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Horndeski’s theory of gravity is the most general scalar-tensor theory with a single scalar whose
equations of motion contain at most second-order derivatives. A subsector of Horndeski’s theory
known as “Fab Four” gravity allows for dynamical self-tuning of the quantum vacuum energy, and
therefore it has received particular attention in cosmology as a possible alternative to the ΛCDM
model. Here we study compact stars in Fab Four gravity, which includes as special cases general
relativity (“George”), Einstein-dilaton-Gauss-Bonnet gravity (“Ringo”), theories with a nonminimal
coupling with the Einstein tensor (“John”) and theories involving the double-dual of the Riemann
tensor (“Paul”). We generalize and extend previous results in theories of the John class and were
not able to find realistic compact stars in theories involving the Paul class.

PACS numbers: 04.50.Kd, 97.60.Jd

I. INTRODUCTION

The most recent cosmological observations are consist-
ent with standard cosmological models built on general
relativity (GR), but they imply the presence of a myster-
ious late-time acceleration phase. The late-time acceler-
ation can be interpreted as due to the existence of new
particle sectors beyond the Standard Model, or explained
by assuming that GR itself is modified on cosmological
scales. Modified gravity models differ widely in their
physical motivations, but many of them can be refor-
mulated in terms of scalar-tensor theories of gravitation,
i.e., they are mathematically equivalent to a gravitational
theory whose degrees of freedom are the metric gµν and
one or more scalar fields φ. Many of the simplest dark en-
ergy or modified gravity models – including the standard
ΛCDM model – are plagued by the cosmological constant
problem (i.e., the problem of fine-tuning the potentially
huge quantum vacuum energy against the small value
of the observed cosmological constant). However some
scalar-tensor theories allow for a “dynamical self-tuning
mechanism” in which the effects of the cosmological con-
stant may be compensated within the scalar field sector,
so that they do not appear in the metric, by relaxing the
assumptions of Weinberg’s no-go theorem [1]. Here we
will focus on one such model, called “Fab Four” gravity
in the literature, which is a special case of Horndeski’s
theory.
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A. Horndeski’s theory

Realistic models of dark energy or modified gravity
must at the very least pass the stringent experimental
constraints on deviations from GR [2, 3] and be the-
oretically viable. In particular, they must be free of
the so-called “Ostrogradski ghost” [4]. Several studies
led to the conclusion that the most general models with
a single additional scalar degree of freedom compatible
with these requirements correspond to the scalar-tensor
theory formulated by Horndeski about forty years ago,
whose equations of motion contain at most second-order
derivatives [5]. It was shown [6] that Horndeski’s theory
is equivalent to the generalization of a scalar field theory
with Galilean shift symmetry in flat spacetime to curved
spacetime [7], whose action reads

S =

5∑
i=2

∫
d4x
√
−gLi , (1)

where

L2 = G2 , (2a)

L3 = −G3�φ , (2b)

L4 = G4R+G4X

[
(�φ)2 − φ2

µν

]
, (2c)

L5 = G5Gµνφ
µν − G5X

6

[
(�φ)3 + 2φ3

µν − 3φ2
µν�φ

]
.

(2d)

Here gµν is the metric tensor, and g ≡ det(gµν) its de-
terminant. The Ricci scalar and Einstein tensor associ-
ated with gµν are denoted by R and Gµν , respectively.
The functions Gi = Gi(φ,X) depend only on the scalar
field φ and its kinetic energy X = −∂µφ∂µφ/2. We also
introduced the shorthand notations φµ...ν ≡ ∇µ . . .∇νφ,
φ2
µν ≡ φµνφµν , φ3

µν ≡ φµνφναφµα and �φ ≡ gµνφµν .
Special cases of Horndeski’s theory correspond to well-

studied models of dark energy and modified gravity, in-
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cluding quintessence [8, 9], k-essence [10], the Dvali-
Gabadadze-Porrati (DGP) model [11, 12], and f(R)
gravity [13–16]. However it is desirable to restrict the
large number of functional degrees of freedom of the ac-
tion (1) by additional theoretical or phenomenological
requirements. For example, it is desirable to restrict the
Horndeski action to models that allow for dynamical self-
tuning of the quantum vacuum energy. This requirement
leads to the Fab Four theory.

B. Fab Four theory

Starting from the Horndeski action (1), Charmousis et
al. [17, 18] considered homogeneous isotropic cosmolo-
gical models satisfying the following requirements:

1. The theory admits the Minkowski vacuum for any
value of the vacuum energy.

2. The Minkowski vacuum persists across any phase
transition where the vacuum energy changes in-
stantaneously by a finite amount.

3. The theory admits nontrivial cosmological evolu-
tion in the presence of matter.

These requirements lead to the Fab Four action

S =

∫
d4x
√
−g
(
LG[gµν , φ] + LM[gµν ,Ψ]

)
, (3)

where LM[gµν ,Ψ] is the Lagrangian for matter fields, col-
lectively represented by Ψ, and

LG[gµν , φ] = Lgeorge + Lringo + Ljohn + Lpaul , (4)

where

Lgeorge = Vgeorge(φ)R , (5a)

Lringo = Vringo(φ)RGB , (5b)

Ljohn = Vjohn(φ)Gµν∇µφ∇νφ , (5c)

Lpaul = Vpaul(φ)Pµναβ∇µφ∇αφ∇ν∇βφ . (5d)

Here

RGB ≡ RαβµνRαβµν − 4RµνRµν +R2 (6)

is the Gauss-Bonnet (GB) invariant, and the four po-
tentials Vgeorge(φ), Vringo(φ), Vjohn(φ) and Vpaul(φ) are
functions of the scalar field. The quantity

Pµναβ ≡ − 1
4δ
µνγδ
σλαβR

σλ
γδ , (7)

where

δµαργνβσδ =

∣∣∣∣∣∣∣∣
δµα δµβ δµγ δµδ
δνα δνβ δνγ δνδ
δρα δρβ δργ δρδ
δσα δσβ δσγ δσδ

∣∣∣∣∣∣∣∣ , (8)

is the double-dual of the Riemann tensor, which shares
the symmetries of the Riemann tensor and satisfies
∇µPµανβ = 0. We assume that gµν is the Jordan frame
metric, so that the matter fields Ψ do not couple directly
to the scalar field φ.

“George” reduces to GR and “Ringo” – the Einstein-
dilaton-Gauss-Bonnet (EdGB) term – becomes trivial in
four dimensions when the respective potentials are con-
stant. Compact objects in these theories (George and
Ringo) have been studied in detail in the existing literat-
ure. What is more crucial for self-tuning are the “John”
and “Paul” terms, which will be the main focus of this
paper.

The correspondence between the Horndeski Lagrangi-
ans (2) and the Fab Four Lagrangians (5) was presented
in [18], and we report it here for completeness:

G2 = 2V ′′john(φ)X2 − V (3)
Paul(φ)X3 + 6V ′′george(φ)X

+ 8V
(3)
ringo(φ)X2

(
3− ln(|X|)

)
, (9a)

G3 = 3V ′john(φ)X − 5

2
V ′′paul(φ)X2 + 3V ′george(φ)

+ 4V
(3)
ringo(φ)X

(
7− 3 ln(|X|)

)
, (9b)

G4 = Vjohn(φ)X − V ′paul(φ)X2 + Vgeorge(φ)

+ 4V ′′ringo(φ)X
(
2− ln(|X|)

)
, (9c)

G5 = −3Vpaul(φ)X − 4V ′ringo(φ) ln(|X|). (9d)

C. Cosmology and Black Holes in Fab Four Theory

Cosmological evolution in Fab Four gravity in the pres-
ence of ordinary matter and radiation has been exhaust-
ively investigated by Copeland et al. [19]. They demon-
strated that for a specific choice of the Fab Four poten-
tials in Eq. (5), even if the source is dominated by the
vacuum energy and there is no explicit matter fluid, the
cosmological evolution toward the self-tuned Minkowski
attractor can mimic the matter-dominated evolution cor-
responding to dark matter. Moreover, Refs. [20, 21]
demonstrated the existence of a self-tuned de Sitter (dS)
attractor for a certain nonlinear combination of the ca-
nonical kinetic term to the Fab Four. Refs. [22, 23]
presented a systematic derivation of the most general
subclass of Horndeski’s theory that can allow for a spa-
tially flat self-tuned dS vacuum. This new subclass of
Horndeski’s theory is expected to have a deep connec-
tion to the Fab Four theory, but it was derived in an
independent way and their relation remains unclear. A
specific form of John and Paul also appears in a proxy
theory to nonlinear massive gravity [24], but a close in-
spection of cosmological dynamics revealed that there is
no de Sitter attractor in this model [25].

A challenge to the Fab Four model is that self-tuning
has been verified only for homogeneous, isotropic cosmo-
logical backgrounds. The presence of stars and black
holes (BHs) in the Universe implies that self-tuning
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should still occur in the presence of local inhomogeneit-
ies of the spacetime, such as point masses or extended
self-gravitating bodies. Whether self-tuning occurs in in-
homogeneous spacetimes is a nontrivial question.

A first step towards answering this question is the in-
vestigation of BH solutions in Fab Four theory. Most
studies of BH solutions in Horndeski’s theory and Fab
Four gravity have focused on the shift-symmetric sub-
class of the theories. An influential work by Hui and
Nicolis [26] proved a BH no-hair theorem in Horndeski
gravity. The theorem makes the following assumptions:
(i) the spacetime is static and spherically symmetric; (ii)
the scalar field shares the same symmetries as the space-
time, i.e. φ = φ(r), where r is the radial coordinate; (iii)
the theory is shift-symmetric, i.e. it is invariant under
the transformation φ→ φ+ c, where c is a constant; (iv)
the spacetime is asymptotically flat.

Searches for hairy BH solutions followed two main
routes: they either looked for loopholes in the Hui-Nicolis
theorem, or relaxed the assumptions behind the theorem.
All BH solutions found so far in Horndeski’s theory have
secondary hair, i.e. the scalar charge is not independ-
ent of other charges, such as the mass (see e.g. [27] for a
review of BH solutions with scalar hair).

Sotiriou and Zhou found a loophole in the Hui-Nicolis
no-hair theorem [28, 29]. In our language, they con-
sidered the combination George+Ringo with Vgeorge =
constant and Vringo ∝ φ in Eq. (5b). Other authors re-
laxed assumption (iv), finding asymptotically anti-de Sit-
ter (AdS) BH solutions for actions of the John type (non-
minimal coupling to the Einstein tensor) with Vjohn =
constant [30–32] (see [33, 34] for a stability analysis of
BH solutions in theories of the John subclass). BH solu-
tions that may be more relevant for astrophysics were
found by Babichev and Charmousis [35] for theories of
the George+John type, with Vgeorge and Vjohn both con-
stant, relaxing assumption (ii). Babichev and Charm-
ousis introduced a linear time dependence in the scalar
field, that therefore does not possess the same symmetries
as the metric. However the effective energy-momentum
tensor remains static because of the shift symmetry. A
particularly important asymptotically flat BH solution
emerging from this analysis is a “stealth” solution in
the George+John class: a Schwarzschild BH metric sup-
ports a nontrivial, regular scalar field configuration which
does not backreact on the spacetime. By adding the ca-
nonical kinetic term for the scalar field and the cosmo-
logical constant Λ, Babichev and Charmousis also ob-
tained a Schwarzschild-(A)dS solution. Interestingly, the
effective cosmological constant one can read off from the
Schwarzschild-(A)dS metric does not depend on Λ, and
the Λ dependence appears only in the scalar field. There-
fore this solution may be interpreted as an extension of
the self-tuned dS vacuum to an inhomogeneous space-
time.

In Ref. [36], all of the above static, spherically symmet-
ric BH solutions were generalized to slow rotation at lead-
ing order in the Hartle-Thorne approximation [37, 38].

For all of these solutions, first-order corrections due to
rotation were shown to be identical to GR. The Hui-
Nicolis no-hair theorem was extended to slowly rotating
BHs for which the scalar field is allowed to have a linear
time dependence. Moreover, all the spherically symmet-
ric solutions obtained for the John class can be naturally
extended to the shift- and reflection-symmetric subclass
of Horndeski’s theory, namely theories with G2 = G2(X),
G4 = G4(X) and G3 = G5 = 0 [39].

In summary: nontrivial BH solutions in Fab Four grav-
ity were found for the Ringo and John subclasses. In par-
ticular, the Schwarzschild-dS solution found in the case of
nonminimal coupling with the Einstein tensor (John) can
be seen as a self-tuned BH solution. On the other hand,
to our knowledge, no analytic or numerical BH solutions
have been reported for the Paul subclass. Because of the
similarity between John and Paul, one may naively ex-
pect that Paul should also allow for self-tuned, inhomo-
geneous vacuum solutions. This question was partially
addressed by Appleby [40], who claimed that self-tuned
BH solutions would not exist in the Paul case. This is be-
cause in a Schwarzschild-dS spacetime the Weyl compon-
ents of Pµναβ and RGB terms in the scalar field equation
of motion contain an explicit dependence on the radial
coordinate, and leave no redundancy in the scalar field
equation of motion. This is in contrast to the case of
“John,” where the scalar field equation of motion con-
tains no Weyl component which could make it redund-
ant for a Schwarzschild-dS metric. This also hints at
the absence of similar BH solutions in the non-reflection-
symmetric subclass of the shift-symmetric Horndeski the-
ory with nonzero G3(X) and G5(X), although there are
no detailed studies of this issue.

D. Plan of the paper

The next natural step to test whether the Fab Four
model is compatible with local inhomogeneities is to con-
sider self-gravitating matter configurations, and in par-
ticular static or rotating neutron stars (NSs). The main
goal of this paper is precisely to investigate the exist-
ence and properties of slowly rotating NS solutions in
Fab Four gravity.

The structure and stability of rotating NSs in GR
(George) is, of course, textbook material [41–43]. In the
past few years there has been significant progress in our
understanding of slowly [44] and rapidly rotating [45, 46]
NSs in Einstein-dilaton-Gauss-Bonnet gravity (Ringo),
and there are also studies of stellar stability under odd-
parity (axial) perturbations in this theory [47]. Recent
investigations turned to theories with nonminimal coup-
ling to the Einstein tensor (John) [48–50]. Here we com-
plete and extend the analysis of NSs in the John subclass,
and we look for solutions in theories containing the Paul
term. We were unable to obtain NS solutions in theories
involving the Paul term. Apparently, Paul doesn’t want
to be a star.
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This paper is organized as follows. In Section II we de-
rive the stellar structure equations at first order in a slow-
rotation expansion in generic shift-symmetric Horndeski
theories. In Section III we specialize our analysis to each
of the Fab Four subcases. In Section IV we summarize
our findings and point out possible directions for future
research. Appendix A discusses the relation between the
moment of inertia and the stellar compactness in theor-
ies of the Ringo and John subclasses. Throughout the
paper, unless specified otherwise, we will use geometrical
units (G = c = 1).

II. SLOWLY ROTATING STARS IN FAB FOUR
THEORY

In this section we will consider the shift-symmetric sub-
class of Horndeski’s theory which is invariant under the
transformation

φ→ φ+ c , (10)

where c is a constant. From Eqs. (9), this assumption im-
plies that Vjohn, Vpaul and Vgeorge must be constant, while
the Ringo (EdGB) term Vringo can be a linear function
of φ. For EdGB, a constant shift in φ only adds a trivial
topological invariant to the action, and therefore it does
not affect the field equations. Eqs. (4) and (5) repres-
ent the basic building blocks of our theory, which will be
described by the general action

S = SG + SM , (11)

where SM the ordinary action for fluid matter, and SG is
a combination of the Lagrangians (5c)-(5b).

To investigate slowly rotating solutions we follow the
approach described by Hartle and Thorne [37, 38], in
which spin corrections are considered as small perturba-
tions on an otherwise static, spherically symmetric back-
ground. In particular, at first order in the star’s angular
velocity Ω the metric can be written as

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dθ2 + r2 sin2 θdϕ2

− 2[Ω− ω̃(r)] sin2 θdtdϕ , (12)

where ω̃(r) is the angular velocity of the fluid as measured
by a freely falling observer.

Varying the action (11) with respect to the metric and
the scalar field we obtain the equations of motion for gαβ
and φ, respectively:

Eαβ = Tαβ , Eφ = 0 , (13)

where

Tαβ = (ε+ p)uαuβ + pgαβ (14)

is the energy-momentum tensor of a perfect fluid. Here ε
and p are the energy density and pressure of a fluid ele-
ment with four-velocity uµ = u0(1, 0, 0,Ω). The time

component u0 follows directly from the normalization
condition uµuµ = −1, which leads for the metric (12)

to u0 = 1/
√
A. The explicit form of Eαβ and Eφ can be

found in the Appendix of [36] (see [34] for a particular
study in the case of John).

Moreover, in the Jordan frame, the energy-momentum
tensor is conserved:

∇µTµν = 0 . (15)

To close the system of equations we need to specify
the equation of state (EOS) for the NS, i.e. a relation
between the pressure and energy density:

p = p(ε) . (16)

Taken together, Eqs. (13), (15) and (16) provide the full
description of a slowly rotating star.

In this work we will consider three realistic EOSs,
namely APR [51], SLy4 [52] and GNH3 [53] in decreas-
ing order of stiffness. To facilitate comparisons with
[48, 50] we will also consider a polytropic EOS of the
form p = KρΓ, with K = 123M2

� and Γ = 2. Here ρ is
the mass density, related to the energy density by

ε =
( p
K

)1/Γ

+
p

Γ− 1
. (17)

In Table I we show the radius R and compactness C ≡
M/R of nonrotating models, as well as the moment of
inertia I, for NSs with the “canonical” mass M = 1.4M�
constructed using different EOS models in GR. At fixed
mass, the realistic EOSs APR, SLy4 and GNH3 (in this
order) yield configurations with decreasing compactness,
and therefore larger moment of inertia.

EOS R [km] C I [1045g cm 2]
APR 11.33 0.182 1.31
SLy4 11.72 0.176 1.37

GNH3 14.18 0.146 1.81
Poly 16.48 0.125 2.28

Table I. The radius R, compactness C and moment of inertia
I for a canonical NS with mass M = 1.4M�, in GR, using
three different nuclear-physics based EOS models and a Γ = 2
polytrope.

III. FAB FOUR NEUTRON STARS

In this section we discuss NSs in the four subclasses of
Fab Four gravity, starting from the simplest Lagrangians.

A. George
(General Relativity)

The George Lagrangian for shift-symmetric theories
corresponds to GR, so we refer the reader to standard
treatments of rotating stars [41–43].
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B. Ringo
(Einstein-dilaton-Gauss-Bonnet gravity)

Nonrotating hairy BH solutions in EdGB gravity with
a dilatonic coupling of the schematic form Vringo ∼ ζeγφ

were found by Kanti et al. [54]. These solutions were
then extended to slowly and rapidly rotating BHs [44,
55]. As stated in the introduction, Sotiriou and Zhou [28,
29] pointed out that hairy BH solutions exist in shift-
symmetric EdGB theories, in violation of the Hui-Nicolis
no-hair theorem (see [36] for an extension of these results
to linear order in a slow-rotation approximation). Shift-
symmetric EdGB theories can be seen as a small-field
Taylor series expansion of the dilatonic coupling

Vringo ' ζ + ζγφ , (18)

where the constant term ζ can be neglected since it gives
rise to a topological invariant at the level of the action.

NSs in EdGB gravity with a dilatonic coupling were
studied in [44–46] (see also [47] for axial perturbations).
As it turns out, the bulk properties of NSs depend only on
the combination ζγ: cf. the discussion around Eq. (29)
of [44]. This is because the value of the scalar field is
typically very small within the star, and therefore the
Taylor expansion (18) is an excellent approximation. For
this reason, the analysis of NSs in Ref. [44] applies also to
the shift-symmetric case of interest here, and we refer the
reader to the treatment in that paper for calculations of
stellar structure and observational bounds on the product
ζγ.

C. John
(Nonminimal Coupling with the Einstein Tensor)

A more interesting case are slowly rotating compact
stars in theories with a nonminimal derivative coupling
with the Einstein tensor, corresponding to the John Lag-
rangian (5c) [48–50]. These theories are described by the
action

SG =

∫
d4x
√
−g(Lgeorge + Ljohn + LK)

=

∫
d4x
√
−g
[
κR− 1

2
(βgµν − ηGµν)∂µφ∂νφ

]
,

(19)

where LK = βX = −(β∂µφ∂
µφ)/2 is a kinetic term for

the scalar field, β and η are constants, and κ = (16π)−1.
Eq. (19) can be obtained from the Horndeski Lagrangian
by choosing

G2 = βX, G4 = κ+
η

2
X , G3 = G5 = 0 . (20)

We also consider a real scalar field of the form [35]

φ(r, t) = qt+ ψ(r) , (21)

where q is a constant scalar charge. With this choice, the
field’s kinetic energy is a function of r only:

X =
1

2

[
q2

A(r)
−B(r)ψ′(r)2

]
. (22)

In vacuum, the theory described by the action (19)
leads to asymptotically AdS black hole solutions with a
nontrivial scalar field configuration [30–32, 35, 39]. How-
ever, it has recently been shown that it is possible to con-
struct “stealth” NS models for which the exterior solution
is given by the Schwarzschild spacetime [48].

For β = 0, the scalar field outside the star (where
Tµν = 0) does not backreact on the metric, leading
to “stealth solutions”. However inside the star (where
Tµν 6= 0) the scalar field has a nontrivial effect, and the
stellar structure is different from GR.

Hereafter we will focus on these stealth solutions, fixing
β = 0. We recall that the action (19) is invariant under
shift symmetry (φ → φ + c). This allows us to write
the equation of motion for the scalar field in terms of a
conserved current Jµ:

∇µJµ = 0 , (23)

with nonzero components given by

J t =− qη

r2κA
(rB′ +B − 1) , (24)

Jr =
ηB

r2κA
[A(B − 1) + rBA′]φ′ . (25)

We also remark that Eq. (23), using the line element (12),
admits the solution

Jr =

√
B

A

C1

r2
, (26)

with C1 constant. In the following we will set C1 = 0,
as it has been shown that this choice is consistent with a
vanishing radial energy flux, i.e. Etr = 0 [56].

Combining Eqs. (15), (25) and the (tt) and (rr)
components of Eqs. (13) we obtain a set of differen-
tial equations for the spherically symmetric background.
Moreover, at linear order in the angular velocity, the (tϕ)
equation Etϕ − Ttϕ = 0 yields a differential equation for
ω̃. In summary, a slowly rotating NS at first order in the
slow-rotation approximation is described by the following
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set of equations:

A′ =
A

r

1−B
B

, (27)

B′ =
3q2ηB(B − 1)−A[r2ε− 4κ+B(4κ+ r2(ε+ 6p))]

r[A(4κ+ r2p)− 3q2ηB]
,

(28)

p′ =− ε+ p

2

A′

A
, (29)

ω̃′′ =
4q2ηB2 −A[4B(4κ+ r2p)− r2(ε+ p)]

rB[A(4κ+ r2p)− q2ηB]
ω̃′

− 4A(ε+ p)

B[q2ηB −A(4κ+ r2p)]
ω̃ , (30)

(φ′)2 =
r2Ap− q2η(B − 1)

ηAB
. (31)

Note that q and η always appear combined in the factor
q2η.

Expanding all variables in a power series around r = 0
we obtain the initial values for (A,B, ω̃, p, φ) as

A = Ac −
r2A2

c(3pc + εc)

3(3q2η − 4κAc)
+O(r3) , (32a)

B = 1 +
2

3

r2Ac(3pc + εc)

(3q2η − 4κAc)
+O(r3) , (32b)

p = pc +
r2Ac(pc + εc)(3pc + εc)

6(3q2η − 4κAc)
+O(r3) , (32c)

ω̃ = ω̃c −
2

5

Ac(εc + pc)r
2

q2η − 4Acκ
ω̃c +O(r3) , (32d)

(φ′)
2

=
pc
η
r2 − 2q2(3pc + εc)

3(3q2η − 4κAc)
r2 +O(r3) . (32e)

where the subscript “c” means that the various variables
are evaluated at the center of the star. Following [48] we
set Ac = 1 and chose ω̃c = 1. Given a choice of EOS, the
central pressure pc uniquely determines a NS model.

From these expansions we can obtain constraints that
must be satisfied by q2η to obtain physically acceptable
solutions. If we demand that p′′(r) < 0 [58], we obtain

q2η <
4κ

3
, (33)

which is automatically satisfied when η < 0, but sets an
upper bound on q2η when η > 0. On the other hand, the
requirement that the derivative of the scalar field should
be real, i.e. (φ′)2 > 0, implies

pc
η
− 2q2(3pc + εc)

3(3q2η − 4κ)
> 0 . (34)

For η > 0 this condition is always satisfied by virtue of
Eq. (33),. However, when η < 0 we obtain a lower bound
on q2 |η|, namely

q2 |η| > 3

4π

pc
2εc − 3pc

. (35)

To construct NS models we integrate the system of
equations (27)-(29), supplemented by the boundary con-
ditions (32a)-(32c), from r = 0 up to the star’s radius
r = R, which corresponds to the point where the pres-
sure vanishes, i.e. p(R) = 0. Then we match the interior
solution to the exterior Schwarzschild metric. The NS
mass is obtained by solving the system

A(R) = A∞

(
1− 2M

R

)
, A′(R) = A∞

2M

R2
, (36)

where A∞ is an integration constant. Then we rescale
the time variable (t → t

√
A∞) so that it represents the

coordinate time measured by an observer at infinity. Be-
cause of the linear dependence of the scalar field on t, we
correspondingly rescale q as

q∞ =
q√
A∞

. (37)

The stellar structure equations depend only on the com-
bination q2η, so we can set η = ±1 without loss of gen-
erality. The scalar field is computed from Eq. (31) for
families of solutions with fixed values of q∞. To facilit-
ate comparisons with [48], here we choose these values
to be 0, 0.032 and 0.064. To obtain the solutions we
apply a shooting method, adjusting the value q in each
integration until we obtain the desired value of q∞.

We also integrate Eq. (30) for a given ω̃c and we com-
pute the star’s angular velocity Ω and its angular mo-
mentum J , requiring that at the surface

ω̃(R) = Ω− 2J

R3
, ω̃′(R) =

6J

R4
. (38)

The moment of inertia is computed through I = J/Ω.
We note that rescaling ω̃(r) by a constant factor does
not affect Eq. (30). Therefore, once the solution ω̃old

has been found for given initial conditions, yielding a
value Ωold, a new solution ω̃new can immediately be found
via ω̃new = ω̃oldΩnew/Ωold. The moment of inertia I is
independent of the star’s angular velocity.

In Fig. 1 we show the mass-radius diagram for all the
EOS models used in this paper. The polytropic case
(bottom-right panel) matches the results in [48], except
for what we believe to be a mislabeling of some curves in
their Fig. 2.

As pointed out in [48], the limit q∞ → 0 does not
correspond to GR, and indeed the corresponding mass-
radius curves are different from those of GR (solid black
lines). For any EOS and fixed q∞, positive (negative)
values of η correspond to more (less) compact configur-
ations. At fixed η, largers values of the scalar charge
q∞ correspond to stellar models with larger radii. As
a reference, the horizontal colored band correspond to
the most massive known NS, PSR J0348+0432, with
M = 2.01 ± 0.04M� [57]. When η > 0, for all values
of q∞ and EOS models considered in this paper such
massive NSs are not supported.

In Fig. 2 we show the moment of inertia as a function of
mass for the same stellar models and theory parameters
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Figure 1. Mass-radius curves for different EOS models, selected values of q∞, and η = ±1. The various panels correspond
to EOS APR (top-left), SLy4 (top-right), GNH3 (bottom-left) and a polytropic (bottom-right). Configurations with radii
smaller than that identified by the orange cross do not satisfy the condition (34). The horizontal colored band corresponds to
M = 2.01± 0.04 M�, the most massive NS mass known to date [57]. Note that the various panels have different x-axis ranges.

as in Fig. 1. In addition, in Table II we list the values
of I for a canonical NS with mass M = 1.4M�. It is
interesting that some theories with η > 0 cannot support
stars with this value of the mass. As expected, deviations
with respect to GR grow as the scalar charge increases,
yielding larger (smaller) moments of inertia for η < 0
(η > 0). The relative deviation from GR can be of order
30% for q∞ = 0.064 and η = −1.

In GR, the dimensionless moment of inertia Ī ≡ I/M3

was recently shown to be related to the NS compactness
C by a universal relation which is almost insensitive to
the adopted EOS [59] (see [60–63] for earlier studies):

Īfit = a1C−1 + a2C−2 + a3C−3 + a4C−4 , (39)

where the fitting coefficients ai, i = (1, . . . , 4), are listed
in [59] (Table II). This I-C relation reproduces numer-
ical results with an accuracy better than 3%. The ob-
served universality is reminiscent of the I-Love-Q rela-
tions between the moment of inertia, tidal deformability
(as encoded in the so-called Love number) and rotational
quadrupole moment Q [64, 65]. The extension of these

η q∞ IAPR IGNH3 ISLy4

[1045g cm2] [1045g cm2] [1045g cm2]
- GR 1.31 1.81 1.37
- 0 1.28 1.80 1.35
-1 0.032 1.39 1.96 1.47
-1 0.064 1.70 2.42 1.81
1 0.032 1.17 1.64 1.22
1 0.064 - - -

Table II. Moment of inertia for a NS with M = 1.4M� for
selected values of q∞ and for nuclear-physics motivated EOS
models. For q∞ = 0.064 and η = 1, none of the EOS models
considered here supports NSs with M = 1.4M�.

near-universal relations I-C relations to theories of the
Ringo and John subclasses is discussed in Appendix A.

It is natural to ask whether these stealth NS models are
stable. Vacuum, static, spherically symmetric solutions
where the scalar field has a linear time dependence were
shown to be free from ghost and gradient instabilities
under odd-parity gravitational perturbations as long as
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Figure 2. Moment of inertia I as a function of the mass M . The various panels correspond to EOS APR (top-left), SLy4
(top-right), GNH3 (bottom-left) and a polytropic (bottom-right). Configurations with masses larger than that identified by
the orange cross do not satisfy the condition (34).

the following conditions are met [66]:

F > 0, G > 0, H > 0, (40)

where

F = 2

(
G4 −

q2

A
G4X

)
= 2

(
κ+

q2
∞η

4
− q2
∞ηA∞

2A

)
,

(41)

G = 2

(
G4 − 2XG4X +

q2

A
G4X

)
= 2

(
κ− q2

∞η

4
+
q2
∞ηA∞

2A

)
, (42)

H = 2 (G4 − 2XG4X) = 2

(
κ− q2

∞η

4

)
. (43)

Here we have used X = q2/(2A∞) as well as Eq. (37),
which applies to the stealth BH solutions of [35]. For
stealth BH solutions A → 0 in the vicinity of the event
horizon, therefore the third term on the right-hand side of

Eqs. (41) and (42) is the dominant one. As a consequence
FG < 0, suggesting that these solutions are generically
unstable [66].

A similar argument can be applied to our stealth NS
solutions. In the exterior vacuum spacetime of the star,
the metric function A, which satisfies A < A∞, remains
positive and finite. When η is positive, G is always pos-
itive as well, and the conditions F > 0 and H > 0 every-
where outside the star translate into

q2
∞η < 4κ

A(R)

2A∞ −A(R)
= 4κ

(
1− 2C
1 + 2C

)
, (44)

q2
∞η < 4κ , (45)

respectively, where we have used Eq. (36).
We have numerically confirmed that all NS models

presented in Fig. 1 satisfy the conditions (44) and (45)
for the largest value of q∞ = 0.064 considered in this pa-
per. For a typical NS the compactness is C ≈ 0.2, and the
right-hand side of Eq. (44) is approximately 0.035, which
is much larger than our choice q2

0η = 0.0642 ≈ 0.004.
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The condition (44) will be violated only for an unrealist-
ically compact NS with C ≈ 0.45. This suggests that
hypothetical ultracompact objects – such as Lemaitre
stars [65, 67, 68] and gravastars [69–71] – may be un-
stable in the presence of a stealth scalar field.

Similarly, for negative values of η, F and H are always
positive, and the condition G > 0 is satisfied everywhere
outside the star if

q2
∞|η| < 4κ

A(R)

2A∞ −A(R)
= 4κ

(
1− 2C
1 + 2C

)
. (46)

We have also checked that for q∞ = 0.064 and η = −1, all
NS models presented in Fig. 1 satisfy (46). In the New-
tonian limit C � 1, the stealth NS spacetime is stable for
q2
∞η < 4κ when η > 0, and for q2

∞|η| < 4κ when η < 0.
For NSs with larger values of q2

∞|η| the exterior spacetime
becomes unstable everywhere, including the Newtonian
regime.

It is interesting to consider the non-relativistic limit
of theories of the John class. Intoducing the usual mass
function m(r) such that B(r) = 1−2m(r)/r, we see that
the pressure equation retains its standard form

dp

dr
= −mρ

r2
, (47)

where ρ is the mass density. However the mass equation
is reduced to

dm

dr
=

4πr2ρ

1− 12πq2η
. (48)

This behavior looks reminiscent of “beyond Horndeski”
theories [72, 73], where a partial breakdown of the
Vainshtein mechanism occurs, modifying the Newtonian
limit [74]. In fact, several authors have advocated the use
of this “feature” to constrain beyond Horndeski theories
using Newtonian stars or white dwarfs [75–79]. While
those theories modify the pressure equation (47) leaving
the mass equation unaltered, theories of the John sub-
class seem to alter the Newtonian limit in the opposite
way.

However, combining Eqs. (47)-(48) and restoring the
gravitational constant G we obtain

1

r2

d

dr

(
r2

ρ

dp

dr

)
= −4πGeffρ , (49)

which is equivalent to the ordinary hydrostatic equilib-
rium equation in Newtonian gravity with an effective
gravitational constant

Geff ≡
G

1− 12πq2η
. (50)

Therefore the nonrelativistic limit of the “John” the-
ories considered in this section is equivalent to Newto-
nian gravity with an effective gravitational constant Geff .
Incidentally, a similar result was found by Cisterna et
al. [50] in the context of cosmology [cf. their Eq. (38)].

D. Paul
(Double-dual of the Riemann Tensor)

Let us now turn to NS solutions in theories containing
the Paul Lagrangian (5d). We start with the simplest
model, given by the combination

L = Lgeorge + Lpaul

= R− 1

3
αPµναβ∇µφ∇αφ∇ν∇βφ , (51)

which from Eqs. (9) corresponds to the following choice
of the functions Gi:

G2 = G3 = 0 , G4 = 1 , G5 = αX , (52)

where α is a coupling parameter. As in Section III C,
we consider a scalar field with linear time dependence of
the form (21). This choice is crucial for φ(r) to have a
nontrivial profile. Indeed, the nonvanishing components
of the scalar current for the action (51) are

Jr =
α

2r2

B

A

[
q2(B − 1) +A(1− 3B)Bφ′2

] A′
A
, (53)

J t =
qα

2r2

B

A

{
φ′
[
A′

A
(B − 1) +

B′

B
(3B − 1)

]
+ 2(B − 1)φ′′

}
. (54)

From the first equation we conclude that in the limit
q → 0 the condition Jr = 0 implies φ′ = 0, i.e., the
scalar field must be constant. However for q 6= 0 we
obtain

(φ′)2 = q2 1−B
A(1− 3B)B

. (55)

Replacing this relation into the (tt) and (rr) components
of Eqs. (13) we derive two first-order equations for the
metric variables A and B:

B′ =
1−B − 8πr2ε

r − q3α
√

1−B[AB(1−3B)]3/2

A3(1−3B)3

, (56)

A′ =
A3

B

1−B + 8πr2p

A2r − q3αB
√

1−B
√
AB(1−3B)

(1−3B)2

. (57)

Eqs. (55)-(57), together with a choice of EOS and the
energy-momentum conservation equation (15), which
gives

p′ = −ε+ p

2

A′

A
, (58)

form a closed system of differential equations, which can
be integrated by imposing suitable initial conditions at
the center of the star. These conditions can be found
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through a Taylor expansion in r

A(r) = Ac +
r2

q6α2
A2(pc, Ac) +O(r3) , (59a)

B(r) = 1 +
r2

q6α2
B2(pc, Ac) +O(r3) , (59b)

p(r) = pc +
r2

q6α2
p2(pc, Ac) +O(r3) , (59c)

φ′(r) = ±

√
B2(pc, Ac)

2Ac

r

q2α
+O(r3), (59d)

where A2, B2 and p2 are functions of the constant para-
meters Ac and pc. Unlike Eqs. (56) and (57), which re-
duce to GR for α → 0 (or q → 0), the initial conditions
for the metric functions, (φ′)2 and the pressure are ill-
defined. Note that such a pathological behavior is not ex-
pected in the naive α→ 0 limit of (56) and (57), because
this is a “nonperturbative” effect such that the leading
behavior

√
1−B ∝ 1/α obtained from (59b) cancels the

α terms in (56) and (57), making the deviation from GR
evident.

To better understand this issue, let us reconsider the
η → 0 limit of the John action. In that case, as we
see from Eqs. (32a)-(32e), the only divergent quantity
as η → 0 is the derivative of the scalar field φ′, while
all other metric and matter quantities have a finite limit.
Since we work in the Jordan frame there is no direct coup-
ling between the scalar field and matter. Furthermore
the scalar field does not backreact on the spacetime in
the “stealth” exterior, and therefore a singular behavior
of the scalar field does not affect the geodesics of particles
outside the star. In contrast, for the Paul case all phys-
ical quantities diverge in the limit α → 0, indicating a
pathological behavior in the NS interior. Furthermore, at
variance with the John case, we could not find a stealth
exterior solution for Paul. Our results suggest that ex-
terior stealth solutions for Paul do not exist under the
ansatz (21) for the scalar field.

We observed a similar behavior for other Fab Four the-
ories involving the Paul term. We considered the follow-
ing combinations:

Lgeorge + Lpaul + LK , φ(r) , (60)

Lgeorge + Lpaul + Ljohn + LK , φ(t, r) , (61)

Lgeorge + Lpaul + Lringo + LK , φ(t, r) , (62)

Lgeorge + Lpaul + Ljohn + Lringo + LK , φ(t, r) . (63)

In all of these cases the physical variables suffer from the
same divergence when the coupling parameter α of the
Paul term vanishes.

Appleby [40] found that the self-tuning mechanism is
not applicable for spherically symmetric black hole space-
times in theories of the Paul class. Our results strengthen
his conclusions, suggesting that the Paul term does not
allow for physically well-behaved compact object solu-
tions.

IV. CONCLUSIONS

We have presented an exhaustive study of slowly rotat-
ing NS solutions in the shift-symmetric class of Fab Four
gravity, namely the subclass of Horndeski’s gravity which
may allow for dynamical self-tuning of the quantum va-
cuum energy, and for this reason has been the subject
of intense scrutiny in a cosmological context. Our main
goal was to investigate whether Fab Four gravity is com-
patible with the existence of relativistic stars, such as
NSs.

Among the nonminimal couplings in Fab Four gravity
listed in Eqs. (5c)-(5b) we especially focused on the John
(nonminimal derivative coupling to the Einstein tensor)
and Paul (nonminimal derivative coupling to the double
dual of the Riemann tensor) subclasses. This is both
because George (GR) and Ringo (EdGB gravity) have
been extensively studied in the past, and because “John”
and Paul are the crucial terms allowing for self-tuning of
the quantum vacuum energy in cosmological scenarios.

In the case of John, if we make the assumption that the
scalar field has a linear time dependence of the form (21),
there is a stealth solution such that the scalar field does
not backreact on the metric in the exterior, while it in-
troduces nontrivial modifications of the interior stellar
structure with respect to GR in the stellar interior. Our
results on spherically symmetric NSs agree with previous
work [48] and extend it to slowly rotating solutions. As
pointed out in [48], in the limit of vanishing scalar charge
(q∞ → 0) the mass-radius curves differ from GR. Irre-
spective of the chosen EOS, positive (negative) values of
the coupling constant η in (19) yield more (less) compact
stellar configurations. For positive values of η this fact
can be used to put mild (EOS dependent) constraints on
the maximum value of q∞, cf. Ref. [50].

We have also shown that the approximately EOS-
independent relations between the moment of inertia I
and compactness C within GR break down in this theory.
Therefore, in principle, future measurements of I could
potentially constrain the value of q∞ [80]. We also ob-
tained improved I-C relations which depend of the value
of q∞ and are accurate within ∼ 5%.

Based on stability studies in the context of BH solu-
tions [66], we have argued that the NS models studied
here are generically stable under odd-parity gravitational
perturbations. A systematic study of stellar perturba-
tions within theories of the John subclass is desirable,
and it could follow in the footsteps of similar studies for
scalar-tensor theory [81–84] and EdGB gravity [47].

Surprisingly, we also found that in all subclasses of
Fab Four and its minimal extension which involve Paul,
not only the scalar field, but also all metric functions and
the pressure diverge at the center of the star in the small-
coupling limit. Therefore “healthy” BH and stellar solu-
tions do not seem to exist in the shift-symmetric Paul
subclass. It will be interesting to understand whether
this conclusion still holds in the absence of shift sym-
metry.
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As a straightforward generalization of the present
work, one could search for NS solutions in Fab Four
theories where the potentials (5c)-(5b) have nontrivial
functional forms, as well as in more general (non shift-
symmetric) versions of Horndeski’s theory. The general
formalism developed in [36] can be straightforwardly ap-
plied to these cases.

Barausse and Yagi [85] have recently shown that the
so-called sensitivities of compact objects [86] vanish in
shift-symmetric Horndeski gravity, which includes the
Fab Four class. Consequently the dynamics of binaries
involving NSs is, to leading post-Newtonian order, the
same as in GR. It would be interesting to understand
whether these conclusion hold at higher post-Newtonian
orders, and whether gravitational waves can be used at
all to constrain these theories.

While we were completing this work, a similar study of
slowly rotating stars appeared on the arXiv [50]. Their
work focuses on theories of the John class and deals also
with their cosmological interpretation. Where our works
overlap, they agree with our main conclusions.
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Appendix A: I-C relations

In this Appendix we discuss the relation between the
moment of inertia and the compactness for NSs in the-
ories of the John and Ringo subclasses.

1. John
(Nonminimal Coupling with the Einstein Tensor)

The behavior of I as function of q∞ can be accurately
described by a simple quadratic fit of the form

I = p0 + p1q∞ + p2q
2
∞ , (A1)

where (p0, p1, p2) are constants. In the top panel of
Fig. 3 we compare this relation with numerical data for
η = −1 (note that for this figure we have computed mod-
els with additional values of q∞, that were not displayed
in Figs. 1 and 2 to avoid cluttering). The bottom panel
of Fig. 3 shows that the relative errors between the nu-
merical data and the fit are typically of order 0.1% or
smaller.
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Figure 3. Top panel: the moment of inertia I versus charge
q∞ for a canonical NS with M = 1.4M� and η = −1, and
the realistic EOSs APR, GNH3 and SLy4. Bottom panel:
Relative percentage errors between the numerical data and
the relation (A1).

To understand whether these relations hold also for
theories of the John subclass, we have compared our nu-
merical data against Eq. (39), computing the relative er-
ror ∆Ī/Ī = |1 − Īfit/Ī|. The results are shown in the
bottom panel of Fig. 4. Errors are always larger than in
GR, and they can be as high as 40% for low-compactness
configurations. A similar trend is observed for the I-
Love-Q relations in GR in [87]. Deviations from the GR
relation are due to the strong dependence of the star’s
bulk properties on the scalar charge q∞, which spoils the
(approximate) EOS universality of the relation proposed
in [59]. Therefore we conclude that a theory-independent
fit would perform poorly.

It is still possible to introduce approximately EOS-
independent relations for I-C at fixed values of the theory
parameters q∞ and η using the functional form given in
Eq. (39). The relative errors between the numerical data
and these fits are shown in Fig. 5, and the correspond-
ing fitting coefficients are listed in Table III. For almost
all configurations the new relations perform better than
Eq. (39), with relative errors which can be an order of
magnitude smaller.

2. Ringo
(Einstein-dilaton-Gauss-Bonnet gravity)

We have also investigated the I-C relations for theories
of the Ringo subclass (EdGB gravity) using the numer-
ical data from [44]. We found that the fit proposed in [59]
works remarkably well for EdGB, with relative percent-
age errors . 10% for a wide range of compactness. This
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Figure 4. Top panel: Ī-C relation for different values of the
scalar charge q∞ and the realistic EOS APR (blue), GNH3
(red), SLy4 (green). The solid curve represents the fit given
by Eq. (39), obtained in [59]. Bottom panel: relative errors
between the numerical data and the analytic relation. For
illustrative purposes, we show the cases q∞ = 0 and q∞ =
0.064. For the latter deviations from GR are more dramatic.

result is complementary to the I-Q relations in EdGB ob-
tained in [45]. We recall, however, that our calculations
are limited to slow rotation. The question of whether or
not rapidly rotating NSs in EdGB satisfy the same I-C
relations of [59] could be addressed following the anaysis
of [45, 46].

q∞ η a1 a2 a3 a4
0 − 0.684 0.265 −0.0062 6.87× 10−5

0.032 1 0.666 0.240 −0.00364 −2.01× 10−6

0.032 −1 0.776 0.273 −0.00809 1.64× 10−4

0.064 1 0.0654 0.348 −0.0125 1.81× 10−4

0.064 −1 0.872 0.276 −0.00574 4.53× 10−5

Table III. Numerical coefficients of the new universal I-C re-
lations, for fixed values of q∞ and η.
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