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Abstract

We use the effective field theory (EFT) framework to calculate the tail effect in gravitational radi-

ation reaction, which enters at 4PN order in the dynamics of a binary system. The computation

entails a subtle interplay between the near (or potential) and far (or radiation) zones. In partic-

ular, we find that the tail contribution to the effective action is non-local in time, and features

both a dissipative and a ‘conservative’ term. The latter includes a logarithmic ultraviolet (UV)

divergence, which we show cancels against an infrared (IR) singularity found in the (conservative)

near zone. The origin of this behavior in the long-distance EFT is due to the point-particle limit

–shrinking the binary to a point– which transforms a would-be infrared singularity into an ultra-

violet divergence. This is a common occurrence in an EFT approach, which furthermore allows us

to use renormalization group (RG) techniques to resum the resulting logarithmic contributions.

We then derive the RG evolution for the binding potential and total mass/energy, and find agree-

ment with the results obtained imposing the conservation of the (pseudo) stress-energy tensor in

the radiation theory. While the calculation of the leading tail contribution to the effective action

involves only one diagram, five are needed for the one-point function. This suggests logarithmic

corrections may be easier to incorporate in this fashion. We conclude with a few remarks on the

nature of these IR/UV singularities, the (lack of) ambiguities recently discussed in the literature,

and the completeness of the analytic Post-Newtonian framework.



1 Introduction

The effective field theory (EFT) framework introduced in [1], and coined NRGR for ‘Non-

Relativistic General Relativity’, has proven to be very successful in the study of the two-body

problem in general relativity. Originally, the formalism in [1] was used to derive the first Post-

Newtonian correction (1PN) to the conservative dynamics for non-rotating objects. Soon after the

2PN [2] and 3PN [3] gravitational potentials were computed, reproducing previous results within

traditional methods, e.g. [4–6] (see [7] for a complete list of references.) On the other hand, in

the radiative sector, the 1PN [8] and 2PN [9] radiative multipoles were computed within NRGR,

which is however still below the state of the art for non-spinning binary systems at 3PN order,

e.g. [7]. NRGR was promptly extended in [10] to include spin degrees of freedom, and used to

describe spinning compact binary systems to 3PN [10–20]. Some of these results were previously

derived in [21–24] for the spin-orbit sector at 2.5PN order. The spin-spin gravitational potentials

to 3PN were obtained within the EFT approach in [11–14, 18], and in [25–28] and [29], using

the Arnowitt-Deser-Misner (ADM) and harmonic gauge formalisms, respectively. The radiative

multipole moments quadratic in the spin needed for the radiated power to 3PN, computed in [16]

using the framework of [8, 10, 14, 30], were also obtained in [29], although the comparison is

pending. The required multipoles for the gravitational wave amplitude to 2.5PN order were

computed in [17], see also [31]. Higher order effects have been incorporated in the conservative

sector. In [32–35] the gravitational spin-orbit and spin-spin potentials were computed at 3.5PN

and 4PN order, respectively. These results were derived with more traditional methods in [36–38],

except for finite-size effects [34], which are more efficiently handled in an EFT framework [1,10,14].

The formalism in [10,14] was also used to compute the leading finite size effects cubic (and quartic)

in the spin in [39–41]. In conjunction, all of these results augment the knowledge of the dynamics

of binary compact objects to 4PN order. For thorough reviews on the two-body problem and the

EFT approach see [7, 42–47].

The computation of the (local part of the) spin independent 4PN potential, at next-to-next-to-

next-to-next-to leading order beyond the Newtonian approximation, was recently culminated in

[48–51] and [52] using the ADM and harmonic formalisms, respectively. A partial result computed

in NRGR [53] has shown full agreement. However, the subtleties associated with infrared (IR)

and ultraviolet (UV) divergences, which appear at this order, have led to a disagreement between

different approaches [52,54]. As we shall see, the present paper partially addresses some of these

issues –in particular the (lack of) ambiguities and completeness of the PN framework– pending

the completion of the full 4PN conservative dynamics within NRGR. At 4PN order there is

also a contribution to the effective action which is non-local in time, e.g. [7,55], recently revisited

in [51,52], as well as logarithmic corrections to the binding mass/energy. The latter were obtained
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within NRGR in [56] through the conservation of the (pseudo) stress-energy tensor in the radiation

zone, and in full agreement with a previous computation in [57]. Both of these results feature

prominently in this work, but instead arise from the computation of radiation-reaction effects.

The study of time-irreversible back-reaction effects within the EFT formalism was initiated

in [58] in the extreme mass ratio limit, and in [59] for NRGR, by implementing the classical limit

of the ‘in-in’ formalism, e.g. [60,61]. Later, the radiation-reaction force to 3.5PN order [62,63] was

rederived within the EFT approach in [64] using a framework that extends Hamilton’s principle

to generic nonconservative systems [65,66]. These results are obtained at leading order in GN in

the radiation theory. In the present work we incorporate non-linear effects in the radiation zone

by computing the tail contribution, e.g. [67–71], to the effective action. We will find that the tail

contribution plays an essential role in both the results mentioned above, namely, the presence of

logarithms and time non-locality.

The non-linear couplings due to the higher order tails in gravitational wave emission produce

divergences. The IR singularities (which are also present in the leading tail contribution) expo-

nentiate into an overall phase in the amplitude [8], which drops out of the total radiated power or

can be removed from the gravitational waveform via a time redefinition [17]. On the other hand,

the UV divergences thus far have been properly renormalized through counter-terms in the radi-

ation theory, which led to renormalization group (RG) trajectories for the binding mass/energy

and multipole moments, described in [8,56]. As we discuss here, similar behavior unfolds through

the study of radiation-reaction effects, albeit involving a subtle interplay between the theory of

potential modes (near zone) and the radiation sector (far zone).

The radiation-reaction force corrects the dynamics of the constituents of the binary system

at the orbit scale, r. However, we compute it by integrating out the radiation field, h̄µν , with a

long-distance effective action [8, 30]

Srad
eff [xa, h̄µν ] = −

∫
dt
√
ḡ00

[
M(t)−

∑
`=2

(
1

`!
IL(t)∇L−2Ei`−1i` (1.1)

+
2`

(2`+ 1)!
JL(t)∇L−2Bi`−1i`

)]
,

where radiation modes vary on scales of order λrad ∼ r/v � r and propagate on a background

(Schwarzschild) geometry sourced by the first term, M , which at leading order gives a potential,

Φ(q) ' −GNM
q2

. (1.2)

Therefore, the study of radiation reaction entails the interaction between different zones. This is

even more relevant when the tail contribution is incorporated, as we show here.

After integrating out the radiation field, including the tail effect, we will find that the resulting

effective action for the dynamics of the binary is non-local in time, in agreement with a recent
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claim in [51]. We also find both dissipative and ‘conservative’ contributions, and the latter

includes the presence of a logarithmic UV divergence. Hence, unlike the renormalization of

the one-point function in [8, 56] which occurs in the radiation zone, the counter-term for this

divergence must originate in the potential region. We argue this involves the existence of an IR

singularity in the near zone. This is expected because the radiation-reaction potential is now part

of the dynamics at short(er) distances. Moreover, UV divergences in the theory of potentials are

removed by counter-terms in the worldline theory for each constituent in the binary and, because

of the ‘effacement theorem,’ do not contribute until 5PN order (for non-rotating bodies).

The seed of the UV divergence in the tail computation is the point-particle limit, implicitly

taken in (1.1), where the binary as a whole is treated as a point-like source. By shrinking

the binary to a point we transform a would-be IR singularity into a UV divergence. This is a

common occurrence in an EFT approach that, furthermore, allows us to use RG techniques to

resum the resulting logarithmic contributions. We then derive the RG evolution for the binding

potential and total mass/energy and find agreement with the results obtained in [56]. While

the calculation of the radiation-reaction potential involves computing only one diagram, five are

needed for the one-point function in [56], which suggests higher order logarithmic terms may be

easier to incorporate in this fashion.

This paper is organized as follows. We first review the computation of radiation-reaction

effects within NRGR. We then integrate out the radiation field including the tail effect, and

demonstrate the presence of dissipative and conservative terms, and the time non-locality of the

effective action. Afterwards we discuss renormalization and RG equations. We conclude with a

few remarks on the breakdown of the separation of scales, the origin of the ambiguities recently

discussed in the literature, e.g. [54], and the completeness of the analytic PN framework. The

computation of the tail effect in the radiation-reaction potential within the EFT formalism was

first approached in [72]. We also comment at the end on the main differences between [72] and

the present work. We relegate details of the computation to an appendix.

2 Gravitational radiation-reaction in NRGR

Accommodating the time-asymmetric interactions associated with nonconservative processes,

like radiation reaction, at the level of the action entails formally doubling the degrees of freedom

in the problem so that xa → {x(1)
a ,x

(2)
a }, with xa being the physical coordinates of the ath body,

and similarly for the radiative metric perturbations, h̄µν → {h̄(1)
µν , h̄

(2)
µν }. After the latter are

integrated out from the theory, we will be left with an effective action that can be written as

W [x±a ] =

∫
dt
(
L[x(1)

a ]− L[x(2)
a ] +R[x(1)

a ,x(2)
a ]
)
, (2.1)
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where L =
∫
dt(K − V ) is the usual Lagrangian that accounts for the binary’s conservative

interactions while R accommodates non-conservative effects, such as radiation reaction. It is

worth noticing that if R contains terms that can be written in a manner resembling the first two

terms, namely,

R[x(1)
a ,x(2)

a ] ⊃ F [x(1)
a ]− F [x(2)

a ], (2.2)

then F may be absorbed into a redefinition of L and, ultimately, the conservative binding po-

tential [65]. This observation will be important later on when we discuss the tail effect in Sec. 3.

Details of the underlying theory of general nonconservative mechanics is given in [65] and extended

to field theories and continuum systems (including viscous fluid flows with entropy production)

in [66].

The leading contribution to the radiation reaction force comes from the following diagram in

the effective action [59],

iW [x±a ] =

Iij Iij
A B

=

(
1

2

)(
i

2MPl

)2 ∫
dt

∫
dt′IijA (t)

〈
EAij(t,0)EBkl(t

′,0)
〉
IklB (t′),

(2.3)

where A,B = ±, xa+ ≡ (x
(1)
a +x

(2)
a )/2, and xa− ≡ x

(1)
a −x

(2)
a . The tensor Eij(t,0) is the electric

part of the Weyl curvature tensor evaluated at the binary’s center of mass, which is taken to be

at the origin. The equations of motion are found from the effective action through[
δW

δxia−(t)

]
PL

= 0 =⇒ d

dt

∂L

∂xia
− ∂L

∂xia
=

[
∂R

∂xia−
− d

dt

∂R

∂via−

]
PL

, (2.4)

where “PL” indicates the physical limit wherein xa− → 0 and xa+ → xa. The two-point function

in the harmonic gauge for trace-reversed metric perturbations is given by〈
EAij(t,0)EBkl(t

′,0)
〉

= − i
8

[
∂i∂j∂k′∂l′ + 2Pijkl∂

2
0∂

2
0′ − ηij∂2

0∂k′∂l′ − ηkl∂i∂j∂2
0′ + ηik∂j∂0∂l′∂0′

+ ηjl∂i∂0∂k′∂0′ + ηil∂j∂0∂k′∂0′ + ηjk∂i∂0∂l′∂0′

]
GAB(t− t′,0), (2.5)

where the prime on a spacetime index of a derivative is taken with respect to x′µ, and

Pαβγδ =
1

2

(
ηαγηβδ + ηαδηβγ − ηαβηγδ

)
. (2.6)

The matrix of propagators1 in the ± variables is

GAB(xµ − x′µ) =

(
0 Gadv(xµ − x′µ)

Gret(x
µ − x′µ) 0

)
, (2.7)

1The propagator’s tensorial structure factors into Pαβγδ and a scalar Green’s function in this gauge.
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with G−+(xµ−x′µ) = Gret(x
µ−x′µ). The two propagators are needed to enforce the causal (i.e.,

outgoing) boundary conditions on the metric perturbations being integrated out [65].

Computing the diagram in (2.3) results in [59]

W [x±a ] = −GN
5

∫
dt Iij− (t)I

(5)
+ij(t) ≡

∫
dtRrad[x±a ], (2.8)

where the superscript (5) indicates five time derivatives and we introduced

Iij− (t) ≡ Iij(t;x(1)
a )− Iij(t;x(2)

a ) =
∑
a

ma

(
xia−x

j
a+ + xia+x

j
a− −

2

3
δijxa− ·xa+

)
+O(x3

a−),

Iij+ (t) ≡ 1

2

(
Iij(t;x(1)

a ) + Iij(t;x(2)
a )
)

=
∑
a

ma

(
xia+x

j
a+ −

1

3
δijx2

a+

)
+O(x2

a−). (2.9)

Using (2.4) we obtain the acceleration on the ath body resulting from (2.8) as [59]

(aia)rr(t) = −2GN
5

I(5)ij(t)xja(t). (2.10)

This is precisely the radiation-reaction force derived by Burke and Thorne [73,74]. At this order,

notice that Rrad defined in (2.8) cannot be absorbed into a redefinition of the binding potential

and thus represents a truly non-conservative effect.

The action for the conservative sector of the theory (i.e., ‘turning off’ radiative effects) is

invariant under time translations implying the existence of a conserved quantity, namely, the

binary’s binding mass/energy,2

M ≡
∑
a

va ·
∂L

∂va
− L . (2.11)

Once radiation is turned on, M is no longer conserved since R[x±a ] accounts for time-irreversible

interactions [47,66]. Hence, we have

Ṁ =
∑
a

va ·
[
∂R

∂xa−
− d

dt

∂R

∂va−

]
PL

. (2.12)

For the case of gravitational radiation reaction, using Rrad from (2.8) we find

Ṁ = −GN
5
I(1)ij(t)I(5)ij(t) , (2.13)

at leading PN order. Notice, after some simple algebraic manipulations, we can write (2.13) as

Ė = −GN
5
I(3)ij(t)I(3)ij(t) , (2.14)

2More generally, higher order time derivatives, e..g. accelerations, may be present in the effective action. If these

are not reduced using lower order equations of motion, the expression for the binding mass/energy in (2.11) has

to be modified accordingly, see e.g. [75].
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where

E = M +
GN
5
I(1)ij(t)I(4)ij(t)− GN

5
I(2)ij(t)I(3)ij(t) . (2.15)

The extra pieces are analogous to the Schott energy in electrodynamics, and may be interpreted

in terms of near-zone contributions from the metric perturbations [47].3

We then average (2.13) over a bound (not necessarily circular) orbit and find that the Schott-

like terms average away leaving behind the well-known quadrupole formula,〈
Ṁ
〉

= −PLO = −GN
5

〈
I(3)ij(t)I(3)ij(t)

〉
. (2.16)

The above result was also derived through the conservation of the (pseudo) stress-energy tensor

in [56].

The previous steps can be generalized to all `-order radiative multipoles. The diagrams

contributing to the effective action are

iW [x(±)
a ] =

∑
`≥2 IL JLIL JL

+

and are found to give

W [x±a ] = GN
∑
`≥2

(−1)`+1(`+ 2)

(`− 1)

∫
dt

(
2`(`+ 1)

`(2`+ 1)!
IL−(t)I

L (2`+1)
+ (t)

+
2`+3`

(2`+ 2)!
JL−(t)J

L (2`+1)
+ (t)

)
,

(2.17)

which incorporates back-reaction effects at leading order in GN in the far zone. From (2.17)

one can derive any quantity of interest in the radiation region at linear order in GN , such as

the corresponding radiation-reaction forces and orbit-averaged balance equations for energy and

angular momentum for compact binary inspirals.

3 The tail effect

We now move on to incorporating non-linear gravitational interactions in the radiation zone,

and the contribution from the tail effect to the radiation-reaction potential. The relevant Feynman

diagram is shown in Fig. 1. We first demonstrate the time non-locality, together with the existence

of dissipative and conservative contributions, to the effective action. Subsequently we discuss the

renormalization and RG evolution equations.

3The expressions for E and Ė can be derived directly from the effective action, see [47]. This is beyond the

scope of this paper.
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(0,−q)

Iij
D(−ω)

(ω,k)

M

(ω,k + q)

Iij
A (ω)� +

Figure 1: Feynman diagram for the tail contribution to the radiaction-reaction force. The M in the

tail correction may be taken as the leading averaged binding mass/energy, since the scale (and time)

dependence enters at higher orders.

3.1 Time non-locality

The resulting two-loop integral(s) arising from Fig. 1 can be written schematically as

iWtail =

∫
dω

2π

∫
k,q

MIij− (−ω)Iij+ (ω)Vh̄h̄Φ(ω,k, q)
i

−q2

i

(ω + iε)2 − k2

i

(ω + iε)2 − (k + q)2
. (3.1)

Here, Vh̄h̄Φ represents the three-graviton coupling, and
∫
p ≡

∫ d3p
(2π)3

. Notice the retarded bound-

ary conditions in the pole structure of the propagators. We use dimensional regularization

(dim. reg.) and, after some laborious manipulations outlined in App. A, we arrive at

iWtail[x
±
a ] = −i

∫
dω

2π

(d− 3)Mω4 Iij− (−ω)Iij+ (ω)

32(d− 2)2(d− 1)(d+ 1)

[
(d2 − 2d+ 3)I0 −

d(d− 2)(d− 1)

d− 4
ω2J0

]
,

(3.2)

in terms of two d-dimensional integrals, I0 and J0, see (A.16)-(A.17). The result is UV divergent.

Expanding around d = 4 we find,4

Wtail[x
±
a ] =

2G2
NM

5

∫ ∞
−∞

dω

2π
ω6 Iij− (−ω)Iij+ (ω)

[
− 1

(d− 4)UV
− γE + log π

− log
ω2

µ2
+

41

30
+ iπ sign(ω)

]
. (3.3)

The pole is removed by a counter-term (see below) and we obtain

Wtail[x
±
a ] = −2G2

NM

5

∫
dω

2π
ω6 Iij− (−ω)Iij+ (ω)

[
log

ω2

µ2
− iπ sign(ω)

]
, (3.4)

where we also absorbed a constant piece into a redefinition of µ. We can now Fourier transform

from frequency space back to the time domain, yielding

Wtail[x
±
a ] =

4G2
NM

5

(
PV

∫
dt I

(3)ij
− (t)

∫ t

−∞
dt′ I

ij(3)
+ (t′)

[
1

t− t′
]

(3.5)

+

∫
dt I

(3)ij
− (t)I

ij(3)
+ (t) logµ

)
≡
∫
dtRtail[x

±
a ] ,

4The renormalization scale µ in the logarithms appears from the shift in the mass-dimension of the couplings

in the theory, in our case GN , in d spacetime dimensions. See [8] for more details.
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where ‘PV’ stands for Principal Value. We can also write the effective action as,

Wtail[x
±
a ] =

4G2
NM

5
PV

∫
dt I

(3)ij
− (t)

∫ t

−∞
dt′ I

ij(4)
+ (t′) log(|t− t′|µ) . (3.6)

This result is formally equivalent to the non-local term discussed in [51,54] and [52] (see also [55]).

3.2 Conservative and dissipative terms

It is easy to see that all the terms in (3.3) are of the form in (2.2) except for the one involving

sign(ω). (This is clear since it is the only term that is not invariant under ω → −ω.) Therefore,

Wtail contains both conservative and dissipative interactions. In particular, the pole and logarithm

terms are both part of the conservative sector and consequently renormalize the binary’s binding

mass/energy. This implies that the RG structure of the theory, which we discuss in the next

sub-section, occurs entirely in the conservative sector and the dissipative term is finite.

From the expressions in (3.5) (or (3.6)) and (2.4), we then derive the contribution due to the

conservative and non-conservative terms to the radiation-reaction acceleration,(
aja
)

rr,tail
(t) =

(
aja
)

cons
(t, µ) +

(
aja
)

diss
(t) , (3.7)

where(
aja
)

cons
(t, µ) = −4G2

NM

5
xia(t)

(
Iij(6)(t) logµ2 + PV

∫ ∞
−∞

dt′ Iij(6)(t′)

[
1

|t− t′|

])
, (3.8)

(
aja
)

diss
(t) = −4G2

NM

5
xia(t) PV

∫ ∞
−∞

dt′ Iij(6)(t′)

[
1

t− t′
]
. (3.9)

Notice both combine to a causality-preserving force, as expected. In other words, the presence

of both conservative and non-conservative terms guarantees the integral in (3.5) (and (3.6)) only

receives contributions from t′ < t.

3.3 Renormalization

3.3.1 Counter-term

After using dim. reg., the computation of the tail effect in gravitational radiation reaction

contains a UV pole. Therefore, we require a counter-term to remove the divergence when d→ 4.

Since the pole appears in the conservative sector (see above) we require the following counter-term

−
∫
dt Vct[xa] =

1

(d− 4)UV

G2
NM

5

∫
dt I(3)ij(t)I(3)ij(t) . (3.10)

(Note the expression in (3.10) is half of the one in (3.3). This occurs after translating from the

minus to the standard variables.)
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The origin of this counter-term, however, is subtle. That is because the divergence in (3.10)

cannot be associated with short-distance behavior in the theory of potentials, which are instead

responsible for finite size effects for extended objects. Moreover, the leading order finite size

effects for (non-rotating) binary systems enters at 5PN, e.g. [46, 47], whereas (3.10) contributes

at 4PN order. Nevertheless, the UV divergence in (3.3) arises in a point-particle limit, the one in

which we shrunk the binary to a point-like source, by sending the separation between constituents

to zero (represented by the double line in Fig. 1). However, the separation is kept finite at the

orbital scale since it is the typical scale of variation of the potential modes. For the latter,

modes in the radiation zone are soft(er). Therefore, it is natural to expect the UV divergence

in (3.3) to be related to an IR singularity at the orbital scale. Indeed, the existence of such an

IR divergence in the theory of potentials was recently found in [50–52], in both the ADM and

harmonic frameworks. The resulting potential, V4pn, may be then split into a local term and

IR-dependent pieces [50,51]

V4pn[xa] = V4pn[xa, µ̃]− 1

(d− 4)IR

G2
NM

5
I(3)ij(t)I(3)ij(t) , (3.11)

using dim. reg., with

V4pn[xa, µ̃] = V local
4pn [xa] +

2G2
NM

5
I(3)ij(t)I(3)ij(t) log µ̃r , (3.12)

where r ≡ |x1 − x2|, and up to a rescaling of µ̃ to absorb some extra constants. 5 While the

form of V local
4pn [xa] depends on the choice of gauge, the coefficient of the logarithm is physical

(and gauge invariant to this order) since, as we shall see, it contributes to the total binding/mass

energy of the binary system. Therefore, as we see in (3.11), the computations in [49–52] provide

the counter-term needed to cancel the divergence in Wtail. We have distinguished µ̃ from µ to

emphasize the arbitrariness of the renormalization procedure and the choice of subtraction scale,

both at the orbital and radiation zones. We return to this issue in sec. 4.

3.3.2 Renormalization group flow

After the divergences are subtracted away, the effective action becomes a function of a renor-

malized Lagrangian, and is given (in frequency space) by

W [x±a ] =

∫
dω

2π

(
Lren[x(1)

a ;ω, µ]− Lren[x(2)
a ;ω, µ]

5Notice there is a factor of 2 and a relative sign difference between the coefficient of the IR pole and the

coefficient of the logarithm. This is often the case in dim. reg., see e.g. (3.3). This can also be directly seen in the

regularization procedure described in [49,50], see Eqs. (A44)-(A53) of [50].
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− 2G2
NM

5
ω6 Iij− (−ω)Iij+ (ω)

[
log

ω2

µ2
− iπsign(ω)

])
, (3.13)

where

Lren[xa;ω, µ] ≡ K[xa;ω]− Vren[xa;ω, µ] , (3.14)

after including the binary’s kinetic term, K. We can then read off the RG evolution equation

from the µ-independence of the effective action,

µ
∂

∂µ
W [x±a ] = 0 =⇒ µ

∂

∂µ
Vren[x±a ;ω, µ] =

4G2
NM

5
ω6Iij− (−ω)Iij+ (ω) , (3.15)

In terms of the standard variables and Fourier transforming back to the time domain, we find

the equivalent expression

µ
∂

∂µ
Vren[xa; t, µ] =

2G2
NM

5
I(3)ij(t)I(3)ij(t) . (3.16)

We may consider, for instance, the case of circular orbits. Then, choosing µ ' λ−1
rad together

with µ0 ' r−1 for the matching scale, we find (using µ/µ0 ' v)

Vren[xa; t, µ] = Vren[xa; t, µ0] +
2G2

NM

5
I

(3)
ij (t)I

(3)
ij (t) log v . (3.17)

This expression is in accordance with the results in [51]. The renormalized potential at µ0 ' 1/r

must be obtained by matching at the orbital scale. We may proceed as follows. First, notice that

by choosing µ̃ ' 1/r in (3.12) we remove the logarithmic contribution. Then, after matching, we

get

Vren[xa; t, µ0 ∼ 1/r] = V local
4pn [xa] + C

2G2
NM

5
I(3)ij(t)I(3)ij(t) . (3.18)

The factor of C ≡ log(µ̃/µ0) ∼ 1 accounts for the arbitrariness in the choice of renormalization

schemes. The value of C may be obtained, for instance, by comparison with a numerical compu-

tation or (semi-) analytically through the self-force program, e.g. [51,76]. For example, according

to [51] one finds CADM = −1681
1536 in the ADM formalism. A similar constant, α = 811

672 , appears

in the harmonic framework [52].6 The existence of this arbitrariness signals the breakdown of

the separation of scales between potential and radiation regions. However, this breakdown does

not necessarily mean additional information is needed, as advocated in [54]. On the contrary, it

is instead a signature of ‘double-counting.’ Once this is properly addressed, no extra matching

condition is necessary. We add a few extra remarks in sec. 4, and will elaborate further on this

point elsewhere [77].

6While the coefficient of the logarithmic is physical and gauge invariant to this order, the local term in (3.18)

depends on the choice of gauge. Therefore, in the (background) harmonic gauge which we use here, the resulting

value for the constant C in our case may differ from both the values discussed in [51,52].
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Despite this fact, we can still use the EFT computation to extract information about the

dynamics, including logarithmic contributions to the binding mass/energy, which are universal.

Concentrating on the conservative piece, and using (2.12) together with (3.8), we may write an

energy balance equation

Ṁren(t, µ) =
∑
a

ma (aa)cons · va + · · · = 2G2
NM

5
Iij(1)(t)

∫
dω

2π
Iij(6)(ω)eiωt log

ω2

µ2
+ · · · , (3.19)

where the renormalized binding mass/energy is given by, see (2.11),

Mren(t, µ) ≡
∑
a

va ·
∂

∂va
Lren[xa; t, µ]− Lren[xa; t, µ] . (3.20)

The ellipsis in (3.19) include also other (non-conservative) terms responsible for the power loss

on gravitational wave emission, as we discussed in the previous section. We then return to the

case of circular orbits with angular frequency Ω and take a time average. As it was discussed

in [8], the multipole moments have support at the typical scale of gravitational wave radiation,

λ−1
rad ' 2Ω, so that Iij(ω) ∝ δ(ω ± 2Ω). Hence, (3.19) becomes〈

Ṁren(t, µ)
〉

= −4G2
NM

5

〈
Iij(1)(t)Iij(6)(t)

〉
log (λradµ) + · · · . (3.21)

From here, using

I
(1)
ij (t)I

(6)
ij (t) =

d

dt

(
I

(5)
ij (t)I

(1)
ij (t)− I(4)

ij (t)I
(2)
ij (t) + 1

2I
(3)
ij (t)I

(3)
ij (t)

)
, (3.22)

on the right-hand side of (3.19), we get for the conservative binding energy,

E ≡Mren(t, µ) +
2G2

NM

5

(
2I

(5)
ij (t)I

(1)
ij (t)− 2I

(4)
ij (t)I

(2)
ij (t) + I

(3)
ij (t)I

(3)
ij (t)

)
log (λradµ) . (3.23)

Notice, at the radiation scale we have E = Mren(t, µ ' λ−1
rad), as expected. From (3.23) we can

read off the RG flow, after time averaging, to find

µ
d

dµ
〈E〉 = 0 =⇒ µ

d

dµ
〈Mren(t, µ)〉 = −2G2

NM
〈
I

(3)
ij (t)I

(3)
ij (t)

〉
. (3.24)

This expression is in agreement with the result in [56], and leads to

〈E〉 =
〈
Mren(t, µ0 ' r−1)

〉
− 2G2

NM
〈
I

(3)
ij (t)I

(3)
ij (t)

〉
log v . (3.25)

The 4PN logarithmic correction in the last term was first discussed in [57].

Gathering all the pieces, we finally arrive at a balanace equation of the sort,

〈Ė(t)〉 = −Plocal −
2G2

NM

5

〈
Iij(1)(t) PV

∫ ∞
−∞

dt′ Iij(6)(t′)

[
1

t− t′
]〉

, (3.26)
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including the non-conservative part of the tail from (3.9). Here, Plocal represents the power loss

induced by all other (local) dissipative terms (e.g., from Sec. 2). Performing the time average

using the leading expression for the quadrupole moment on a circular orbit with frequency Ω, we

recover the leading contribution to the power loss due to the tail effect, e.g. [8],

Ptail

PLO
= 4πx3/2 . (3.27)

Here x ≡ (GNMΩ)2/3 is the standard PN expansion parameter. Notice the relevant factors of π,

which now appear through the study of radiation-reaction effects, but without the associated IR

divergences discussed in [8]. See next for more on this issue.

4 Discussion

In this paper we computed the tail contribution to the gravitational radiation reaction to 4PN

order within the EFT framework. We arrived at an effective action that displays time non-locality,

i.e. (3.5), contribuiting conservative as well as dissipative terms to the radiation-reaction force,

i.e. (3.8) and (3.9), respectively. The former being responsible for non-trivial RG trajectories for

the gravitational binding potential and mass/energy in the near zone, i.e. (3.16) and (3.24), while

the latter leads to the well-known power loss due to the leading tail effect, i.e. (3.27).

Given the nature of the computation, naively, one would have thought that the tail con-

tribution to the effective action could have been obtained by replacing the source quadrupole

moment in the Burke-Thorne result (2.10), with the corresponding radiative moment induced by

the tail effect, e.g. [8,16]. However, while the leading tail contribution to the radiative quadrupole

presents an IR divergence [8,16], we find here instead a UV singularity, i.e. (3.3). As we argued,

the singular behavior in the tail contribution to the effective action stems off the conservative sec-

tor. The UV pole is thus ultimately canceled by a counter-term in the near zone, but arising

from an IR divergence [49–51]. This is consistent with the expectation that the counter-term

must originate in the potential region, and moreover, that UV divergences in the near zone are

renormalized through counter-terms arising from the point-particle worldline action for the con-

stituents of the binary. In both cases (radiative multipoles and radiation-reaction effects) the

divergence is due to a 1/r long-range force. However, the fact that we are computing the tail

contribution to the radiation-reaction force in an EFT where we treat the binary as a point-like

object, transforms the expected IR into a UV behavior. In other words, a would-be logarithmic

IR divergence, ∝ log r, is converted into a UV singularity, when r → 0. This demonstrates one

of the remarkable features of the EFT formalism, which allowed us to use the RG machinery to

resum logarithms.

Let us emphasize that there are no poles in the full theory calculation, which displays instead

12



a logarithm of the ratio of physical scales. The divergences arise in the EFT side because of

the separation into regions and the point-particle limit in (1.1). The IR/UV poles cancel out,

as expected. However, because of the introduction of an IR regulator, the arbitrariness of the

different schemes leaves the result depending on an extra constant, C, at 4PN order [51, 76].

In spite of this, the RG equations and long-distance logarithms are universal, and do not depend

on the details of the matching at the orbit scale, i.e. (3.18). This analysis thus explains the origin

of the logarithmic term found in [56,57], i.e. (3.25).

The reader may be puzzled about the appearance of this extra parameter, C. In principle,

one should be able to compute the 4PN potential without the need of additional information.

In fact, the existence of IR divergences in the computation of the static potential is also known to

occur in QCD, the theory of the strong interaction, amusingly called ADM singularities [78] (after

Appelquist, Dine and Muzinich). These singularities re-appear in the EFT approach NRQCD,

for non-relativistic quarks, and in particular when performing a matching computation into pN-

RQCD, where the potential is treated as a Wilson coefficient, somewhat similar to a multipole

expansion, e.g. [79–81]. In this case, the IR divergences cancel out in the matching, without re-

quiring extra conditions. The cancelation is due to contributions from two –in principle different–

regions, namely potential and ultrasoft modes. In other words, the IR behavior of the potentials,

when k → 0, overlaps with the contribution from softer modes, which in pNRQCD becomes a

self-energy diagram as in Fig. 1 (but with a propagating heavy field and without the tail).

These manipulations, translated into the classical limit, are strikingly similar to what we

encounter here in NRGR, in particular for the matching of the binding potential. Moreover, we

also find that the IR singularity in the near region cancels out against a pole in the radiation

theory with long-wavelength fields, but instead of a UV nature. This is the reason why, in

principle, different IR and UV regulators may introduce arbitrariness. However, as in QCD, the

existence of these overlapping divergences is due to double-counting in the EFT. This issue is

ultimately related to the so called ‘zero-bin subtraction’ [82], which will be required in the ongoing

computation of the 4PN potential [53]. Once the double-counting is properly removed the static

potential becomes an IR-safe quantity, and the necessity of additional information beyond the

PN framework, advocated in [54], disappears. The parameter C will be then fixed by the left over

finite pieces after the subtraction of the zero-bin. As we emphasized, the long-distance logarithms

and RG flow discussed here are not affected by this procedure. See [77] for more details.

Finally, unlike the computations in [56], where five diagrams are required for the one-point

function, the results obtained here –at the level of the effective action– are derived from a single

one, i.e. Fig. 1, and without the need of a four-graviton vertex. That is because computing

the one-point function corresponds to attaching an external leg to the diagram in Fig. 1, and
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there are five different ways to do so. Namely, two from attaching a leg to a propagator either

sourced by M or the quadrupole, two more from attaching a leg at the associated vertices, and

another one from a four-graviton coupling [56]. This suggests that the analysis presented here

may be more suitable to compute higher order contributions from tail effects and the resulting

logarithmic corrections. We leave this possibility open for future work.

Relation to previous work

The computation of the tail effect within NRGR was first investigated in [72], where an

expression equivalent to (3.5) was presented, see Eq. (11) in [72]. However, several aspects of

the calculations in [72], and subsequent interpretation, are unfortunately either inconsistent or

unjustified, which in part motivated us to write the present paper. For example, in Eq. (12)

of [72] we find an expression similar to ours in (3.3). However, while we emphasized the term

proportional to iπsign(ω), only a factor of iπ is written in Eq. (12) of [72]. This is inconsistent

with the result quoted in Eq. (11), nor does it properly incorporate the dissipative contribution

from the tail effect. The computation in [72] is repeated in coordinate space in an appendix,

resulting in the correct expression reported in Eq. (11). Hence, we do not insist on this point as

the main discrepancy between the authors’ approach and ours. The main difference turns out to

be the renormalization procedure.

While we argue that the radiation-reaction force in the near zone is renormalized through a

counter-term that originates as an IR singularity in the potential region [50], instead in [72] a

counter-term was written, Mct, for the binding mass/energy term in the effective action for the

radiation theory, see their Eq. (13). After introducing Mct the effective action becomes finite

in the ε → 0 limit, but at the same time one is forced –by imposing the µ-independence of the

effective action shown in their Eq. (14)– to write an RG equation for Mren(µ) (similarly to what

we did in (3.15) for Vren(µ)). The resulting RG flow for Mren(µ) would be incorrect, and disagrees

with their own Eq. (19), which is the one in agreement with our (3.24) and the result in [56]. Even

ignoring this internal inconsistency, other manipulations are rather dubious. For example, the

existence of an arbitrary extra parameter λ (beyond the existing of the µ scale) in the expression

for the binding energy in Eq. (18) of [72]. The meaning of λ is not apparent to us nor how its

value is supposed to be fixed, especially given the claim “for any λ” [72] after its appearance

in their Eq. (16). This makes their reproduction of the logarithmic term at 4PN found in [57],

quoted in Eq. (22) of [72], unclear.

In summary, we believe our work in this present paper clarifies and makes consistent how the

divergences must be handled within NRGR, and how to systematically incorporate logarithmic

corrections to the binding mass/energy.
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A Calculation of the 4PN tail contribution to radiation-reaction

The calculation for the tail effect arises from a diagram with a mass insertion, a triple-

graviton vertex, and three propagators, as shown in Fig. 1. The latter comes in 24 = 16 different

combinations of history indices (i.e., ±) for each vertex. The effective action is given by

iW =

∫
dω

2π

∫
k,q

M Iij− (−ω)Iij+ (ω)Vh̄h̄Φ(ω,k, q)
i

−q2

i

(ω + iε)2 − k2

i

(ω + iε)2 − (k + q)2
(A.1)

in the ± doubled variables and we dropped higher order terms in the minus variables as they do

not contribute to equations of motion [65]. Note that the 3-graviton vertex Vh̄h̄Φ does not depend

on the history labels.

When we work in momentum space, it is essential to impose the correct momentum routing

corresponding to the given retarded boundary conditions. If we follow the usual recipe and replace

derivatives ∂µ by −ikµ where k is the incoming 4-momentum, we find that the 4-momentum flows

through a retarded propagator Gret(x−y) from the earlier event, y, to the later one, x. Moreover,

wherever a momentum (ω,k) flows into a worldline vertex coupling to the quadrupole, the latter

depends on the frequency as Iij(−ω) whereas at a quadrupole vertex where a 4-momentum (ω,k)

flows out, we have Iij(ω). Finally, since the mass, M , can be taken to be time-independent up to

higher orders, the propagator coupling to the mass is the usual static Newton-like term, i.e. (1.2).

These conventions result in the momentum routing shown in Fig. 1.

To include all proper momentum and tensor structures is rather messy and not very illumi-

nating. The resulting expression takes the general form

iW =

∫
dω

2π

∫
k,q

f(ω,k, q)

q2k2(k + q)2
, (A.2)

where the four-vectors used in the denominator are qµ = (0, q) and kµ = (ω,k), so with our

convention for the metric we have

q2 = −q2 , (A.3)

k2 = (ω + iε)2 − k2 (A.4)

(k + q)2 = (ω + iε)2 − (k + q)2 . (A.5)
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The function in the numerator of (A.2), f(ω,k, q), is proportional to Iij− (−ω)I lm+ (ω) and con-

tains up to four momenta contracted with the four indices of the two quadrupole moments.

It also contains scalar products, all of which can be written in terms of squares, e.g. k · q =
1
2

[
(k + q)2 − k2 − q2

]
. Notice any factor of q2, k2 or (k + q)2 in the numerator cancels against

one of the propagators in the denominator. Moreover, except for q2, the other two lead to a

scale-less integral which can be set to zero in dim. reg. Therefore, we can write the resulting

expression as a sum of two terms,

iW =

∫
dω

2π

∫
k,q

f3(ω,k, q)

q2k2(k + q)2
+

∫
dω

2π

∫
k,q

f2(ω,k, q)

k2(k + q)2
. (A.6)

Beginning with the piece with two factors in the denominator, we find∫
dω

2π

∫
k,q

f2(ω,k, q)

k2(k + q)2
=

∫
dω

2π

∫
k,q

f2(ω,k, q − k)

k2q2
=

iM

32m4
Pl

∫
dω

2π

∫
k,q
Iij− (−ω)I lm+ (ω)

ω2δilkjqm − (d−3)2

(d−2)2
kikjqlqm

[(ω + iε)2 − k2][(ω + iε)2 − q2]
. (A.7)

Note that there is no term proportional to δilδjm. The one with a single δil vanishes because

the double integration factorizes into two pieces which are linear in k and q, with no preferred

direction. The last term in the numerator vanishes because the resulting integral traces over

trace-free quadrupoles. We are thus left with the piece of the effective action in (A.6) with three

propagators. The different possible integrals can be reduced as follows,∫
k,q

kikj

q2k2(k + q)2
=
ω2J0

d− 1
δij , (A.8)

∫
k,q

kiqj

q2k2(k + q)2
=

I0

2(d− 1)
δij , (A.9)

∫
k,q

qiqj

q2k2(k + q)2
= − I0

d− 1
δij , (A.10)

∫
k,q

kikjklkm

q2k2(k + q)2
=

ω4J0

(d− 1)(d+ 1)

(
δijδlm + δilδjm + δimδjl

)
, (A.11)

∫
k,q

kikjklqm

q2k2(k + q)2
=

ω2I0

2(d− 1)(d+ 1)

(
δijδlm + δilδjm + δimδjl

)
, (A.12)

∫
k,q

kikjqlqm

q2k2(k + q)2
= − ω2I0

(d− 2)(d+ 1)
δijδlm − (d− 3)ω2I0

2(d− 2)(d− 1)(d+ 1)

(
δilδjm + δimδjl

)
, (A.13)

∫
k,q

kiqjqlqm

q2k2(k + q)2
=

ω2I0

(d− 1)(d+ 1)

(
δijδlm + δilδjm + δimδjl

)
, (A.14)

∫
k,q

qiqjqlqm

q2k2(k + q)2
= − 2ω2I0

(d− 1)(d+ 1)

(
δijδlm + δilδjm + δimδjl

)
. (A.15)
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where

I0 =

∫
k,q

1

[(ω + iε)2 − k2][(ω + iε)2 − (k + q)2]
(A.16)

=

(
Γ
[
−d−3

2

])2
(4π)d−1

[
−(ω + iε)2

]d−3
,

J0 =

∫
k,q

1

[−q2][(ω + iε)2 − k2][(ω + iε)2 − (k + q)2]
(A.17)

= − 1

d− 4

Γ
(
−d−3

2

)
Γ
(
−d−5

2

)
(4π)d−1

[
−(ω + iε)2

]d−4
.

The effective action then reads,

iW = −i
∫
dω

2π

(d− 3)Mω4 Iij− (−ω)Iij+ (ω)

32(d− 2)2(d− 1)(d+ 1)

[
(d2 − 2d+ 3)I0 + d(d− 2)(d− 1)ω2J0

]
, (A.18)

and expanding around d = 4, we arrive at the expression in (3.3).
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