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We present an analytic computation of Detweiler’s redshift invariant for a point mass in a circular
orbit around a Kerr black hole, giving results up to 8.5 post-Newtonian order while making no
assumptions on the magnitude of the spin of the black hole. Our calculation is based on the func-
tional series method of Mano, Suzuki and Takasugi, and employs a rigorous mode-sum regularization
prescription based on the Detweiler-Whiting singular-regular decomposition. The approximations
used in our approach are minimal; we use the standard self-force expansion to linear order in the
mass ratio, and the standard post-Newtonian expansion in the separation of the binary. A key
advantage of this approach is that it produces expressions that include contributions at all orders
in the spin of the Kerr black hole. While this work applies the method to the specific case of De-
tweiler’s redshift invariant, it can be readily extended to other gauge invariant quantities and to
higher post-Newtonian orders.

I. INTRODUCTION

Binary black hole systems have been identified as one
of the primary sources of gravitational waves for current
and planned generations of gravitational-wave detectors
[1–3]. Accurate models for the waveforms produced by
gravitational-wave sources are a crucial component in the
data-analysis pipeline used to extraction of information
from gravitational wave observations. In the context of
compact-object binary systems, the production of wave-
form models typically relies on one of three fundamental
methods: numerical relativity (NR) simulations, post-
Newtonian (PN) approximations, or gravitational self-
force (GSF) calculations using black hole perturbation
theory.

Gravitational self-force calculations — involving, for
example, a solar mass black hole or neutron star of mass
m in orbit around a massive black hole of massM — are
based on a perturbative expansion of Einstein’s equa-
tions, with the mass ratio m/M as a small expansion
parameter. These so-called extreme mass ratio inspiral
(EMRI) systems are well approximated by an expansion
to linear order in m/M . An alternative approach to the
two-body problem — valid when the constituents are far
apart — is the post-Newtonian approximation, which ex-
pands the Einstein equations in v2/c2, where v is a rep-
resentative velocity and c is the speed of light. In the
context of binary systems, the post-Newtonian expansion
maps onto an expansion in 1/r, where r is the separation
of the two objects.

The problem of gauge freedom in general relativity is a
constant source of difficulty in extracting meaningful in-
formation from calculations. It is often difficult to know
how much of the difference between two different results
is due to merely a difference in choice of gauge. The
computation of gauge-invariant quantities provides a ro-
bust solution to this problem. Independent of the choice
of gauge, the computation of gauge-invariant quantities

should agree among different methods; any discrepancy
between results can be confidently associated with errors
in the method. Even better, a gauge-invariant quan-
tity computed within one approach can often be used
to inform — and even derive results within — other ap-
proaches to the same problem.
The strategy of making comparisons based on gauge

invariant quantities has proven to be a fruitful method
for cross-pollination of results between NR, PN, and GSF
[4–14]. This work continues a programme [10, 11, 15–17]
to compute the gauge-invariant quantities that enable
these valuable cross-comparisons. Our key new devel-
opment is the incorporation of spin effects, by applying
methods similar to those of [15] to the case of analytic
GSF calculations in Kerr spacetime, allowing us to add
important spin-dependent terms into PN and effective-
one-body (EOB) [18] models. Given that most (if not
all) astrophysical black holes are expected to be spinning
[19, 20], these additional terms are crucial for faithfully
representing the type of systems we expect gravitational
wave detectors to observe.
A parallel effort by Bini, Damour and Geralico [21]

has recently been successful in computing spin-dependent
contributions to GSF-PN results — that is, approxima-
tions to the spacetime of a binary system using simulta-
neous expansions in the mass ratio and the binary sep-
aration — using a small-spin approximation. Our work
provides two key advantages over these results:

1. The only expansion our method relies only is the
standard PN expansion in the inverse separation,
y ∼ 1/r (in addition to the standard expansion in
mass-ratio used in all self-force calculations). Im-
portantly, this allows to provide for the first time
expressions that are exact in the spin, a, of the
larger black hole. The validity of our expressions
in the high-spin regime is particularly important
given observational evidence for black holes with
near-extremal (a > 0.95M) spins [19, 20].
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2. Our regularization procedure is based on an in-
dependently obtained expression for spheroidal-
harmonic mode-sum regularization parameters de-
rived from the Detweiler-Whiting singular field.

In addition, our results provide a valuable independent
check; indeed, they identify what we believe to be an er-
ror in some terms in the order y9.5 PN coefficient for ∆U
given by Ref. [21]. This conclusion has been confirmed by
an independent check against numerically derived values
[22].
This paper follows the conventions of Misner, Thorne

and Wheeler [23]; a “mostly positive” metric signature,
(−,+,+,+), is used for the spacetime metric, the con-
nection coefficients are defined by Γλµν = 1

2g
λσ(gσµ,ν +

gσν,µ − gµν,σ), the Riemann tensor is Rαλµν = Γαλν,µ −
Γαλµ,ν+ΓασµΓ

σ
λν−ΓασνΓ

σ
λµ, the Ricci tensor and scalar are

Rαβ = Rµαµβ and R = Rα
α, and the Einstein equations

areGαβ = Rαβ− 1
2gαβR = 8πTαβ. Standard geometrized

units are used, with c = G = 1, but we include the
explicit dependence on G and c in our post-Newtonian
expansions in cases where they are convenient for post-
Newtonian order counting. We use the spherical Boyer-
Lindquist coordinates {t, r, θ, φ} for the background Kerr
spacetime and write tensors in terms of these coordinate
components.

II. REDSHIFT FOR CIRCULAR GEODESICS IN

KERR SPACETIME

A. Circular, equatorial geodesic orbits in Kerr

spacetime

In this work we are interested in the case of a point
mass on a circular equatorial geodesic in Kerr spacetime.
In Boyer-Lindquist coordinates, the line element for a
Kerr black hole of massM and spin parameter a is given
by

ds2 =−
(

1− 2Mr

Σ

)

dt2 +
Σ

∆
dr2 +Σdθ2

+
(

r2 + a2
2Mra2 sin2 θ

Σ

)

dϕ2 − 4aMr sin2 θ

Σ
dtdϕ,

(2.1)

with

Σ ≡ r2 + a2 cos2 θ, ∆ ≡ r2 − 2Mr + a2. (2.2)

Circular equatorial orbits can be parametrized by the
orbital frequency, Ω, which is related to the Boyer-
Lindquist radius of the orbit, r0, by

Ω =
dϕ

dt
=

M1/2

r
3/2
0 + aM1/2

. (2.3)

Adopting the convention that uϕ (and hence the orbital
angular momentum) is always positive, the orbital angu-
lar momentum and energy per unit mass for such orbits

are given by

L =
M(a2 + r20 − 2a

√
Mr0)

√
Mr0

√

r20 − 3Mr0 + 2a
√
Mr0

= uϕ, (2.4)

E =
r20 − 2Mr0 + a

√
Mr0

r0

√

r20 − 3Mr0 + 2a
√
Mr0

= −ut. (2.5)

Within this convention, prograde and retrograde orbits
are distinguished by the sign of a: a > 0 for the former;
a < 0 for the latter.

B. Redshift invariant

The key result of this work is the computation of a
post-Newtonian expansion of Detweiler’s redshift invari-
ant [24] for circular equatorial orbits in Kerr spacetime.
In this context, the redshift invariant is the constant of
proportionality between the particle’s 4-velocity, uα, and
the helical Killing vector of the system, kα, i.e.

uα = Ukα. (2.6)

In the background spacetime, U is equal to the time com-
ponent of the 4-velocity, ut. Provided kα is a Killing vec-
tor of both the background and perturbed spacetime (i.e.
they both share the same helical symmetry) the contri-
bution to U from the linear order metric contribution is
simply given by

∆U =
1

2
hαβu

αuβut. (2.7)

This is invariant in the sense that it does not change un-
der helically symmetric gauge transformations that also
respect the helical symmetry of the worldline. When
making comparisons between calculations using different
gauges, care must be taken to ensure that these criterion
are satisfied, or that the appropriate transformation of
∆U is accounted for [25].

III. REGULARISED METRIC

PERTURBATIONS ON A KERR BACKGROUND

SPACETIME

A. Perturbations of Kerr spacetime

In the Kerr spacetime Teukolsky showed, using the
Newman-Penrose formalism, that the dynamics of a met-
ric perturbation are described by the evolution of tetrad
components of the Weyl tensor [26, 27]. This requires
choosing a set of four null vectors eαi , i = 1, ...4, two
real and two a complex conjugate pair. Using Boyer-
Lindquist coordinates, a particular set of null vectors —
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the Kinnersly tetrad — is

eα1 = lα =
1

∆
(r2 + a2,∆, 0, a),

eα2 = nα =
1

2Σ
(r2 + a2,−∆, 0, a)

eα3 = mα = − ¯̺√
2
(ia sin θ, 0, 1,

i

sin θ
)

eα4 = m̄α = − ̺√
2
(−ia sin θ, 0, 1, −i

sin θ
)

Using this tetrad, five of the spin-coefficients vanish, leav-
ing us with

̺ =
−1

r − ia cos θ
, τ =

−ia sin θ√
2Σ

, β = − ¯̺cot θ

2
√
2
,

γ = µ+
r −M

2Σ
, µ =

∆̺

2Σ
, ̟ =

ia̺2 sin θ√
2

,

α = ̟ − β̄.

The perturbed Weyl tensor Cαβγδ, then has two compo-
nents of interest

ψ0 = −Cαβγδlαmαlγmδ, (3.1)

ψ4 = −Cαβγδnαm̄αnγm̄δ, (3.2)

which both independently contain all of the radia-
tive information about perturbations of Kerr spacetime.
Teukolsky’s key insight was that the equations for ψ0

and ψ4 decouple, and each satisfy a separable PDE now
known as the Teukolsky equation:

[

(r2 + a2)2

∆
− a2 sin2 θ

]

∂2ψ

∂t2
+

4Mar

∆

∂2ψ

∂t∂ϕ
+

[

a2

∆
− 1

sin2 θ

]

∂2ψ

∂ϕ2
−∆−s ∂

∂r

(

∆s+1 ∂ψ

∂r

)

− 1

sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

−2s

[

a(r −M)

∆
+
i cos θ

sin2 θ

]

∂ψ

∂ϕ
− 2s

[

M(r2 − a2)

∆
− r − ia cos θ

]

∂ψ

∂t
+ (s2 cot2 θ − s)ψ = 4πΣT, (3.3)

where

ψ = ψ0 =⇒ T = 2T0

and

ψ = ̺−4ψ4 =⇒ T = 2̺−4 T4,

respectively. In terms of tetrad components of the stress
tensor, Tij = T µνeiµe

j
ν , the source terms for the Teukolsky

equation are

T0 = (δ + ¯̟ − ᾱ− 3β − 4τ)×
[(D − 2ǫ− 2¯̺)T13 − (δ + ¯̟ − 2ᾱ− 2β)T11]

+ (D − 3ǫ+ ǭ− 4̺− ¯̺)×
[(δ + 2 ¯̟ − 2β)T13 − (D − 2ǫ+ 2ǭ− 2¯̺)T33] ,

(3.4)

T4 = (∆+ 3γ − γ̄ + 4µ+ µ̄)×
[

(δ̄ − 2τ̄ + 2α)T24 − (∆+ 2γ − 2γ̄ + µ̄)T44
]

+ (δ̄ − τ̄ + β̄ + 3α+ 4̟)×
[

(∆+ 2γ + 2µ̄)T24 − (δ̄ − τ̄ + 2β̄ + 2α)T22
]

,

(3.5)

where D = lµ∂µ, ∆ = nµ∂µ and δ = mµ∂µ. In this work
we are interested in a perturbation sourced by a point
particle,

T µν = mp
uµuν

utΣ0 sin θ0
δ(r − r0)δ(θ − θ0)δ(ϕ − ϕ0) (3.6)

where a subscript-0 denotes evaluation on the worldline.
In particular, for circular orbits θ0 = π

2 , ϕ0 = Ωt, so
that Tij are the tetrad components of the stress tensor
with the tetrad vectors evaluated at the position of the
particle. The Teukolsky master equation, Eq. (3.3), may
be separated by writing

ψs =
∑

ℓ,m

∫

e−iωtsSℓm(θ, ϕ; aω) sRℓmω(r)dω. (3.7)

Here, sSℓm(θ, ϕ; aω) are the oblate spin-weighted
spheroidal harmonics with defining equation

[

1

sin θ

d

dθ

(

sin θ
d

dθ

)

− a2ω2 sin2 θ − (m+ s cos θ)2

sin2 θ

− 2aωs cos θ + s+ 2maω + sλℓm

]

sSℓm(θ, ϕ; aω) = 0.

(3.8)

The spin-weighted spheroidal harmonics are orthonormal
on the two-sphere,

∫

sSℓm(θ, ϕ; aω)sS
∗
ℓ′m′(θ, ϕ; aω)dΩ = δℓℓ′δmm′ , (3.9)

so that in the limit aω → 0 they coincide with the
standard spin-weighted spherical harmonics sYℓm(θ, ϕ)
(this normalisation is consistent with the Meixner-
Schäfke convention for the spheroidal Legendre functions,
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S
(1)
mℓ(aω, cos θ), defined in [28]). The radial functions are

solutions to

[

∆−s d

dr

(

∆s+1 d

dr

)

+
K2 − 2is(r −M)K

∆

+4isωr − sλℓm

]

sRℓmω(r) = sTℓmω, (3.10)

where K = (r2 + a2)ω − am, and where the source term
on the right hand side is obtained from a mode decom-
position of T0 or T4. In the next section, we will develop
analytic expressions for the appropriate homogeneous so-
lutions to this equation.

B. Homogeneous Solutions of the Teukolsky

equation

We now seek solutions to Eq. (3.10) for s = ±2, ℓ ≥ |s|,
−ℓ ≤ m ≤ ℓ and ω ∈ R. To this end, we build up a com-
plete set of ℓ modes from three distinct sections. For all
ℓ ≥ 2 we can use the solutions to the Teukolsky equation
give by Mano, Suzuki and Takasugi, as detailed in a re-
view article by Sasaki and Tagoshi [29]. Furthermore, for
sufficiently large values of ℓ the regularity of these solu-
tions can be exploited with an ansatz to produce general
expressions for arbitrary (large) ℓ and m. As such, in
practice we: (i) compute a finite number of specific-ℓ val-
ues (with the exact number of required specific-ℓ values
needed depending on the final PN order desired) using
the MST solutions; and (ii) obtain the remaining modes
from our ansatz. The third section of the solution relates
to the non-radiative modes, and is addressed in Sec. III D.

1. Low ℓ modes: MST

Descriptions of the construction of the MST series so-
lutions to the Teukolsky equation are widely available
in the literature [29], so we will give here only a brief
overview.

In computing PN expansions, we find two natural small
parameters; the frequency ω = mΩ and the inverse of the
radius, 1/r, which is related to the orbital frequency, Ω,
via Eq. (2.3). This double expansion is handled indi-
rectly by expanding in the inverse of the speed of light,
1/c, and introducing the auxiliary variables X1 = GM/r

and X
1/2
2 = ωr. Dimensional analysis shows that each

of these variables carry a factor of 1/c, and are of the
same order in the large-r limit. Towards the end of our
calculations we will change back to a single expansion
variable, namely y = (MΩ)2/3 and use this relation to
define X1(y) and X2(y).

The MST expansion of sR
in
ℓmω(r)

The homogeneous solution satisfying retarded bound-
ary conditions at the horizon can be written as a conver-
gent infinite sum of hypergeometric functions

sR
in
ℓmω(r) = Cν(in)(x)

∞
∑

n=−∞

aνn×

2F1(n+ 1 + ν − iτ,−n− ν − iτ, 1− s− iǫ− iτ, x) ,
(3.11)

with

Cν(in)(x) = eiǫκx(−x)−s−i(ǫ+τ)/2(1 − x)i(ǫ−τ)/2,

where

x =
(r+ − r)c2

2GMκ
=

2κη2X1

1 + (κ− 1)η2X1
,

ǫ = 2GMω/c3 = 2X1X2
1/2η3,

and where

q = a/M κ =
√

1− q2

r± = GM(1± κ)/c2 τ = (ǫ −mq)/κ.

Note that τ is O(ǫ) in Schwarzschild and also for m = 0
in Kerr, but is O(1) for m 6= 0 in Kerr. Here ν is the
well-known “renormalised angular momentum”; for the
purpose of this section the critical feature is that ν =
l +O(ǫ2). We may write Cν(in)(x) as

Cν(in)(x) = eiǫκx(2κη2X1)
s+iτ

[

1 + (κ− 1)η2X1

]i ǫ−τ

2

[1− (1 + κ)η2X1]
s+i ǫ+τ

2

,

and more convenient expressions for they hypergeometric
function can be obtained by using the decomposition

2F1(a, b, c; ζ) =

Γ(c)Γ(b − a)

Γ(b)Γ(c− a)
(1− ζ)−a2F1(a, c− b, a− b+ 1, 1

1−ζ )

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(1− ζ)−b2F1(c− a, b, b− a+ 1, 1

1−ζ ).

(3.12)

We denote the first and second terms on the right hand
side by F1 and F2, respectively; this leads to the Rin =
Rν0 + R−ν−1

0 representation of Eq. (137) in [29] if we let
n→ −n in the F1 sum.
High order expansions of these expressions can prove

computationally quite expensive if done without care. An
examination of the leading order behaviour in η = 1/c of
each term in the sums involved in both F1 and F2 helps
to minimise the expansion of each n-value and determine
a look-up table for truncating the infinite sum to a given
order in η. In doing this one must take care of the ir-
regular behaviour of the the series coefficients aνn, the Γ
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functions, and the 2F1 with changing n. We summarise
our results in Tables I, II and III. One minor complication
we find is that the static m = 0 case must be handled
separately. In the circular orbit case this problem can
be circumvented; when m = 0 then also ω = mΩ = 0,
so one can use closed form analytic expressions for the
solutions, as given in [30].

The MST expansion of sR
up

ℓmω
(r)

The homogeneous solution satisfying radiative bound-
ary conditions at infinity can be written as a sum over ir-
regular confluent hypergeometric functions with the same
series coefficients

sR
up
ℓmω(r) = Cν(up)(z)

Γ(l− s+ 1 +∆ν + iǫ)

Γ(l+ s+ 1 +∆ν − iǫ)
×

∞
∑

n=−∞

aνn(2iz)
nŨ(n+ 1 + s+ ν − iǫ, 2n+ 2 + 2ν;−2iz),

(3.13)

where

Ũ(a, b, ζ) =
Γ(a)

Γ(a∗ − 2s)
U(a, b, ζ),

with

Cν(up)(z) = 2νe−πǫe−iπ(ν+1+s)eiz
zν+i(ǫ+τ)/2

(z − ǫκ)s+i(ǫ+τ)/2
,

and

z = ω(r − r−) = ǫκ(1− x) = ηX2
1/2

[

1− (1 − κ)η2X1

]

.

Then,

Cν(up)(z) = 2νe−πǫe−iπ(ν+1+s)eiz(ηX2
1/2)ν−s×

[

1− (1− κ)η2X1

]ν+i ǫ+τ

2

[

1− (1 + κ)η2X1

]s+i ǫ+τ

2

.

Note that the prefactors here have been taken to agree
with Sasaki and Tagoshi [29].
Now using the standard identity

U(a, b, z) =
Γ (1− b)

Γ (a− b+ 1)
M (a, b, z)+

Γ (b− 1)

Γ (a)
z1−bM (a− b+ 1, 2− b, z) ,

we may split (3.13) into two more manageable pieces

Ũ(a, b, ζ) = Ũ1 (a, b, ζ) + Ũ2 (a, b, ζ), where

Ũ1 (n+ 1 + s+ ν − iǫ, 2n+ 2 + 2ν;−2iz) =

(−1)n−s
sin(ν + iǫ)π

π
×

Γ(n+ 1 + s+ ν − iǫ)Γ (−2n− 1− 2ν)×
M (n+ 1 + s+ ν − iǫ, 2n+ 2 + 2ν;−2iz) ,

(3.14)

Ũ2 (n+ 1 + s+ ν − iǫ, 2n+ 2 + 2ν;−2iz) =

Γ (2n+ 1 + 2ν)

Γ(n+ 1− s+ ν + iǫ)
z−2n−2ν−1×

M (−n+ s− ν − iǫ,−2n− 2ν,−2iz) . (3.15)

The leading order behaviour in η of each term in the
sums involved in both Ũ1 and Ũ2 are summarised in Ta-
bles IV and V. Once again we treat the m = 0 case dif-
ferently. The tables are presented, however the analytic
expressions given in [30] can alternatively be used.

2. Phase extraction and the large ℓ modes: A PN ansatz

As described in [31], for sufficiently large values of ℓ, in
the Schwarzschild case the MST solutions to the Regge-
Wheeler equation, X in/up can be written in the form:

X
in(MST)
ℓm = eiψ

in

X1
−ν−1×

[

1 + η2Aℓ2 + η4Aℓ4 + η6Aℓ6 + . . .
]

(3.16)

X
up(MST)
ℓm = eiψ

up

(X2
1/2)−ν×

[

1 + η2Bℓ2 + η4Bℓ4 + · · ·+ η2ℓBℓ2ℓ +O(η2ℓ+2)
]

,

(3.17)

where ψin and ψup are r-independent phase factors and
the Ai’s and Bi’s are pure polynomials in X1, X2

1/2. (For
low-ℓ values, this expression is corrupted by logarithms
and odd powers of η.)

At this point, two further optimisations help to dra-
matically improve the efficiency of calculations. In con-
structing the retarded Green function, the phase factors
will drop out since they amount to an irrelevant normal-
isation. Throwing them away and working with the ho-
mogeneous solutions without the phase factors leaves ex-
pressions which are orders of magnitude smaller in com-
plexity. A further simplification can be found by starting
from the a large ℓ ansatz

Aℓ2n =

n
∑′

i=0

a(2n,i)X1
iX2

n−i,

ν(ǫ) = ℓ+
∞
∑

j=1

a(6j,2j)ǫ
2j

and solving for the a(i,j) by demanding we have a so-
lution of the Regge-Wheeler equation. This provides an
efficient way to generate homogeneous solutions with ℓ,m
left unspecified, avoiding the complexity of the MST so-
lutions.

We find that the situation with the Teukolsky equation
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n ≤ −2l − 1 −2l ≤ n ≤ −l − 1 n = −l n = −l + 1 n ≥ −l + 2
an(m 6= 0) 3(|n| − 2) 3|n| 3l + 3 3l + 3 3|n|
an(m = 0) 3(|n| − 1) 3(|n| + 1) 3l + 6 3l + 3 3|n|

TABLE I. The leading behaviour of the MST coefficients for the spin −2 Teukolsky equation in terms of powers of η.

n ≤ −l − 3 n = −l − 2 n = −l − 1 n = −l n = −l + 1 n ≥ −l + 2

F1(m 6= 0) 2n+ 2l + 2 −2 −4† −4 −2 2n+ 2l − 1
F1(m = 0) 2n+ 2l + 2 −2 −1† −1 1 2n+ 2l + 2
F2(m 6= 0) −2n− 2l − 3 −2 −4 −4† −2 −2n− 2l
F2(m = 0) −2n− 2l 1 −1 −1† −2 −2n− 2l

TABLE II. The leading behaviour of the hypergeometric functions appearing as the first and second terms in Eq. (3.12). The
terms marked with a † highlight the interplay between parameters and argument; see [31] for a full discussion.

is similar. Here the solutions can be re-expressed as

sR
in
ℓmω = eiψ

in
KerrX1

−ν−s×
[

1 + ηAℓ1 + η2Aℓ2 + η3Aℓ3 + η4Aℓ4 + . . .
]

(3.18)

sR
up
ℓmω = eiψ

up

Kerr (X2
1/2)−ν−1−s×

[

1 + ηBℓ1 + η2Bℓ2 + η3Bℓ3 + η4Bℓ4 + . . .
]

(3.19)

where once again up until an ℓ-dependent power of η the
Ai and Bi are pure polynomials in X1, X2

1/2 and the
essentially irrelevant phase functions remove significant
complexity. As in the Regge-Wheeler case, we proceed
by using this as an ansatz for solutions with ℓ,m un-
specified and obtain general expressions for the large-ℓ
homogeneous solutions.

3. Teukolsky-Starobinsky identities

In the previous section, the choice of spin, s, was ar-
bitrary; s = +2 corresponds to ψ0 while s = −2 corre-
sponds to ψ4. Only one or the other is required in order to
obtain the full radiative metric perturbation. However,
in some situations it may be more convenient to have
one or the other. Fortunately, rather than repeating a
lengthy calculation for both there is a convenient short-
cut. Given our set of spin −2 homogeneous solutions,
we can easily calculate the spin +2 solution via a set
of differential transformations known as the Teukolsky-
Starobinsky identities. These are discussed in detail in
many places, for example see Ref. [32]; for completeness
we repeat the final result here. Given either an “in” or
an “up” solution −2R

in
ℓmω/−2R

in
ℓmω of spin s = −2 one

can write

+2R
in/up
ℓmω =

C in/up

∆3

[

A0Dℓω(−2R
in/up
ℓmω ) +B0−2R

in/up
ℓmω

]

where

Dℓω =∂r −
iK

∆

A0 =8iK
[

K2 + (r −M)2
]

−
[

4iK(λCH + 2)− 8iωr(r −M)
]

∆+ 8iω∆2

B0 =
[

(λCH + 2− 2iωr)(λCH + 6iωr)

− 12iω(iK + r −M)
]

∆

+ 4iK[iK + r −M ][λCH + 6iωr]

λCH = λMST + s+ |s|.

It is worth noting that on the computational side,
upon doing this transformation, we will reintroduce r-
independent terms of the form X1X2

1/2 that can once
again be extracted as components in the phase and es-
sentially ignored.

4. Spheroidal functions

For the purposes of our calculation the only relevant
frequencies are multiples of the orbital frequency, which
in the PN regime is asypmtotically small. For the cal-
culation of the spin-weighted spheroidal functions this
allows us to use a low frequency perturbative expansion
in terms of the spin- weighted spherical harmonics. Re-
call the ODE for the spin-weighted spheroidal harmonics,
Eq. (3.8), which can be rewritten suggestively as

(L0 + aωL1)sSℓm(θ, ϕ; aω) = −sλℓm sSℓm(θ, ϕ; aω)
(3.20)

where

L0 =
1

sin θ

d

dθ

(

sin θ
d

dθ

)

− (m+ s cos θ)2

sin2 θ
+ s (3.21)

L1 = −2s cosθ + 2m− aω(1− cos2 θ). (3.22)

Then, Eq. (3.20) reduces to an ODE for the spin-weighted
spherical harmonics in the aω → 0 limit. This suggests
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n ≤ −2l − 1 −2l ≤ n ≤ −l − 3 n = −l − 2 n = −l − 1 n = −l n = −l + 1 n ≥ −l + 2

η2l+4anC
ν

(in)F1(m 6= 0) |n|+ 4l − 4 |n|+ 4l + 2 5l + 4 5l − 1† 5l − 1 5l + 1 3|n| + 2n+ 4l − 1

η2l+4anC
ν

(in)F1(m = 0) |n|+ 4l − 1 |n|+ 4l + 5 5l + 7 5l + 5† 5l + 2 5l + 4 3|n| + 2n+ 4l + 2

η2l+4anC
ν

(in)F2(m 6= 0) 5|n| − 9 5|n| − 3 5l + 4 5l − 1 5l − 1† 5l + 1 3|n| − 2n

η2l+4anC
ν

(in)F2(m = 0) 5|n| − 3 5|n|+ 3 5l + 10 5l + 5 5l + 5† 5l + 1 3|n| − 2n

TABLE III. The combined behaviour following from Tables I and II. We take out a factor of η2l+4 for normalisation fixing the
largest term as O(1), everything higher can be read as relative.

n ≤ −l − 3 n = −l − 2 n = −l − 1 n = −l n = −l + 1 n ≥ −l + 2

Ũ1 0 0 −5† −6 −6 −3

Ũ2 −2n− 2l − 4 −3 −5 −6† −3 −2n− 2l − 1

TABLE IV. The leading behaviour of the confluent hypergeometric functions appearing in Eqs. (3.14) and (3.15). The terms
marked with a † highlight the interplay between parameters and argument; see [31] for a full discussion.

a perturbative solution

sSlm(θ, ϕ; aω) =

∞
∑

k=|s|

dkm(aω)sYkm(θ, ϕ), (3.23)

where the series coefficients are written as expansions in
aω,

dkm = 1 + d1km(aω) + d2km(aω)2 + · · · . (3.24)

Similarly, we may write the eigenvalue as a series in aω,

sλℓm = ℓ(ℓ+ 1)− s(s+ 1) + λ(1)(aω) + λ(2)(aω)2 + · · · .
(3.25)

Then, using the relations

L0
sYℓm(θ, ϕ) = −[ℓ(ℓ+ 1)− s(s+ 1)]sYℓm(θ, ϕ),

cos θsYℓm(θ, ϕ) = sαℓm sYℓ−1,m(θ, ϕ)

+ sβℓm sYℓm(θ, ϕ) + sαℓ+1,m sYℓ+1,m(θ, ϕ),

cos2 θsYℓm(θ, ϕ) = sαℓ−1,m sαℓ,m sYℓ−2,m(θ, ϕ)

+ sαℓm (sβℓ−1,m + sβℓm)sYℓ−1,m(θ, ϕ)

+ (sα
2
ℓm + sα

2
ℓ+1,m + sβ

2
ℓm) sYℓm(θ, ϕ)

+ sαℓ+1,m (sβℓm + sβℓ+1,m)sYℓ+1,m(θ, ϕ)

+ sαℓ+1,m sαℓ+2,m sYℓ+2,m(θ, ϕ), (3.26)

with

sαℓm =

√

(ℓ2 −m2) (ℓ2 − s2)

ℓ
√

(2ℓ+ 1)(2ℓ− 1)
, (3.27)

sβℓm = − ms

ℓ(ℓ+ 1)
, (3.28)

we can use the orthogonality of the spherical harmonics
to reduce the problem to solving a system of linear alge-
braic equations for the series coefficients at each aω order.
This process determines the coefficients λi and dikm for
k 6= 0; the remaining coefficients, di0m, are then deter-
mined by enforcing normalisation of the spin-weighted
spheroidal harmonics via Eq. (3.9). In Appendix B we
give an explicit expression for this expansion for general
spin, s, to order (aω)4.

C. Reconstructed metric perturbation in radiation

gauge

The procedure for building up the components of the
metric perturbation from the Weyl scalars [33–37] in-
volves the construction of a Hertz potential, Ψ, from
which gives the metric perturbation can be computed
using

hαβ = −̺−4{nαnβ(δ̄ − 3α− β̄ + 5̟)(δ̄ − 4α+̟)

+ m̄αm̄β(∆ + 5µ− 3γ − γ̄)(∆+ µ− 4γ)

− n(αnβ)
[

(δ̄ − 3α+ β̄ + 5̟ + τ̄ )(∆+ µ− 4γ)

+(∆+ 5µ− µ̄− 3γ − γ̄)(δ̄ − 4α+̟)
]

}Ψ+ c.c.,

(3.29)

where the overall minus sign here accounts for our mostly
positive sign convention for the metric.

For simplicity, from this point forward we restricting
ourselves to the outgoing radiation gauge (ORG) defined
by

nµhµν = 0.

In this gauge the Hertz potential itself is a solution of
the spin-2 Teukolsky equation. Calculating Ψ can be
done either using ψ0 or ψ4 in a variety of ways. For
example, in [30] expressions are given for the Ψ in terms
of the asymptotic amplitudes of ψ4, whereas in [38] it
is constructed by inverting a differential operator which
simplifies in the circular orbit case. Therefor to proceed
one must solve either the s = 2 or s = −2 Teukolsky
equation. However from a practical point of view it is not
particularly important which is chosen, as the Teukolsky-
Starobinsky identities can be used to transform between
the two.

In this work we chose to construct ψ0 using the s =
2 homogeneous solutions. To do this we construct the
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n ≤ −2l − 1 −2l ≤ n ≤ −l − 3 n = −l − 2 n = −l − 1 n = −l n = −l + 1 n ≥ −l + 2

ηl−1anC
ν

(up)(−2iz)nŨ1(m 6= 0) 2|n|+ 2l − 5 2|n|+ 2l + 1 4l + 5 4l − 2† 4l − 2 4l − 1 3|n|+ n+ 2l − 2

ηl−1anC
ν

(up)(−2iz)nŨ1(m = 0) 2|n|+ 2l − 2 2|n|+ 2l + 4 4l + 8 4l + 1† 4l + 1 4l − 1 3|n|+ n+ 2l − 2

ηl−1anC
ν

(up)(−2iz)nŨ2(m 6= 0) 4|n| − 9 4|n| − 3 4l + 2 4l − 2 4l − 2† 4l + 2 3|n| − n

ηl−1anC
ν

(up)(−2iz)nŨ2(m = 0) 4|n| − 6 4|n| 4l + 5 4l + 1 4l + 1† 4l + 2 3|n| − n

TABLE V. The combined behaviour following from Tables I and IV. We take out a factor of ηl−1 for normalisation, fixing the
largest term as O(1); everything higher can be read as relative.

retarded Green function

Gℓm(r, r′) = −
Rin
ℓm,s=2(r<)R

up
ℓm,s=2(r<)

Aℓm
, (3.30)

where Aℓm = ∆s+1W (Rin, Rup) is the invariant Wron-
skian. Then

ψ0,ℓmω = 4π

∫

∆′2Gℓm(r, r′)2S
∗
ℓm(θ

′, ϕ′; aω)T ′
0

× Σ′ sin θ′dr′dθ′dϕ′

(3.31)

Then, using Eq. (40) of [38]

Ψℓm =

8
(−1)mDψ̄0,ℓ,−m,−ω + 12iMωψ0,ℓmω

D2 + 144M2ω2 2Sℓm(θ, ϕ; aω),

(3.32)

where

D2 =λ2CH(λCH + 2)2 + 8aω(m− aω)λCH(5λCH + 6)

+ 48(aω)2(2λCH + 3(m− aω)2)

and λCH = λMST + s+ |s|.
Finally, we construct the ℓ,mmodes of the metric com-

ponents, hℓmαβ , using (3.29) with Ψ replaced by Ψℓm. Note
that this is is in contrast to a mode definition in terms
of a direct decomposition of hαβ over the spin-weighted
spheroidal harmonics; the modes of the metric perturba-
tion constructed in this way are not necessarily pure spin
±2 spheroidal harmonic modes.

D. Metric completion

It is well known that a metric reconstruction procedure
based on ψ0 or ψ4 does not yield the whole radiation-
gauge metric perturbation. Wald [39] showed that for a
Kerr background the remaining part of the metric per-
turbation can be fully attributed to perturbations to the
mass and angular momentum of the background black
hole (often, these are informally described as “ℓ = 0 and
ℓ = 1 parts” of the perturbation). Here, we follow the
standard procedure [40] and incorporate this contribu-
tion using analytic expressions. In particular, defining

H = 1
2hαβu

αuβ, the additional contributions correspond-
ing to perturbations to the mass and angular momentum
are

HδM =

(

r20 + 2a
√
Mr0 − a2

)

(

r
3/2
0 − 2M

√
r0 + a

√
M

)

r
9/4
0

(

r
3/2
0 − 3M

√
r0 + 2a

√
M

)3/2
,

(3.33)

HδJ =

√
M

(

r20 − 2a
√
Mr0 + a2

) (

a− 2
√
Mr0

)

r
9/4
0

(

r
3/2
0 − 3M

√
r0 + 2a

√
M

)3/2
. (3.34)

There is a subtlety here in that these contributions are
not smooth on the worldline, and this non-smoothness
could introduce additional contributions to the regular-
ization procedure (see [41] for a more detailed discussion).
This is a complicated issue worthy of a detailed indepen-
dent analysis; here, we merely follow the standard proce-
dure of evaluating the contributions from the completion
part in the limit r → r+0 and use the mode-sum regular-
ization procedure described in the next section.

E. Regularization

We adopt a variation of the standard mode-sum reg-
ularization approach in order to extract a finite value
from the divergent retarded metric perturbation. Tradi-
tionally, this mode-sum approach is written in terms of
a sum over regularized spherical harmonic modes. This
has the distinct disadvantage of requiring a cumbersome
projection of the modes of the retarded metric pertur-
bation onto scalar spherical harmonics. We have avoided
this unnecessary step by instead deriving a mode-sum for-
mula for the spheroidal harmonic modes that naturally
arise from solutions of the Teukolsky equation. The full
details of this derivation will be given in a forthcoming
work; here we merely highlight the key results.
The derivation of our mode-sum formula is conceptu-

ally similar to previous derivations in terms of spherical
harmonics, i.e.

1. Work in a spherical coordinate system, (α, β) in
which the particle is instantaneously located at the
north pole, α = 0.

2. Obtain a local coordinate expansion of the contri-
bution to H from the Detweiler-Whiting singular
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field.

3. Decompose this coordinate approximation into
spin-0 spheroidal harmonics, where the spheroidal
harmonics are defined with respect to a coordinate
system (θ, ϕ) in which the worldline is in the equa-
torial plane, θ = 0. The decomposition process
makes use of the relation between the modes in the
(α, β) coordinate system (where the mode decom-
position can be most-easily done analytically) and
the modes in the (θ, ϕ) coordinate system (where
the retarded-field modes are most easily obtained).

4. Sum over m (azimuthal) modes to obtain a mode-
sum formula.

The result of this process is a mode-sum formula for com-

puting the regularized redshift invariant,

HR =

∞
∑

ℓ=0

(

Hret
ℓ −H[0]

)

, (3.35)

where

H[0] =
2

πζ
K +

a2Ω2

6πζk2

[

(k − 2)E − 2(k − 1)K
]

+
a4Ω4

1120πζk4

[

2(9k3 + 4k2 + 116k − 152)E

− (9k3 − 89k2 + 384k − 304)K
]

+O
( a6

r140

)

(3.36)

with

ζ2 ≡ L2 + r20 +
2a2M

r0
+ a2, k ≡ ζ2 − r20

ζ2
.

For the purposes of this work, we require the post-
Newtonian expansion of this regularization parameter,
which is given by

H[0] = y − y2

4
+

2

3
qy5/2 −

(

39

64
+
q2

4

)

y3 +
7

6
qy7/2 −

(

385

256
+

7q2

36

)

y4 +

(

99q

32
− q3

2

)

y9/2

−
(

61559

16384
+

1625q2

2304
− 9q4

64

)

y5 +

(

3239q

384
− 733q3

648

)

y11/2 −
(

622545

65536
+

5827q2

2048
+

41q4

256

)

y6

+

(

577769q

24576
− 27133q3

10368
+

15q5

32

)

y13/2 −
(

25472511

1048576
+

6885521q2

589824
+

178879q4

248832
+

25q6

256

)

y7

+

(

2183421q

32768
− 2173q3

512
+

173q5

128

)

y15/2 −
(

263402721

4194304
+

54148187q2

1179648
+

6253225q4

1990656
− 861q6

2048

)

y8

+

(

100247739q

524288
+

2495743q3

2654208
+

3176285q5

746496
− 175q7

384

)

y17/2

−
(

176103411255

1073741824
+

722675577q2

4194304
+

13050523q4

1048576
− 18421q6

8192
− 1225q8

16384

)

y9

+

(

1161008301q

2097152
+

544444555q3

10616832
+

34364327q5

2985984
− 6335q7

4608

)

y19/2 +O(y10). (3.37)

IV. RESULTS

The main result of this work is the post-Newtonian expansion of Detweiler’s redshift invariant. This is given as a
series expansion in y and log y, which takes the form

∆U = c1y + c2y
2 + c2.5y

2.5 + c3y
3 + c3.5y

3.5 + c4y
4 + c4.5y

4.5 + (c5 + cln5 log y)y5 + c5.5y
5.5 + (c6 + cln6 log y)y6

+ (c6.5 + cln6.5 log y)y
6.5 + (c7 + cln7 log y)y7 + (c7.5 + cln7.5 log y)y

7.5 + (c8 + cln8 log y + cln
2

8 log2 y)y8

+ (c8.5 + cln8.5 log y)y
8.5 + (c9 + cln9 log y + cln

2

9 log2 y)y9 + (c9.5 + cln9.5 log y + cln
2

9.5 log
2 y)y9.5 +O(y10). (4.1)
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The coefficients in this expansion are given by

c1 = −1, c2 = −2, c2.5 = 7
3q, c3 = −5− q2, c3.5 = 46

3 q, c4 = − 121
3 + 41

32π
2 − 86

9 q
2, c4.5 = 77q + q3,

c5 = − 1157
15 − 128

5 γ + 677
512π

2 − 256
5 log(2)− 577

9 q2, cln5 = − 64
5 , c5.5 =

[

974
3 + 29

32π
2
]

q + 1526
81 q3,

c6 = 1606877
3150 + 1912

105 γ − 60343
768 π2 + 7544

105 log(2)− 243
7 log(3)−

[

1147
3 − 593

512π
2
]

q2 − 2q4,

cln6 = 956
105 ,

c6.5 = − 13696
525 π + q

[

348047
150 + 352

5 γ − 6349
64 π2 + 416

3 log(2)
]

+ 13625
81 q3,

cln6.5 = 176
5 q,

c7 = 17083661
4050 + 102512

567 γ − 1246056911
1769472 π2 + 2800873

262144 π
4 + 372784

2835 log(2) + 1215
7 log(3)

− q2
[

1288408
675 + 264

5 γ − 92557
9216 π

2 + 104 log(2)
]

− 8120
243 q

4,

cln7 = 51256
567 − 132

5 q2,

c7.5 = 81077
3675 π + q

[

734961481
22050 + 2072

5 γ − 8911441
3072 π2 + 4744

7 log(2) + 972
7 log(3) + 32

5 log(κ) + 16
5 ψ

(0,2)(q)
]

+ q3
[

243611
225 + 96

5 γ + 1319
384 π

2 + 96
5 log(2) + 96

5 log(κ) + 48
5 ψ

(0,2)(q)
]

+ 12
5 q

5,

cln7.5 = 1052
5 q + 96

5 q
3,

c8 = 12624956532163
382016250 − 10327445038

5457375 γ + 109568
525 γ2 − 9041721471697

2477260800 π2 − 23851025
16777216π

4 − 16983588526
5457375 log(2)

+ 438272
525 γ log(2) + 438272

525 log(2)2 − 2873961
24640 log(3)− 1953125

19008 log(5)− 2048
5 ζ(3)

+ 33008
315 πq − q2

[

− 14713942
945 + 67736

315 γ + 710125279
294912 π2 + 6632

21 log(2) + 729
7 log(3)

]

−
[

85420
243 + 69

256π
2
]

q4,

cln8 = − 5163722519
5457375 + 109568

525 γ − 33868
315 q2 + 219136

525 log(2),

cln
2

8 = 27392
525 ,

c8.5 = 82561159
467775 π + q

[

700704798839
3572100 + 1097696

8505 γ − 27925459441
1327104 π2 + 124925059

393216 π4 + 4440032
8505 log(2)− 162

7 log(3)

+ 224
5 log(κ) + 16

5 ψ
(0,1)(q) + 96

5 ψ
(0,2)(q)

]

− 5564
105 πq

2 + q3
[

13856317
1215 + 2792

15 γ − 80954347
165888 π2 + 1272

5 log(2)

+ 552
5 log(κ)− 12

5 ψ
(0,1)(q) + 288

5 ψ(0,2)(q)
]

+ 191699
3645 q5,

cln8.5 = 147872
1701 q + 2224

15 q3,

c9 = − 7516468355368067
34763478750 − 1533327047906

496621125 γ − 108064
2205 γ2 − 246847155756529

18496880640 π2 + 22759807747673
6442450944 π4 + 1712

525 κ

− 1363551923554
496621125 log(2)− 3574208

3675 γ log(2)− 2143328
1575 log(2)2 − 2201898578589

392392000 log(3) + 37908
49 γ log(3)

+ 37908
49 log(2) log(3) + 18954

49 log(3)2 + 798828125
741312 log(5)− 64

5 log(κ)− 32
5 ψ

(0,2)(q)− 41408
105 ζ(3)

+ q
[

24020077
66150 π − 3424

525 ψ̄
(0,2)(q) + 64

5κ ψ̄
(1,2)(q)

]

+ q2
[

53568869587
99225 − 682000

567 γ − 411304830035
7077888 π2 − 417436343

16777216 π
4 + 1712

175 κ

− 7102544
2835 log(2) + 486

7 log(3)− 448
3 log(κ)− 64

15ψ
(0,1)(q)− 352

5 ψ(0,2)(q)
]

− q3
[

3424
175 ψ̄

(0,2)(q)− 192
5κ ψ̄

(1,2)(q)
]

− q4
[

650593
225 + 104

5 γ − 818819
98304 π

2 + 232
5 log(2)− 32

5 log(κ)− 16
5 ψ

(0,1)(q)
]

− 14
5 q

6,

cln9 = − 769841899153
496621125 − 108064

2205 γ − 1787104
3675 log(2) + 18954

49 log(3)− 383336
567 q2 − 36

5 q
4,

cln
2

9 = − 27016
2205 ,

c9.5 = − 2207224641326123
1048863816000 π + 23447552

55125 γπ − 219136
1575 π3 − 10755481

33075 πq2 + 46895104
55125 π log(2)

+ q
[

2167536532386661
2521307250 + 75699353672

16372125 γ − 437824
525 γ2 − 780002666754601

7431782400 π2 + 43593199495
16777216 π4 + 144895599176

16372125 log(2)

− 5240192
1575 γ log(2)− 1744448

525 log(2)2 − 10841769
6160 log(3) + 9765625

14256 log(5) + 10208
35 log(κ) + 2806

105 ψ
(0,1)(q)

+ 12416
105 ψ(0,2)(q) + 6

7ψ
(0,3)(q) + 5504

5 ζ(3)
]

+ q3
[

164687954986
297675 + 5178416

2835 γ − 17476082953
331776 π2 + 7481392

2835 log(2)

+ 1944
7 log(3) + 71984

105 log(κ)− 1307
70 ψ(0,1)(q) + 7424

21 ψ(0,2)(q) + 111
14 ψ

(0,3)(q)
]

+ q5
[

1079765333
1786050 + 272

35 γ − 53
1024π

2

+ 272
35 log(2) + 272

35 log(κ)− 36
35ψ

(0,1)(q) − 128
35 ψ

(0,2)(q) + 60
7 ψ

(0,3)(q)
]

,

cln9.5 = 11723776
55125 π + q

[

40237200436
16372125 − 437824

525 γ − 2620096
1575 log(2)

]

+ 3560992
2835 q3 + 272

35 q
5,

cln
2

9.5 = − 109456
525 q (4.2)

where γ is Euler’s constant, ζ(n) is the Riemann zeta function, ψ(n,k)(q) ≡ ψ(n)( ikqκ ) + ψ(n)(−ikqκ ) = 2ℜ[ψ(n)( ikqκ )],

ψ̄(n,k)(q) ≡ −i[ψ(n)( ikqκ ) − ψ(n)(−ikqκ )] = 2ℑ[ψ(n)( ikqκ )] and ψ(n)(z) = dn+1

dzn+1 ln Γ(z) is the polygamma function. For
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convenience, we have also made these expressions available online as Mathematica notebooks [42].

V. DISCUSSION

In this work, we have presented results for the linear-
in-mass ratio contribution to Detweiler’s redshift invari-
ant, ∆U , for a quasi-circular binary black hole system,
in the case where the larger black hole is spinning. Our
results are given as a PN-type expansion in the inverse
separation, y, of the binary, but are otherwise exact. In
particular, they are valid for astrophysically-important
cases where the spin of the larger black hole is arbitrarily
large.
There are several clear future directions for this work,

in particular:

• An extension to eccentric and inclined orbits would
allow for a more complete exploration of the param-
eter space. The components for such a calculation
are readily available — eccentric orbits have been
studied without spin in [17, 43, 44], while spin con-
tributions have been considered here and in [21] —
so such a calculation would merely require an ap-
propriate combination of the two approaches.

• An extension to higher PN orders. As the method
we present here is totally algorithmic and imple-
mented as a Mathematica code, it is straight-
forward (but more computationally expensive) to
apply it to higher orders if the demand arises. In-
deed, an online repository of our results [42] will be
updated as future results become available.

• An extension to second order in the mass ratio
would enable us to probe potentially important
non-linear effects. This would require substantial
effort, but recent progress [45–53] indicates rapid
progress towards this goal.

• The application of our method to the calculation of
other gauge invariant quantities, such as the spin-
precession [10], tidal [11], and octupolar [16] invari-
ants. These are obtained from the same metric per-
turbations used for the redshift invariant, so their
calculation would be a straightforward application
of the results presented here.

In addition to these, it is likely that an application of our
results to improving and informing PN and EOB theo-

ries — for example by computing GSF contributions to
the potentials appearing in EOB theory — would yield
valuable improvements to both PN and EOB models.
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Appendix A: Sums over m-modes

Using the methods of the previous sections, we can
write the ℓ,m-modes of the metric perturbation in terms
of radial functions multiplying combinations of the spin-
weighted spheroidal harmonics and their θ derivatives.
When limiting to the position of the particle and sum-
ming over m, one then encounters sums such as

SN1 =

ℓ
∑

m=−ℓ

mN |sSℓm(π/2, 0; iamΩ)|2 (A1)

SN2 =

ℓ
∑

m=−ℓ

mN
sSℓm(π/2, 0; iamΩ)∂θ×

sS
∗
ℓm(π/2, 0; iamΩ) (A2)

SN3 =
ℓ

∑

m=−ℓ

mN |∂θsSℓm(π/2, 0; iamΩ)|2 (A3)

It is not immediately clear how to do these explicitly, but
for the low-frequency limit we are interested in, progress
can be made by using an expansion in terms of spin-
weighted spherical harmonics, and doing the sums order
by order. As an example, for SN1 with s = 2 we find

SN1 =

ℓ
∑

m=−ℓ

{

mN
2Yℓm(π/2, 0)2 + 4mN+1qΩ

[

√

(ℓ− 2)(ℓ+ 2)(ℓ+m)(ℓ −m)

ℓ2
√

(2ℓ− 1)(2ℓ+ 1)
2Yℓ−1,m(π/2, 0) 2Yℓm(π/2, 0)

−
√

(ℓ − 1)(ℓ+ 3)(ℓ+ 1 +m)(ℓ+ 1−m)

(ℓ+ 1)2
√

(2ℓ+ 1)(2ℓ+ 3)
2Yℓ+1,m(π/2, 0) 2Yℓm(π/2, 0)

]

+O
[

(qΩ)2
]

}

(A4)
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which is zero for odd values of N . For even values we find it efficient to obtain closed form expressions each sum
using Mathematica’s FindSequenceFunction routine. This function takes as an argument a sample range of algebraic
evaluations of one of these sums for given values of ℓ and outputs an analytic form for general ℓ. The method is highly
parallelisable, which given the number of different variations of sums we will face for increasing order, and the different
combinations of sSℓm(π/2, 0; iamΩ) and its derivative, is extremely useful. Example results for N = 0, 2 are

S0
1 =

2ℓ+ 1

4π

[

1− 16

ℓ2(ℓ+ 1)2
aΩ− 1

2ℓ4(ℓ+ 1)4(2ℓ− 1)2(2ℓ+ 3)2
×

(−14688 + 9792ℓ+ 49560ℓ2 + 60528ℓ3 − 15352ℓ4 − 49411ℓ5 − 7597ℓ6 + 7598ℓ7 + 1904ℓ8

+ 25ℓ9 + 27ℓ10 + 12ℓ11 + 2ℓ12)a2Ω2

]

+ O
[

(qΩ)3
]

S2
1 =

2ℓ+ 1

4π

[

1

2

(

−4 + ℓ+ ℓ2
)

−
(

−68 + 3ℓ2 + 6ℓ3 + 3ℓ4
)

ℓ2(ℓ+ 1)2
aΩ− 1

8ℓ4(ℓ+ 1)4(2ℓ− 1)2(2ℓ+ 3)2
×

(428544− 285696ℓ− 1487712ℓ2 − 1738176ℓ3 + 707612ℓ4 + 1645334ℓ5 + 136153ℓ6

− 354650ℓ7 − 88019ℓ8 + 3938ℓ9 + 4411ℓ10 + 2122ℓ11 + 475ℓ12 + 56ℓ13 + 8ℓ14)a2Ω2

]

+O
[

(aΩ)3
]

For our purposes we were required to compute sums for N = 0, ..., 24 up to Ω6, for each of (A1), (A2) and (A3).

Appendix B: Expansion of spin-weighted spheroidal harmonic

Using the methods described in Sec. III B 4, the spin-weighted spheroidal harmonics may be written as a power
series in aω. In this appendix, we given the explicit form of the expansion to order (aω)4. Defining

αℓ ≡
1

ℓ

√

(ℓ2 −m2)(ℓ2 − s2)

(2ℓ− 1)(2ℓ+ 1)
(B1)

as in Sec. III B 4 (but without the s and m subscripts for notational compactness), the expansion of sSℓm(θ, ϕ; aω) is
given by

sSℓm(θ, ϕ; aω) = sYℓm + aω

[

sαℓ
ℓ

sYℓ−1,m − sαℓ+1

ℓ+ 1
sYℓ+1,m

]

+ a2ω2

[

− (ℓ− 2s2)αℓ−1αℓ
2ℓ(2ℓ− 1)

sYℓ−2,m +
ms(ℓ2 − 2s2)αℓ
ℓ3(ℓ2 − 1)

sYℓ−1,m −
(

s2αℓ
2

2ℓ2
+

s2αℓ+1
2

2(ℓ+ 1)2

)

sYℓm

− ms(ℓ2 + 2ℓ− 2s2 + 1)αℓ+1

ℓ(ℓ+ 1)3(ℓ+ 2)
sYℓ+1,m +

(ℓ + 2s2 + 1)αℓ+1αℓ+2

2(ℓ+ 1)(2ℓ+ 3)
sYℓ+2,m

]

+ a3ω3

[

c[3,−3]
sYℓ−3,m + c[3,−2]

sYℓ−2,m + c[3,−1]
sYℓ−1,m + c[3,1] sYℓ1,m + c[3,2] sYℓ2,m + c[3,3] sYℓ3,m

]

+ a4ω4

[

c[4,−4]
sYℓ−4,mc

[4,−3]
sYℓ−3,m + c[4,−2]

sYℓ−2,m + c[4,−1]
sYℓ−1,m + c[4,0] sYℓm + c[4,1] sYℓ1,m

+ c[4,2] sYℓ2,m + c[4,3] sYℓ3,m + c[4,4] sYℓ4,m

]

+O
[

(aω)5
]

, (B2)

where the coefficients c[i,j] are given by

c[3,−3] = −s(3ℓ− 2s2 − 1)αℓ−2αℓ−1αℓ
6(ℓ− 1)ℓ(2ℓ− 1)

c[3,−2] =
ms2(2ℓ2 + ℓ− 4s2)αℓ−1αℓ
(ℓ− 2)ℓ3(ℓ+ 1)(2ℓ− 1)

c[3,−1] = − 4m2s3(ℓ2 − s2)αℓ
(ℓ − 1)2ℓ5(ℓ+ 1)2

−
s(3ℓ− 2s2 − 1)α2

ℓ−1αℓ

2ℓ2(2ℓ− 1)
− 3s3α3

ℓ

2ℓ3
+
s(1 + 2s2 + 3ℓ+ s2ℓ+ 2ℓ2)αℓα

2
ℓ+1

2ℓ2(ℓ+ 1)2
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c[3,0] = −ms
2(ℓ2 − 2s2)α2

ℓ

(ℓ− 1)ℓ4(ℓ+ 1)
− ms2(1− 2s2 + 2ℓ+ ℓ2)α2

ℓ+1

ℓ(ℓ+ 1)4(ℓ+ 2)

c[3,1] =
4m2s3(1− s+ ℓ)(1 + s+ ℓ)αℓ+1

ℓ2(ℓ + 1)5(ℓ+ 2)2
+
s(s2 + ℓ− s2ℓ+ 2ℓ2)α2

ℓαℓ+1

2ℓ2(ℓ+ 1)2
+

3s3α3
ℓ+1

2(ℓ+ 1)3
−
s(4 + 2s2 + 3ℓ)αℓ+1α

2
ℓ+2

2(ℓ+ 1)2(2ℓ+ 3)

c[3,2] =
ms2(1− 4s2 + 3ℓ+ 2ℓ2)αℓ+1αℓ+2

ℓ(ℓ+ 1)3(ℓ + 3)(2ℓ+ 3)

c[3,3] = −s(4 + 2s2 + 3ℓ)αℓ+1αℓ+2αℓ+3

6(ℓ+ 1)(ℓ+ 2)(2ℓ+ 3)

c[4,−4] =
(8s2 + 4s4 − 3ℓ− 12s2ℓ+ 3ℓ2)αℓ−3αℓ−2αℓ−1αℓ

24(ℓ− 1)ℓ(2ℓ− 3)(2ℓ− 1)

c[4,−3] = −ms(2s
2 + 4s4 − 4s2ℓ − ℓ2 − 2s2ℓ2 + ℓ3)αℓ−2αℓ−1αℓ

2(ℓ− 3)(ℓ − 1)ℓ3(ℓ + 1)(2ℓ− 1)

c[4,−2] =
m2s2(16s4 − 4s2ℓ− 24s4ℓ− 14s2ℓ2 + 12s4ℓ2 + 3ℓ3 + 24s2ℓ3 − 2ℓ4 − 12s2ℓ4 − ℓ5 + ℓ6)αℓ−1αℓ

(ℓ − 2)2(ℓ− 1)2ℓ5(ℓ+ 1)2(2ℓ− 1)

+
(8s2 + 4s4 − 3ℓ− 12s2ℓ+ 3ℓ2)α2

ℓ−2αℓ−1αℓ

12(ℓ− 1)ℓ(2ℓ− 1)2
+

(2s2 + 4s4 − 8s2ℓ+ ℓ2)α3
ℓ−1αℓ

4ℓ2(2ℓ− 1)2

− (−6s4 + s2ℓ+ 16s4ℓ− 6s2ℓ2 + ℓ3)αℓ−1α
3
ℓ

4ℓ3(2ℓ− 1)2

+
(10s4ℓ− 2(s2 + 2s4) + (8s4 + 9s2 − 1)ℓ2 + 2(5s2 − 1)ℓ3 − ℓ4)αℓ−1αℓα

2
ℓ+1

4ℓ2(ℓ + 1)2(2ℓ− 1)2

c[4,−1] = −2m3s3(4s4 − 6s2ℓ2 + ℓ4)αℓ
(ℓ− 1)3ℓ7(ℓ+ 1)3)

−
ms(−8s2 − 16s4 + 28s2ℓ+ 12s4ℓ+ ℓ2 − 8s2ℓ2 − 5ℓ3 − 6s2ℓ3 + 3ℓ4)α2

ℓ−1αℓ

2(ℓ− 2)(ℓ− 1)ℓ4(ℓ + 1)(2ℓ− 1)
− 9ms3(ℓ2 − 2s2)α3

ℓ

2(ℓ− 1)ℓ5(ℓ+ 1)

+
ms(ℓ2(ℓ+ 1)3(2ℓ+ 1)− 2s4(8 + 16ℓ+ 15ℓ2 + 3ℓ3) + s2(−8− 36ℓ− 46ℓ2 − 18ℓ3 + 3ℓ4 + 3ℓ5))αℓα

2
ℓ+1

2(ℓ− 1)ℓ4(ℓ+ 1)4(ℓ + 2)

c[4,0] = −m
2s2(12s4 − 12s2ℓ2 + ℓ4)α2

ℓ

2(ℓ− 1)2ℓ6(ℓ + 1)2)
−

(−4s2 − 8s4 + 20s2ℓ+ 20s4ℓ− 28s2ℓ2 + ℓ3)α2
ℓ−1α

2
ℓ

8ℓ3(2ℓ− 1)2
+

11s4α4
ℓ

8ℓ4

−
m2s2(1− 12s2 + 12s4 + 4ℓ− 24s2ℓ+ 6ℓ2 − 12s2ℓ2 + 4ℓ3 + ℓ4)α2

ℓ+1

2ℓ2(ℓ + 1)6(ℓ+ 2)2

− s2(2 + 4s2 + 8ℓ+ 5s2ℓ + 8ℓ2 + 5s2ℓ2)α2
ℓα

2
ℓ+1

4ℓ3(ℓ+ 1)3
+

11s4α4
ℓ+1

8(ℓ+ 1)4

−
(1 + 52s2 + 28s4 + 3ℓ+ 76s2ℓ+ 20s4ℓ+ 3ℓ2 + 28s2ℓ2 + ℓ3)α2

ℓ+1α
2
ℓ+2

8(ℓ+ 1)3(2ℓ+ 3)2

c[4,1] =
2m3s3(1− 6s2 + 4s4 + 4ℓ− 12s2ℓ+ 6ℓ2 − 6s2ℓ2 + 4ℓ3 + ℓ4)αℓ+1

ℓ3(ℓ + 1)7(ℓ+ 2)3
+

9ms3(1− 2s2 + 2ℓ+ ℓ2)α3
ℓ+1

2ℓ(ℓ+ 1)5(ℓ+ 2)

+
ms(−8s4 − 5s2ℓ− 10s4ℓ− 4s2ℓ2 − 12s4ℓ2 + ℓ3 + 6s4ℓ3 + 4ℓ4 − 12s2ℓ4 + 5ℓ5 − 3s2ℓ5 + 2ℓ6)α2

ℓαℓ+1

2(ℓ− 1)ℓ4(ℓ + 1)4(ℓ+ 2)

−
ms(9− 38s2 − 28s4 + 29ℓ− 26s2ℓ− 12s4ℓ+ 34ℓ2 + 10s2ℓ2 + 17ℓ3 + 6s2ℓ3 + 3ℓ4)αℓ+1α

2
ℓ+2

2ℓ(ℓ+ 1)4(ℓ + 2)(ℓ+ 3)(2ℓ+ 3)

c[4,2] =
m2s2αℓ+1αℓ+2

ℓ2(ℓ+ 1)5(ℓ+ 2)2(ℓ + 3)2(2ℓ+ 3)
×

[

52s4 − 3− 46s2 + 6(8s4 − 24s2 − 1)ℓ+ 2(6s4 − 79s2 + 2)ℓ2 + (19− 72s2)ℓ3 − 6(2s2 − 3)ℓ4 + 7ℓ5 + ℓ6
]
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− (3s2 + 6s4 + 12s2ℓ− 6s4ℓ+ ℓ2 + 21s2ℓ2 − 8s4ℓ2 + 2ℓ3 + 10s2ℓ3 + ℓ4)α2
ℓαℓ+1αℓ+2

4ℓ2(ℓ+ 1)2(2ℓ+ 3)2

−
(1 + 7s2 + 22s4 + 3ℓ+ 13s2ℓ + 16s4ℓ+ 3ℓ2 + 6s2ℓ2 + ℓ3)α3

ℓ+1αℓ+2

4(ℓ+ 1)3(2ℓ+ 3)2

+
(1 + 10s2 + 4s4 + 2ℓ+ 8s2ℓ+ ℓ2)αℓ+1α

3
ℓ+2

4(ℓ+ 1)2(2ℓ+ 3)2
+

(6 + 20s2 + 4s4 + 9ℓ+ 12s2ℓ+ 3ℓ2)αℓ+1αℓ+2α
2
ℓ+3

12(ℓ+ 1)(ℓ + 2)(2ℓ+ 3)2

c[4,3] = −ms(2− 4s2 − 4s4 + 5ℓ+ 4ℓ2 + 2s2ℓ2 + ℓ3)αℓ+1αℓ+2αℓ+3

2ℓ(ℓ+ 1)3(ℓ + 2)(ℓ+ 4)(2ℓ+ 3)

c[4,4] =
(6 + 20s2 + 4s4 + 9ℓ+ 12s2ℓ+ 3ℓ2)αℓ+1αℓ+2αℓ+3αℓ+4

24(ℓ+ 1)(ℓ+ 2)(2ℓ+ 3)(2ℓ+ 5)
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