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We present cosmological-scale numerical simulations of an evolving universe in full general rela-
tivity (GR) and introduce a new numerical tool, CosmoGRaPH, which employs the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formalism on a 3-dimensional grid. Using CosmoGRaPH, we
calculate the effect of an inhomogeneous matter distribution on the evolution of a spacetime. We
also present the results of a set of standard stability tests to demonstrate the robustness of our
simulations.

I. INTRODUCTION

Current cosmological work typically relies on a per-
turbative approach or a Newtonian-gravity approxima-
tion [1, 2]. Although such approximate methods have
led to very precise simulations, as we acquire and an-
ticipate sub-percent-level precision measurements of the
structure in and of the present-day universe, more ac-
curate simulations and therefore more accurate methods
are needed. This is not only to provide more accurate
results, but also to yield insights into physical processes
not previously appreciated.

In this paper we present a numerical implementation of
the fully general-relativistic BSSN formalism for study-
ing gravitational systems [3, 4]. This formalism is most
often applied in regimes of strong gravity – compact ob-
ject dynamics. However, it has also been applied to cos-
mological problems in the early universe, such as critical
collapse in a radiation fluid [5, 6], black hole lattices (eg.
[7]), and more (for a recent review, see [8]). Here we
examine the performance of the BSSN formalism in the
context of a matter-dominated cosmological spacetime,
and draw comparisons between FLRW spacetimes and
perturbed FLRW spacetimes.

The equations we evolve are fully nonlinear parame-
terizations of GR, and therefore formidable to work with
analytically – one reason approximations are commonly
made. Nevertheless, the nonlinear terms are few enough
that, depending on gauge choice, numerically integrat-
ing the full unconstrained Einstein equations does not
require significantly more computational resources than
working in a linearized gravity regime. In this paper we
make the case that nonlinear gravitational effects can be
taken into account in cosmological simulations using such
a formalism, studying whether a fully unconstrained,
general relativistic model of a matter-dominated inho-
mogeneous universe is consistent with FLRW approxi-
mations.

Although the system that we study does not depend
on an averaging scheme or background solution, there are
several assumptions we make in order to simplify numer-
ical integration. The most significant of these are that
we use a pressureless fluid with zero initial coordinate ve-
locity, limiting the dynamics we can probe in the matter

sector; the simulation contains a short-wavelength cutoff
due to finite available resolution; and the system contains
a long-wavelength cutoff due to periodic boundary con-
ditions. Here we examine a numerical spacetime beyond
the FLRW approximation in synchronous gauge subject
to these constraints, obtaining a full nonlinear solution
in a cosmological context. To our knowledge, this is the
first time that such a formalism has been applied to an
unconstrained, inhomogeneous, 3+1-dimensional cosmo-
logical spacetime with a pressureless fluid.

In this work we first describe a simple way to determine
initial conditions for a universe containing matter and a
cosmological constant term. We then numerically evolve
a system described by these initial conditions, using a
mildly modified version of the standard BSSN equations.
We discuss the subsequent evolution of the system, lim-
itations we encounter, and some potential directions for
future work.

A. The BSSN Formalism

The BSSN equations are derived from the original
ADM formalism [9] of GR, and provide a numerically
stable scheme for evolving Einstein’s equations. (For a
full textbook treatment, see [10].) In this formulation,
the metric is written as

gµν =

(
−α2 + γlkβ

lβk βi
βj γij

)
, (1)

where α and βi are referred to as the ‘lapse’ and the ‘shift’
respectively. The BSSN equations evolve the 3-metric for
a particular gauge choice, along with the extrinsic curva-
ture Kij . The metric is rescaled by a conformal factor,
γij ≡ e4φγ̄ij , with det(γ̄ij) = 1. The extrinsic curvature
is decomposed into a trace, K, and a conformally related
trace-free part, Āij , whose indices are raised and lowered
by the conformal metric γ̄ij ;

Kij = e4φĀij +
1

3
γijK. (2)
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The full dynamical system is

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i (3)

∂tγ̄ij = −2αĀij + βk∂kγ̄ij

+γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2

3
γ̄ij∂kβ

k (4)

∂tK = −γijDjDiα+ α(ĀijĀ
ij +

1

3
K2)

+4πα(ρ+ S) + βi∂iK (5)

∂tĀij = e−4φ(−(DiDjα) + α(Rij − 8πSij))
TF

+α(KĀij − 2ĀilĀ
l
j) + βk∂kĀij

+Āik∂jβ
k + Ākj∂iβ

k − 2

3
Āij∂kβ

k . (6)

The source terms written in terms of the stress-energy
tensor Tµν are

ρ = nµnνT
µν (7)

Si = −γiµnνTµν (8)

Sij = γiµγjνT
µν , (9)

where nµ = (−α,~0) and S = γijSij .
Our software, the Cosmological General Relativis-

tic and Perfect-Fluid Hydrodynamics (CosmoGRaPH)
code, allows for an arbitrary lapse and shift. How-
ever, the work we present here largely makes use of syn-
chronous gauge, or geodesic slicing. In this gauge, the
lapse is a fixed constant (α = 1) and there is no shift
(βi = 0). With this choice, the evolution equations for
the metric reduce to

∂tφ = −1

6
K (10)

∂tγ̄ij = −2Āij (11)

∂tK = ĀijĀ
ij +

1

3
K2 + 4π(ρ+ S) + βi∂iK (12)

∂tĀij = e−4φ(Rij − 8πSij)
TF +KĀij − 2ĀilĀ

l
j . (13)

For a flat FLRW solution to Einstein’s equations,
the BSSN variables can be directly translated to the
FLRW metric functions. The FLRW spatial metric is
γij = a2δij , meaning γ = det γij = a6. Inserting this
relationship into the BSSN equations and applying the
gauge choice will give us a translation between BSSN
and FLRW parameters: H ∼ − 1

3K and a ∼ γ1/6 = e2φ.
These will be useful for computing initial conditions, and
for making comparisons with standard results.

In the BSSN formalism, auxiliary conformal connec-
tion variables,

Γ̄i ≡ γ̄jkΓ̄ijk , (14)

with Γ̄ijk = γ̄ilΓ̄
l
jk, are evolved simultaneously with the

metric functions. These are used to eliminate terms with
mixed derivatives when calculating the Ricci tensor. One
writes

Rij = R̄ij +Rφij (15)

where

R̄ij ≡ −
1

2
γ̄lm∂m∂lγ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k (16)

+γ̄lm
(

2Γ̄kl(iΓ̄j)km + Γ̄kimΓ̄klj

)
and

Rφij ≡ −2D̄iD̄jφ− 2γ̄ijD̄
2φ+ 4D̄iφD̄jφ− 4γ̄ij

(
D̄φ
)2
,

(17)
where D̄ is the covariant derivative associated with γ̄ij .

The equation of motion for Γ̄i is

∂tΓ̄
i = 2

(
Γ̄ijkĀ

jk − 2

3
γ̄ij∂jK − 8πγ̄ijSj + 6Āij∂jφ

)
.

(18)
While it might seem odd that we evolve so many (seem-
ingly redundant) parameters, this strategy helps provide
numerical stability in the BSSN framework. By evolving
the metric coefficients, extrinsic curvature and connec-
tions separately, we can check for consistency throughout
the simulations. These constraints are referred to as the
Hamiltonian and momentum constraints, and should be
obeyed on spacetime slices both initially and throughout
the simulation. In terms of BSSN variables the Hamilto-
nian and momentum constraints are respectively

H ≡ γ̄ijD̄iD̄je
φ − eφ

8
R̄+

e5φ

8
ÃijÃ

ij − e5φ

12
K2 + 2πe5φρ

= 0 (19)

and

Mi ≡ D̄j(e
6φÃij)− 2

3
e6φD̄iK − 8πe10φSi = 0 . (20)

In order to quantify the amount of constraint violation
relative to the energy scales involved in the problem, we
compare the calculated constraint violation to the root
sum of squares of the individual terms in each respective
constraint equation - the “scale” of the constraint. We
label these two denominators [H] and [M], with M =
|Mi|.

Alongside the metric, we evolve a pressureless fluid de-
scribing the matter content of the universe. Our code
was written to utilize a flux-conservative form of the rel-
ativistic hydrodynamic equations [11]; however, here we
are primarily interested in results for a w = 0 cosmologi-
cal fluid with rest-mass density ρ0 with no initial velocity
component. The equation of motion for the matter fluid
in the absence of any initial velocity is then a simple con-
servation law, allowing us to optimize the fluid code to
model a static source,

∂tD̃ = ∂t(γ
1/2ρ0) = 0. (21)

The contributions of the matter components to the source
terms are then ρ = ρ0 + ρΛ, Si = 0, Sij = −γijρΛ, and
S = −3ρΛ.
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We fix physical scales by setting our grid side length to
L = nH−1

I = N∆x, where n is an arbitrary fraction and
HI is the Hubble scale of an FLRW solution on the initial
slice. Combining this with the number of points per grid
side, N , allows us to determine the grid spacing ∆x. In
programming units, we work in units of the Hubble scale
of an analogous FLRW solution at the time the initial
slice is set. This also fixes the density of the FLRW
solution to be ρFLRW = (3/8π) (n/N)

2
.

As in almost all simulations, numerical inaccuracies
accumulate over time leading to substantial growth of
constraint violation at late times. In order to alleviate
this problem, we have included a diffusive term in the
evolution equations as suggested by [12], with varying
degrees of strength. These modifications take the form

∂tφ = ...+ 0.1cH∆tH (22)

∂tγ̄ij = ...+ 0.5cH γ̄ij∆tH (23)

∂tÃij = ...− 1.0cHÃij∆tH. (24)

These additional terms do suppress constraint viola-
tion at some level, however late-time growth remains
large, ostensibly due to the matter coupling. Although
we do not explore this idea thoroughly, we do present
some preliminary analysis in Sec. III B. Because of this
instability, and because we are interested in percent-level
effects, we generally restrict ourselves to timescales on
which H/[H] . 10−4, and M/[M] . 10−2.

To describe the statistical behavior of fields as they
evolve, we commonly compute volume-weighted (confor-
mal) averages

f̄ ≡
∫

dx
√
γf∫

dx
√
γ
'
∑
xi
e6φifi∑

xi
e6φi

(25)

and volume-weighted standard deviations

σf ≡

√
N

N − 1

∑
xi
e6φ(xi)(f(xi)− f̄)2∑

xi
e6φ(xi)

(26)

of various fields (f) on spatial slices.

II. COSMOLOGICAL INITIAL CONDITIONS

The initial surface from which we evolve should satisfy
the Hamiltonian and momentum constraint equations.
In the case of an FLRW solution, the Hamiltonian equa-
tion is one of the Friedman equations, and all terms in
the momentum constraint equation are zero. We are in-
terested in solutions similar to this, but we also wish to
examine a universe with non-uniform matter density. We
do not attempt to specify a matter distribution that is
perfectly analogous to our universe, but instead restrict
ourselves to initial conditions that are easier to explore
in the context of the BSSN formalism.

The Hamiltonian and momentum constraint equations
by themselves do not uniquely specify a metric; more

degrees of freedom exist than can be specified by the
constraint equations. Additionally, even when using
choices that simplify the equations (such as in the con-
formal transverse-traceless decomposition) the equations
can still be difficult to solve. To this end, we relax the re-
quirement that we need to specify an exact matter source
for initial conditions, instead specifying the conformal
factor φ itself. We specify a slice with constant extrinsic
curvature whose value is approximately determined by
the average matter density, and fluctuations in density
and φ set by a power spectrum. At large scales (small
k) we allow the power spectrum to scale as Pk ∼ k1, and
at small scales (large k) as Pk ∼ k−3 [13]. Given a peak
scale k∗ and peak amplitude at this scale P∗, we use the
power spectrum

Pk =
4P∗

3

k/k∗

1 + 1
3 (k/k∗)4

. (27)

In order to set these initial conditions, we decompose
ρ into two pieces, ρK sourcing the trace of the extrin-
sic curvature K and ρψ sourcing the conformal factor
ψ ≡ eφ, so the total density is ρ = ρK + ρψ. We also
impose that the matter is at rest, so Si = 0. We use
a conformally flat metric and set the trace-free part of
the extrinsic curvature to zero, leaving us to solve two
simpler equations:

∇2ψ = −2πψ5ρψ (28)

K = −
√

24πρK . (29)

The nonlinear ψ-equation is difficult to solve for a fixed
matter source ρψ, with attempted relaxation and itera-
tive solution methods tending to find the ψ = 0 solution.
We instead opt to specify initial conditions by setting

ψ directly, with a power spectrum Pψk = k−4Pk. We
set the monopole term to unity, and subsequently set
ρψ = ∇2ψ/(−2πψ5). A power spectrum realization can
be seen in Fig. 1.

1 5 10 50 100
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5.×10-7
1.×10-6

5.×10-6
1.×10-5

5.×10-5
1.×10-4

k

P
ρ
(k
)

FIG. 1: Initial matter power spectrum (solid) for an N3 =
1283 grid, including lines (dashed) indicating k and k−3 scal-
ings. The power spectrum is cut at k = 50∆k.

We note that because we cannot directly specify that
ρψ has zero mean, the extrinsic curvature K will not
necessarily be set by the average of the total density ρ̄.
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We generate a Gaussian random field using the matter
power spectrum in Eq. 27, specifying a unitary monopole.
The field ρψ is then calculated using finite differencing
from Eq. 28. When the Hamiltonian constraint is sub-
sequently calculated, this means the predominant error
should only be due to finite precision. The matter field is
constructed as ρ = ψ5ρψ + ρK + ρΛ. Lastly, the trace of

the extrinsic curvature is set to K = −
√

24π(ρK + ρΛ).

III. NUMERICAL METHOD

A. Code Structure

Here we present details of the code used to evolve
the BSSN equations. The engine of the code is written
in c++ and employs several c++11 standard features,
along with OpenMP [14] for parallelization, FFTW [15]
for calculating power spectra and creating initial condi-
tions, and the HDF5 file format [16] for storing samples
of data. The simulations presented here are performed
on resources available at Kenyon College [17] and the
High Performance Computing System at Case Western
Reserve, on single nodes that range between 8-64 cores
and 64-512 GB of RAM.

The code is divided into different classes each of which
evolves a different component. There are two main
classes: one that solves the gravitational equations and
one that evolves the hydrodynamical equations that de-
fine the matter content. There are three additional
classes that implement the static w = 0 perfect fluid
examined here, a class that defines a cosmological con-
stant, and another that can integrate the pure Friedmann
equations for a perfect fluid.

The most important of these is the class that evolves
the gravitational equations; this “BSSN class” provides
functionality to evolve the BSSN fields in the presence
of an arbitrary matter source using a standard fourth-
order Runge-Kutta integrator, with four memory regis-
ters per gravitational field and an additional register for
storing source terms. We informally note that this code
runs at a speed comparable to ETK/CACTUS [18, 19],
but seems to consume roughly an order of magnitude
less memory. The BSSN class also includes routines for
performing computations such as calculating average mo-
mentum and Hamiltonian constraint violation. The re-
sults we present are almost exclusively in synchronous
gauge, and as such the code has been optimized to take
advantage of its simplicity. However, the BSSN class is
still capable of evolving the metric in an arbitrary gauge.

The other major class is the “Hydrodynamics class,”
which allows us to evolve a perfect fluid with a cosmolog-
ical equation of state. This class has been simplified for
a static w = 0 fluid, with further work needed to imple-
ment an arbitrary equation of state. As either an N-body
code or special lattice methods are required to evolve a
pressureless fluid with a non-zero velocity component, we
constrain ourselves to work with initial conditions where

the fluid is static. In the chosen gauge, the equations
of motion simplify such that the conserved fluid density
does not evolve, ∂tD̃ = 0.

Finite-difference stencils are implemented up to eighth-
order, as numerical stability and accuracy is highly de-
pendent on structure at smaller scales, as demonstrated
below. Unless otherwise specified, the stencils used are
generally O(∆x6).

The simulations have periodic boundary conditions,
imposed at the level of an array indexing function. How-
ever, alternate boundary conditions can be implemented.
With our code we expect to be able to run for an arbitrar-
ily large grid—although it is currently limited to single-
node operation. We have been able to run at resolutions
up to N3 = 7683 on a single 512 GB RAM node.

B. Standard Code Tests: Analytic Cases

We present several code tests where we evaluate sev-
eral known, analytic solutions, intended to examine the
behavior of fields that will dominate the dynamics in cos-
mological scenarios. The intention is to examine the va-
lidity of results presented, and to explore in what regimes
the code will produce accurate and interesting results.

We begin with two standard “Apples with Apples”
tests [20], the robust stability test and linearized wave
test.

1. Robust Stability Test

The robust stability test examines the growth of small
amounts of numerical error by looking at the evolution
of noise around a Minkowski background in a simulation
with no matter content. Fig. 2 displays this deviation
from Minkowski space with different resolutions. In this
test, we use an asymmetric box in which there are only 6
points in the y- and z-directions and a variable number of
points in the x-direction. In [20], the number of points in
the x-direction is parameterized by ρAwA (the subscript
here is added to avoid confusion with the density param-
eter) such that the number of points in the x-direction is
Nx = 50ρAwA.

2. Linearized Wave Test

The linearized wave test examines the behavior of lin-
ear metric fluctuations after a large number of box light-
crossing times. Since we have a plane wave, we work
with the asymmetric box of the previous section; where
Ny = Nz = 6 and Nx = 50ρAwA. Spacetime is initialized
with plane wave traveling in the x-direction—the direc-
tion with the largest resolution—with an amplitude small
enough that nonlinear effects are at the level of roundoff
error. Fig. 3 shows the difference between the numeri-



5

0.0 0.2 0.4 0.6 0.8 1.0

1.×10-11

5.×10-11

1.×10-10

5.×10-10

t

M
ax

(γ
xx
-
1)

0.0 0.2 0.4 0.6 0.8 1.0
1.×10-7

5.×10-7

1.×10-6

5.×10-6

1.×10-5

t

M
ax

(ℋ
)

FIG. 2: The top panel shows deviation from Minkowski
space versus time for varying ρAwA for one box crossing time.
Blue and orange curves (topmost) correspond to ρAwA = 1,
green (middle) to ρAwA = 2, and red (bottom) to ρAwA = 4.

Dashed lines include random fluctuations around D̃ = 0. The
orange curves include damping with cH = 1. At later times,
growth of deviations from Minkowski can be seen when noise
in the matter sector is included. The bottom panel shows the
maximum constrain violation vs time, with colors as in the
top figure. The matter coupling can be seen to introduce a
growing mode; the fixed error present in the static D̃ field will
source the metric continuously. The constraint damping term
helps diminish constraint violation short-term.

cal result of this wave compared to the expectation from
linearized gravity.

3. Black Hole Profile

To verify the validity of the code for fluctuations in the
conformal field φ and gauge fields, we examine an ana-
lytic black hole solution with a “trumpet” geometry [21]
in the ‘1 + log’ slicing. The solution is stable at remark-
ably low resolution, N3 = 323, and with second-order
finite-derivative stencils. After initializing our grid with
the solution, we see it relax slightly, and subsequently
remain stable. This solution is run in vacuum, using a
time-independent maximal slicing gauge condition for the
lapse, and hyperbolic Gamma driver shift condition [22].
At the outer boundary we näıvely apply fixed boundary
conditions. In the interior of the black hole the lapse
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FIG. 3: The top panel shows the analytic (blue, solid) and
numerical (red, dashed) solutions for the linear wave test after
1000 box crossing times for ρAwA = 4. The bottom panel
shows the difference between the two curves in the top panel,
scaled so differences are noticeable.

approaches zero, so the value of the conformal field φ is
set such that the derivatives of φ at nearby points will
be calculated to a good approximation. We plot the con-
formal field, φ, in the simulation and compare it to the
analytic black hole solution in Fig. 4.

FIG. 4: A cross section of the conformal field φ after a period
of relaxation, analytically (dashed green line) and numerically
(blue dots) for a black hole.
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4. FRW universe

We also examine the case of a homogeneous flat FLRW
universe. For this we simply choose geodesic slicing, or
synchronous gauge, with periodic boundary conditions
on a very small (N3 = 83) grid. Since there are no spa-
tial inhomogeneities in the simulation, spatial resolution
should not play a role in its validity. Indeed, Fig. 5 shows
that the software can reproduce FLRW cosmology to high
accuracy.
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FIG. 5: Deviation of FRW quantities from analytic solu-
tions for varying timesteps, and resulting fractional constraint
violation. The colors red, yellow, and green correspond to
timesteps ∆t = ∆x/10, ∆t = ∆x/20, and ∆t = ∆x/40 re-
spectively. Here ∆x = L/N = H−1

I /2N .

C. Cosmological Code Tests: Variation of
Parameters

To test our code in a cosmological regime, we define a
fiducial model and then vary physical and numerical pa-
rameters to test the stability and reliability of our sim-
ulations. The fiducial model has N3 = 1283 points on
each side; each side of the simulation is half the corre-
sponding FLRW Hubble scale, L = H−1

I /2. We em-
ploy O(∆x6) finite-derivative stencils, and ∆t = ∆x/10.
The initial conditions have a power spectrum cut at
kcutoff = 10/128 ∆k, peak frequency of k ∼ 7/128 ∆k,
and peak amplitude such that σρ/ρ ∼ 0.04. We note that
the resolution we have chosen corresponds to ∆x ∼ 16

MPc, somewhat close to the 11.5 MPc σ8 scale. How-
ever, even without the cut, the amplitude corresponds to
σρ/ρ ∼ 0.1. Thus a combination of the spectrum cutoff
and smaller spectrum amplitude result in relatively small
amplitude fluctuations compared to the measured value
σ8 ∼ 0.8 today [23]; thus we are studying a smoother
universe.

So that we have a method of comparison, we present
some baseline information about our fiducial model.
Fig. 6 shows how well our fiducial model satisfies the
physical constraints, Eqs. 19 and 20, and Fig. 7 shows
how inhomogeneities of the extrinsic curvature, σK/K̄,
are generated over the course of the simulation.

0.0 0.1 0.2 0.3 0.4 0.5
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10-7
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10-5

10-4
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ℋ
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ℋ
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0.0 0.1 0.2 0.3 0.4 0.5
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10-4

0.001

0.010

ϕ

ℳ
/[
ℳ

]

FIG. 6: We show the satisfaction of the constraints, Hamil-
tonian (left panel) and momentum (right panel), for our fidu-
cial model. The bold lines show the average value of the
constraint, the shaded regions envelop 68% of the points of
the grid and the dashed line shows the worst (most violation)
point.

1. Constraint Violation

Here we explore the effect of the constraint damping
terms from Eq. 22. Increasing the magnitude of cH helps
reduce the maximum amount of Hamiltonian constraint
violation, although it does not have much effect on the
overall growing mode. Fig. 8 shows the effect of this term
on level of Hamiltonian constraint violation and on the
generation of inhomogeneities of the extrinsic curvature,
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FIG. 7: The level of inhomogeneity in the extrinsic curvature,
σK/K̄ as a function of the average conformal factor, φ̄, for our
fiducial model.

K.

2. Varying the Resolution

Here we examine the effects of changing the resolu-
tion while keeping the same initial conditions (picking

initial conditions with identical amplitudes for ~k). We
see that the amount of constraint violation diminishes as
the resolution is increased, something expected due to
the increasing smoothness of the fields, making deriva-
tives more accurate. Fig. 9 shows that we see no qualita-
tive difference in the generation of inhomogeneities and
marginally better satisfaction of the Hamiltonian con-
straint, Eq. 19, as we increase the resolution of the sim-
ulations.

A more precise test of resolution variation can be seen
in Fig. 10. We should be able to predict how much
better the constraints can be satisfied as we increase
the resolution; specifically, as we double the number of
points on a side, we should see the ratio of errors be
O(∆x6)/O(∆x6/26) ∼ 26.

We have implemented a number of finite-differencing
stencils, seeing reduced error for higher-order stencils as
expected. The use of O(dx2) stencils in particular lead to
unacceptable growth of constraint violation in our sim-
ulations. We also tested changing the time resolution
∆t to check for convergence. The results presented here
agree with runs for ∆t an order of magnitude smaller.

3. Varying the Spectrum Cutoff

As a final technical test, we present results as the spec-
trum cutoff is varied. As the cutoff approaches smaller

|~k|, we see that the amplitude of fluctuations is signifi-
cantly diminished, as expected, when modes are removed.
The relative amount of constraint violation also dimin-
ishes as the fields become increasingly smooth. As the
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FIG. 8: We vary the value of cH in Eq. 22. The top panel
shows the effect of varying this parameter on the satisfaction
of the Hamiltonian constraint, Eq. 19, over time. The bottom
panel shows the level of Hamiltonian constraint violation as
we vary the same parameter. In both panels we take cH to
be 0 (green) and 40 (red). The bold lines show the average
value of the constraint, the shaded regions envelop 68% of the
points of the grid and the dashed line shows the worst (most
violation) point.

cutoff is raised, we see the opposite happen: structure
at increasingly small (and unresolvable) scales is created,
and constraint violation increases. The amount of con-
straint violation after an e-fold is a part in ten when
c = 40, and is of order a part in 1011 for c = 2.

This is an important test, specifically when compared
to the resolution test, Sec. III C 2, as it shows that we
have control over the finite differencing scheme; for ex-
ample, doubling the value of kcutoff resolves the same
physical modes as would halving the physical size of the
box (and keeping the resolution constant), or doubling
the resolution of the box. While the numerical strategy
differs for these three cases by many factors of ∆x, ∆t,
N , etc. we see excellent agreement in the results from our
code. We have demonstrated that these three situations
produce the same physical results and show that we are
using our software well within the regime of its validity.
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FIG. 9: We track the generation of inhomogeneities of the
extrinsic curvature, σK/K̄, (top panel) and the satisfaction of
the Hamiltonian constraint, Eq. 19, as we vary the resolution
of the simulation. In both plots the color scheme corresponds
to resolutions 643 (red), 1283 (fiducial, green), and 2563 (yel-
low). We see the behavior of σK/K̄ is stable and the amount
of constraint violation diminishes as resolution is increased.
The bold lines show the average value of the constraint, the
shaded regions envelop 68% of the points of the grid and the
dashed line shows the worst (most violation) point.

IV. RESULTS

Now that we have demonstrated the stability and relia-
bility of our simulations, we complement the main results
of these simulations as presented in [24]. We are primar-
ily interested in understanding how inhomogeneous mat-
ter generates local differences in the expansion rate. We
do this in two steps. First, we look to see if we gener-
ate fluctuations of the extrinsic curvature, σK/K̄, which,
in our gauge, is is the source for the conformal factor,
φ. Once this is established, we will run two tests to tell
whether or not this generation is an artifact of our scheme
or has a measure that shows local deviation from FLRW.

We compare the fiducial model to the correspond-
ing FLRW simulation with the same initial average ini-
tial density, ρ̄. The results are shown in Figs. 12 and
show that average quantities are very consistent with
those in the corresponding homogeneous FLRW universe.
Average parameters correspond very well with FLRW pa-
rameters for the w = 0 case we study here. However,

0.0 0.1 0.2 0.3 0.4 0.5
20

40

60

80

100

ϕ

M
ax

ℋ
N
/
M
ax

ℋ
2
N

FIG. 10: Sixth-order convergence can be seen as resolution
is varied. The ratio of errors ||H||∞ at two resolutions ∆x =
L/N and ∆x′ = L/(2N) for an O(∆x6) method should be
26 = 64, plotted as a blue line. Curves for N3 = 643 and
N3 = 1283 are shown.

0.0 0.1 0.2 0.3 0.4 0.5
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0.025

ϕ

-
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FIG. 11: The generation of inhomogeneities in the extrinsic
curvature, σK/K̄ as we vary kcutoff . The color scheme follows
kcut = c∆k, for c = 2, 4, 8, 10, 12, 14, 16, 20, 40, from blue to
red (bottom to top). Note that as we initialize more modes,
we are also increasing σρ/ρ̄.

we do begin to see small deviations from the FLRW ap-
proximation that are robust to resolution increase. The
significance of this result is on the order of the constraint
violation.

On the other hand, we always generate deviations from
homogeneity in the extrinsic curvature. We already pre-
sented this result for our fiducial model in Fig. 7. As the
simulation progresses we see significant local departures
from constant K.

Of course, we want to explore the relationship between
the growth of inhomogeneities of K with increasingly in-
homogeneous matter sources. Varying the amplitude has
a corresponding effect on the matter over-density (ana-
logue of σ8).

Now that we have established the existence of spatial
variations of the extrinsic curvature, K, we seek to ex-
plore the behavior of additonal measures associated with
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FIG. 12: Here we show how our fiducial model compares to
the numerical FRW models.

the spacetime. The first test is to see if there is a de-
parture from FLRW predictions for the proper lengths
of paths; in pure FLRW cosmology, the proper length of
any path will depend on its initial length and the scale
factor, aFLRW. Since we use synchronous gauge, it is a
good test to chose arbitrary paths and calculate the ra-
tio of the lengths of these paths as a function of time–if
they vary from the FLRW prediction, there is a clear de-
parture from the homogeneous model. We calculate the
length of paths by

S =

∫ ~x2

~x1

√
gijdxidxk (30)

between two arbitrary points, ~x1 and ~x2. Fig. 14 pa-
rameterizes the differences between our simulations and
the FLRW model for a large set of paths–the paths that
we chose are straight coordinate lines. We note that the
departures from FLRW are more significant for shorter
paths.

We also look at the amount of violation of the Killing
equation for translational FLRW Killing vectors. The
Killing equation reads,

∆µν = Dµkν +Dνkµ = 0 (31)

and has solutions kµ. In a flat FLRW universe,
the Killing vectors associated with translations are
(kµx , k

µ
y , k

µ
z ) = ((0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)). In an

inhomogeneous universe, the killing equation should not
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FIG. 13: The top panel shows variations in the extrinsic
curvature, σK/K̄, versus variations in σρ/ρ̄ over the course
of many runs. The initial σρ/ρ̄ for these runs were σρ/ρ̄ =
0.009, 0.0133, 0.019, 0.027, 0.038, 0.053, 0.076, and 0.107 from
bottom to top (blue to red). The bottom panel shows the
parametric dependence of σK/K̄ on σρ/ρ̄ at φ̄ = 0.5.

be perfectly satisfied. We look at the contracted killing
equation associated with translations in the i-direction,

∆i ≡ ∆µ
µ i = 2Dµk

µ
i = 2(Γ̄jij + 6∂iφ). (32)

We look at the growth of this quantity relative to the
timescale on which the metric evolves, K.

V. DISCUSSION

We have shown that non-linear GR effects are impor-
tant on sub-Hubble scales in the presence of inhomo-
geneities in the universe. Without assuming anything
about the dynamical system (e.g. not using symmetry to
simplify the dynamical GR equations) we have performed
a simulation of the universe that does not rely on a back-
ground or averaging procedure. Using this method we
generate FLRW behavior for homogeneous cosmologies
and see deviation from this for inhomogeneous ones. We
show that, even beginning with constant extrinsic curva-
ture, K, inhomogeneities will generate local fluctuations
in this parameter.
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FIG. 14: The top panel shows the ratio of the proper length
to the initial length of six sets of 27 paths in our simulation.
The color coding goes from paths of initial coordinate distance
of 4∆x (purple) to paths of initial coordinate distance 128∆x
(red) in spectral order. The bottom panel shows the same set
of paths, but compares the ratio of proper length to initial
proper length with the FLRW estimate.

Physical observables need to be addressed indepen-
dently. For example, the magnitude of the effect on a
Hubble diagram would require the integration of photon
geodesics during the simulation. We defer this, and other
observable tests, for future work.

As the dominant contribution to the BSSN equations
in an FLRW spacetime is simply the FLRW solution, it is
in principle possible to subtract the FLRW solution from
the BSSN equations, and evolve variables representing
differences between the FLRW solution and an inhomo-
geneous solution. Note that this does not constitute an
approximation: the equations are still fully relativistic
under this procedure. We do not explore this idea here,
however we may in future work.
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