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We present results on the inspiral, merger, and post-merger evolution of a neutron star – neutron
star (NSNS) system. Our results are obtained using the hybrid pseudospectral–finite volume Spectral
Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈ 22
orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic
simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to
further improve semi-analytical models used in gravitational wave data analysis, for example the
effective one body models. We discuss in detail the improvements to SpEC’s ability to simulate NSNS
mergers, in particular mesh refined grids to better resolve the merger and post-merger phases. We
provide a set of consistency checks and compare our results to NSNS merger simulations with the
independent BAM code. We find agreement between them, which increases confidence in results
obtained with either code. This work paves the way for future studies using long waveforms and
more complex microphysical descriptions of neutron star matter in SpEC.

PACS numbers: 04.25.D-, 04.30.Db, 97.60.Bw, 02.70.Bf, 02.70.Hm

I. INTRODUCTION

The Advanced Laser Interferometer Gravitational-
Wave Observatory (LIGO) demonstrated its capability
of measuring gravitational wave (GW) signals coming
from compact binary systems and opened up a new win-
dow for astrophysical observations. Although the first
detected GW signal [1, 2] was emitted by a binary made
up of two black holes (BH), neutron star – neutron star
(NSNS) systems are promising sources [3]. With further
upgrades of LIGO and with the entire GW network con-
sisting of LIGO, Virgo, and the Kamioka Gravitational
Wave Detector (KAGRA) [4, 5] operating, between 0.2
and 200 NSNS mergers per year [6] are expected to be
observed.

The GWs emitted during the inspiral and merger con-
tain unique information about the binary’s properties
and about each binary constituent. In the case of NS
systems, information about the equation of state (EOS)
at supranuclear densities can be obtained that is not eas-
ily obtainable otherwise [4].

The GW signal of a NSNS coalescence can be roughly
separated into three phases: the inspiral phase in which
the neutron stars (NS) approach each other due to the
emission of GWs, the merger phase in which the stars

come in contact and form a single object,1 and the post-
merger phase in which the remnant can, depending on
its mass and the EOS of the star, (i) collapse promptly
to a BH leading to a characteristic ringdown GW signal;
(ii) form a hypermassive neutron star (HMNS) which is
stabilized primarily by angular momentum over secular
time scales before BH formation; (iii) form a long-term
stable (supramassive or massive) NS if the total mass of
the system is sufficiently low. See eg. [7–10] for studies of
the waveform spectra and classification of the outcomes.
The inspiral part of the signal sweeps through the most
sensitive band of current GW detectors. The merger,
post-merger, and ringdown parts of the signal are at high
frequencies and difficult to observe unless the event is
very close.

For most of the lifetime of the binary, the NSs are well
separated and the signal is almost sinusoidal with slowly
changing frequency. During this phase, the wave signal
can be approximated by post-Newtonian (PN) theory to
very high accuracy (see [11] and references therein). The
binary orbit evolves adiabatically under the influence of
the radiation reaction force. Close to merger and in the
post-merger phase, PN theory is no longer valid and nu-

1 We define the actual moment of merger as the time at which the
GW strain has its maximum.
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merical relativity simulations are needed to correctly cap-
ture the fast dynamics and construct GW templates, see,
e.g., [9, 10, 12–14].

This late, high-frequency part of the GW signal is most
interesting since it is directly affected by the star’s EOS.
The EOS, via the tidal deformability of the NSs, leaves a
clear imprint on the late inspiral and early merger phases
of the GW signal [15–19]. In addition, also the post-
merger frequency and the time evolution of the GW sig-
nal from the merger remnant can constrain the EOS via
GW observations, see, e.g., [10, 13, 20–22].

While the original PN expansion breaks down before
merger, the effective one body (EOB) model [23–26] pro-
vides techniques to extend the range of applicability of
PN theory into the late inspiral phase, also including
tidal effects [10, 27]. The tidal parameters of the model
can be linked to the parameters of the EOS of the NSs,
making it possible to determine EOS parameters from
the GW signal. Similarly, there is interest in “universal”
relations between observable quantities that are indepen-
dent of the EOS [10, 18, 28–31] and the breakdown of this
universality [32]. Models accurately describing NS coa-
lescences beyond the merger are still missing and only
numerical simulations in full general relativity can give
reliable information about this stage, but see [12] for a
first attempt of a reduced-order model of the post-merger
waveform.

Numerical simulations are needed to validate and cal-
ibrate EOB models, e.g. [14, 33]. This is possible only if
(i) numerical waveforms have a sufficient length and span
multiple orbits, so that PN approximations are valid at
the beginning of the simulated period and (ii) are suffi-
ciently accurate, i.e. having small eccentricities and small
phase errors. Several authors [14, 18, 34–36] have stud-
ied the detectability of tidal effects in detail, investigat-
ing the errors and uncertainties and the effect of differ-
ent equations of state on the wave signal. The results
of these studies underscore the importance of a care-
ful assessment of numerical errors and the influence of
the numerical scheme used on the gravitational wave-
form. The effect of a lack of resolution in particular can
mimic physical effects such as the effect of tidal interac-
tions which primarily manifests as an increased rate of
inspiral of the binary. Some of us recently presented the
results for spinning NSNS inspirals [37] and merger sim-
ulations of NS binaries including neutrino transport [38]
using the Spectral Einstein Code (SpEC). SpEC simula-
tions involving black hole – neutron star (BHNS) were
performed [39–43] and binary black hole (BBH) [44–49]
simulations using SpEC have a long history. This paper
follows the line of work focusing on the accuracy and fea-
sibility of constructing sufficiently long and accurate GW
templates. For this purpose, we extended SpEC’s NSNSs
simulating capabilities. SpEC employs a hybrid approach
using pseudospectral methods for the spacetime evolu-
tion and finite volume or finite differencing methods for
the hydrodynamical variables. This allows us to achieve
very high phase accuracy at low computational costs for

the spacetime part of the evolution and to exploit well-
tested, stable high-resolution shock capturing methods
for the fluid variables. SpEC uses a comoving coordi-
nate system which reduces movement of the NSs on the
grid and therefore reduces possible errors accumulated
in moving-box mesh-refined schemes by the restriction
and prolongation operation as well as Eulerian advec-
tion errors. This paper provides numerical tests of these
methods in SpEC, paving the way for a more systematic
comparison with existing codes to simulate NSNS [50–
54] systems and long NSNS inspiral simulations involving
more realistic EOS. A first step toward such a compari-
son is made by comparing our data with a BAM waveform
of [55]. We find very good agreement and a phase differ-
ences below 0.25 rad up to the end of the inspiral phase.

As outlined in the paragraph above, not only suffi-
cient accuracy is needed in NSNS simulations, the wave-
forms also need to span multiple orbits before merger to
be useful for semi-analytical waveform modeling. Here
we consider an equal mass binary system with an ini-
tial coordinate separation of 81 km and baryon mass of
M0 = 1.779M� of each star, which results in more than
22 orbits before merger, i.e., 44 GW cycles before merger.
This is to date the longest NSNS merger simulation and
the resulting waveform has already been used for the
analysis of [56]. Such long simulations can be achieved
due to the small computational expense for evolving the
metric variables with our pseudospectral approach as well
as the small fluid grids which cover the regions around
the NSs only, instead of the whole simulation volume.

This paper is organized as follows. Sec. II presents
the methods used to evolve the spacetime and hydro-
dynamics sectors of the simulations. Sec. III describes
how we construct initial data for NSNS systems. Sec. IV
presents results on the convergence and diagnostics on
the quality of the computed waveforms. We conclude in
Sec. V. In the appendices Sec. A and B, we present con-
vergence tests for a single Tolman-Oppenheimer-Volkoff
(TOV) star and investigate the collapse dynamics of iso-
lated NSs, respectively.

Unless stated otherwise, all results use G = c = 1 and
masses are given in multiples of the solar mass M�. ∇α is
used to denote the covariant derivative compatible with

the 4-metric g
(4)
αβ and we use the signature convention

of [57].

II. METHODS

A. Two-Domain Approach to General-Relativistic
Hydrodynamics

In SpEC we use a mixed approach to solve Einstein’s
equations in the generalized harmonic formulation cou-
pled to matter [39, 41]. We solve the evolution equations

for the spacetime metric g
(4)
αβ using spectral methods as

described in [44, 45, 58–65] while the fluid equations are
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solved using high-resolution shock-capturing methods de-
scribed in [39, 41, 66]. The NS material is modeled as
a perfect fluid with rest mass density ρ0, pressure P ,
specific internal energy ε, and 4-velocity uα, so that the
stress-energy tensor is given by

Tαβ = ρ0h
euαuβ + Pg

(4)
αβ , (1)

where he = 1 + ε + P/ρ0 is the relativistic specific en-
thalpy. The evolution equations for the conserved hy-

drodynamical variables D =
√
−g(4)utρ0, τ = E − D,

Sk =
√
−g(4)T tk follow from conservation of stress-

energy ∇αTαβ = 0 and conservation of baryon number
∇α (Duα) = 0, where g(4) is the determinant of the 4-

metric and E =
√
−g(4)T tt. In this paper, we split the

pressure and specific internal energy in cold and thermal
pieces due to cold (nuclear force) and thermal contribu-
tions, respectively,

ε = εcold(ρ0) + εthermal, (2)

P = Pcold(ρ0) + (Γ− 1) ρ0εthermal, (3)

Pcold = κρΓ
0 , (4)

εcold = Pcold/[ρ0 (Γ− 1)], (5)

where κ, Γ are the polytropic constant and the adia-
batic index, respectively. In this paper we choose Γ = 2,
κ = 123.6M2

� which EOS can support non-rotating NS
of baryonic mass up to 2.0M�. Note, however, that
SpEC can handle more general EOS than the one pre-
sented here [40, 42, 43, 67, 68]. We use the fifth-order
weighted essentially non-oscillatory (WENO) reconstruc-
tion method of [67, 69–71], a Harten-Lax-van Leer (HLL)
Riemann solver [72] to compute numerical fluxes at cell
interfaces, and a 2D non-linear root finding algorithm [67]
to recover the primitive variables from the conserved vari-
ables at the beginning of each timestep.

Time integration is performed using the method of
lines [73] and a 3rd order Runge-Kutta (RK3) method
with adaptive step size control based on errors in both
spacetime and hydrodynamical variables estimated by
comparing second and third order accurate time stepper
updates. The metric evolution couples to the hydrody-
namical evolution via the stress-energy tensor Tµν and
the hydrodynamical evolution equations directly involve
the metric and its first derivatives. We interpolate space-
time and hydrodynamical variables between spectral and
finite volume grids at the end of each full timestep as
described in detail in [39] using almost-spectral interpo-
lation [74] to interpolate from the spectral grid to the
finite volume grid and monotonicity preserving polyno-
mial interpolation to interpolate between finite volume
and spectral grids. Values for intermediate Runge-Kutta
substeps are obtained via extrapolation in time.

Since [66] was published, we optimized this communi-
cation scheme to reduce the amount of data sent between
compute nodes resulting in improved speed and scalabil-
ity of the code. These changes include a reduction in
the number of times SpEC’s internal dependency tracking

recomputes quantities, limit copying of data in memory,
and significantly speed up the transformation between
collocation point and spectral coefficient representations
of data. SpEC now interleaves communication and com-
putation when interpolating data between the spectral
and the finite volume grids after each timestep. The
number of explicit MPI barriers has also been reduced.
Beyond these infrastructure changes, the basic setup de-
scribed in [39, 66] remains the same.

B. Comoving Coordinate System

SpEC uses a dual frame method [62, 64] to solve Ein-
stein’s equations and the fluid equations. It uses explicit
coordinate transformations to map between a set of iner-
tial (physical) coordinates in which the NSs orbit and ap-
proach each other and a set of grid coordinates in which
the NSs remain at a fixed coordinate location. Once a
BH is formed the coordinate transformation is also used
to map the excision surface inside of the apparent hori-
zon (AH) to an excision sphere of constant radius in grid
coordinates.

The finite volume grid is linked to the spectral grid
via a final, piecewise constant in time coordinate trans-
formation. During the inspiral phase of the simulation,
the NSs are separated by a vacuum region that gradually
shrinks as the stars approach each other and that does
not need to be evolved with the matter evolution equa-
tions. See Sec. IV A for a detailed description of the grid
setup during the individual phases of the simulation. A
single finite volume grid which covers both NSs as used in
the BH – NS simulations in [41] would thus be inefficient.
Instead we cover each star with a separate cubical finite
volume grid. In this paper, we choose the boxes to be
initially 1.25 times the diameter of the NS. We track the
motion of each star and follow the inspiraling stars with
the grids by adjusting the grid locations. For the purpose
of tracking the stars, we define each star’s position to be
the centroids of the rest mass distribution,

Xi
CM =

∫
xiD d3x, (6)

in each of the disjoint finite volume grids. Since the grid
patches follow the stars and all fluxes are expressed in
the frame comoving with the grid, the fluid velocities
are small, which improves the accuracy of Eulerian finite
volume codes [75–77].

We employ the remapping criteria outlined in [78] to
control the volume covered by the grid. As the NSs spiral
inwards, we map the center of each NS from its current
position in the physical (inertial) frame to a fixed location
in the grid frame in which the spectral basis functions are
defined. Since the physical separation between the NSs
shrinks with time, but their separation in the grid frame
stays constant, the NSs appear to grow (cover more grid
points) in the grid frame. This gradually brings the sur-
face of the NSs closer to the grid boundaries and eventu-
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ally the outer layers of the NSs reach the grid boundaries
and matter flows off the grid.

We measure the flux of matter,

Ṁ
(i)
0 =

∫

Si,A

D
ui

ut
d2x, (7)

through each of the outer boundaries Si,outer of the finite
volume grid and through a set of interior surfaces Si,inner,
located approximately 44% the distance from the center

to the outer boundary. If too much (Ṁ
(i)
0 > 2 × 10−8)

matter flows out of the grid through the i-direction outer
surface Si,outer, we expand the grid along the i-direction,

if not enough matter (|Ṁ (i)
0 | < 3 × 10−7, where |Ṁ (i)

0 |
counts the total amount of matter passing through the
surface ignoring direction) flows through the i-direction
inner surface Si,inner, we contract the grid. We then in-
terpolate the evolved variables onto the new grid. During
the inspiral this procedure typically keeps the outer lay-
ers of the NS with a rest mass density & 10−4 of the
density in the center of the star ρ0,central inside of the
grid, while lower density material may flow off the grid.
In summary, this remapping procedure ensures that the
total amount of matter leaving the domain is controlled
and that the grid stays as small as possible. A side effect
of this procedure is that the effective resolution changes
during the simulation. When we expand or shrink the
grid in response to the remapping criteria, the number of
grid points is kept fixed but the physical volume covered
by the grid changes, which leads to a discrete jump in the
effective resolution. In our simulation the typical jump
in resolution due to grid changes is approximately 10 %
which can be seen in the discrete jumps in Fig. 11. In
addition to these discrete jumps the inspiral of the NSs
toward each other causes a continuous increase of resolu-
tion since the physical area covered by the fixed number
of grid points shrinks as the NSs approach each other in
the inertial frame.

Finally, while the interpolation algorithm used is not
strictly mass conservative, the remapping happens in-
frequently enough and with small enough incremental
change in the grid size that the effect on the total rest
mass is < 10−5 of the total rest mass of the system
over the course of the simulation. This is several or-
ders of magnitude lower than the amount of material
(≈ 10−3M�) lost through the outer grid boundaries until
an apparent horizon forms, see Fig. 3. After horizon for-
mation any matter outside of the horizon accretes rapidly
onto the BH.

C. Mesh Refinement

SpEC employs adaptive mesh refinement in the spec-
tral sector of the evolution equations, adjusting both the
order of the spectral basis functions used as well as split-
ting subdomains into smaller subdomains as required to
achieve a desired truncation error. Spectral adaptive

mesh refinement (AMR) is described in [79] to which we
refer the reader for details.

In the finite volume sector, in order to resolve both the
region around each NS and cover a large enough volume
to capture outflows and the remnant disk that forms after
merger of the NSs and BH formation, we employ a vari-
ant of the mesh refinement techniques commonly used in
compact binary merger simulations [43]. Often mesh re-
finement [51, 80–82] is used not only to increase the reso-
lution in regions of interest but also to move the region of
higher resolution along with the object. In this approach,
as the NSs move through the grid and get close to the cur-
rent edge of the high resolution grid, new grid points are
created and populated with data interpolated from the
coarse grid in front of the NS and no longer needed points
are destroyed once the NS has passed. Such an interpola-
tion step necessarily leads to a loss of accuracy and great
care needs to be taken to preserve physically conserved
quantities such as rest mass as well as—in the absence of
general relativity—energy and momentum [83–88].

In SpEC, on the other hand, due to its comoving coor-
dinate system, the NSs are stationary on the grid during
the inspiral phase and no mesh motion is required. Dur-
ing most of the inspiral we use only a single resolution
in the grid patches that surround each NS and no mesh
refinement. Eventually, however, the NSs approach each
other close enough such that their individual grid patches
overlap. Rather than continue evolving in the presence
of overlapping grids as, e.g. in [51], we create a single
refined grid hierarchy that contains both NSs. Since we
continue to track the rotation of the NSs around each
other but stop tracking their separation, the NSs appear
to move directly toward each other on the grid and we
again avoid having to create and destroy grid points to
follow the NSs with a high resolution grid patch.

Our current implementation of mesh refinement in
SpEC uses vertex-centered grid points such that for a fac-
tor of 2 difference in resolution on coarse and fine grids,
every second fine grid point coincides with a coarse grid
point. For the current set of simulations we employ only
2 refinement levels. The code, however, is not restricted
to this and supports an arbitrary number of refinement
levels in an arbitrary number of grid patches. We cur-
rently do not employ sub-cycling in time: all refinement
levels step forward in time with the same timestep size.
This is similar to, e.g. [89], but differs from the approach
in [80]. In choosing to not implement sub-cycling in time
we sacrifice efficiency of the simulation for code simplic-
ity. In the current approach, we are able to leverage the
existing multi-domain infrastructure in SpEC to imple-
ment the three required data movement operations [90]:
“synchronization”, “restriction” and “prolongation” at
grid boundaries and where fine and coarse grids over-
lap. In SpEC, synchronization is the exchange of grid
point data between grid patches that make up a single
refinement level. It provides data in neighboring grid
cells required for WENO reconstruction of the variables
to cell interfaces. It never moves data between different
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refinement levels, and since all grid patches are aligned,
synchronization is a straightforward copy of values be-
tween grid patches. Restriction is the injection of data
from a fine grid into a coarse grid in regions where fine
and coarse grids overlap. In our vertex centered mesh
refinement code, coarse points coincide with fine grid
points and restriction is just a copy operation of data
between grid patches on different refinement levels. Fi-
nally, prolongation refers to the interpolation of data
from coarse grids into the outer boundaries of fine grids
to provide boundary data for the WENO reconstruction
in the outermost grid points. Since fine grid points are
more densely spaced than coarse grid points, this oper-
ation requires interpolation of values for which we use
a simple linear interpolation method. Synchronization,
restriction, and prolongation are applied in this order af-
ter each Runge-Kutta substep to ensure consistent data
between the mesh-refined grids.

In the current implementation in SpEC, prolongation
is not mass conservative and thus leads to mass non-
conservation at the refinement level boundary. In prac-
tice, we find this effect to be very small since the matter
density at the grid boundaries is small and mesh refine-
ment is used only in the very late stages of the simulation.
We have not found any noticeable increase in rest mass
non-conservation (see Figure 3) once we turn on mesh re-
finement, since the core of the NSs stay inside the finest
refinement level.

D. Gauge conditions

We evolve the spacetime metric g
(4)
αβ using the gener-

alized harmonic formulation of [39, 63, 91] in which the
coordinate xα satisfies the covariant scalar wave equation

∇β∇βxα = Hα, (8)

for a freely specifiable gauge source function Hα. The
initial data is constructed in a gauge Hα

initial that assumes
quasi-equilibrium and the existence of a helical Killing
vector. At the beginning of the simulation, we use Hα =
Ĥα, where Ĥα is defined to be a tensor that agrees with
Hα

initial in a frame comoving with the grid, and is constant
in time in this frame. Note that Hα is not a tensor. We
smoothly transition from this initial gauge to a purely
harmonic gauge Hα ≡ 0 using a transition function

F(t; t0,∆T ) =

{
1 t < t0,

exp(−( t−t0∆T )4) t0 ≤ t.
(9)

For the transition to harmonic gauge, we choose t0 = 0,
∆T = 2

√
d3/(2M0), where d is the initial coordinate sep-

aration of the stars and M0 is the baryonic mass of each
star (cf. the Keplerian period T of circular orbit of ra-

dius d around a mass M0: T ∼
√
d3/M0). ∆T is approx-

imately 2 orbital periods which is slow enough to avoid
gauge artifacts in the numerical waveforms. This differs

from what is typically done in BBH and BHNS simula-
tions using SpEC, where the simulation directly transi-
tions to damped harmonic gauge [63, 92] around each of
the BH,

Hα = µL ln

√
g

N
tα − µSg(4)

αβN
−1Nβ , (10)

where g is the determinant of the spatial 3-metric gij ,
tα = −N∂αt is the future directed unit normal to the
constant-t surfaces, N is the lapse function and Nα is
the shift vector, near the BH(s). We find that employing
the damped harmonic gauge condition reduced the simu-
lation speed to ≈ 20% compared to the harmonic gauge,
due to damped harmonic gauge inducing a reduction of
the allowed timestep size to ≈ 20% of the value allowed
in harmonic gauge. We therefore delay changing into a
fully damped harmonic gauge as long as possible. On the
other hand, a pure harmonic gauge condition can lead to
coordinate singularities due to caustics near AH forma-
tion and we found that a “mild” version of the damped
harmonic gauge condition lets us avoid caustics while still
achieving good evolution speeds.

The simulations discussed in this paper stay in har-
monic gauge until t0 = 22410M� (approximately 2.5 ms
or 520M� before we find an AH) at which time we
transition to the mild version of the damped harmonic
gauge condition Eq. (10). For the mildly damped har-
monic gauge, we set µL = µS = 0.2M�/MADM, with
MADM denoting the Arnowitt-Deser-Misner (ADM) mass
of the system. This matches the value chosen in [93] and
imposes stronger constraint damping on smaller black
holes that are harder to resolve. We smoothly transi-
tion t the new gauge using Eq. (9) with t0 = 22410M�,
∆T = 200M�.

Finally, just before we expect the AH to form, at
t = 22890M� (t − thorizon ≈ −0.24 ms) we add a fully
damped harmonic instance of Eq. (10) with µL = µS =[
ln(
√
g/N)

]2
to the already active mild damped har-

monic gauge source. This gauge change is very rapid
with ∆T = 30M�.

The complete gauge source term at the time of AH
formation is thus

Hα = (1−F(t; 22410, 200))Hmild
α +

(1−F(t; 22890, 30))H full
α , (11)

Hmild
α =

0.2M�
MADM

(
ln

√
g

N
tα − g(4)

αβN
−1Nβ

)
, (12)

H full
α =

(
ln

√
g

N

)2(
ln

√
g

N
tα − g(4)

αβN
−1Nβ

)
. (13)

E. Excision and post-collapse evolution

As described in greater detail in Sec. IV A, during the
evolution, we use a complex spectral grid setup surround-
ing each NS with a set of concentric spherical shells, tran-
sitioning to a set of shared spherical shells in the wave
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zone. Such a grid setup is not well adapted to a single
BH having formed after collapse of the merged NSs since
it does not allow us to excise the interior of the BH from
the grid.

Therefore soon after we turn on the full damped har-
monic gauge, we switch to a grid setup containing a sin-
gle filled sphere at the center of the domain surrounded
by spherical shells and begin searching for an AH using
an iterative fast flow algorithm based on [94]. Once we
have detected an AH and followed its evolution through
several time steps, we construct a new spectral grid con-
sisting only of nested spherical shells, with the innermost
boundary of the innermost shell slightly inside the AH,
so that the interior of the BH is excised. We then inter-
polate the spacetime variables from the old spectral grid
to the new one, and continue the simulation, keeping the
finite volume grid unchanged.

The algorithm for transitioning to a new spectral grid
with a single excision boundary is almost the same as
described in [44, 63, 64] for treating the merger and ring-
down of a BBH system after a new common AH forms
around the two individual AHs. In particular, the ex-
cision boundary of the spectral grid changes its shape
and size dynamically to conform to the size and shape of
the AH and to ensure that all characteristic fields of the
evolution system are outgoing (into the horizon), so that
excision is well-posed without a boundary condition.

The main difference between BH evolution for BBH
ringdowns versus NSNS remnants is the form of the func-
tion that maps grid coordinates xi to the coordinates xı̃

in which the excision boundary distorts to match the
shape of the AH [64]. This map is

xı̃ = xi

(
1− fC(r)

∑

`m

Y`m(θ, φ)λ`m(t)

)
, (14)

where Y`m are spherical harmonics, λ`m are coefficients,
fC(r) is a prescribed function, and (r, θ, φ) are spherical
polar coordinates computed in the usual way from xi.
For BBH ringdowns, fC(r) is chosen as a simple piece-
wise linear function that has discontinuous derivatives
at spectral subdomain boundaries [64]. For NSNS rem-
nants, fC(r) is a Gaussian that is smooth everywhere so
that the Jacobian of the map is continuous over the finite
volume domain, which overlaps subdomain boundaries of
the spectral domain.

On the finite volume grid on which we evolve the fluid
variables, we “mask” the excised region. Within the ex-
cised region, the metric variables are set to their value for
Minkowski spacetime, while the density is set to its mini-
mum allowed value ρ0,atmosphere. As we want to avoid any
dependence of the evolution of the system on that arbi-
trarily (and unphysical) choice, we also use modified in-
terpolation stencils when reconstructing the variables at
cell faces close to the excised region, and when interpolat-
ing the fluid variables from the finite volume grid to the
pseudospectral grid. For the reconstruction of the fluid
variables on faces, we use the WENO5 algorithm in the

bulk of the simulation, whenever the required 5-points
stencil is available. We drop to the second-order MC2
algorithm [95] when only a 3-points stencil is available.
Finally, we simply copy the value from the neighboring
cell center when we do not have enough points to perform
the MC2 reconstruction. On the face directly neighbor-
ing the excised region, the left and right fluxes are both
set to their value at the nearest cell center. The metric
variables at cell faces are similarly interpolated from a 3-
point symmetric stencil, a 2-point symmetric stencil, or
by copying from the only non-excised cell center, depend-
ing on the number of non-excised points available around
a given face. Finally, interpolation from the finite volume
grid to the pseudospectral grid is performed using, when
possible, a polynomial fit to a 3-points stencil, with the
additional constraint that the interpolation cannot cre-
ate new extrema (i.e. the interpolated value is limited by
the minimum and maximum values of the function at the
grid points used in the stencil). When we do not have 2
points available on each side of the desired interpolation
location, we drop to linear interpolation, or copying from
the nearest non-excised cell center when extrapolation is
required.

F. Wave Extraction

We use the Cauchy-characteristic extraction (CCE)
method described in [96–99] to evolve the gravitational
waves emitted by the system from a finite radius to future
null infinity I+. Details on the characteristic method and
its use in SpEC can be found in Sec. II.3.B of [99]. We

compute the (2, 2)-mode Ψ2,2
4 of the Newman-Penrose

scalar [100, 101] at I+decomposed into spin-weighted
scalar spherical harmonic modes. We then use the fixed
frequency integration method of [102] to compute the

gravitational wave strain h2,2 from Ψ2,2
4 without tak-

ing into account possible drift effects described in [103].
Since the total drift of the BH at AH formation and at
the end of the simulation is less than 0.1M� and 0.2M�,
respectively, the effect of drift is expected to be less than
1% on the dominant (2, 2) mode. Details on the extrac-
tion setup for our simulations are given in Sec. IV C.

III. INITIAL DATA

Initial data for this simulation was produced by a new
NSNS initial data solver based on the work of Foucart et
al. for BHNS systems [104]. As in that work, we start
by considering systems in quasi-equilibrium, where time
derivatives vanish in a corotating frame (this neglect of
the small radial velocity will be addressed later). We take
the metric to be conformally flat and solve for the lapse,
shift, and conformal factor using the extended confor-
mal thin sandwich (XCTS) equations [105]. The matter
in the stars is modeled as a cold (T = 0) perfect fluid
with an irrotational velocity profile, which is a special
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case of the more generic framework used in [37]. The ir-
rotational limit allows a straightforward solution for the
velocity and is a more realistic approximation than the
corotating limit, as the effective viscosity of NS matter
is insufficient to synchronize the stars’ spins with their
orbital frequency [106, 107].

A particular NSNS system is specified in terms of the
equation of state of NS matter, the baryon masses of
both stars, and their coordinate separation. The solver
then uses the above assumptions of quasi-equilibrium and
cold irrotational flow to determine the metric and matter
content of the corresponding spacetime. Since the initial
data problem consists of several coupled nonlinear equa-
tions, the solver takes an iterative approach, with each
iteration composed of a number of substeps (this proce-
dure closely follows Sec. III.C of [104], which should be
consulted for additional details).

First, given a trial matter distribution, we find an ap-
proximate solution to the elliptic XCTS equations by tak-
ing a single step of a nonlinear solver. By imposing force
balance at the centers of the stars, we then adjust the
orbital frequency of the binary. We also modify the en-
thalpy of the matter to drive the locations of its maxima
to the specified stellar centers, thus controlling the stars’
separation. Finally, we approximately solve the elliptic
equations imposing irrotational flow (constrained to pre-
serve the baryon masses of the stars) and feed the output
to the next step of the iterative procedure. All of these
updates are made using a relaxation scheme to aid con-
vergence.

Throughout the solution process, the numerical data
are represented on a spectral grid composed of hexahe-
dra, cylindrical shells, and spherical shells, and approxi-
mate solutions to the elliptic equations are provided by
the spells framework [108]. We periodically evaluate the
grid and adjust it to better conform to the stars’ surfaces.
By placing subdomain boundaries close to the surfaces,
the discontinuities there do not strongly affect the spec-
tral convergence of the method for the resolutions used
in our simulations.

Additionally, we occasionally perturb the centers of the
stars to reduce the ADM linear momentum of the system.
During this procedure, the centers are not constrained to
be colinear with the center of revolution, and the sepa-
ration of the stars may deviate slightly from the initially
specified value. Separations reported here are therefore
measured from the final solution.

When constructing strictly quasi-equilibrium data, the
solver chooses the orbital angular velocity Ω by requiring
force balance at the centers of the stars. Later, when
subsequently refining the initial data to reduce eccentric-
ity, Ω is fixed. By adding an initial radial velocity, we
relax the quasi-circular approximation in order to more
accurately model inspiral conditions and reduce the ini-
tial eccentricity. The magnitude of this velocity is chosen
by evolving each trial set of initial data for a short time
in order to measure the eccentricity of the orbits, then
adjusting the (fixed) orbital frequency and radial veloc-

ity according to a heuristic procedure based on the work
of [109] and repeating until that eccentricity is below
10−3. Similar approaches were also used by [110, 111],
who achieved comparable results.

Results from our code closely match those of the
Lorene solver by [112]. In particular, we can accurately
reproduce the quasi-equilibrium sequences of [113, 114].

For this study, initial data are generated using a poly-
tropic EOS of the form

P = κρΓ
0 , (15)

ε =
1

Γ− 1

P

ρ0
, (16)

with Γ = 2 and κ = 123.6M2
�. Both NSs have a baryon

mass of M0 = 1.779M�, corresponding to an isolated
TOV star with an ADM mass of M∞ = 1.64M�, circum-
ferential radius of Rareal = 15.1 km (10.2M�) and a com-
pactness of M∞/Rareal = 0.16. Due to the large initial
coordinate separation of 81 km (55M�), the binding en-
ergy is small, Eb = 6.7·10−3M� and the total ADM mass
of the system is MADM ≈ 2M∞. In the binary configura-
tion, the stars extend to an isotropic coordinate radius of
12 km (8.1M�), and their centers are separated by a co-
ordinate distance of 81 km (54.5M�). This system has an
orbital frequency of Ω/2π = 133 Hz (MADMω = 0.0132)
and an eccentricity of less than 9 × 10−4. Due to the
total mass of the system exceeding the maximum mass
of a hypermassive star for a Γ = 2 EOS we expect the
merged NS to collapse to a BH very quickly [7, 115, 116].

IV. RESULTS

A. Dynamics and Grid setup

The evolution of the NSNS system proceeds through a
series of stages, each of which is reflected by specific set-
tings used by the simulations during this phase. Starting
from large separation, the NSNS are initially in the inspi-
ral phase characterized by quasi-circular motion around
each other. During this phase, the separation changes
very slowly compared to orbital timescales. Eventually,
the NSs approach each other and come into contact,
which leads to the development of a shear layer in the
contact region and eventually a single merged object. Fi-
nally, the central core of the merged object collapses and
forms a BH, which accretes the remaining material and
eventually settles down to a stationary Kerr BH. Fig. 1
and Table I show the settings and grid structures used
during the different phases.

For the spectral grid during the inspiral phase, we
use an adapted version of the two-spheres domain used
in [41]. We perform simulations using three different res-
olution levels: Lev0, Lev1, Lev2. During grid setup and
during evolution, we use the spectral mesh refinement
method of [79], decreasing the allowed truncation error
in the spectral expansion of the solution as e−k for res-
olution level k. Thus, the actual number of collocation
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FIG. 1: Grid structure for the Lev0 run in the z = 0 plane during the simulation. We show the spectral grid (solid black
lines) and the finite volume grid patches that surround the NSs. We also show contour lines of the rest mass density ρ0
for ρ0 = 10−4, 10−6, 10−7 (M�)−2 (ρ0 ≈ 6 × 1013, 1011, 1010 g cm−3) in orange, green and blue and a scale bar indicating the
size of 10M� or approximately 14.8 km. Top left: Long-dashed boxes outline the finite volume grids at the beginning of the
simulation. Top right: Grid structure after creation of a single finite volume grid near merger. Bottom left: Simulation shortly
after switching to a single set of nested spherical shells. Bottom right: Simulation after the AH has formed. The innermost
spherical shell coincides with the AH. All but the top left plot show the entire region covered by the coarse (outer) finite volume
mesh, with the fine (inner) mesh outlined using dashed lines.

points used differs from subdomain to subdomain and is
based on features of the matter distribution and metric
variables inside each subdomain. In contrast to [41], we
replace the half of the grid that covers the BH in [41] by a
second copy of the grid covering the NS. Thus, for resolu-
tion level Levk, our domain consists of two filled spheres
covering the center of each neutron star using spherical
harmonic basis functions in the angular directions, while
the radial dependence is decomposed into one-sided Ja-

cobi polynomials [117].

Each filled sphere is surrounded by 8 spherical shells of
similar angular and radial resolution as the inner sphere.
Initially the surface of the star is located in the third
shell. The far field region around the binary is covered
by 20 spherical shells starting at 1.5 times the initial sep-
aration of the stars to 40 times the initial separation, or
approximately 2200M�. These shells have slightly lower
angular and radial resolution than the spherical shells
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around the NSs. The region between the innermost shell
and the stars is covered by a set of deformed cylindri-
cal shells and filled cylinders interpolating between the
spheres. There are a total of 48 subdomains in the initial
setup. During the simulation, we measure the truncation
error in each subdomain and adjust the subdomain struc-
ture by adding and removing points as well as splitting
and joining subdomains such that the measured trunca-
tion error is close to the requested accuracy. Due to the
presence of junk radiation at the beginning of the simu-
lation we keep the grid structure in the outer spherical
shells fixed for one light crossing time of the simulation
domain to avoid the junk radiation triggering mesh re-
finement and leading to very high resolution when at-
tempting to resolve the junk radiation.

The finite volume grid during the inspiral phase con-
sists of two halved cubes with 48, 61, 77 grid points per
half-length of the cube for the three resolution levels
Lev0, Lev1, Lev2. Initially the cube’s sides are approxi-
mately 1.25 times the diameter of the stars. This corre-
sponds to approximately 30, 38, 48 points across the ra-
dius of the NS and a linear resolution of 326 m, 252 m,
and 192 m for resolution level Lev0, Lev1, and Lev2,
respectively. We take advantage of the reflection sym-
metry across the z = 0 plane present in the system
to only evolve the z > 0 half-space. Function values
in the z < 0 half-space are computed using the sym-
metry condition when needed. The region outside of
each NS but covered by the finite volume grid is filled
with a low density atmosphere with rest mass density
ρ0,atmosphere = 10−13M−2

� ≈ 10−10ρ0,central, as is com-
mon in grid based simulations of NSs. For the majority
of the simulation the spectral grid structure consists of
sets of spherical shells around each of the NS, and the
finite volume grid consists of one individual grid patch
around each NS as shown in the upper left pane of Fig. 1.

During the simulation we monitor the dephasing in
the orbital phase between resolution levels Lev0, Lev1,
Lev2 and interpolate onto a higher resolution grid once
the phase difference increases too rapidly. For the set of
simulations presented in this paper, this increase in res-
olution occurs at t ≈ 1.5 × 104M� (≈ 38 ms before the
horizon is formed). At this point, we increase the reso-
lution of the Lev0 run to that of the Lev1 run (252 m),
that of the Lev1 run to Lev2 (192 m) and finally that of
the Lev2 run to 144 m, which would be the resolution
of a Lev3 run. We also adjust the requested truncation
error in a similar manner such that the Lev0 simulation
requests a truncation error corresponding to the trun-
cation error originally requested by the Lev1 simulation
and similar for the higher resolution simulations. Once
the NSs are close enough together so that the individual
grids touch, we replace the two grids by a single rectan-
gular grid that covers both NSs. This is shown in the
top right panel of Fig. 1. At this time, we increase the
resolution further such that three resolution levels Lev0,
Lev1, Lev2 use resolutions of 207 m, 148 m and 115 m.
We surround this inner grid by a coarser grid of twice

the size but half the resolution as described in Sec. II C.
The coarse grid captures ejecta and the disk left behind
after BH formation. At this point we no longer adjust
the domain to contain all matter, instead we hold the
physical size of the finite volume grid constant.

When the stars approach each other, they gradually
deform, cf. Fig. 2 to see the deformation of the stars. At
some point, the nested spherical shells that are used in
the spectral grid are no longer a good approximation of
the stellar shapes, causing the simulation speed to re-
quuire more and more spectral resolution to resolve the
deformed stellar shape. This in turn reduces the allowed
timestep via the Courant-Friedrichs-Lewy (CFL) factor,
rapidly reducing simulation speed. We replace the nested
spherical shells and cylinders around each star by a single
set of concentric spherical shells centered at the center of
the merging binary. During the merger phase, the mat-
ter distribution is very distorted while the metric terms
gradually become centered around the origin. Hence, a
spectral grid centered around the origin deals best with
the lack of regularity in the data. The bottom left panel
of Fig. 1 shows the grid layout at this point. The 3D
density distribution shortly afterwards is shown in the
bottom panel of Fig. 2.

When switching to a single set of spherical shells, we
turn off tracking the orbital separation of the stars and
smoothly transition to a constant scaling factor between
the comoving grid coordinates and inertial coordinates.
The numerical grid is thus no longer contracting with the
stars and the stars move toward each other in the grid
frame. Allowing the stars to move on the grid avoids
strong grid deformation in the region between the stars
where a constant volume in grid space is used to repre-
sent the shrinking separation between the stars while at
the same time covering the region far from the stars with
almost constant resolution. We continue tracking rota-
tion of the object until an AH is detected at which point
we transition to a coordinate frame that is at rest with
respect to an observer at infinity.

Finally, once the merged object collapses to a BH, we
excise the inner filled sphere and tie the inner boundary
to the AH instead (see Sec. II E). At this point the setup
is identical to what was used in [41]. The bottom right
panel of Fig. 1 shows the grid structure at this point.

Table I lists the computational domains used in this
work.

B. Diagnostics

During the course of the simulation we monitor several
constraints and conserved quantities to asses the quality
of the simulation.
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Inspiral Late Inspiral Tidal interaction

spectral grid 2 sets of spheres 2 sets of spheres 2 sets of spheres

finite volume grid 2 uniform boxes 2 uniform boxes mesh-refined rectangular box

control outflows yes yes no

track orbital separation yes yes yes

finest finite-volume resolution at
beginning of segment [M�]

0.22, 0.17, 0.13 0.17, 0.13, 0.097 0.14, 0.10, N/Aa

gauge condition harmonic harmonic harmonic

no. of orbits 14 8 < 1

orbital angular frequency MADMω
at beginning of segment

0.014 0.020 0.042

Plunge Pre-Collapse Post-Collapse

spectral grid 2 sets of spheres spherical shells excised spherical shells

finite volume grid mesh refined rectangular box mesh refined rectangular box mesh refined square box

control outflows no no no

track orbital separation yes no no

finite volume resolution at begin-
ning of segment [M�]

0.14, 0.099, 0.078 0.13, 0.097, 0.076 0.11, 0.073, 0.058

gauge condition mildly damped harmonic fully damped harmonic fully damped harmonic

no. of orbits 1 < 1 N/A

orbital angular frequency MADMω
at beginning of segment

0.045 0.092 N/A

aWe transition to a mildly damped harmonic gauge at fixed evolution time while transition to a single box is triggered by the finite
volume grids touching. Since the size of the finite volume grids differs between Levs, it so happens that the transition to a plunge occurs
before the NSs approach each other close enough to force a single finite volume box.

TABLE I: Stages in the inspiral simulation. For each stage we list the type of spectral and finite volume grid used, whether
we control the amount of matter flowing off the finite volume grid, whether we monitor the orbital separation of the NS, the
minimum resolution for resolution levels Lev0, Lev1, Lev2 on the finite volume grid, the gauge condition used, the approximate
number of orbits the system spends in this phase in the medium resolution (Lev1) simulation, and the orbital angular frequency
at the beginning of each segment in the medium resolution (Lev1) simulation.

1. Rest mass conservation

We evolve the relativistic rest mass density D using a
conservative scheme [39]: SpEC is therefore expected to
exactly conserve total rest mass,

M0(t) =

∫
Dd3x, (17)

during the evolution. However, there are several ef-
fects that introduce non-conservative changes to the rest
mass density: (i) we employ (see Sec. IV A for details) a
low density numerical atmosphere of density ρ0,atmosphere

which can lead to matter creation in the region outside
the NS when the density would drop below ρ0,atmosphere

during the evolution. We employ an atmosphere density
that is sufficiently small compared to the density at the
center of the NSs, ρ0,central, that this effect is expected
to be small. (ii) Matter can reach grid boundaries and
flow off the grid. We employ the remapping procedure
described in Sec. II B to control the amount of matter
leaving the system, limiting the matter loss rate through

the boundary to Ṁ
(i)
0 < 2 × 10−8 through any of the

grid boundaries. (iii) The interpolation algorithm used
in the remapping procedure is not mass conservative and
introduces a relative mass change of order < 10−5 when
interpolating to a new grid. (iv) Our current mesh refine-
ment implementation (see Sec. II C for details) uses non-
conservative interpolation operators to interpolate data
between the different refined regions. The error intro-
duced by this interpolation is very small, since the matter
density near the refinement boundaries is very low and
does not contribute much to the total mass.

We find (ii) to be the most important effect during the
simulation. Figure 3 displays the conserved rest mass
over the course of the simulation. We stop monitoring the
total rest mass once an AH is found. At this point rest
mass is lost from the simulated spacetime as matter falls
into the AH. The accretion happens over a short time and
matter is rapidly falling into the BH. Approximately 2 –
10 ms (400 – 2000M�) after BH formation, the mass left
outside the BH falls below 10−3M�, which corresponds
roughly to the mass conservation error of our code for
Lev0 and Lev1.
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FIG. 2: Volume rendering of the rest-mass density in the late-inspiral, merger, and post-merger phases. Top left panel: Late-
inspiral part of the simulation. Shortly before the two NSs touch, tidal deformations are clearly visible. Top right panel: Shortly
after contact, a characteristic shear-layer is formed between the two NSs. Bottom left panel: Shortly before collapse, the mass
is centered around the origin. Low-density spiral arms of the merger remnant have formed. Bottom right panel: 1.4 ms after
merger the BH has settled down to an almost stationary BH.

2. Constraints

In the following section, the L2 volume norm ‖ · ‖2 of
a rank n tensor Tα1...αn is defined as

‖Tα1...αn‖2 =
√∫
|δα1β1 · · · δαnβnTα1...αn

Tβ1...βn
|2 d3x∫

d3x
. (18)

a. ADM constraints Figure 4 (top panel and center
panel) show the violation of the ADM Hamiltonian and
momentum constraints, respectively. The constraints are
evaluated as the L2 norm over the simulation volume.
The numerical data contain a large amount of noise and

we use a moving average of window width ∆t = 1.92 ms
(40M�) to smooth out this high frequency noise. We
observe a spike in the constraint violations around the
time of merger and BH formation when the spacetime
becomes highly dynamic. After excision of the BH, the
constraint violations shrink since the inner part of the BH
is no longer part of the numerical or physical domain of
dependence and is no longer included in the computation
of the constraint violations.

b. Generalized harmonic constraint energy The gen-
eralized harmonic formulation of Einstein’s equations
contains several constrained quantities. Monitoring these
constraints during the simulation provides us with a use-
ful measure of the faithfulness of our simulations. Fig-
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through the AH.

ure 4 (bottom panel) shows the evolution of the L2 norm
of the generalized harmonic constraint energy as defined
in Eq. (71) of [61].

At the beginning of the simulation we see clear conver-
gence and the constraint decreases for increasing resolu-
tion. When AMR as described in Sec. II C is activated,
i.e. after emission of the junk radiation, the clear con-
vergence is lost, as constraint violations are no longer
dominated by errors in the spectral domain but instead
contain contributions due to matter which converge much
more poorly as resolution increases from Lev0 to Lev1
and Lev2. Furthermore, as for the ADM constraints, we
observe a spike in the constraint violation around the
time of merger and BH formation when the spacetime
becomes highly dynamic. Fortunately, the constraint vio-
lating numerical data are concentrated in the region that
will be interior to the newly formed BH. This is seen as
the sudden drop in the constraint energy once we excise
the interior of the AH from the simulation domain.

3. ADM integrals

We also monitor how well the code conserves the to-
tal ADM mass of the system during evolution. We ap-
proximate ADM mass conservation as conservation of the
ADM mass surface integrals in the simulation domain
corrected by the radiated energy. To this end, we evalu-

10−9

10−8

10−7

10−6

10−5

‖H
‖ 2

Lev0
Lev1

Lev2

10−9

10−8

10−7

10−6

10−5

‖M
i‖

2

−120 −100 −80 −60 −40 −20 0
t− thorizon [ms]

10−9

10−8

10−7

10−6

10−5

‖C
‖ 2

FIG. 4: L2 volume norm of the Hamiltonian constraint vio-
lation (top panel), the square magnitude of the momentum
constraint violation (middle panel), and the generalized har-
monic constraint violation energy (bottom panel). The origin
in time corresponds to AH formation. Clearly visible is the
increase in constraint violation around this time.

ate the ADM surface integrals [118, 119]

MNR =
1

16π

∮

r=rADM

(∂gik
∂xj

− ∂gij
∂xk

)
δijnk dA, (19)

JNR
i =

1

8π
εijk

∮

r=rADM

(
Kl

k − δlkK
)
xjnl dA, (20)

where gij is the 3-metric, Kij is the extrinsic curvature,
K is its trace, ni is the outward pointing unit normal vec-
tor to the integration sphere of radius rADM = 2090M�,
and εijk is the Levi-Civita symbol. We keep track of
the radiated energy and angular momentum in the GW
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FIG. 5: Top panel: Mass deficit MADM−
(
MNR +M rad

)
com-

puted using a sphere of coordinate radius rdetector = 2090M�.
The initial value of MNR for simulation Lev2 is MNR =
3.278M�. The initial decrease in the Lev0 curve is due to
constraint violations in the region r > 165M�, which are
damped away once the spectral AMR [79] increases the res-
olution in this region. The higher resolution levels Lev1 and
Lev2 are of sufficiently high resolution such that this issue
does not arise. Bottom panel: Relative angular momentum
deficit 1−

(
JNR
z + Jrad

z

)
/JADM

z computed on the same sphere.
Shown are results for the three resolution levels Lev0, Lev1

and Lev2. The initial value of JNR
z for simulation Lev2 is

JNR
z = 12.41M2

� and the total radiated angular momentum
is Jrad

z = 3.680M2
�.

modes up to ` = 8 passing through the sphere [120]:

M rad =
1

16π

∑

`,m

∫ t

0

dt′
∣∣∣∣
dh`m(t′)

dt′

∣∣∣∣
2

, (21)

J rad
z =

1

16π

∑

`,m

∫ t

0

dt′m=
(
h`m(t′)

[
dh`m(t′)

dt′

]?)
,

(22)

where h`m is the spin weighted spherical harmonic (`,m)
mode of the gravitational waveform, =(z) is the imagi-
nary part of z, and ? denotes complex conjugation. Since
we evaluate the ADM integral Eq. (19) on a surface at
a finite radius, the integrated value depends on time.
We correct the value by the amount of energy radiated
through the integration surface and verify that the sum
MNR +M rad (and JNR

z + J rad
z ) is constant over time.

The top panel of Figure 5 shows the deficit MADM −(
MNR +M rad

)
i.e. the failure of the simulation to con-

serve the ADM mass. The lowest resolution simulation

Lev0 shows an unphysical decrease in the observed ADM
mass integral between −120 ms . t − thorizon . −80 ms
(−25 × 103M� . t − thorizon . −17 × 103M�), whose
minimum occurs at approximately the same time as
the spike in the generalized harmonic constraint energy.
This decrease is caused by low resolution in the region
r > 165M� containing the surface used to evaluate the
ADM mass integral and vanishes once spectral adaptive
mesh refinement increases the resolution in this region.

The bottom panel of Figure 5 shows the fractional
deficit of the total angular momentum in the z direction,

1 −
(
JNR
z + J rad

z

) (
JADM
z

)−1
. Angular momentum non-

conservation is well below 1% until just before AH for-
mation. At this point, the increased constraint violations
affect the measurement of the total angular momentum
as well.

4. Black hole mass and spin

The total mass of the system is well above the max-
imum mass that can be supported by post-merger dif-
ferential rotation and the chosen EOS. A BH forms less
than 1 ms (200M�) after the two NS come into contact
and merge. Within 1 ms after the formation of the AH,
almost all material has fallen into the BH. The final mass
surrounding the BH is below 10−3M� for Lev2.

The final BH settles down to a Kerr BH with
Christodoulou mass of 3.226 ± 0.007M� and spin of
8.743 ± 0.029M2

�, where uncertainties are estimated as
the difference between Lev2 and Lev1. This corresponds
to a dimensionless spin magnitude of χ ≈ 0.84 ± 0.0045
and is thus well below the extremal Kerr solution.

C. Gravitational wave signal

Figure 6 displays the (2, 2)-component of the spheri-
cal harmonic decomposition of the GW strain h at I+as
obtained via the CCE method. The waveform lasts for
more than 40 GW cycles. We emphasize that this is
the longest waveform of a NSNS obtained from a fully
general-relativistic simulation.

In addition to presenting the whole waveform, we also
show a zoom-in around merger in Fig. 7. We com-
pare our waveform with a shorter waveform obtained
by [31, 55] for the same NSNS system using the finite
differencing (spacetime) / finite-volume (hydrodynam-
ics) BAM code [52, 111, 121]. We align the waveforms
in a time interval −25.8 ms ≤ t − tpeak ≤ −13.3 ms
(−5400M� ≤ t − tpeak ≤ −2800M�). This first com-
parison between the two codes suffers from the fact that
different initial numerical datasets describing the same
physical system were used. Nevertheless, we observe that
after time and phase alignment, the phase difference stays
below 0.25 rad up to merger. This is well within the un-
certainty of the BAM waveform of ±0.9 rad and shows that
also around merger, where our error estimate becomes
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FIG. 6: Real part and magnitude of the (2, 2)-mode of the gravitational wave strain r h2,2 during the inspiral and merger. The
time of maximum amplitude is labeled as t− tpeak = 0.
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FIG. 7: Real part and magnitude of the (2, 2)-mode of the
gravitational wave strain r h2,2 during the late inspiral and
merger. The time of maximum amplitude is labeled as t −
tpeak = 0. This figure displays a zoom-in of the last ≈ 10 ms
of the signal shown in Figure 6, focusing on the final few
cycles of the inspiral, merger, and ringdown GW signal. We
compare the waveform obtained for an identical NSNS system
by [55]. We align in time and phase in the interval −25.8 ms ≤
t ≤ −13.3 ms, minimizing Eq. (24). Both waveforms agree
reasonably well. During the inspiral the phase difference due
to the eccentricity of the BAM data is around 0.1 rad and even
up to merger the phase difference stays below 0.25 rad. This is
well within the uncertainty of the BAM waveform of ±0.9 rad.

problematic (see the discussion in Sec. IV D), consistent
results can be obtained.

The merged object collapses to a BH within less than
1 ms (200M�) after merger and the BH then emits a

characteristic ringdown GW signal. Our results allow
us to estimate the quasi-normal mode frequencies. We
obtain a frequency of MBHω = 0.613 for the (2, 2)-mode.
This corresponds to within 0.5 % to the result obtained
via BH perturbation theory and to the value of 0.61454
stated in [122] for a BH with a dimensionless spin of χ =
0.840. Figure 8 shows the (2, 2)-mode of the ringdown

signal in Ψ2,2
4 (a similar plot can be obtained for the GW

strain mode h2,2). We observe very clean exponential
decay of the dominant mode over more than 3 orders of
magnitude of Ψ2,2

4 .

D. Convergence

The physics observable using gravitational wave detec-
tors such as LIGO is primarily encoded in the phase φ of
a GW signal h(t) = A(t) cosφ(t) and thus the phase ac-
curacy of a simulation is of primary importance when
assessing the quality of a simulation. Since GW are
quadrupolar in nature, for circular orbits, the (2, 2)-mode
captures the dominant GW signal and its complex phase
φ can be used to compute (a proxy for) the GW phase φ.
SpEC uses a hybrid spectral – finite volume scheme that

makes it difficult to assign a unique convergence order to
simulations. Figure 9 shows the phase difference between
different resolution levels Lev0, Lev1, Lev2 in the (2, 2)-
mode of the GW strain at future null infinity I+. We
expect the polynomial error of the finite volume scheme
to dominate the error budget, and thus model the phase
error at each instant in time using a second order poly-
nomial of the form

φ = φ0 + a1∆x+ a2∆x2. (23)

Here, ∆x is a measure of the finite volume resolution.
Eq. (23) is able to capture second order convergence of
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FIG. 8: Dominant 2, 2-mode of the ringdown signal observed
in Ψ4 at I+. We observe the ringdown signal for over 3 mag-
nitudes in amplitude before the numerical noise overwhelms
the signal. The dashed line shows the fitted decay behav-
ior exp(−t/τQNM) with τQNM = 14.0MBH. We find a mode
frequency of MBHω = 0.613.
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FIG. 9: Phase difference ∆φ2,2(t) = φn(t) − φm(t) in the
(2, 2)-mode of the GW strain r h2,2 during the inspiral phase
of the simulation between simulations using resolution level n
and m. The solid (black) line shows the phase difference be-
tween the low and medium resolution runs, while the dashed
(orange) line shows the phase difference between the medium
and high resolution runs. Dotted (black) and dash-dotted
(orange) line segments indicate time intervals during which
the phase difference ∆φn,m(t) is negative. The upper x-axis
is labeled by the GW frequency ω2,2 of the (2, 2)-mode of the
GW strain of the highest resolution (Lev2) run. We observe
convergent behavior in the GW phase. However, no clear
convergence order can be assigned. This is most likely due
to interactions between numerical errors in the finite volume
hydrodynamics part and in the adaptively refined spectral
metric part of the code.

the code in smooth regions of the flow and first order
convergence across shocks and surfaces. In this model,
φ0 is the continuum value of the phase and the term
a1∆x + a2∆x2 is the phase error for a simulation using
finite resolution ∆x. Obviously the model neglects higher
order error terms and the infinite-resolution extrapolated
value φ0 of the finite resolution GW phases obtained from
it is only an approximation to the true phase. At very
high resolution (∆x � 1) we expect to recover second
order convergence away from the shock surfaces, which
are of lower dimension than the bulk domain. Yet at the
resolutions used here, the number of grid points affected
by shocks and surfaces is not negligible compared to the
total number of grid points, and a single monomial model
for the error estimate cannot describe the simulation
data. A further complication arises from the fact that
the GW strain at I+ is given as a function of Bondi time
whose relation to simulation time is complex and depends
on both spatial location and time [98, 99]. This makes
the assignment of a single resolution ∆x for each timestep
difficult. Instead of attempting to extract a value of ∆x
as a function of Bondi time, we instead use the fact that
CCE introduces negligible error compared to the error in
the evolution in the simulation domain [99]. Ignoring the
small CCE error, we employ the phase error of the (2, 2)-
mode of the Newman-Penrose scalar Ψ4 evaluated on a
coordinate sphere of radius 2090M� as a proxy for the
phase error in the GW strain at I+ so that there exists a
unique resolution ∆x(t) as a function of simulation time.
We find that the change in resolution to control dephas-
ing during the inspiral at t − thorizon ≈ −7.9 × 103M�
(-38 ms) is abrupt, and different between the different
Levs. The differences introduced by this change are large
enough such that the estimated error at merger is very
large (> 0.1 rad at t − thorizon ≈ 7.9 × 103M� and mul-
tiple radians before an AH is detected) if the change of
resolution is included in the dataset. Thus we align the
Lev0 and Lev1 waveforms to the Lev2 waveform in the
interval tmin − thorizon = −7.7× 103M� ≤ t− thorizon ≤
−2.9× 103M� = tmax − thorizon (−37 ms < t− thorizon <
−14 ms), corresponding to 5 inspiral wave cycles of Lev2,
minimizing the root-mean-square of the phase difference,

(∫ tmax

tmin

|φLevN(t−∆tN )− φLev2 + ∆φN |2 dt

)1/2

, (24)

by varying ∆tN and ∆φN [123].
Figure 10 shows the error estimate Eq. (23) for the

highest resolution run Lev2 from the point of alignment
onward. Without alignment the estimated phase error
Ψ2,2

4 in Lev2 is significantly larger than 1 rad. The align-
ment procedure allows us to estimate the phase error
in a hypothetical simulation that started approximately
40 ms (7800M�) or 11 orbits before AH formation. The
estimated error is quite small until the last few orbits
when approximately 5 ms (1000M�) before AH forma-
tion the error estimate becomes unreliable.

The jump in estimated error coincides with the time we
enable fixed mesh refinement on the finite volume grid,
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FIG. 10: Combined error estimate for the phase of Ψ2,2
4 after

aligning at t = 37 ms before the AH forms (see Eq. (24) for
details). We define ∆φ2,2 as ∆φ2,2 = a1∆x+a2∆x2 according
to Eq. (23). rdetector = 2090M� is the location of the extrac-
tion surface of the gravitational waves, retardation is used to
correlate features in the extracted gravitational waves with
events in the strong field region.
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FIG. 11: Resolution of the finite volume grid covering the
NSs during the simulation. The inset depicts the resolution
in the interval during which we enable fixed mesh refinement.
Refined regions are added based on the NSs’ separation thus
the refined region appears first in the Lev0 simulation leading
to a short time interval during which the ordering of resolu-
tions is inverted. This leads to problems when attempting to
estimate phase errors in the GW strain if a single monomial
dependence of the phase error on resolution is assumed.

which leads to a situation where temporarily the lowest
resolution run Lev0 uses a higher resolution than Lev1.
This is easily visible in Fig. 11 which shows the finite
volume resolution during the final part of the simula-
tions. The inset depicts a zoom-in view of the last 5 ms
(1100M�) before AH formation. The slow increase in
resolution over time is due to the inspiral of the NSs and
the jumps are due to remapping of the finite volume grid
once material starts to leave the simulation box. During
the period −5 ms . t − thorizon . −2 ms (−1100 ms .
t− thorizon . −420 ms) before AH formation, while Lev0
is of higher resolution than Lev1, the phase evolution
between Lev0, Lev1, and Lev2 is also not proceeding as
naively expected and a straightforward error estimate as-
suming that |∆φ2,2(Lev1, Lev2)| < |∆φ2,2(Lev0, Lev1)|
yields only an inaccurate estimate for the actual phase
error.

V. CONCLUSIONS

In this paper, we presented simulation methods for
NSNS mergers in SpEC and discussed the first long NSNS
inspiral and merger simulation carried out with SpEC.

The advantages of SpEC compared to other codes are
(i) the use of a hybrid pseudospectral – finite-volume ap-
proach, which reduces computational costs for the evo-
lution of the spacetime, and, (ii) the use of comoving
coordinates, which eliminates the movement of the NSs
across the numerical domain during the inspiral. Cur-
rently, NSNS simulations using SpEC are not yet as ro-
bust as BBH simulations and require careful monitoring.
This is particularly true for the phase error whose behav-
ior is not yet fully understood. Further work is required
to compute a robust error estimate for the GW phase.

As an example of SpEC’s capabilities, we presented
the longest NSNS inspiral simulation performed to date.
Two NSs modeled with a Γ = 2 EOS and a compact-
ness of 0.16 were evolved for ≈ 22 orbits (44 wave cy-
cles). We demonstrated consistency of our results with
shorter, already published results obtained with the BAM
code and found remarkable agreement. A more detailed
study comparing results from multiple different numer-
ical codes is planed for the future. Our results show
that SpEC is capable of computing consistent long wave-
forms for NSNS systems up to and beyond merger. Such
simulations are of great interest, because long and accu-
rate numerical waveforms are urgently needed in the new
field of GW astronomy. They are essential for calibrat-
ing and validating simpler waveform models employed to
detect GWs and extract information about astrophysics
and fundamental physics from observed GWs.
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Appendix A: Convergence analysis of TOV stars

In order to verify our numerical method and implemen-
tation, we present a convergence analysis of an isolated
TOV star, re-examining the convergence study of [39].
Since both spacetime and matter are stationary, any non-
trivial evolution is due to numerical error and in partic-
ular the presence of an atmosphere and sharp surface of
the NS influence the observed evolution. This limits the
ability of this test to verify the expected order of conver-
gence of SpEC as the observed convergence order depends
on the unresolved dynamics at the stellar surface. This
fact is evidenced by finding different convergence orders
when including or excluding the NS surface from the re-
gion in which we compute the convergence order. Never-
theless such a test provides a basic sanity check for the
code and we include it here for this reason.

The initial star is a Γ = 2 polytrope with a total
gravitational mass of M∞ = 1.40M� and a radius of
8.1M�. The star is evolved with a Γ-law (Γ = 2) EOS.
To quantify the numerical error, we compare the den-
sity profile during the evolution with the initial density
profile obtained by solving the TOV equation, which can
be used as the exact reference solution. Our compari-
son is only meaningful in the case of the frozen gauge
condition described in Sec. B in which the TOV solu-
tion is stationary in the simulation frame. See App. B
for a more detailed discussion of the influence of the
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FIG. 12: L2 volume norm of the difference between the den-
sity profile during the simulation and the initial time slice
for a stable TOV star for six different resolutions. The inset
shows the error computed over the entire hydrodynamical do-
main (black circles) and restricted to the inner region of the
star with a radius < 5M� (orange diamonds) at t = 1000M�
as a function of the number of grid points used N .

gauge. Employing this gauge, the density profile should
stay close to the initial configuration. In particular, we
compute log10 ‖ρ(t) − ρ(t = 0)‖2, where the L2-norm is
either computed within the entire domain or computed
inside the central region of the star, which we define
here as R < 5M�. Figure 12 summarizes our results.
The main plot shows the time evolution of the error
log10 ‖ρ(t) − ρ(t = 0)‖2 computed over the entire star.
The overall error clearly decreases with increasing reso-
lution.

The inset of Fig. 12 shows errors at t = 1000M� for the
entire domain (black circles) and inner region (orange di-
amonds) as a function of the number of grid points used.
Theoretically, our finite volume method is limited to sec-
ond order because of the choice of using flux values at face
centers for the averaged fluxes when evaluating the right-
hand-side values for the time stepper as well as not dis-
tinguishing between averaged values and reconstructed
values when computing the primitive variables from the
conserved ones. Due to the hybrid grid approach and dis-
continuities at the surface of the star, a single expected
convergence order is difficult to define. We observe that,
triggered by the artificial atmosphere, the density profile
already deviates at early times t ≈ 50M� from the ex-
act solution. Integrating the error over the entire star,
we observe a convergence order of ≈ 1.75 (black dashed
line). In fact we cannot expect to obtain high order or
spectral convergence near the surface of the NS, since
the hydrodynamical variables are not differentiable. Re-
stricting the convergence computation to the inner re-
gion of the star, we observe a convergence order around
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≈ 2.55. We have verified that the observed convergence
order does not change when the atmosphere density is
varied by an order of magnitude. There is no obvious
reason for observing a convergence order higher than 2.
A possible reason is the fact that the spatial WENO re-
construction is of higher order than the overall scheme.
For a system that is stationary and is very smooth in
some regions, the error in the spatially integrated fluxes
and the error incurred during inversion (which are both
only second order convergent) is small compared to the
error incurred during reconstruction of cell averaged data
to cell boundaries (which is fifth order convergent). De-
pending onwhich error dominates the error budget any
convergence order between 2 and 5 is possible. Overcon-
vergence is also typically observed if the resolution is not
yet in the convergent regime. However, in Fig. 12, we
observe a convergence order of 2.55 over a large range
of resolutions, which makes this explanation less likely.
Our analysis shows that when considering the whole do-
main, the dominant error comes from the surface of the
NS, but the error stays localized and does not spoil the
convergence in the inner region of the star.

Appendix B: Stellar collapse to a black hole in the
generalized harmonic formulation

In this appendix, we address the general problem of
simulating the collapse of a single NS to a BH in the
generalized harmonic formulation used by SpEC as in-
vestigated in [129]. The methods presented here are a
prerequisite for following the postmerger evolution to BH
formation and ringdown. We demonstrate convergence
and accuracy for nonrotating, and uniformly rotating test
cases.

1. Initial conditions

We evolve three cases chosen from Baiotti et al. [130,
131]: a TOV case, and two uniformly rotating cases.
The initial stars are modeled by a Γ = 2 polytrope and
evolved with a Γ-law (Γ = 2) EOS. Rotating equilibria
are generated using the code of [132, 133]. The parame-
ters specifying the cases are listed in Table II.

Truncation error alone will cause an unstable stellar
equilibrium to evolve either to a stable equilibrium state
or to collapse. In order to demonstrate convergence, we
prefer to induce a resolved evolution toward gravitational
collapse to a BH. We therefore deplete the fluid pressure
by a constant factor fd. A pressure depletion can be
thought of as a change in the one-parameter EOS P (ρ0)
used to construct the equilibrium.

In order to avoid violating the constraint equations at
the initial time, this must be done carefully. Fortunately,
the Hamiltonian and momentum constraints depend on
the matter distribution only through the conserved vari-
ables E and Si, defined in Sec. II A. If the primitive

Case M∞ M0 ρ0,central Riso rp/e

D0 1.636 1.770 3.325×10−3 7.54 1.0

D2 1.728 1.913 3.189×10−3 8.21 0.85

D4 1.861 2.059 3.116×10−3 9.65 0.65

TABLE II: Cases evolved in this study. All units are given
in terms of solar masses. M∞ is the ADM (gravitational
mass), M0 is the baryonic mass, ρ0,central is the maximum
baryon density of the configuration, Riso is the coordinate
radius in isotropic coordinates, and rp/e is the ratio of polar
to equatorial coordinate radii.

variables are adjusted but E and Si are unchanged, the
constraints will be unaffected. For a rotating star, there
are two constraint source variables (E and Sφ or S2) and
two independent fluid variables (density and rotational
velocity). This, suggests the following recipe:

1. Construct a constraint-satisfying equilibrium for
the EOS P = P0(ρ0), he = he0(ρ0).

2. Take for one’s actual EOS P = fdP0(ρ0), he =
1 + fd[h

e
0(ρ) − 1]. Since this is the EOS actually

used, one may prefer to think that step 1 uses a
pressure-enhanced EOS.

3. At each point, re-solve for ρ0 so that E and Si are
the same as before.

For a perfect fluid

E/
√
g = ρ0h

eW 2 − P , (B1)

Si/
√
g = heWρ0ui, (B2)

where W is the Lorentz factor.
One eliminates W using

W 2 =
E/
√
g + P

ρ0he
. (B3)

The new density is obtained by solving for the root of
the 1D equation

S2 = (E +
√
gP )[E +

√
g(P − ρhe)]. (B4)

Hence, one solves for ρ0 using Eq. (B4) and uses this
to find the new rotation rate via Eq. (B3).

2. Gauge conditions and dynamics

We investigated a series of five different gauge con-
ditions in order to study the coordinate dynamics dur-
ing gravitational collapse and attempt to determine what
condition leads to the most robust simulation of BH for-
mation. All simulations start from the same gauge, set
by the initial conditions, but we have the option of transi-
tioning to another gauge, as described in Sec. II D, during
the simulation. The gauge conditions are denoted
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FIG. 13: Evolution of the maximum of the 3-volume element,√
g, (top panel) and minimum of the lapse, α, (bottom panel)

for the TOV case D0.

Frozen for a frozen gauge Hα(t) = H initial
α ;

Harm for transition to a pure harmonic gauge Hα = 0;

Full for transition to the damped harmonic gauge given
by Eq. (10);

Shift, which transitions to a gauge where only the spa-
tial components of Eq. (10) are imposed;

Slice, which only imposes the damped harmonic condi-
tion on the t component of Eq. (10).

In all cases but the frozen gauge, we transition away from
the initial gauge using the rolloff function Eq. (9) choos-
ing a value for ∆T = 10.0M�. This results in the H initial

α

contribution being driven to zero within roundoff preci-
sion by t = 30.0M�. For the shift only, slicing only, and
fully damped harmonic gauge conditions, we transition
to (“roll on”) the new gauge with ∆T = 25.0M�, which
is about half of the time to BH formation, so that our
damped harmonic gauge condition has fully “kicked in”
by the time of BH formation.

We will begin our discussion with results for D0 and
since all cases display a similar behavior, we only point
out differences between cases where appropriate.

The first observation is that the evolution of the cen-
tral baryon density during the collapse simulations before
AH formation proceeds differently for the different gauge

choices. Although the proper time for the central density
to reach any value is gauge-independent, the gauge choice
affects the evolution of the lapse α as seen in Fig. 13,
and therefore the central density growth curve as a func-
tion of coordinate time. This observation shows that we
can expect different gauge choices to affect the dynam-
ics of AH formation since more rapid evolution is harder
for the code to resolve when the flow of time, given by
the lapse, differs strongly between different regions of the
simulation domain. This eventually leads to steep spatial
gradients as different fluid regions evolve apart from each
other.

Fig. 13 summarizes the dynamics of case D0 as a func-
tion of gauge choice. The top panel shows the maximum
of the spatial volume element,

√
g. This quantity de-

termines how much physical volume is represented per
unit of coordinate volume. Thus the larger the value of√
g is, the lower is the effective resolution, since a larger

amount of physical volume is represented by a unit of co-
ordinate volume. For a well resolved simulation,

√
g must

not increase drastically. Otherwise, the coordinate evo-
lution is de-resolving the simulation (effectively the grid
is being fatally stretched out and distorted in physical
space). One can see in Fig. 13 that this grid stretching is
exactly what happens during collapse in pure harmonic
and frozen gauges. The damped harmonic gauge is de-
signed to dynamically damp log(

√
g/α) to zero, and thus

drive
√
g/α to order unity. This can be understood by

looking at the evolution of the lapse function in the bot-
tom panel of Fig. 13. It is interesting to note that the
damped harmonic shift condition exhibits a lapse evolu-
tion similar to harmonic or frozen gauge, but a distinct
evolution for

√
g. Imposing the damped harmonic condi-

tion on the t component (the Slice gauge choice) leads to
an evolution of max(

√
g) and min (α) qualitatively simi-

lar to that produced by the damped harmonic condition.
In general, we find that the damping of the coordinate
dynamics imposed by the Full, Shift or Slice condition is
enough to prevent the divergence of the volume element
as the BH forms for case D0, and similar (not shown in
the paper) for the rotation cases.

In practice we find that the damped harmonic gauge
leads to the most robust BH formation simulations. Be-
cause of this, we use it in our NSNS simulations when the
merged object is about to collapse to a BH, yet use har-
monic gauge during the earlier phase since it yields faster
simulations as described in Section II D. For the D0 case,
an AH is first found at coordinate time t = 48M� for the
evolution in damped harmonic gauge. At coordinate time
t = 50M�, after the AH has been found successfully a
total of 8 times, the collapse evolution terminates. At
this point, enough information is available to properly
excise the BH and initialize the ringdown simulation. At
the time of AH formation, the constraint violation has in-
creased only by a factor of 10 in damped harmonic gauge.
In contrast, by the time the constraints have increased
by the same factor in the harmonic and frozen gauge
runs, an AH has yet to be found and the code eventually
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FIG. 14: L2 norm of the normalized generalized harmonic
constraints for the TOV case D0 (top) and the uniformly ro-
tating case D4 (bottom panel). Note that the maximum in
the constraints corresponds to the time of BH formation.

crashes due to large constraint violations. Imposing the
damped harmonic condition on the t component (Slice
choice) or the spatial component (Shift choice) is also
sufficient for following black hole formation. In our simu-
lations, when we impose the damped harmonic condition
only on the t component, the AH forms earlier in terms
of coordinate time, but at the time the AH is found, the
constraint violations have already increased by one order
of magnitude compared to the damped harmonic gauge.
When the damped harmonic shift condition is imposed,
the AH is found at later times, and the constraints are
at the same order as for the damped harmonic gauge.

Our finding that evolving in damped harmonic gauge
is advantageous to resolve BH formation extends and
confirms the results of Sorkin [134], who found that
the damped harmonic gauge is particularly robust when
forming BHs from a complex scalar field in axisymmetric
simulations.

3. Convergence of simulations

To study the convergence properties of SpEC for the sin-
gle star case studied here, we conduct three simulations of
the same physical setup using three different resolutions.
We use ∆x = 300 m, 250 m, and 200 m (∆x = 0.20M�,
0.17M�, and 0.14M�) in the finite volume grid. In the
spectral grid, we use Nr = 16, 18, 20 grid points in the
radial direction of each spherical shell and an angular res-

olution including up to ` = 10, 12, and 14 spherical har-
monic modes for all but the spherically symmetric case
D0 for which we do not increase angular resolution with
increasing Lev number. No spectral AMR is used for this
test before an AH is found to simplify the convergence
behavior. After an AH forms, we use AMR to adjust the
number of grid points in the radial direction Nr but not
the spherical harmonic multipole number `. This ensures
that the region around the AH is resolved well enough to
avoid code simulations failures do to large numerical er-
rors. In Figure 14 we show plots which demonstrate the
convergence of the simulations with resolution. We show
the L2 norm of the generalized harmonic constraints for
the TOV case D0 and the rotating case D4. Case D2
shows a similar behavior. The maximum in constraint
violation corresponds to the time of BH formation, af-
ter which we excise the interior of the BH from the nu-
merical domain. This reduces the amount of constraint
violation on the grid. Both plots show clear evidence of
convergence of the constraints with increasing resolution
level before BH formation. After BH formation, case
D0 and similarly cases D2 and D4 show an overall de-
crease of constraint violation with increasing resolution
level, yet the detailed evolution with time varies slightly
between resolution levels. Partially this is due to AMR
which occasionally choses identical resolution for indi-
vidual subdomains for different resolution levels. This
happens when the estimated truncation error in the af-
fected subdomains is just above/below the threshold for
derefinement/refinement for two resolution levels. We
also observe a pulse of non-convergent constraint viola-
tion in the outer spherical shells which eventually leaves
the simulation domain, yet contributes to the observed
constraint violation. Case D4 shows a much stronger
non-convergent behavior for Lev2 for which we unfortu-
nately are not able to provide a simple explanation.

4. Gravitational Waveforms

Finally we discuss briefly the GWs emitted from the
collapse of our single NS cases. As pointed out in,
e.g., [135–138] the GWs emitted during the collapse of
a rotating NS have a particular simple structure con-
sisting of a precursor-burst-ringdown pattern. We find
this characteristic structure in our simulations. See Fig-
ure 15 for visualization of the (2,0)-mode of Ψ4 for the
D4 case. In addition to our results, we present the wave-
form of [139] for the same case. As for the comparison of
the NSNS waveform in Sec. IV C, Ref. [139] uses the BAM
code. The extraction radii are slightly different between
the waveforms, while our waveforms are extracted at a
fixed coordinate radius of r = 259M�, the BAM waveform
is extracted at r = 250M�. However, the main difference
is caused by the artificial pressure perturbation. Here,
we perturb the NS according to the discussion in Ap-
pendix B 1 and set fd = 0.9 for a pressure depletion of
10%. In [139], the pressure is simply decreased by 0.5%.
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FIG. 15: Gravitational wave emitted during the collapse of
the uniformly rotating NS (case D4). We show different reso-
lutions and compare our waveform with the published results
of [139]. The BAM waveform of [139] is shifted in time such
that amplitude maxima coincide.

Although the ansatz of [139] does not ensure that the
constraint equations are satisfied on the initial slice, the
pressure perturbation is smaller than in our setup. This
explains differences in the early part of the waveform at
times t . 350M�. In fact, this part of the waveform is
unphysical and solely caused by the perturbation of the
rotating NS. After t = 350M�, the SpEC and BAM wave-
forms agree well and the maximum amplitude difference
is . 2× 10−5.

The results presented in these appendices show that
SpEC is well suited to study the collapse of a NS into
a BH. This is of great importance since in most realistic
astrophysical scenarios, the merger remnant formed after
the merger of two NSs will eventually collapse to a BH
either on a dynamical or secular timescale, depending on
its mass and on the nuclear EOS.
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B. Brügmann, Phys. Rev. D 86, 044030 (2012).

[15] J. S. Read, C. Markakis, M. Shibata, K. Uryū, J. D. E.
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lor, Phys. Rev. D 87, 024009 (2013).

[47] A. H. Mroue, M. A. Scheel, B. Szilagyi, H. P. Pfeiffer,
M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace,
S. Ossokine, N. W. Taylor, et al., Phys. Rev. Lett. 111,
241104 (2013).

[48] J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A.
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B. Szilágyi, G. Lovelace, N. W. Taylor, and S. A. Teukol-
sky, Class. Quantum Grav. 30, 115001 (2013).

[65] S. Ossokine, L. E. Kidder, and H. P. Pfeiffer, Phys. Rev.
D 88, 084031 (2013).

[66] F. Foucart, M. B. Deaton, M. D. Duez, L. E. Kid-
der, I. MacDonald, C. D. Ott, H. P. Pfeiffer, M. A.
Scheel, B. Szilagyi, and S. A. Teukolsky, Phys. Rev. D
87, 084006 (2013).

[67] C. D. Muhlberger, F. H. Nouri, M. D. Duez, F. Foucart,
L. E. Kidder, et al., Phys. Rev. D 90, 104014 (2014).

[68] F. Foucart, E. O’Connor, L. Roberts, M. D. Duez,
R. Haas, L. E. Kidder, C. D. Ott, H. P. Pfeiffer, M. A.
Scheel, and B. Szilagyi, Phys. Rev. D 91, 124021 (2015).

[69] X.-D. Liu, S. Osher, and T. Chan, J. Comput. Phys.
115, 200 (1994).

[70] G.-S. Jiang and C.-W. Shu, J. Comput. Phys. 126, 202
(1996).

[71] As described in [67], instead of adding a fixed ε = 10−6

to each smoothness indicator β, we instead add ε (1 +∑
i yi) with ε = 10−17.

[72] B. v. L. A. Harten, P. D. Lax, SIAM Rev. 25, 35 (1983).
[73] J. M. Hyman, Tech. Rep. COO-3077-139, ERDA Math-

ematics and Computing Laboratory, Courant Institute
of Mathematical Sciences, New York University (1976).

[74] J. P. Boyd, J. Comput. Phys. 103, 243 (1992).
[75] A. Tchekhovskoy, J. C. McKinney, and R. Narayan,

Mon. Not. Roy. Astr. Soc. 379, 469 (2007).
[76] V. Springel, Mon. Not. Roy. Astr. Soc. 401, 791 (2010).
[77] J. W. Wadsley, G. Veeravalli, and H. M. P. Couchman,

Mon. Not. Roy. Astr. Soc. 387, 427 (2008).
[78] F. Foucart, M. D. Duez, L. E. Kidder, and S. A. Teukol-

sky, Phys. Rev. D 83, 024005 (2011).
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[126] F. Pérez and B. E. Granger, Comput. Sci. Eng. 9, 21

(2007).
[127] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith,

M. Miller, B. J. Whitlock, and N. Max, in Proceedings
of IEEE Visualization 2005 (2005), pp. 190–198.

[128] VisIt, a free interactive parallel visualization and
graphical analysis tool, https://wci.llnl.gov/codes/
visit/.

[129] J. D. Kaplan, Ph.D. thesis, California Institute of Tech-
nology (2014), URL http://thesis.library.caltech.

edu/7912/.
[130] L. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rez-
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