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A frequentist asymptotic expansion method for error estimation is employed for a network of
gravitational wave detectors to assess the amount of information that can be extracted from gravi-
tational wave observations. Mathematically we derive lower bounds in the errors that any parameter
estimator will have in the absence of prior knowledge to distinguish between the post-Einsteinian
(ppE) description of coalescing binary systems and that of general relativity. When such errors
are smaller than the parameter value, there is possibility to detect these violations from GR. A
parameter space with inclusion of dominant dephasing ppE parameters (β, b) is used for a study
of first- and second-order (co)variance expansions, focusing on the inspiral stage of a nonspinning
binary system of zero eccentricity detectible through Adv. LIGO and Adv. Virgo. Our procedure
is an improvement of the Cramér-Rao Lower Bound. When Bayesian errors are lower than our
bound it means that they depend critically on the priors. The analysis indicates the possibility
of constraining deviations from GR in inspiral SNR (ρ ∼ 15 − 17) regimes that are achievable in
upcoming scientific runs (GW150914 had an inspiral SNR ∼ 12). The errors on β also increase
errors of other parameters such as the chirp mass M and symmetric mass ratio η. Application is
done to existing alternative theories of gravity, which include modified dispersion relation of the
waveform, non-spinning models of quadratic modified gravity, and dipole gravitational radiation
(i.e., Brans-Dicke type) modifications.

PACS numbers: 04.30.Db, 04.80.Cc

I. INTRODUCTION

The advanced generation of the LIGO-Virgo network
of interferometers [1–3] started collecting data in Septem-
ber 2015 and provided the first detection of gravitational
waves (GWs) [4], allowing to start testing General Rela-
tivity (GR) beyond current constraints [5] into strongly
relativistic regimes [6–8]. In this paper we quantify the
capability of laser interferometers to detect violations of
GR, with a single detection of a compact binary coales-
cence signal, by assessing if the minimal error on the pa-
rameterized post-Einsteinian (ppE) parameters are larger
than the separation of modified gravity values with re-
spect to standard GR values. Error bounds are com-
puted with the most accurate frequentist approach to
date by computing the errors as inverse power series in
the signal-to-noise ratio (SNR), where the first order is
the inverse of the Fisher information matrix [9–11]. In
this paper we model GR violations with the ppE frame-
work [8, 12–15], which produces parametrized extensions
of GR GW signals for the inspiral phase only of a binary
compact coalescence in the absence of spin (similar ex-
tensions are currently not available for the merger and
ringdown phase as well as in the presence of spin).

The square root of the inverse Fisher matrix diagonal
elements, also known as the Cramér-Rao Lower Bound
(CRLB), is a lower limit in the error of any unbiased
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estimator in the absence of prior knowledge. In this re-
gard the CRLB is a statement about the amount of in-
formation available in the data regardless of the specific
parameter estimation scheme. There is however no guar-
antee that any estimator is capable to actually attain the
CRLB for part or the whole range of values the physical
parameters can assume. Also, the CRLB only takes into
account the curvature of the probability distribution of
the data around the true value of the parameters and
therefore does not include the role of secondary maxima
in the calculation of the variance or mean square error of
the estimators. The improved bound adopted here (based
on second order asymptotics) is larger than the inverse
Fisher matrices, known to underestimate errors in low-
SNR detections. Second-order bounds have been previ-
ously used for compact binary coalescence waveforms in
quantifying the accuracy in intrinsic parameters as well
as the direction of arrival for a network of laser interfer-
ometers [9–11].

The benefits of using the second order of the expan-
sions is in the fact that they depend up to the fourth
derivative of the likelihood function and, therefore, are
sensitive to asymmetries and side lobes of the estimator
probability distribution (similar to the change in the ac-
curacy of a Taylor expansion when extended to higher
orders). Also, in the past [9–11], the comparison of the
second order with the first order provided an analytical
understanding of the reasons the CRLB could not be met
(for example, in Ref. [10], a novel relationship between
the Kurtosis of the probability distribution of the esti-
mator and the SNR was derived to understand when the
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CRLB could be met).
Bayesian methods were recently applied to test modi-

fied GR signals through consistency tests [16, 17], and the
ppE framework [18]. Refs. [16, 17] developed a framework
to detect GR violations without modeling the violation,
this works in the limit of large number of detections. This
framework was used in GR tests from the GW150914
transient [6]. Bayesian selection methods were also used
in Ref. [18] and Ref. [19] to constrain the range of ppE
parameter values, provided that priors are adopted.

When Bayesian uncertainties are smaller than the fre-
quentist bounds, it means that the parameter estimation
errors depend critically on the priors. This issue can be
an artifact if the prior is not based on previous detections
or no robustness studies were performed with respect to
the choice of the priors (see for example the discussion in
Ref. [20] of the effects of priors). In this paper, we show
that this instance happens for an equal-mass binary black
hole system in the massive graviton case. This example
illustrates how the present work provides a unique under-
standing of the parameter estimation errors. Although
GW150914 had a SNR∼ 24, its inspiral stage falls within
the prescribed study of SNR< 20. 1

In addition, this work extends the Fisher informa-
tion based results of Ref. [13–15], which perform error
estimations by modifying PN coefficients. We also ex-
tend Fisher-based assessments of specific alternative the-
ories [21–25]. Specifically, this paper considers phase
modification in the restricted ppE framework [8], con-
sidering the ppE framework as a general enhancement
to existing TaylorF2 [26, 27] GR templates in a three
detector LIGO-Virgo network [1–3]. Calculations in this
limit were chosen since deformations to the GW’s phase
are expected to be more resolvable [18, 28] and comple-
ments recent Bayesian methods testing deviations from
GR [16, 17]. Second-order frequentist constraints pro-
duced in this paper are at the same order of magnitude as
the Bayesian model selection’s errors in Ref. [18], where
our errors are quantified at the one sigma level. As error
estimates of ppE parameters grow, second-order errors of
parameters such as the chirp mass, symmetric mass ra-
tio, and time of coalescence also inflate. The results pre-
sented here, and the rescaled bonds which can be simply
derived by changing the SNR, will be important bench-
marks for any parameter estimation scheme which will be
used in existing and future interferometer data, including
Bayesian parameter estimation algorithms.

Section I A of this paper introduces the signal model
used. Section II discusses what is the resolvable param-
eter space and the expansion model, in particular sub-
section II A discusses alternative theories of gravity cov-
ered in this paper and the asymptotic expansion of the
maximum likelihood estimator model is discussed in sub-
section II B. Finally, section III assesses the results, as

1 GW150914 has inspiral SNR∼ 12.

applied to a two-dimensional ppE parameter space (III A)
and a seven-dimensional parameter space of equal mass
(III B) and unequal mass (III C) systems with physical
parameters included. Results are applied to existing al-
ternative theories of gravity in III D, including massive
graviton, Brans-Dicke, and quadratic modified gravity
(encompassing Einstein-Dilation-Gauss-Bonnet gravity).
A summary and discussion is given in section IV.

A. Signal Model

The waveforms are assumed to be produced by a non-
spinning binary system with all orbital eccentricity in-
formation lost when entering the frequency bandwidth
of Adv. LIGO and Adv. Virgo. Fourier transform of the
signal, through stationary phase [29, 30], becomes,

sIGR(f) = AIGR(f)ei(ψGR(f)−2πfτI−ΦI
0) , f < fmerg (1.1)

for the inspiral stage of the compact binaries. For
the phase ψGR(f) and amplitude AIGR(f) the standard
TaylorF2 model [26, 27] is used.

The signal of a collection of alternative theories of grav-
ity is modelled as (1.1) modulated in the phase and am-
plitude as:

AIGR(f)→ AIGR(f) (1 + δA(f)) , (1.2)

ψGR(f)→ ψGR(f) + δψ(f),

where δA(f) and δψ(f) are a general series of scaling
parameters αi, βi ∈ < and in some instances arguments
call for integer exponentials of νη1/5 [31, 32], where ν =
(πMf)1/3 for total massM and η = m1m2/M

2. Here the
analysis is done at leading order in the ppE parameters,

δAppE(f) = α(νη1/5)a, (1.3)

δψppE(f) = β(νη1/5)b,

At each interferometer the signal is assumed to be
recorded with additive noise as in Ref. [11]. Frequency
dependent noise for Adv. LIGO are interpolated from the
official power spectral density [33] of high-power, zero-
detuning. Adv. Virgo is assumed to have the sensitivity
given in Ref. [34]. For error analysis, and upcoming in-
tegrations, the lower cutoff frequency is set to flow and
the upper cutoff is set to the upper limit for reliability in
the inspiral of the waveform template, i.e., the innermost
stable circular orbit (ISCO) frequency,

flow = 20 Hz , fup = fISCO ≈ (63/2πM)−1.

The convention used in (1.1) is presented in Appendix A.

II. PARAMETER SPACE AND EXPANSION

For non-spinning systems thirteen parameters are nec-
essary in the description of the inspiral of two coalescing
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binaries: two mass terms, four angles (two source loca-
tion and two waveform angles), two coalescence parame-
ters, distance to the source, and four ppE parameters in
the leading order approximation. Singular Fisher matri-
ces might appear [10, 35], indicating that the resolvable
parameter space is smaller (where the Fisher matrix ap-
proach can still be used).

The distance DL is excluded from the error estimates
because the amplitude has a dependency on both mass
and distance parameters, and the independent treatment
of both is unresolvable as already indicated in Ref. [11].
The coalescence phase is also not included because es-
timations of φc is relevant only when a full waveform
(inspiral, merger, and ringdown) is implemented. The
polarization ψ is excluded because results tend to be in-
dependent of it [11].

Derivatives of the fitting factor (FF ) [28],

FF = max
~ζ

 〈s1(~λ)|s2(~ζ)〉√
〈s1(~λ)|s1(~λ)〉

√
〈s2(~ζ)|s2(~ζ)〉

 (2.1)

with respect to the binary’s inclination ε evaluated at,
or in a neighborhood of, ε = 0 are roughly zero leading
to impossibility to estimate ε and singular Fisher matri-
ces. Here the 〈·|·〉 represent noise weighted inner prod-
ucts [11, 36] and s1,2 are GW signals controlled by general

parameter space vectors ~λ and ~ζ. Keeping other parame-
ters fixed and varying only ε produces change in the SNR
equivalent to the rescaling of the distance, which affects
GW plus-cross polarizations similarly. Top panel in fig-
ure 1 shows the sky-averaged SNR plotted as a function
of inclination ε (only the GR polarizations are consid-
ered). Also, sky patterns of the errors remain consistent
when varying ε. Therefore, since ε is degenerate with DL

it is also excluded from our resolvable parameter space,
which becomes θiphys = {η, logM, tc, lat, long}.

Throughout this paper amplitude modulations are to
be held fixed to that of GR: α = 0, because the same
effect could be produced by changing physical parame-
ters like distance or mass. Such an approach supposes
that GR-violating amplitudes in the waveform are sup-
pressed or modifications manifest only in waveform prop-
agation.2 Also, recent work suggests that GR modifi-
cations produced during the generation of a waveform
can be disentangled from that produced during propaga-
tion [31], thus, in the event that phase deformation dom-
inates GR-violating effects, amplitude modifications can
be disregarded. Calculations in this restricted framework
are performed with modifications at various PN-orders in

2 Modifications to just propagation could surface through alter-
ations in the dispersion of the GW, with alterations stem-
ming from waveform generation excluded [22, 25]. Past studies
also indicate modulations are most sensitive to phase modula-
tions [18, 28].

0 π/4 π/2
ε

4
6
8

10
12
14
16
18

SN
R

Sky-averaged SNR: ρ(ε)

−6 −4 −2 0 2 4 6
β

0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

FF

FF Values
PN-order 0.0: β × 10−2

PN-order 1.0: β × 10−1

PN-order 1.5: β

FIG. 1. Top: Sky-averaged SNR plotted with ε varied for
system parameters: m1 = m2 = 10M�, ta = φa = 0, β =
−0.2, DL = 1100 Mpc, and b = −3 in the three detector
network. Bottom: Fitting factors (2.1) for a range of β with b
fixed to produce PN-order 0.0, 1.0, and 1.5 modifications for
a system of: m1 = m2 = 10M� and ta = φa = 0. Adv. LIGO
noise is assumed. Since the range of β-values scale differently
at each PN-order, each β-interval is scaled (as labeled in the
legend). For example, in the PN-order 0.0 modification the β
values in the domain are each scaled by 10−2.

the phase, where in the strong-field regime discrete val-
ues of b controls what PN-order correction is constituted
for free parameter β (GR result: β = 0).

A qualitative way to study the influence of ppE pa-
rameters (β, b) on a GR signal can be obtained through
the correlation of the signals by means of the fitting fac-
tor (2.1). Each integration is done from 20 Hz to fISCO

with the noise curve of Adv. LIGO [33] “high-power-
zero-detuning.” Our exact waveform s1 is represented
by a TaylorF2 waveform, whereas, a modified-TaylorF2,

formed through (1.2) and (1.3), acts as s2. So ~λ is the

GR-limit parameter space vector and ~ζ is that of the
ppE parameter space. The inner products are maximized

over evenly spaced parameters ~ζ to provide a FF -value,
where FF = 1 represents an exact match between sig-
nals. Both TaylorF2 models are kept to PN-order 3.5 in
the phase. In the denominator of (2.1), amplitude pa-
rameters normalize to leave f−7/3/Sh in each integrand.
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The numerator retains integrand (f−7/3/Sh)ei∆ψ(f ;~λ,~ζ),
where,

∆ψ(f ;~λ, ~ζ) = ψ(f ;~λ)− ψ(f ; ~ζ)− δψppE(f)

and, in fixing b and varying β, the parameters needing to

be maximized over are ~ζ = {tc, φc, η,Mtot}. Parameters
are evenly spaced, in a 30×30×30×30 grid, within inter-
vals: 0.05 ≤ η ≤ 0.25, 0.5Mtot ≤ Mtot ≤ 1.5Mtot,−π ≤
φc ≤ π, and −1.3× 10−2 ≤ tc ≤ 1.3× 10−2.

Figure 1 displays the results for an equal-mass system
of m1 = m2 = 10M� and ta = φa = 0 for PN-order 0.0,
1.0, and 1.5 modifications in the waveform. Parameters
~ζ are maximized over for a variety of β-values. Note that
at lower PN-orders the interval of β is scaled differently
than the −5 ≤ β ≤ 5 depicted, an interval valid for
PN-order 1.5 modifications. The general trend is that
the fitting factor is less affected by β for larger PN-order
with a skew in the FF -distribution towards the positive
domain of β-values.

A. Restricted ppE template and existing dephasing
alternatives

As stated, variations of β are restricted to fixed PN-
order corrections in the phase. For the two-dimensional
study b is fixed to induce modifications at (separately)
PN-orders 0.0, 0.5, 1.0, 1.5, 2.0, and 3.0 which acts
as a demonstration to the error estimation procedure.
Higher-dimensional studies specifically target a PN-order
1.0 modification and a weak-field b = −7 modification to
address dispersion modification and dipole gravitational
radiation. From this reason β is varied with error estima-
tions performed at each β-value. In Ref. [37] an analysis
of binary pulsar PSR J0737-3039 [38] placed bounds on
ppE parameters (for this binary 4η ≈ 1 as determined
from radio pulsar measurements [38]). At PN-order 2.5
(b = 0) degeneracies occur with other fiducial parame-
ters, thus is not considered in the analysis. In some the-
ories constraints for b = −7 cannot be implemented from
pulsar measurements, due to β’s dependence on mass dif-
ferences of the system and other theoretical parameters
which will be discussed shortly. With the exception of
b = −7, parameters that probe weak-field (b < −5) are
not considered since they are better constrained via bi-
nary pulsar measurements [18].

At b = −7, the even-parity sector of quadratic
modified gravity (QMG), an example being Einstein-
Dilation-Gauss-Bonnet (EDGB) gravity, can be explored.
For even-parity QMG, the violating term for a BBH
system depends on the mass differences of the BHs:
β ∝ ζ3η

−18/5(1 − 4η), unresolvable for equal-mass sys-
tems [39]. For BHNS systems, the violating coeffi-
cients depend on the ratio of the two bodies: β ∝
ζ3η

−8/5(mNS/mBH)2 due to the ‘scalar charge’ vanishing
in NSs [39, 40]. With this same b = −7 correction, ex-
amples of dipole gravitational radiation, like Brans-Dicke

(BD), can also be assessed. Here BD-like modifications
further depend on the difference of parameters which
measure the body’s inertial mass variations with respect
to the local background value of the effective gravita-
tional constant. These so-called ‘sensitivity parameters’
sBH,NS are generally set to 0.5 for black holes, so their dif-
ference vanish for a BBH system. Only a BHNS system
would allow constraints of BD-like modifications since
0.2 ≤ sNS ≤ 0.3 [41–44].

For corrections at b 6= −7, most existing modifying
coefficients depend on parameters that either vanish in
the non-spinning model (1.1) or contribute beyond PN-
order 3.5. This is the case in specific models of QMG,
e.g., the odd-parity sector and dynamical Chern-Simons
(CS) gravity [39]. As an example, in the circular inspiral
of two comparable mass BHs the GR-deviating term of
dynamical CS has dependencies on the BH spins Ŝ1,2

and their relations to their orbital angular momentum
L̂: δC = δC(m1,2, Ŝ1,2, L̂) [45]. When the binary system
is non-spinning, modifications are beyond PN-order 3.5.

Beyond modifications during waveform generation, two
propagating effects are massive graviton (MG) and sim-
plified versions of Lorentz-violating (LV) theories [22, 25].
Parameters to constrain are the graviton Compton wave-
length λg and λLV = 2πA1/(γ−2). Here A is a phenomeno-
logical parameter modifying the gravitational waveform’s
dispersion relation. The γ-dependent distance measure
Dγ (see Ref. [25] for exact formula) further depends
on known astrophysical parameters (Hubble parameter,
matter density parameter, etc.) which are assumed to be
exact knowns in the analysis [46]. Parameter γ governs
the order of correction and γ = 0 (PN-order 1.0) is what
we’re limited to since this is the only value contained in
the ppE framework for the PN-order 3.5 TaylorF2 model.
Such MG-LV interpretations are generic models modify-
ing the dispersion of a GW with more specific generation
mechanism still yet to be explored. Ref. [16] notes some
limitations in prescribing MG effects as modifications of
the dispersion of the waveform. In LV-type modification
further work in existing, model-independent approaches,
e.g., the Standard Model Extension [47, 48], could be
interesting (see for example Ref. [49]).

Constraints have been imposed on the wavelength of
the graviton. The detection of GW150914 and binary-
pulsar constraint serve as dynamical bounds while solar-
system constraints, serving as static bounds, provide the
most reliable estimates [6, 50]. So, parameters are repre-
sented by,

λLV = 2πA−1/2, λg ≥


1013[km], dynamic (GW),

1.6× 1010[km], dynamic (pulsars),

2.8× 1012[km], static.

For EDGB gravity, the constraint parameter is |αEDGB|.
Here ζ3 = ξ3M

−4 = 16πα2
EDGBM

−4, with βBBH ∝
ζ3η

−18/5(1 − 4η) and βBHNS ∝ ζ3η
−8/5(mNS/mBH)2. In

Brans-Dicke theory β ∝ (sBH,NS − sBH,NS)2ω−1
BD . From

measurements of the Cassini spacecraft [51, 52] bounds
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on EDGB and Brans-Dicke parameters are,

|αEDGB|1/2 ≤ 8.9× 106 km,

ωBD > 4× 104.

With other suggested constraints [40, 53] giving,

|αEDGB|1/2 < 1.9 km.

|αEDGB|1/2 < 9.8 km,

GW150914 results have allowed studies to infer the theo-
retical significance of the testing GR study [6] in various
specific models, see for example Refs. [54, 55].

B. Asymptotic Expansions

Similar to Ref. [11], we reasonably assume only Gaus-
sian noise at time of the signal and that the noise is un-
correlated at different interferometers. Here we use the
analytic asymptotic expansion of the variance and bias
developed in Refs. [9–11],

σ2
ϑi = σ2

ϑi [1] + σ2
ϑi [2] + · · · , (2.2)

bϑi = bϑi [1] + bϑi [2] + · · · , (2.3)

with σ2
ϑj being the diagonal elements of the covariance

matrix, where

σϑj [1], bϑj [1] ∝ ρ−1,

σϑj [2], bϑj [2] ∝ ρ−2,

for network SNR ρ. This inverse proportionality contin-
ues at higher orders in similar fashion. Here the network
SNR is the sum over the square of the optimal SNR ρI

of the signal at the I-th detector,

ρ2 =
∑
I

(
ρI
)2
, ρI = 〈sI |sI〉1/2 (2.4)

Notice that ρ increases for a fixed source by increasing
the number of detectors. The first-order term of the ex-
pansion of the variance, the diagonal components of the
inverse Fisher matrix, dominates the bound on the er-
ror in the limit of large SNR, while higher order terms
become more important for medium to low SNR.

What is usually regarded as the error in a lab measure-
ment is the square root of the mean-squared error (MSE),
where the MSE is the sum of the variance (2.2) and
square of the bias (2.3): MSEϑi = σ2

ϑi + b2ϑi . Since this
analysis computes errors at second-order of 1/ρ, the ex-
pression above only requires first-order of the bias which
is negligible as already discussed in Ref. [11]. We esti-
mate uncertainties of the two-dimensional ppE parame-
ter space θippE for different β at a fixed exponential b. In

addition, the inclusion of θippE to a signal’s extrinsic and

intrinsic parameter space θiphys is also assessed.
Finally, error bounds are indicated with,

∆ϑi[1] =
√
σ2
ϑi [1], ∆ϑi[2] =

√
σ2
ϑi [2]

∆ϑi[1 + 2] =
√
σ2
ϑi [1] + σ2

ϑi [2]. (2.5)

For example first-order errors of the symmetric mass ra-
tio η are marked by ∆η[1], second-orders are marked by
∆η[2], and total error with the inclusion of second-order
contributions as ∆η[1 + 2].

III. RESULTS

In this section we explore the error bounds both as a
function of the SNR and sky location of the source. The
asymptotic expansion approach is first applied to a two-
dimensional ppE parameter space (when the physical pa-
rameters are known) of equal-mass systems. Only phase
corrections are assumed through unknown ppE param-
eters (β, b), while b probes modifications at PN-orders
0.0-3.0 of the TaylorF2 model (of a PN-order 3.5 phase).
Based on Ref. [9–11] this approach is expected to give
overly optimistic errors. The Fisher information error
estimates presented here for the ppE parameters are at
least an order of magnitude smaller than results with
Bayesian model selection [18].

To identify SNR dependencies and regions of lowest er-
ror estimates the sky dependencies of errors are observed
through a 289-point sky grid. A point (lati, longj) in
latitude-longitude coordinates (of the Earth frame) on
the sky grid follows from the procedure of Ref. [11] (de-
tector coordinates also follow Ref. [11], which are fixed
in the Earth Frame as given in Ref. [56, 57]).

As discussed in Section II, ε = π/6 is a fixed value and
excluded in error analysis. Parameter ψ is also fixed and
arbitrary values can be chosen for fiducial parameters
φc and tc. The sky-averaged SNR is restricted to an
inspiral phase ρ < 20 to focus on the more likely advanced
interferometer scenarios. For each system considered, the
distance of the resolved signal in the network is varied
to keep a fixed SNR. For a three-detector network (I =
H,L, V ) the following is chosen for the equal-mass binary
systems:

· BBH 1:1- (m1,m2) = (10, 10)M�, DL = 1100Mpc,

· BNS- (m1,m2) = (1.4, 1.4)M�, DL = 200Mpc.

Here the constructed binary black hole (BBH) and binary
neutron star (BNS) system leaves the network with an
averaged SNR of ρ = 14.6 and ρ = 17.0, respectively.
For unequal mass systems we choose a BBH system with
a 1:2 mass ratio and a black hole neutron star (BHNS)
binary with the following:

· BBH 1:2- (m1,m2) = (5, 10)M�, DL = 850Mpc.

· BHNS- (m1,m2) = (1.4, 10)M�, DL = 450Mpc.

which respectively give SNRs of ρ = 14.9 and ρ = 15.8.
For direction reconstruction and related extrinsic param-
eters the network geometry is important; however, for
intrinsic parameters (as with the ppE parameters) SNR
gains and losses have a larger impact [11].
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FIG. 2. Sky-averaged errors as a function of β for a two-dimensional ppE parameter space for the BBH 1:1 system of averaged
network SNR ρ = 14.6. SNR results of ρ = 29.3 are also showed by setting the distance to DL = 550 Mpc. As noted in Ref. [11]
error estimates are rescaled as σ[1](ρ∗/ρ) and σ[2](ρ∗/ρ)2, where ρ∗ is the SNR that error estimates are originally calculated
from. In the top panel the far left column represents each system for a PN-order 0.0 modification (b = −5), the center column
is a PN-order 0.5 modification (b = −4), and far right column is for PN-order 1.0 modifications (b = −3). Similarly, the bottom
panels are resulting modifications at PN-order 1.5 (b = −2), 2.0 (b = −1), and 3.0 (b = +1). β is more tightly constrained at
lower PN-orders and the inclusion of second-order errors for (β, b) drastically diverge from Fisher estimates as β → 0.
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FIG. 3. Sky-averaged errors, similar to figure 2, for a BNS system of averaged SNR ρ = 17.0.

Error Bounds (System) PN-order 0.0 PN-order 0.5 PN-order 1.0 PN-order 1.5 PN-order 2.0 PN-order 3.0

∆β[1] (BBH 1:1) 2.70× 10−4 1.36× 10−3 6.59× 10−3 3.07× 10−2 1.39× 10−1 2.66

∆β[1] (BNS) 1.29× 10−5 1.24× 10−4 1.14× 10−3 9.78× 10−3 7.93× 10−2 4.49

TABLE I. Constant slopes of first-order error bound estimates of the BBH 1:1 (for SNR ρ = 14.6) and BHNS systems for all
β values. Here percent errors [%] follow a 1/β relationship for ∆β[1] represented above for respective PN-orders.

In the seven-dimensional study, β is varied along b =
−3,−7 for a BBH 1:1, 1:2, and BHNS systems. The rea-
son for b = −3 is that it simulates modifications to the
dispersion of a GW (e.g., massive gravitons or Lorentz vi-
olations [22, 25]). Also, b = −7 simulates weak-field mod-
ifications for dipole gravitational radiation (e.g., Brans-
Dicke [8, 21]) and the non-spinning, even-parity sector
of quadratic modified gravity (e.g., Einstein-Dilation-
Gauss-Bonnett, or EDGB, gravity [39]). Distinguisha-
bility from GR is denoted as the condition that errors
are smaller than the separation between parameters of
the GR-limit and that of some alternative theory.

A. Two-dimenstional study: equal mass

In this subsection uncertainties for a two-dimensional
parameter space are computed for both the BBH 1:1 and
BNS systems, marked by ∆θippE. Parameter b is chosen
at a fixed PN-order correction with PN-order 0.0, 0.5,
1.0, 1.5, 2.0, and 3.0 (i.e., b = −5,−4,−3,−2,−1,+1)
while β is varied at each PN order. Here β probes values
small enough to induce a sky-averaged error larger than
100% in b and large enough for . 10% sky-averaged error

in β. Errors for the BBH 1:1 system are depicted in
figure 2, each labeled column representing a particular
PN-order modification. Furthermore, to demonstrate the
SNR dependence the BBH 1:1 system contains values
for the scenario in which the SNR is doubled, for this
the distance is decreased to DL = 550 Mpc. Figure 3
illustrates similar results for the BNS system.

The constant slopes of errors at first-order are cata-
logued in Table I for each PN-order. The computed first-
order errors are consistent with statements of Ref. [18]
which demonstrate that different PN-order corrections
lead to different feasible constraints on β-values. BNS
systems offer tighter constraints on β at each chosen b. It
is interesting to observe that scaling parameters control-
ling propagating modifications, e.g. the graviton wave-
length βMG ∝ λ−2

g , are not more tightly constrained with
BNS systems at shorter distances than BBH systems at
larger distances. Rather, parameters like βMG, also de-
pend on a distance measure and masses of the compact
objects that adversely affect constraints at shorter dis-
tances and smaller masses.

The smaller β, the more second-order effects in the er-
rors contribute. Second-order effects on the errors of b
are less significant, and only errors > 100% on β force
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FIG. 4. Sky-averaged uncertainties for the equal-mass BBH 1:1 system for a PN-order 1.0 modification of the seven dimensional
parameter space (ppE parameters {β, b} and physical parameters {η, logM, tc, lat, long}). In the left column the top panel
displays ∆β percent errors as a function of β (the sign of β provides different error estimates) and below that are ∆b errors as
a function of β (the sign of β does not play a role in these error estimates). In the middle and to the right are the physical
parameters’ errors, where the constraint of β primarily affects the second-order contributions. Enlarging the parameter space
increases error estimates from those computed in figure 2 at PN-order 1.0, thus weakening constraints on β. For negative β,
the full-dimensional study states ∆β[1] = 100% at β = −0.16 and ∆β[1 + 2] = 100% at β = −0.32.

sizeable second-order contributions in b. If b is near dis-
tinguishable, ∆b[1+2] . 100%, ∆β[1+2] are much larger
than ∆β[1]. Only when ∆b[1 + 2] . 10% do ∆β[1] and
∆β[1+2] converge to similar estimates. Simulations pro-
ducing the results of figures 2 and 3 used both ±β values
and the skewed representation of figure 1 is not apparent.
Note that the range of β values, in which error bounds
are ≤ 100% (figures 2 and 3), are orders of magnitude
smaller than the β-value ranges considered in previous
studies based on Bayesian methods [18].

B. Full parameter space: equal mass

The most realistic results come from the study of the
largest resolvable parameter space. In this subsection,
first- and second-order uncertainties ∆ϑi of a full 7-
dimensional parameter space are calculated for the equal-
mass BBH 1:1 system, where ϑ = {θppE, θphys}. Here b is
fixed to induce a PN-order 1.0 modification (b = −3).
Such corrections simulate effects produced by modify-
ing the GW dispersion relation [8, 25]. Unlike the two-
dimensional cases, the errors (first- and second-order) are
effected by the sign of β, where sky-averaged errors for
the ppE parameter pair (β, b) are displayed in the left col-
umn of figure 4. Errors of physical parameters affected

by varying β are depicted in the middle and right col-
umn of figure 4. The skewed behavior of ±β results are
representative of fitting factor results of figure 1.

For β the first-order errors are not at a constant slope.
∆β[1] approximately follows linear relationship: ∆β[1] ≈
0.046|β| + 0.15, for negative β. Here a 100% threshold
error occurs at β = −0.16, for ∆β[1], and β = −0.32, for
∆β[1 + 2]. In this more realistic scenario, it can be seen
that for extremely small β values b falls within its own
uncertainty. Yet, analogous to the two parameter space,
a 100% error in ∆b[1 + 2] requires large errors in ∆β[1 +
2]. Furthermore, error estimates are at least an order
of magnitude larger. Another aspect of considering a
full-dimensional parameter space are the additional error
trends imparted on physical parameters (masses, arrival
time, etc) when β is varied, see the middle and right
column of figure 4.

The sky distributions of the errors and the SNR are
shown in figure 5. Table II catalogs this for −β =
0.25, 0.35, 0.55. This SNR dependence is similar to intrin-
sic parameters for GWs. The β values, being a PN-order
1.0 correction characterizing massive graviton dispersion
tests, are chosen for the following reasons:

1. At β = −0.25, figure 4 identifies the conditions:
∆b[2]/∆b[1] ≈ 1 with ∆β[1] < 100% < ∆β[1 + 2].
Sky averages are performed before computing the
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FIG. 5. Sky distribution of error estimates. Color bars represent range of ppE quantities labeled (a), (b). . . , (f) in Table II.
This demonstrates the correlation of the SNR and ppE error estimation over the sky. See text for discussion.

ratios. In SNR & 15, we have ∆b[2]/∆b[1] . 1, as
seen in (a). (b) diplays ∆β[1 + 2], which ranges
from 66.4% to 468.7%. ∆β[2] dominates the error
budget.

ppE β-value Error Estimations ρmax = 20.8 ρmin = 7.0

−0.25

(a) ∆b[2]/∆b[1] 0.55 1.67

∆b[1] 12.1 [%] 36.2 [%]

∆b[1 + 2] 13.8 [%] 70.5 [%]

∆β[2]/∆β[1] 1.19 3.57

∆β[1] 42.7 [%] 126.4 [%]

(b) ∆β[1 + 2] 66.4 [%] 468.7 [%]

−0.35

∆b[2]/∆b[1] 0.43 1.28

∆b[1] 8.7 [%] 25.8 [%]

∆b[1 + 2] 9.4 [%] 42.0 [%]

∆β[2]/∆β[1] 0.91 2.72

(c) ∆β[1] 31.4 [%] 92.9 [%]

(d) ∆β[1 + 2] 42.4 [%] 269.1 [%]

−0.55

∆b[2]/∆b[1] 0.32 0.99

∆b[1] 5.5 [%] 16.4 [%]

∆b[1 + 2] 5.8 [%] 23.2 [%]

(e) ∆β[2]/∆β[1] 0.65 1.96

∆β[1] 21.1 [%] 62.4 [%]

(f) ∆β[1 + 2] 25.2 [%] 137.3 [%]

TABLE II. Maxima and minima of estimates depicted in the
sky-map plot (figure 5) for respective β-values of figure 4. Er-
rors are the smallest for ρmax = 20.8 and largest for ρmin = 7.0.
Terms labeled with (a), (b). . . , (f) correspond to respective
color bars in figure 5. Values are chosen because they offer
the most insight.

2. For β = −0.35, sky-averaged ∆β[1] < ∆β[1 + 2] ≈
100%. Although ∆b[2]/∆b[1] > 1, in limited por-
tions of the sky, the ratio never exceeds 1.3 with a
maximum of ∆b[1 + 2] = 42.0%. There is a strong
increase in ∆β[1 +2] from ∆β[1] in low SNRs. The
majority of the sky is dominated by second-order
terms, with ∆β[2]/∆β[1] ranging from 0.91 to 2.72.

3. β = −0.55 is where we calculate sky-averaged ra-
tio ∆β[2]/∆β[1] ≈ 1 with ∆β[1] < ∆β[1 + 2] <
100%. Here larger portion of the sky has ratio
∆β[2]/∆β[1] < 1 as shown in (e). A majority (but
not all) of the sky-map has total error falling be-
low 100% after the inclusion of second-orders with
sky-averaged error at ∆β[1 + 2] ≈ 47%.

From the known dependence on ρ, quantities displayed in
figure 5 and Table II can be easily re-derived for higher
or lower SNRs.

C. Full parameter space: unequal mass

Here first- and second-order uncertainties ∆ϑi of a full
seven-dimensional parameter space are calculated for the
BBH 1:2 and BHNS system. In this case a weak-field
b = −7 modification is induced, which in our context
mimics the non-spinning, even-parity sector of quadratic
modified gravity (QMG) and can include specifics like
EDGB gravity. Inclusion of QMG modifications is due to
β being resolvable by a non-zero mass differences at this
PN-order. These modifications manifest through modifi-
cation of the energy flux as β ∝ ζ3(1 − 4η) [39] and the
BHNS binary can also test examples of dipole gravita-
tional radiation, like Brans-Dicke (BD).

Error bounds are presented in figure 6. The overall
trend of this system’s estimates are similar to the results
of the equal-mass BBH 1:1 of the previous subsection,
with a few exceptions. The first being that the separation
between errors ∆β[1],∆b[1] and ∆β[1 + 2],∆b[1 + 2] are
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FIG. 6. Sky-averaged error estimates for the BBH 1:2 and BHNS system. Left column represent calculations of the ppE
parameter errors (∆β,∆b) for negative β-values, center column are the mass errors (∆η,∆M), and far right are arrival time
∆ta and latitude-longitude (∆lat,∆long) error estimates. Here latitude-longitude error estimates are not affected by β variation,
as was previously presented in the equal-mass system. This study states that ∆βBBH1:2[1+2] = 95.2% at βBBH1:2 = −1.8×10−4

and ∆βBHNS[1 + 2] = 95.3% at βBHNS = −4.5× 10−5.

not as great as with the PN-order 1.0 modification. In
comparison to the previous subsection, the chirp mass
errors ∆M are roughly the same, yet ∆η estimates are
considerably less. Time of arrival errors ∆ta are also
less and latitude-longitudinal estimates don’t suffer from
varying β at first- and second-order.

For the BBH 1:2 system sky contours of ppE and
mass error estimates at, respectively, |β| = 1.8 × 10−4

and |β| = 3.0 × 10−4 are displayed in figures 7. In
figure 7, the mass error estimates (bottom color bars)
are plotted since this β-value produces sky-averaged es-
timate ∆β[1 + 2] < 100%, with second-order effects in
the mass estimates making notable contributions (see fig-
ure 6). We observe that in such a context second-order
effects do not dominate the error budget of ∆η and ∆M
in this sky-grid. In low-SNR regions, ∆η[2]/∆η[1] and
∆M[2]/∆M[1] are near unity. In these same low-SNR
regimes ∆β[2]/∆β[1] > 1 and ∆β[1 + 2] > 100%, which
demonstrates the sky-grid SNR relation to errors accrued
on physical parameters due to large error estimates of
ppE parameters.

Figure 7 also represents a second set of contours gen-
erated for |β| = 1.8 × 10−4 modifications. Top color
bars are representative of ppE parameter error estimates
(∆β,∆b) valid for this choice of β. Contours are plotted
at this β-value since this simulates the condition that
∆β[1 + 2] ≈ 100% with ∆β[1] < 100%. Again we ob-
serve the volatility in ∆β[1 + 2] estimates, ranging from

53% to about 250% while remaining strongly correlated
to the SNR. One notable feature of this plot is that ra-
tios ∆b[2]/∆b[1] and ∆β[2]/∆β[1] are relatively close to
each other, being approximately equal to each other in
regions of high-SNR. This is in contrast to the equal-
mass study of the previous subsection and demonstrates
the small separation in ∆β[1] and ∆β[1 + 2] estimates
depicted in the left column of figure 6, which allows the
ratio ∆b[2]/∆b[1] to be comparable to ∆β[2]/∆β[1]. Re-
lations between these quantities depicted in figure 7 can
be compared to the extrema of the equal-mass BBH sys-
tem of PN-order 1.0 modifications catalogued in Table II.
Similar results come from the BHNS system.

In order to check that the Fisher information matrix
did not become singular we systematically explored its
eigenvalues. For example figure 8 shows scenarios in
which the Fisher matrix becomes singular for the seven
dimensional study. These values of β were avoided in this
analysis.

D. Application to explicit alternative theories

Since the modification considered in subsection III B
occur at PN-order 1.0 in the phase, an analysis can be
done from these results for the massive graviton model.
Progression of sky-averaged errors for ∆β[1 + 2], cal-
culated from negative β-values, of figure 4 imposes a
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FIG. 7. Sky-map error estimates of ppE parameters ∆β and ∆b and mass parameters ∆η and ∆M for the unequal mass BBH
1:2 system. The top color bars for ppE parameters are for βBBH1:2 = −1.8× 10−4 and the mass parameters below that are for
βBBH1:2 = −3.0×10−4 of results in figure 6. The SNR color bar is valid for both error estimates. Sky-average estimates provide
∆βBBH1:2[1 + 2] = 95.2%, of βBBH1:2 = −1.8× 10−4, and ∆βBBH1:2[1 + 2] = 47.4% at βBBH1:2 = −3.0× 10−4.

constraint of |βMG| ≤ 0.31. Existing constraints are
|βMG, static| ≤ 0.37 and |βMG, GW| ≤ 2.89 × 10−2, based
on current static and dynamical (from GW150914 event)
bounds on λg (see section II A) computed from the BBH
1:1 system at 1100 Mpc. This asymptotic approach
thus produces an additional 16.2% constraint on exist-

Distinguishability constraint (. 100% Error)

λg,LV > 3.04× 1012 km (BBH 1:1)

ξ
1/4
3 < 7.17 km (BBH 1:2)

|αEDGB|1/2 < 2.69 km (BBH 1:2)

ξ
1/4
3 < 9.45 km (BHNS)

|αEDGB|1/2 < 3.55 km (BHNS)

ωBD > 12.7(sNS − 0.5)2 (BHNS)

TABLE III. Seven-dimensional study of the BBH 1:1, 1:2, and
BHNS systems with feasible constraints, i.e., computed MSE
. 100%. The first considers PN-order 1.0 modifications and
the latter two consider b = −7 modifications. Included are the
graviton wavelength (or generic Lorentz-violating) dispersion
modification and non spinning, even-parity sector models of
QMG (EDGB parameter included). Brans-Dicke constraint
depends on sensitivity parameter 0.2 ≤ sNS ≤ 0.3.

ing static bounds at 1σ. When including second-order
terms in error estimation the constraints on λg have a
fractional increase of 30% from the first-order Fisher ma-
trix approach as calculated in this paper. Given these
results, further constraints on the graviton wavelength
λg may be possible, even with second-order error terms
accounted for in the low-SNR limit of the inspiral stage
only. From calculated results the sky-averaged feasible
bounds are displayed in Table III.

Bayesian assessments in the ppE framework of unequal
mass systems (of 1:2 and 1:3 ratios) with SNR of 20 put
constraints at λg > 8.8 × 1012 km [18]. Other Bayesian
studies also conclude that advanced detecters would gen-
erally not favor a MG theory over that of GR when λg is
larger than the most stringent static bounds [19]. From
the TIGER method implemented in the testing GR anal-
ysis of GW150914, constraints are at λg > 1013 km,
when the full inspiral-merger-ringdown signal is used (to-
tal SNR of ρ ∼ 24) [6]. In this respect, our errors impart
a more conservative approach to error estimation that
still suggest that constraints may still be improved.

An application of seven-dimensional results presented
in subsection III C for the BBH 1:2 can also be made.
This b = −7 modification has βQMG ∝ ζ3(1 − 4η). In
this context the constraint parameter is ζ3 = ξ3M

−4 in
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FIG. 8. First order errors (left panels) and eigenvalues (center and right panels) of the Fisher matrix when computations are
extended to the seven dimensional parameter space.

the non-spinning, even-parity sector of QMG, where ξ3 =
16πα2

EDGB in EDGB gravity [39]. For the BBH 1:2 system
figure 6 presents ∆β[1] = 99.7% at |β| = 1.4 × 10−4

and ∆β[1 + 2] = 95.2% at |β| = 1.8 × 10−4. These
computations translate to respective inputs in Table III
for ξ3 and αEDGB. Strongest suggested constraints have,
in terms of EDGB parameter, |αEDGB|1/2 < 1.9 km and

|αEDGB|1/2 < 9.8 km [40, 53]. In weak-field tests the
Cassini spacecraft has provided |αEDGB|1/2 < 8.9 × 106

km (i.e., ξ
1/4
3 < 2.4 × 107 km) [51]. Bayesian results

estimate ξ
1/4
3 . 11 km (or |αEDGB|1/2 . 4 km) at an

SNR of 20 [39] which is quoted in Ref. [8] as ξ
1/4
3 . 20

km for an SNR of 10.
Similar application to QMG and EDGB theories can be
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done with results of the BHNS system. These constraints
are also presented in Table III and are more stringent
than the BBH 1:2 system. With BHNS systems Brans-
Dicke can be investigated through βBD ∝ (s1 − s2)2ω−1

BD ,
where constraint parameter is ωBD with sBH = 0.5 for
black holes and for neutron stars 0.2 ≤ sNS ≤ 0.3 [41–
44]. Figure 6 results indicate ∆β[1] = 95.3% at |β| =
4.5×10−5 for the BHNS system. Thus, constraints results
in ωBD ≥ 1.14 and ωBD ≥ 0.51 at sNS = 0.2 and sNS =
0.3, respecitvely. Results of the Cassini spacecraft have
also established ωBD > 4 × 104 [52]. In Ref. [21] Fisher
estimates placed constants of ωBD > 194 for a BHNS
systems of similar masses.

IV. CONCLUSION

In this paper we implement a frequentist asymptotic
expansion method to estimate error bounds on the set
of ppE parameters modifying the phase of the inspiral
part of low-SNR (ρ ∼ 15− 17) GW transients. Figure 9
provides a summary of the main results of this paper.
The bound on the mean-squared error estimates from
compact binaries studied is shown. Each mark repre-
sents the boundary of the (β, b)-parameter space where
the minimum mean-squared error estimates are 100%,
with β values below each b-value > 100% and therefore
not resolvable. Previous Bayesian studies correspond to
the range of exponential ppE parameter: −11 ≤ b ≤ 2,
as compared to the figure 9 summary. The fact that for
the massive graviton case (b = −3) our approach here,
which is a more realistic lower limit of the Cramér-Rao
Lower Bound for early detections, rules out results that
were allowed by a Bayesian study [18], seems to indicate
the need of a careful evaluation of the role of the priors.

Results of the higher order asymptotic analysis of the
frequentist approach to error estimation states that fur-
ther constraints can be imposed on existing non-GR the-
ories with the study of the seven-dimensional parame-
ter space (see Table III). This approach does not in-
volve the use of priors. Here the graviton wavelength
can be constrained by an additional 16.2% as compared
to current static bounds [50]. Yet, these projected con-
straints do not further bound the graviton wavelength
when compared to Bayesian estimates or values imposed
by GW150914 [6]. Note that although GW150914 pro-
vides a constraint of λg > 1013 km, our result holds for
a lower SNR of the inspiral stage only. Further stud-
ies present the scenario for the weak-field b = −7 mod-
ification, which can include quadratic modified gravity
(QMG) (specifics being EDGB gravity) and Brans-Dicke
type modifications (figure 6). For the non-spinning, even-
party sector of QMG, bounds suggest further constraints
are possible as compared to current bounds placed by
Bayesian estimates and Cassini constraints. Further-
more, error estimates for modifications at both PN-order
1.0 and the b = −7 weak-field follow similar sky-map
contours, which are correlated to the SNR patterns (see

−8 −7 −6 −5 −4 −3 −2 −1 0 1
b

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

|β
|

distinguishable

indistinguishable

Constraints on β
Pulsar Constraint Region
2D BBH Constraint Region
2D BNS Constraint Region

PSR J0737-3039 constraint
2-dimensional BBH 1:1
2-dimensional BNS
7-dimensional BBH 1:1
7-dimensional BBH 1:2

7-dimensional BHNS
Massive Graviton [Solar System]
Massive Graviton [Bayesian]
Massive Graviton [GW150914]
EDGB [Bayesian]

FIG. 9. Constraints on ppE parameters (β, b). Alongside fre-
quentist mean-squared error . 100% estimates are constraints
imposed by Bayesian estimates [18], solar system tests [50], bi-
nary pulsar measurements [37, 38], and GW150914 event [6].
Regions below each mark/line are where violations cannot
be detected based on each respective study. The GR-limit
is β = 0. Our frequentist two-dimensional study considers
ppE parameter space (β, b), while seven-dimensional studies
includes physical parameters (masses, etc.). See text for dis-
cussion.

figures 5 and 7).
General results show that for successively higher

PN-order modifications, set by b, the separation be-
tween first- and second-order errors increase (see fig-
ures 2 and 3). Such an effect percolates to the seven-
dimensional study. Error bounds also increase as the
parameter space is enlarged, where the two-dimensional
studies provide overly optimistic error bounds. As con-
straints on β become tighter in the seven-dimensional
studies, the effects of second-order estimates also accrue
on physical parameters, namely η, M, ta, and latitude-
longitude parameters (see figures 4 and 6). Finally,
SNR increases translate error estimates as discussed in
Ref. [11] (figure 2), so all results can be rescaled as a
function of the SNR.

Calculations performed in this paper are for single de-
tection scenarios. With multiple detections the presence
of weak, but consistent, violations could be combined to a
make a stronger statement about error estimations. Such
methods to resolve consistent signals were explored in a
Bayesian framework in Ref. [16] and it is left for future
studies in the frequentist framework. Furthermore, as
waveform models advance, for both the inspiral and ppE
framework, the application of our maximum likelihood
estimator asymptotic expansion could be applied to spin-
ning binaries or to waveforms that include the merger and
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ringdown phases. This will add insight into additional
modified theories mappable into the ppE framework.

V. ACKNOWLEDGMENTS

The authors would like to thank S. Vitale, T.G.F. Li,
A.J. Weinstein, W.D. Pozzo, L. Stein, and K. Yagi for use-
ful discussion and comments. R. Tso is supported by the
National Science Foundation Graduate Research Fellow-
ship Program under Grant No. DGE-1144469, the Ford
Foundation Predoctoral Fellowship, and the Gates Foun-
dation.

Appendix A: Notation and network signal

Masses of each compact body are labeled as m1,2, the

total mass being M = m1 +m2 with ν = (πMf)1/3 and
η = m1m2/M

2 as the reduced mass frequency and sym-
metric mass ratio, respectively. The usual chirp mass is
M = η3/5M . Geometrized units (G = c = 1) are also
employed [58]. Terms labeled with I indicate a partic-
ular quantity for that I-th detector, e.g., sI is a signal
received at some I-th detector, ρI is a detector-dependent
SNR, etc. Finally, the detectors considered are those for
Adv. LIGO and Adv. Virgo, so we have I = H,L, V for
the respective advanced interferometers in Hanford USA,
Livingston USA, and Cascina Italy. Quantities summed
over I indicate the total network contribution of that
term, e.g., network SNR, network Fisher matrix. Apart
from units employed notation follows that of Ref. [36].

To discuss some of the terms appearing in (1.1): τI is a
time lag parameter accounting for the delay in the wave-
form’s propagation from the I-th detector frame (IDF)
to some fiducial frame (FF),3 with µI and ΦI0 being coef-
ficients that depend on the inclination angle ε of the bi-
nary system and the generalized antenna patterns FI+,×
of each detector. These are represented by,

τI = n̂ · (rI − rFF ) , (A1)

µI =

((
1

2
FI+(1 + cos2 ε)

)2

+
(
FI× cos ε

)2)1/2

,(A2)

ΦI0 = arctan
2FI× cos ε

FI+(1 + cos2 ε)
, (A3)

with n̂ the direction of travel of the waveform, rI the
distance to the I-th detector (i.e., the IDF origin), and
rFF the distance to the FF origin. Reasons for construc-
tion of a frame of common origin is due to the feasibility
and efficiency displayed in calculations of quantities in
particular frames. Notion of a common origin between

3 FF is the frame in which the origins are referenced to coincide.

the frames is valid since approximative measures4 allow
the origins of the coordinate systems to coincide. With
respect to Ref. [11] the frames are established as the al-
ready mentioned IDF and FF, with a third frame called
the wave-frame (WF).5 In producing calculable quanti-
ties the frames are then fixed to values of that in the
Earth frame (EF).

Since the origins of the frames coincide transformation
between the frames is feasible through simple Eulerian
angles with the usual ZXZ convention [59]. From this,
a set of Euler angles (φ, θ, ψ) converts a quantity from
the FF into the WF and another set (αI , βI , γI) converts
from the FF into the IDF through the usual rotation ma-
trices. Here angle ψ is the polarization angle. A variety
of relations can be uncovered after defining a few new an-
gles. Let angle pairs (Φ,Θ) and (long, lat) describe the
sources location in the sky (the former being in spherical
coordinates and the latter in longitude-latitude coordi-
nates), let (Ξ, ζ) be defined from projections of n̂ onto
the FF’s axis, define angles (ΩI ,ΥI) so that they pre-
scribe the location of the I-th detector with respect to
the FF, and allow angle ∆I to span the region between
the first detector arm (in the IDF) and the local northern
direction. These relations are summarized as follows:

φ = Φ− π

2
= long− π

2
= Ξ +

π

2
(A4)

θ = π −Θ =
π

2
+ lat = ζ

and

αI = ΩI +
π

2
, βI =

π

2
−ΥI , γI = ∆I +

π

2
. (A5)

Formulation of FI+,× into a symmetric-trace-free base
has been performed, with respect to the Eulerian angle
dependence, and what surfaces in the frequency repre-
sented signal are the two generalized antenna patterns:

FI+ =
1

2

(
T2s(α

I , βI , γI) + T−2s(α
I , βI , γI)

)
(A6)

×
(
T ∗

2s(φ, θ, ψ) + T ∗
−2s(φ, θ, ψ)

)
FI× =

i

2

(
T2s(α

I , βI , γI) + T−2s(α
I , βI , γI)

)
(A7)

×
(
T ∗

2s(φ, θ, ψ)− T ∗
−2s(φ, θ, ψ)

)
where Tmn are second-order Gel’fand functions (T ∗

mn

being their complex conjugates). Function statements,
such as f(αI , βI , γI) and g(φ, θ, ψ), represent their de-
pendencies on Euler angle rotations from FF → IDF
and FF → WF , respectively. See Ref. [11] for exem-
plary calculations. Note that an auxiliary ppE template

4 Through reasonable assumption of zero curvature over the course
of the GW’s propagation and introduction of time lag τI .

5 Determined through the GW’s direction of travel and orthonor-
mal WF unit vectors along its axis, where dominant harmonic
polarizations in the waveform is assumed
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has been developed that considers extra polarizations of
waveforms produced in non-GR gravity, incorporating
additional propagating degrees of freedom in the ppE
framework [31]. Although it is of interest to measure ex-
tra polarizations expected in a variety of alternative the-
ories of gravity, these extra modes lead to more complex
models. For initial analysis of modified gravity through

the asymptotic maximum likelihood estimator approach
a ppE template, with only the standard two propagat-
ing modes, is considered both sufficient and satisfactory
for now. Ref. [60] investigated methods to test non-GR
polarizations via continuous waveforms from asymmetric
pulsars.
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