vals,dpi_vals,r_vals,q_vals,Sl_vals,S2_vals)

t=time.time ()-t0

print "Precession-averaged: serial integrations\n\t total time t=J,.3fs\n\t time per binary t/N=J,.3fs" %(t,t/N)
precession.empty_temp() # Remove previous checkpoints

FIG. 7. Source code of test.timing described in Sec. VI F; the screen output is reported in Fig. 13. We compute the CPU time
needed to evolve a sample of N = 100 binaries from r; = 10*M to ry = 10M using both orbit-averaged and precession-averaged
integrations. By default, PRECESSION performs PN inspirals in parallel using all available cores. The two computations are
repeated enforcing a strictly serial execution. This test is run typing precession.test.timing(). Data are stored in the
directory specified through precession.storedir.

Parameter selection at finite separationsx
We study a binary with
q=0.800 m1=0.556 m2=0.444
chil=1.000 S1=0.309
chi2=1.000 S2=0.198
at separation
r=100.000
The geometrical limits on xi,J and S are
-1.000<=xi<=1.000
1.963<=J<=2.975
0.111<=8<=0.506
We select a value of J
J=2.469
This constrains the range of S to
0.111<=8<=0.506
The allowed range of xi is
-0.131<=xi<=0.073
We select a value of xi
xi=-0.029
Is our couple (xi,J) consistent? True
S oscillates between
S$-=0.114
S+=0.448
We select a value of S between S- and S+
5=0.281
The angles describing the spin orientations are
(thetal,theta2,DeltaPhi)=(1.622,1.571,2.041)
From the angles one can recovery
(xi,J,8)=(-0.029,2.469,0.281)

Features of spin precessionx

The spin-orbit resonances for these values of J and xi are
(thetal,theta2)=(1.100,2.254) for DeltaPhi=0
(thetal,theta2)=(2.572,0.155) for DeltaPhi=pi

We integrate dt/dS to calculate the precessional period
tau=3037166.882

We integrate Omega*dt/dS to find
alpha=23.660

The precessional morphology is: Circulating

The coexisting phases are: a DeltaPhi”0, a Circulating, a

— DeltaPhi”pi phase

Parameter selection at infinitely large separationx

We study a binary with
g=0.800 m1=0.556 m2=0.444
chil=1.000 $S1=0.309
chi2=1.000 $2=0.198

at infinitely large separation

The geometrical limits on xi and kappa_inf are
-1.000<=xi<=1.000
-0.506<=kappa_inf<=0.506

We select a value of xi
xi=-0.029

This constrains the range of kappa_inf to
-0.065<=kappa_inf<=0.033

We select a value of kappa_inf
kappa_inf=-0.016

Is our couple (xi,kappa_inf) consistent? True

The asymptotic (constant) values of thetal and theta2 are
(thetal_inf,theta2_inf)=(1.623,1.571)

From the angles one can go back to
(xi,kappa_inf)=(-0.029,-0.016)

FIG. 8. Screen output of test.parameter_selection, de-
scribed in Sec. VI A. The source code is reported in Fig. 2.
In this example we (i) select consistent parameters at fi-
nite separation, (ii) compute several quantities to charac-
terize the precessional dynamics and (iii) select consistent
parameters at infinitely large separation. Outputs have been
rounded to 3 decimal digits for clarity. This test is run typing
precession.test.parameter_selection().

22

— 1
/4t — |
— Lnm
s> — T
0.00 0.25 0.50 0.75 1.00
t/T
Vs T T T
3 /4t]
Qg: 77/2._\4/
/4t J
o0 0.25 0.50 0.75 1.00
t/T
s T r
)2} 1
A
S0
—m/2t |
G0 0.25 0.50 0.75 1.00
t/T
Vs T T T
3 /4
& /2t .
/4t J
o0 0.25 0.50 0.75 1.00
t/T

FIG. 9. Resulting plot obtained from test.spin_angles, de-
scribed in Sec. VIB. The source code is reported in Fig. 3.
We study the precessional dynamics of three binary BHs with
mass ratio ¢ = 0.7, dimensionless spin xy1 = 0.6, x2 = 1, to-
tal angular momentum J = 0.94M? at separation r = 20M.
The evolution of the angles 61, 02, A® and 612 (top to bot-
tom) is plotted against the time ¢ normalized to the pre-
cessional period 7. The configurations shown here are char-
acterized by different values of the effective spin £ and be-
long to the three different morphologies: the binary with
& = —0.41 (blue) is librating about A® = 0 (L0); the binary
with & = —0.3 (green) is circulating through the full range
A® ¢ [-m, 7] (C), and the binary with £ = —0.22 (red)
is librating about A® = £7 (Lw). This test is run typing
precession.test.spin_angles().

0 L L L L
3.5F w \ ; e i
3.0/ (" =
2.5} 1t =
= 2.0t 1 f L
2 =2
E 1.5 1k = 1
1.0} 1k =
0.5F 1k % 1
0.0 ‘ : ‘ — :
0.06 0.10 0.15 0.20 0.00.10.20.30.40.5
S/M? P(t)
FIG. 10. Resulting plot obtained from

test.phase resampling, described in Sec. VIC. The
source code is reported in Fig. 4. The bottom left panel
shows the evolution of S on the precession time for a BH
binary with ¢ = 0.5, x1 = 0.3, x2 = 0.9, J = 3.14M?,
£ = —0.01 and » = 200M. The binary evolves from

_ ~0.033 (t =0) to S4 ~0.232 (t = 7/2 ~ 3.53 x 10°M).
We extract a sample of N = 2000 values of S from a prob-
ability distribution proportional to |dS/dt|™'. Histograms
of the extracted distribution of S and ¢ are shown in the
top and right panels, respectively, where red lines mark
the continuum limit. This procedure efficiently extracts
BH binaries according to their time spent at each spin
configuration and demonstrates the correct handling of the
(integrable) singularities of |dS/dt|™' at Si. This test is run
typing precession.test.phase_resampling().

23

We study a binary with 9=0.900, chil=0.500, chi2=0.500

Configuration at ri=1000
(xi,J,8)=(0.354,8.063,0.241)
(thetal,theta2,deltaphi)=(0.785,0.785,0.785)

0rbit-averaged evolution

Evolution ri=1000 --> rf=10
(xi,J,8)=(0.354,0.974,0.229)
(thetal,theta2,deltaphi)=(1.032,0.397,-0.952)
(Lx,Ly,Lz)=(0.077,-0.091,0.779)
(81x,81y,S12)=(-0.085,0.065,0.088)
(82x,82y,522)=(0.013,0.031,0.107)

Precession-averaged evolutionx

Evolution ri=1000 --> rf=10
(xi,J,8)=(0.354,0.974,-)
(thetal,theta2,deltaphi)=(0.573,0.978,-1.624)

Evolution ri=1000 --> infinity
kappainf=0.178

Evolution infinity --> rf=10
J=0.974

Hybrid evolution

Prec.Av. infinity --> rt=100 & Orb.Av. rt=100 --> rf=10

(thetal,theta2,deltaphi)=(0.639,0.926,-1.691)
Properties of the BH remnantx

M_£=0.938

chi_£=0.797, S_f=0.701

vkick=0.00330

FIG. 11. Screen output of test.PNwrappers, described in
Sec. VID. The source code is reported in Fig. 5. After se-
lecting a binary at the initial separation r;, we (i) perform
orbit-averaged integrations from r; to a final separation 7y;
(ii) perform precession-averaged integrations from r; to ry,
from r; to /M = co and from r/M = oo to ry, (iii) perform
hybrid integrations from r/M = oo to ry matched at a sepa-
ration threshold r; and (iv) extract the properties of the BH
remnant applying fitting formulae at ry. Outputs have been
rounded to 3 decimal digits for clarity; output lines regarding
the location of the stored data files have been omitted. This
test is run typing precession.test.PNwrappers().

r/M
100 90 8 70 60 50 40 30 20 10
o6l : : : : : : : : :
—0.48} 1
w o —0.50
—0.52} ,
— —0.54} .
T 1.0
o
= 0.5
4
Py 0.0
<
=
~
~
7
=
~
~
’ﬁ —)L)))))))) 4
<
0.40F]
= Ot"ﬁmo 13o° °orM o b: o P oy
2, 0.35p o1 4 R S g0’ 0, % o1 o o
= roy o ! S} ° 0 1 N
~~ 1o, VO 3, A ao o ¢
0 0.30k 1 od oo, ©° 1 ' % L 900 R, S
- Ve ° ‘) o o0 o°
19 % Joo V1006 Sbog go
0.25F ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
2!
~
)
<
100 90 8 70 60 50 40 30 20 10
r/M
FIG. 12. Resulting plot obtained with the test func-

tion test.compare_evolutions, described in Sec. VIE. The
source code is reported in Fig. 6. We choose a BH bi-
nary with ¢ = 0.8, x1 = 0.6, xo = 1, J = 2.24M?
and £ = —0.5 at 7, = 100M and we compare its PN in-
spiral till ry = 10M using precession-averaged and orbit-
averaged integrations. The evolutions of £ (top), J (mid-
dle) and S (bottom) are shown in the larger subpanels.
Results for J and £ show excellent agreement between
precession-averaged (solid blue) and orbit-averaged (dashed
red) integrations. Precession-averaged integrations do not
track the evolution of the total spin magnitude S, but es-
timates (blue circles) can be obtained by sampling S be-
tween S_ and S; (blue solid lines); results are in statistical
agreement with the orbit-averaged result (dashed red line).
Smaller subpanels (solid green lines) show the relative dif-
ference between the two approaches. This test is run typing
precession.test.compare_evolutions().

24

*Integrating a sample of N=100 BH binaries from ri=10000 to
— rf=10 using 4 CPUsx*
Orbit-averaged: parallel integrations
total time t=5298.677s
time per binary t/N=52.987s
Precession-averaged: parallel integrations
total time t=73.742s
time per binary t/N=0.737s
*Integrating a sample of N=100 BH binaries from ri=10000 to
— rf=10 using 1 CPU*
Orbit-averaged: serial integrations
total time t=18276.063s
time per binary t/N=182.761s
Precession-averaged: serial integrations
total time t=244.989s
time per binary t/N=2.450s

FIG. 13. Screen output of test.timing, described in
Sec. VIF. The source code is reported in Fig. 7. We time
the performances of orbit_angles and evolve_angles us-
ing both parallel (first iteration) and serial (second iteration)
computation. Times reported here are obtained using a 2013
Intel i5-3470 3.20GHz 4 cores CPU. Output lines regarding
the location of the stored data files are omitted for clarity.
This test is run typing precession.test.timing().

	precession. Dynamics of spinning black-hole binaries with python
	Abstract
	Introduction
	Code Overview
	Installation
	A first working example
	Documentation and source distribution
	Units and parallel features

	Spin precession
	Black-hole binaries in the post-Newtonian regime
	Parametrization of double spin precession
	Geometrical constraints
	Binary evolution on the precession timescale
	Spin morphologies

	Gravitational-wave driven inspiral
	Orbit-averaged evolutions
	Precession-averaged evolutions
	Phase resampling and binary transfer
	Hybrid evolutions

	Black-hole remnants
	Final mass
	Final spin
	Black-hole recoil
	Importance of spin precession

	Examples
	Selection of consistent parameters
	Evolutions of the spin angles on a precession cycle
	Sampling of the precessional phase
	Wrappers of the PN integrators
	Comparison between orbit-averaged and precession-averaged integrations
	Parallel computation and timing

	Conclusions
	Acknowledgments
	References

