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Despite stringent constraints set by astrophysical observations, there remain viable scalar-tensor
theories that could be distinguished from general relativity with gravitational-wave detectors. A
promising signal predicted in these alternative theories is dynamical scalarization, which can dra-
matically affect the evolution of neutron-star binaries near merger. Motivated by the successful
treatment of spontaneous scalarization, we develop a formalism that partially resums the post-
Newtonian expansion to capture dynamical scalarization in a mathematically consistent manner.
We calculate the post-Newtonian order corrections to the equations of motion and scalar mass of
a binary system. Through comparison with quasi-equilibrium configuration calculations, we verify
that this new approximation scheme can accurately predict the onset and magnitude of dynamical
scalarization.

I. INTRODUCTION

The detection of gravitational-wave (GW) event
GW150914 by Advanced LIGO heralds a new era of ex-
perimental relativity [1]. Every test of the past hundred
years has indicated that gravity behaves as predicted by
general relativity (GR). Until now, the best constraints
have come from solar-system experiments [2] and binary-
pulsar observations [3, 4]. These measurements probe
the mildly-relativistic, strong-field regime of gravity gen-
erated by objects with velocities v/c . 10−3 and gravi-
tational fields ΦNewt/c

2 . 10−1 (see Table 4 of Ref. [2]
for a summary of model-independent constraints).
For the first time, these constraints can be extended

through the direct observation of strong, dynamical grav-
itational fields. In particular, GW detectors can track
the coalescence of compact objects in binary systems, a
process in which the objects are highly-relativistic and
strongly self-gravitating, with v/c ∼ 0.5 and ΦNewt/c

2 ∼
0.5. We expect to observe several GWs per year [5, 6]
with the upcoming global network of detectors comprised
of Advanced LIGO [7], advanced Virgo [8], and KAGRA
[9].
These ground-based GW detectors will be able to ob-

serve binaries of solar-mass objects for thousands of or-
bital cycles before merger. Significant effort has gone into
the development of techniques to test GR with these mea-
surements; see Refs. [10, 11] and references therein. Dur-
ing the first stage of a binary’s coalescence (the early in-
spiral), the waveformmeasured by the detector is well de-
scribed within the stationary-phase approximation. The
waveform generated in GR for the early inspiral can be
approximated by

hGR(θ; f) =
A(θ)

D
f−7/6eiψ(θ;f), (1.1)

where f is the observed frequency, D is the distance to
the binary, and A and ψ are the amplitude and phase
of the GW, respectively, dependent on the intrinsic (e.g.
chirp mass, component spins, etc.) and extrinsic (e.g.

sky position, time of coalescence, etc.) parameters of the
binary, represented collectively by θ.
Using this signal as a baseline, one can parameterize

any non-GR waveform in the early inspiral as

h(θ; f) = hGR(θ; f) (1 + δA(θ, ζ; f)) eiδψ(θ,ζ;f) (1.2)

where ζ represents the parameters that characterize the
alternative theory [12, 13]. Then, given a GW detection,
Bayesian inference can be used to estimate δA and δψ
[14–19]. Typically one expands these functions in powers
of the frequency f (and its logarithm log f), then per-
forms a hypothesis test to constrain the corresponding
expansion coefficients. This approach can be used either
to search for generic deviations from GR by treating these
coefficients independently or to test a specific alternative
theory against GR by relating the coefficients to the un-
derlying physical parameters ζ. Using a parameterized
waveform that also included the merger and ringdown
signal, both types of tests were done for GW150914 in
Ref. [20]: with the former, the authors constrained the
higher-order expansion coefficients in δψ, and with the
latter, they placed a lower bound on the Compton wave-
length λg of the graviton in a hypothetical massive grav-
ity theory [21] (λg is signified by ζ in our notation).

However, this type of analysis rests on the assump-
tion that δA and δψ admit expansions in powers of f .
There exist certain alternative theories of gravity where
this assumption of analyticity breaks down due to phase
transitions or resonant effects [19]. Fortunately, several
complementary tests were performed in Ref. [20] to ver-
ify that GW150914 is indeed consistent with GR. Still,
our ability to model non-analytic features in waveforms
is essential in case future events do not match the pre-
dictions of GR as closely.
The task of modeling a non-analytic deviation δψ in a

generic, theory-independent way is intractable. Instead,
previous work has focused on modeling specific non-GR
phenomena predicted in particular alternative theories
of gravity. We continue this effort here, focusing on dy-
namical scalarization (DS), an effect that can arise in
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neutron-star binaries in certain scalar-tensor (ST) the-
ories of gravity [22, 23]. Previous efforts to model this
effect have simply grafted models of DS onto indepen-
dently developed analytic approximations of the inspiral
[19, 24, 25]. In this paper, we propose a new perturba-
tive formalism that incorporates DS from first principles.
Our aim is to lay the groundwork for a model whose ac-
curacy can be improved iteratively in a way that is more
straightforward and self-consistent than previous meth-
ods.
The paper is organized as follows. In Sec. II, we ex-

amine the relationship between DS and the better under-
stood phenomenon of spontaneous scalarization. From
this discussion, we motivate a resummation of the post-
Newtonian formalism to incorporate DS, which is then
developed in Sec. III. We derive the equations of motion
for a neutron-star binary up to next-to-leading order in
Secs. IV and V. In Secs. VI and VII, we calculate its
scalar mass (a measure of the system’s scalarization) at
the same order. As a test of its validity, in Sec. VIII,
we compare our model with numerical quasi-equilibrium
configurations of neutron stars [26] and previous analyt-
ical models [24]. We provide a summary in Sec. IX and
outline the future work needed to produce waveforms
with our model.

II. NON-PERTURBATIVE PHENOMENA IN

SCALAR-TENSOR GRAVITY

Scalar-tensor theories of gravity are amongst the most
natural and well-motivated alternatives to GR. We con-
sider the class of theories detailed in Ref. [27], in which a
massless scalar field couples non-minimally to the metric,
effectively allowing a spin-0 polarization of the graviton.
These theories are described by the action

S =

∫

d4x
c3
√−g

16πG

[

φR − ω(φ)

φ
gµν∇µφ∇νφ

]

+ Sm[gµν ,Ξ],

(2.1)

where Ξ represents all of the matter degrees of freedom
in the theory. Note that in the limit that ω → ∞, the
scalar field relaxes to a constant value, and the theory
reduces to GR with the modified gravitational constant
Geff = G/φ; we refer to this extreme as the GR limit.
The form of the action in Eq. (2.1) is known as the

“Jordan frame” action. Alternatively, the action can be
cast into the “Einstein frame” by performing a conformal
transformation g̃µν ≡ φgµν as

S =

∫

d4x
c3
√−g̃

16πG

[

R̃− 2g̃µν∇µϕ̃∇νϕ̃
]

+ Sm

[

e−
∫
2dϕ̃/

√
3+2ω(ϕ̃)g̃µν ,Ξ

]

, (2.2)

where we have introduced the scalar field

ϕ̃ ≡
∫

dφ

√

3 + 2ω(φ)

2φ
. (2.3)

From Eq. (2.2), we see that the coupling of the scalar
field to matter (through the metric g̃µν) is characterized
by

a = (3 + 2ω)−1/2. (2.4)

Measurable phenomena absent in GR arise in theories
whose coupling is linear in ϕ̃

a =
Bϕ̃

2
. (2.5)

This coupling can be expressed in terms of Jordan frame
variables as

1

ω(φ) + 3/2
= B logφ, (2.6)

and imposes the relation between φ and ϕ̃

φ = exp(Bϕ̃2/2). (2.7)

Damour and Esposito-Farèse discovered an instability
in the scalar field triggered by the presence of relativis-
tic matter in theories with B > 0 [28].1 For sufficiently
large B, compact neutron stars were found to undergo
a phase transition now known as spontaneous scalariza-
tion. Spontaneously scalarized stars are expected to be-
have differently than their (un-scalarized) GR counter-
parts (see Refs. [33–37] for examples of such deviations).
Observation of a scalarized star would be a smoking

gun for modifying gravity; in turn, our lack of evidence
for such stars places constraints on this class of ST theo-
ries [38]. Because scalarization arises from the non-linear
interaction between strong gravitational fields and mat-
ter, it is unconstrained by weak-field experiments and
GW150914. However, pulsar timing measurements have
ruled out nearly all theories that can sustain spontaneous
scalarization [38].
Dynamical scalarization is a similar phenomenon re-

vealed by recent numerical-relativity simulations that is
not ruled out by binary-pulsar observations [22, 23]. In a
binary system, neutron stars too diffuse to spontaneously
scalarize in isolation were found to scalarize collectively.
Despite the name, DS has also been found in recent
quasi-equilibrium calculations [26]; the phenomenon is
caused by the proximity of the neutron stars rather than
their dynamical evolution. The onset of DS produces

1 Based off the work of Refs. [29–31], the authors of Ref. [25]
recently discussed a related instability in this theory that would
cause the scalar field to grow rapidly over cosmological timescales
throughout the Universe. Consequently, the scalar field today
would be so large that its presence would have already been de-
tected by solar-system experiments. The addition of a potential
V (φ) or slight modification of ω(φ) could ameliorate this issue
while preserving the neutron star phenomena discussed in this
paper (for example, see Ref. [32]). As is done in the literature,
we ignore here this cosmological problem.
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an abrupt change in the stars’ motion, generating sharp
features in the GW signal produced by the binary.

Gravitational-wave detectors may be able to extend
the current constraints on ST theories by searching for
DS [25]. This endeavor hinges on our ability to accurately
and efficiently model GWs from binaries that undergo
DS. Such effects have been modeled by using a Heavi-
side function for δψ in Eq. (1.2) [19, 25] or augmenting
the post-Newtonian (PN) evolution of the binary with a
semi-analytic feedback model [24]. This work follows a
general strategy similar to that of Ref. [24]. However, we
adopt a top-down approach to incorporate DS into the
PN formalism in hopes of creating a model that is more
consistent and streamlined conceptually (see Appendix
C for a detailed analysis of the results of Ref. [24]).

The PN expansion is an effective tool for analytically
approximating the evolution of binary systems of interest
to ground-based GW detectors. In this approach, one ex-
pands solutions to the Einstein equations about flat space
in the small parameter ǫ ∼ GM/rc2 ∼ (v/c)2 < 1, where
M, r, v represent the characteristic mass, distance, and
velocity scales in the problem, respectively. In ST theo-
ries, this expansion is done about the Minkowski metric
ηµν and background field φ0 (assumed to be constant
and homogeneous over the time and distance scales of
the evolution of a binary system). We refer to the ǫn+1

corrections to these quantities as the “nPN” fields. We
define non-perturbative phenomena as behavior found in
the full gravitational theory that cannot be recovered at
any finite PN order.

In the remainder of this section, we argue that DS is
a non-perturbative phenomenon. First, we review the
analytic treatment of spontaneous scalarization, describ-
ing the way in which the phenomenon has been identi-
fied as non-perturbative and then incorporated into the
PN expansion in a rigorous manner. We then perform a
similar analysis for DS and present a quantitative argu-
ment that the phenomenon is non-perturbative. Finally,
we describe how the analytic treatment of spontaneous
scalarization could be adapted to incorporate DS into the
PN formalism.

A. Spontaneous scalarization: single neutron star

In ST theories, static, spherically symmetric space-
times are characterized by three parameters: the asymp-
totic field φ0, the Arnowitt-Deser-Misner (ADM) mass
m, and the scalar charge α [27, 39]. These parameters
can be extracted from the asymptotic behavior of the
metric and scalar field

lim
|x|→∞

gij =

(

1 +
2Gm

|x|c2
)

δij +O
(

|x|−2
)

, (2.8)

lim
|x|→∞

φ = φ0 +
2Gµ0mα

|x|c2 +O
(

|x|−2
)

, (2.9)
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FIG. 1. The scalar charge of an isolated non-spinning neutron
star as a function of its compactness in the limit that µ0

approaches zero (the GR limit). We use the theory parameter
B = 9 with a piecewise polytropic fit to the APR4 equation
of state detailed in Ref. [40].

where we have defined

µ0 ≡ 1
√

3 + 2ω(φ0)
=

√

B log φ0
2

. (2.10)

It was shown in Ref. [27] that the scalar charge of an
isolated star can be written in the PN expansion as

α = µ0

[

1 +A1

(

Gm

Rc2

)

+A2

(

Gm

Rc2

)2

+ · · ·
]

, (2.11)

where R is the radius of the body, and the coefficients
Ai are of order unity. Because µ0 vanishes in the GR
limit, one finds that the right hand side of Eq. (2.11),
truncated at any finite order, must vanish as well. How-
ever, as first discovered in Ref. [28], exactly solving the
geometry numerically shows that a sufficiently compact
body can sustain an appreciable scalar charge even when
µ0 = 0 (corresponding to the GR limit φ0 = 1).2 Thus,
we would describe this scalarization as non-perturbative
(in the sense defined above). Figure 1 depicts the sharp
growth in scalar charge in the limit µ0 → 0 as one in-
creases the compactness of a neutron star. For this figure
and all that follow, we use a piecewise polytropic fit [40]
to the APR4 equation of state given in Ref. [41].
The tension between the analytic and numerical re-

sults suggests that the PN expansion must break down
beyond some compactness Gm/Rc2 for this class of ST
theories. The scalar charge is non-analytic at this critical

2 Because of the additional prefactor of µ0, the |x|−1 term in Eq.
(2.9) vanishes even for spontaneously scalarized stars in the GR
limit. The dramatic effect of spontaneous scalarization is more
easily seen through ϕ̃ [given in Eq. (2.7)], which can be approx-
imated as ϕ̃ = ϕ̃0 + Gmα

|x|c2
+O

(

|x|−2
)

, where φ0 = φ(ϕ̃0).
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compactness, at which point the isolated body under-
goes a phase transition. Analogous to ferromagnetism,
the derivative of the charge diverges when µ0 approaches
zero, indicating that this transition is of second order.
Beyond the critical point, the vanishing of µ0 in the GR
limit is compensated by the divergence of the bracketed
sum in Eq. (2.11). The only astrophysical objects that
could reach this critical compactness are neutron stars
and black holes. However, no-hair theorems protect iso-
lated black holes from developing a scalar charge [42].
We focus exclusively on neutron stars for the remainder
of this paper.
In anticipation of our discussion of dynamical scalar-

ization, we briefly review how spontaneous scalarization
is incorporated into analytic models of binary pulsars. A
binary system of non-spinning stars is characterized by
two length scales: the characteristic size of the bodies R
and their separation r. As in the case of an isolated body,
the individual stars can spontaneously scalarize if they
exceed some critical compactness, at which point the PN
expansion no longer accurately predicts the evolution of
the binary. Damour and Esposito-Farèse developed the
“post-Keplerian” (PK) expansion to accommodate such
systems [27, 43] (not to be confused with the “param-
eterized post-Keplerian” formalism for modeling binary
pulsars in generic alternative theories [44]). In the PK
approach, one expands only in Gm/rc2, leaving quanti-
ties dependent on R unexpanded (e.g the scalar charge
α). Equivalently, one can recombine the sum in pow-
ers of Gm/Rc2 in the PN expansion to produce the PK
expansion. The relationship between the PN and PK ex-
pansions is summarized in the bottom two panels of Fig.
2 (the remaining panels are discussed in Sec. II B). Spon-
taneous scalarization is captured by explicitly including
all of the terms in Eq. (2.11) at each order in the PK
expansion.

B. Dynamical scalarization: neutron-star binaries

Despite its successful application to binary pulsars, the
PK approximation does not predict dynamical scalariza-
tion. The asymptotic scalar field for a binary system has
been computed recently to 1.5PK order in Ref. [45].3 For
a system containing neutron stars too diffuse to sponta-
neously scalarize individually, the PK prediction of the
total scalar charge remains small as the binary coalesces.

3 In the literature, the distinction between the PN and PK expan-
sions is often overlooked; the PK expansion (i.e., the approxi-
mation in which power series in Gm/Rc2 have been resummed)
is often referred to as the “PN expansion,” (for example Refs.
[2, 45, 46]). To avoid confusion, we have taken care to distin-
guish the two in Sec. II when discussing spontaneous scalariza-
tion. Because both the PN and PK expansions fail to capture
dynamical scalarization, starting from Sec. III, we continue the
popular conflation of these two approximation schemes, referring
to the expansions collectively as “PN.”

Full Theory (Unexpanded)

Post-Dickean (PD)

Small Parameters: Gm/rc2, v/c

Post-Keplerian (PK)

Small Parameters: Gm/rc2, v/c

Post-Newtonian (PN)

Small Parameters: Gm/Rc2, vinternal/c, Gm/rc2, v/c

Resum Gm/Rc2, vinternal/c

Partially resum Gm/rc2, v/c

FIG. 2. Analytic approximations of ST theories. Starting
from the PN expansion about the Minkowski metric ηµν and
the background field φ0, one resums all expansions in the com-
pactness Gm/Rc2 and associated internal velocity vInternal/c
to capture spontaneous scalarization. Recombining these ex-
pansions produces the PK approximation. To capture dynam-
ical scalarization, one resums the PK expansion in Gm/rc2

and v/c. Fully recombining these expansions reproduces the
original (unexpanded) theory. Instead, one partially resums
the PK expansions to generate the PD approximation.

However, numerical-relativity calculations indicate that
the scalar charge can greatly increase beyond this esti-
mate as the two neutron stars draw close [22, 23, 26].
We postpone a quantitative comparison between these
analytic and numerical predictions until Sec. VIII (see
Fig. 6); we must first formulate a precise measure of the
scalarization of a binary system. Akin to spontaneous
scalarization, we suspect that the mismatch between ana-
lytic and numerical results stems from a breakdown of the
PK expansion. We posit that DS is a non-perturbative
phenomenon, and hence the PK expansion needs to be
suitably modified to capture it.
To support this intuition, we carefully examine how the

mass and scalar charge of a star depend on the nearby
scalar field. For an isolated body, these are the relations
m(φ0) and α(φ0) where φ0, m, and α are defined in Eqs.
(2.8) and (2.9). As shown in Appendix A of Ref. [27],
the scalar charge is related to the mass by

αA(φ0) = µ0

(

1− 2
d logmA

d log φ0

)

. (2.12)

The dependence of the mass on φ0 can only be found
by numerically solving the Tolman-Oppenheimer-Volkoff
(TOV) equations modified for ST gravity with a given
equation of state [28].
The mass and scalar charge of each neutron star in

a binary system can be similarly determined provided
that the system is well-separated (R/r ≪ 1). Working
at leading order in R/r, each star can be treated as an
isolated body immersed in the scalar field produced by
its partner [27]. At a distance |x| = d ∼

√
Rr from each

star (“far” from the star relative to R), the metric and
scalar field will behave as in Eqs. (2.8) and (2.9) with φ0
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replaced by the background field produced by the other
star. As above, we numerically solve the modified TOV
equations to relate the massm and scalar charge α to this
background scalar field. Because we work in the limit
d/r =

√

R/r → 0, this matching occurs effectively at
each star relative to r, the smallest distance scale relevant
to GW generation.4 In this limit, the TOV equations
provide us with the dependence on the mass and charge
on the local scalar field for each body in a binary system,
i.e. the functions m(φ) and α(φ) where φ is evaluated at

the star.
To analytically model these relations using the PK ap-

proximation, one must expand m and α about the back-
ground field φ0, where now φ0 is the value taken very
far from the binary system at |x| ≫ r. Because the ana-
lytic form of the function m(φ) is unknown, Eardley [48]
proposed the agnostic expansion

mA(φ) = m
(0)
A

[

1 + sAΨ+
1

2

(

s2A − sA + s′A
)

Ψ2 + · · ·
]

,

(2.13)

where

m
(0)
A ≡ mA(φ0), (2.14)

sA ≡
(

d logmA

d logφ

)

φ=φ0

, (2.15)

s′A ≡
(

d2 logmA

d(logφ)2

)

φ=φ0

, (2.16)

Ψ ≡ φ− φ0
φ0

∝ Gm

rc2
. (2.17)

We plot the magnitude of the coefficients in Eq. (2.13)
in Fig. 3 across a range of scalar field values reached
during the coalescence of a binary neutron star system
[22, 23]. Using the model of Ref. [24], we estimate that
DS occurs when the field at each body reaches a value of

Ψ ∼ 10−4, (2.18)

depicted as the pink region in the figure.
For neutron stars with realistic, piecewise polytropic

equations of states (e.g. fits to APR4 and H4 defined in
Ref. [40]), we find that for Ψ near this maximal value,

∣

∣

∣

∣

Cn+1

Cn

∣

∣

∣

∣

∼ 103 − 105, (2.19)

for n = 1, 2, where Ci is the coefficient of the i-th PN
correction in Eq. (2.13).
Comparing Eqs. (2.18) and (2.19), we see that the

rapid growth of the expansion coefficients in Eq. (2.13)

4 In this paper, we ignore all effects that arise from the finite size
of the neutron stars. Such effects could influence the dynamics
of a binary system of scalarized stars at 1PK order [47].

FIG. 3. Magnitude of the coefficients of the expansionm(φ) =

m(0)
(

1 + C1Ψ+ C2Ψ
2 + · · ·

)

across the typical scalar field
values achieved during the evolution of a compact binary. Val-
ues shown here are for an isolated body withm(φ0) = 1.35M⊙

and APR4 equation of state with B = 9. Interpolation errors
dominate the computation of C3 for small values of log φ0; we
omit these regions of the curve.

can overpower the “smallness” of our expansion param-
eter Ψ. In particular, the relative contribution of each
term on the right hand side of Eq. (2.13) does not di-
minish as one moves to increasingly higher order. These
symptoms indicate thatm(φ) may not be analytic in this
regime, and thus, the PK expansion would break down
at this point in the binary’s evolution. Inspired by the
treatment of spontaneous scalarization, we posit that the
best way to work around this restriction is to resum the
expansion in Eq. (2.13). The hierarchy of these expan-
sions is outlined in Fig. 2.

Unfortunately, such a prescription is not as straightfor-
ward as the case for spontaneous scalarization. To cap-
ture spontaneous scalarization, one simply “unexpands”
all expansions in Gm/Rc2 in the PN approximation [i.e.
those of the form as in Eq. (2.11)], leaving only expan-
sions in Gm/rc2 and the corresponding orbital velocity
v/c. Completely resumming these expansions would re-
produce the full ST theory. Instead, we need to choose
certain quantities dependent on Gm/rc2 to resum, and
leave the rest expanded. Based on the discussion above,
we suspect that the best quantities to keep unexpanded
are the mass m(φ) and its derivatives (including the
scalar charge α(φ)). However, a priori, there is no clear
indication of precisely “what to resum.” We need to in-
corporate the flexibility of this choice into our model.
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III. THE POST-DICKEAN EXPANSION

A. Action and field equations

We refer to our method of resumming the PN expan-
sion as the “post-Dickean” (PD) approach — named af-
ter Robert Dicke, one of several pioneers of ST gravity
[49–53] who made many important contributions to ex-
perimental relativity throughout his career. For nota-
tional convenience, we introduce an auxiliary field ξ that
is related to φ in a small neighborhood of each particle’s
worldline.5 This new field is used to demarcate the re-
summed variables (m and its derivatives). We explicitly
constrain ξ in the matter action via the Lagrange multi-
pliers λA

Sm ≡ c2
∑

A

∫

d4x

∫

dτAδ
(4) (x− γA(τA))

× (mA(φ, ξ) + λA(τA) (F (φ) − ξ)) ,

(3.1)

where the arbitrary functions m(φ, ξ) and F (φ) encode
our choice of how to resum the mass and scalar charge,
respectively.
With this expression, the action in Eq. (2.1) gives rise

to the field equations

F (φ(γA(τA))) = ξ(γA(τA)), (3.2)

uσA∇σ (m(φ, ξ)uαA) = −Dm
Dφ

∂αφ (3.3)

Rµν −
1

2
Rgµν =

ω(φ)

φ2

(

∇µφ∇νφ− 1

2
gµνg

αβ∇αφ∇βφ

)

+
1

φ

(

∇µ∇νφ− gµν φ
)

+
8πG

φc4
Tµν ,

(3.4)

φ =
1

3 + 2ω(φ)

(

8πG

c4
T − 16πG

c4
φ
DT

Dφ

−dω
dφ
gαβ∇αφ∇βφ

)

,

(3.5)

where we have defined

D

Dφ
≡ ∂

∂φ
+
dF

dφ

∂

∂ξ
, (3.6)

T µν ≡ 2c√−g
δSm
δgµν

= c3
√−g

∑

A

∫

dτAmA(φ, ξ)u
µ
Au

ν
Aδ

(4)(x− γA(τA)),

(3.7)

5 Formally, the matching of ξ and φ is done at the boundary of the
body zone, defined at a distance d ∼

√
Rr from each body. As

justified in Appendix A of Ref. [27], in the limit that d/r → 0,
we can represent each body as a point particle; in this limit, the
matching of the two field variables is done exactly on each body’s
worldline.

TABLE I. Resummation schemes discussed in this paper. We
abbreviate m(φ, ξ) with m and F (φ) with F .

F (φ) F (ϕ̃)

m(RJ) m = m(ξ) m = m(ξ)

F = φ F =
√

2 log φ/B

m(RE) m = (φ/ξ)1/2m(ξ) m = φ1/2e−Bξ2/4m(ξ)

F = φ F =
√

2 log φ/B

m(PN) m = m(φ)

where γA, τA, and uµA =
dγµ

A

dτA
are the worldline, proper

time, and four velocity of particle A, respectively.
In this paper, we focus on only a few, natural choices

for m and F , given in Table I. Physically, the choice
of m(RJ) corresponds to resumming the mass measured
in the Jordan frame, while the choice and m(RE) corre-
sponds to resumming the Einstein-frame mass

m(E)(φ) =
m(φ)√
φ
. (3.8)

The choices of F (φ) and F (ϕ̃) respectively equate the aux-
iliary field ξ to φ and ϕ̃, defined in Eq. (2.7). We refer
to the joint selection of m and F as the resummation

scheme. The PD parameterization also encompasses the
(non-resummed) PN expansion; this limit is reached with
the choice of m(PN) given in the table (recall that here
“PN” is used to refer collectively to the post-Newtonian
and -Keplerian approximations).

B. Relaxed field equations

To solve Eqs. (3.4) and (3.5), we employ a technique
known as direction integration of the relaxed Einstein
equations, originally developed in GR in Refs. [54–58]
and then extended to ST gravity in Refs. [45, 46, 59].
The remainder of this section closely follows the frame-
work presented in Sec. II.B of Ref. [46]. We define

g
µν ≡ √−ggµν , (3.9)

Hµανβ ≡ g
µν
g
αβ − g

αν
g
µβ . (3.10)

As in general relativity, the following identity holds:

Hµανβ
,αβ = (−g)(2Rµν −Rgµν +

16πG

c4
tµνLL), (3.11)

where tµνLL is the Landau-Lifshitz pseudotensor.

We assume that far from any sources, the metric re-
duces to the Minkowski metric ηµν and that the scalar
field approaches a constant value φ0. Let ϕ ≡ φ/φ0 be
the normalized scalar field. We introduce the conformally
transformed metric

g̃µν ≡ ϕgµν , (3.12)
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the gravitational field

h̃µν ≡ ηµν −
√

−g̃g̃µν , (3.13)

and the “conformal gothic metric”

g̃
µν ≡

√

−g̃g̃µν . (3.14)

We impose the Lorentz gauge condition

∂ν h̃
µν = 0. (3.15)

Substituting Eqs. (3.9)–(3.13) into the gauge condition
(3.15), the field equation (3.4) is rewritten as

ηh̃
µν = −16πG

c2
τµν , (3.16)

where η is the Minkowski space d’Alembertian and

τµν ≡(−g) ϕ

φ0c2
T µν +

c2

16πG
(Λµν + ΛµνS ) , (3.17)

Λµν ≡16πG

c4
[(−g)tµνLL] (g̃µν) + ∂β h̃

µα∂αh̃
νβ

− h̃αβ∂α∂β h̃
µν ,

(3.18)

ΛµνS ≡3 + 2ω

ϕ2
∂αϕ∂βϕ

(

g̃
µα

g̃
νβ − 1

2
g̃
µν
g̃
αβ

)

, (3.19)

where the notation [(−g)tµνLL](g̃µν) indicates that the
Landau-Lifshitz pseudotensor should be calculated using
g̃ rather than the physical metric g. Similarly, the scalar
field equation (3.5) can be recast into the form

ηϕ = −8πG

c2
τs, (3.20)

with

τs ≡− 1

3 + 2ω

√−g ϕ

φ0c2

(

T − 2φ
DT

Dφ

)

− c2

8πG
h̃αβ∂α∂βϕ

+
c2

16πG

d

dϕ

[

log

(

3 + 2ω

ϕ2

)]

∂αϕ∂βϕg̃
αβ .

(3.21)

The differential equations (3.16) and (3.20) can be solved
formally using the standard flat-space Green’s function;
we only consider retarded solutions, i.e. those with no
incoming radiation

h̃µν(t,x) =
4G

c2

∫

d3x′
τµν (t− |x− x

′|,x′)

|x− x′| , (3.22)

ϕ(t,x) = 1 +
2G

c2

∫

d3x′
τs(t− |x− x

′|,x′)

|x− x′| , (3.23)

where the integration constant is explicitly added to en-
force the asymptotic boundary condition on the scalar
field. By construction, the constraint equation Eq. (3.2)
acts as an additional boundary condition on the scalar
field along the worldline of each body; this constraint

distinguishes our work from the PN solutions found in
Refs. [45, 46, 59].
We approximate the formal solutions given in Eqs.

(3.22) and (3.23) with an expansion in terms of ǫ ∼
(v/c)2 ∼ Gm/rc2. However, to capture the strong-field
effects behind dynamical scalarization, we expand only

the metric gµν and scalar field φ, leaving ξ unexpanded.

Note that ξ appears only in the function mA(φ, ξ) in Eqs.
(3.16) and (3.20). Thus, by not expanding ξ, we effec-
tively resum the variable mass found in the PN treat-
ment. This treatment also resums the scalar charge,
which is governed by the derivative of m [see Eq. (2.12)
or (5.3)]. The constraint equation Eq. (3.2) is used to
solve ξ exactly on each worldline at a given order in ǫ.

IV. STRUCTURE OF THE NEAR-ZONE FIELDS

The resummation detailed above only enters through
the sources, i.e. the stress-energy tensor T µν and its
derivatives. As such, we adopt the same techniques used
for the PN calculation of the metric and scalar field in
Refs. [45, 46, 59]. We summarize this approach below,
leaving our results in terms of T µν and its derivatives.
For more detail, see Secs. III and IV of Ref. [46].
The integration in Eqs. (3.22) and (3.23) is done over

the flat space past null cone C emanating from the point
(t,x). We divide this three-dimensional hypersurface into
two regions. For matter sources of characteristic size S,
we define the near zone as the worldtube with |x| < R
where R ∼ S/v is the characteristic wavelength of the
emitted gravitational radiation. The radiation zone is
the region outside of the near zone, that is, |x| > R.
We demarcate the intersection of C with the near zone
as N and the intersection of C with the radiation zone as
C − N .
We focus first on finding the metric and scalar field in

the near zone, as these determine the equations of motion
of the binary system through Eq. (3.3). Following Refs.
[46, 57], we establish the following notation

N ≡ h̃00, Ki ≡ h̃0i,

Bij ≡ h̃ij , B ≡ h̃ii.
(4.1)

To post-Newtonian order, we express the metric in terms
of these fields using Eqs. (3.12) and (3.13)

g00 =− 1 +

(

1

2
N +Ψ

)

+

(

1

2
B − 3

8
N2 − 1

2
NΨ−Ψ2

)

+O
(

1

c6

)

,

(4.2)

g0i =−Ki +O
(

1

c5

)

, (4.3)

gij =δij

[

1 +

(

1

2
N −Ψ

)]

+O
(

1

c4

)

, (4.4)

where Ψ was defined in Eq. (2.17).
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At the point (t,x) in the near zone, the near-zone con- tribution to the integrals in Eqs. (3.22) and (3.23) can
be expanded in powers of |x− x

′|

NN (t,x) =
4G

c2

∫

M

τ00(t,x′)

|x− x′| d
3x′ +

2G

c4
∂2t

∫

M

τ00(t,x′)|x− x
′|d3x′ +N∂M +O

(

1

c6

)

, (4.5)

Ki
N (t,x) =

4G

c2

∫

M

τ0i(t,x′)

|x− x′| d
3x′ +Ki

∂M +O
(

1

c5

)

, (4.6)

BijN (t,x) =
4G

c2

∫

M

τ ij(t,x′)

|x− x′| d
3x′ +Bij∂M +O

(

1

c4

)

, (4.7)

ΨN (t,x) =
2G

c2

∫

M

τs(t,x
′)

|x− x′|d
3x′ − 2G

c3
∂t

∫

M

τs(t,x
′)d3x′ +

G

c4
∂2t

∫

M

τs(t,x
′)|x− x

′|d3x′ +O
(

1

c6

)

, (4.8)

where M is a constant-time hypersurface which covers
the near zone and we have used Eq. (3.15) to eliminate
the first order correction in Eq. (4.5). There will also
be a contribution to the fields at (t,x) from the radia-
tion zone, but these only enter at higher order [46]. The

boundary terms N∂M,Ki
∂M, Bij∂M depend on the value

of R. Because the left hand side of Eqs. (4.5)–(4.8)
should not depend on the arbitrarily chosen boundary
between the near and radiation zones, we argue (as in
Ref. [46]) that these terms are exactly cancelled by the
contributions from the radiation zone. This cancellation
was shown explicitly in GR in Refs. [56, 57].
All that remains is to expand the sources τµν and τs.

We first define the densities

σ ≡ (T 00 + T ii)c−2, (4.9)

σi ≡ T 0ic−2, (4.10)

σij ≡ T ijc−2, (4.11)

σs ≡ − T

c2
+

2φ

c2
DT

Dφ
. (4.12)

We expand Eqs. (3.17) and (3.21) to post-Newtonian
order

τ00 =
1

φ0

[

σ − σii +
G

φ0c2

(

4σU − 7

8π
(∇U)2

)

−Gµ0
2

φ0c2

(

6σUs −
1

8π
(∇Us)2

)]

,

(4.13)

τ0i =
σi

φ0
, (4.14)

τ ii =
1

φ0

[

σii − 1

8π

G

φ0c2
(∇U)2 − 1

8π

Gµ0
2

φ0c2
(∇Us)2

]

(4.15)

τs =
µ0

2

φ0

[

σs + 2
G

φ0c2
σsU +

G(B − 2µ0
2)

φ0c2
σsUs

− 1

8π

G(B + 4µ0
2)

φ0c2
(∇Us)2

]

,

(4.16)

where we have introduced the potentials

U ≡
∫

M

σ(t,x′)

|x− x′|d
3x′, (4.17)

Us ≡
∫

M

σs(t,x
′)

|x− x′| d
3x′. (4.18)

Plugging these expressions back into Eqs. (4.2)–(4.8),
the 1PD metric and scalar field are given by

g00 =− 1 +
2G

φ0c2
U +

2Gµ0

φ0c2
Us −

2G

c3
Ṁs −

2G2

φ20c
4
U2 +

G2µ0(B − 4µ0)

2φ20c
4

U2
s − G2µ0

φ20c
4
UUs

+
4G2µ0

φ20c
4
Φs2 −

12G2µ0

φ20c
4

Φ2s +
G2µ0(B − 8µ0)

φ20c
4

Φs2s +
G

φ0c4
Ẍ +

Gµ0

φ0c4
Ẍs +O

(

1

c6

)

,

(4.19)

g0i =− 4G

φ0c2
V i +O

(

1

c5

)

, (4.20)

gij =δij

[

1 +
2G

φ0c2
U − 2Gµ0

φ0c2
Us

]

+O
(

1

c4

)

, (4.21)



9

φ =φ0 +
2Gµ0Us
c2

− 2G

c3
Ṁs +

Gµ0

c2

[

G(B + 4µ0)

2φ0c2
U2
s + 4

G

φ0c2
Φs2 +

G(B − 8µ0)

φ0c2
Φs2s + Ẍs

]

+O
(

1

c6

)

, (4.22)

with the additional potentials

Ms ≡
∫

σs(t,x
′)d3x′, (4.23)

V i ≡
∫

σi(t,x′)

|x− x′| d
3x′, (4.24)

Φs2 ≡
∫

σs(t,x
′)U(t,x′)

|x− x′| d3x′, (4.25)

Φ2s ≡
∫

σ(t,x′)Us(t,x
′)

|x− x′| d3x′, (4.26)

Φs2s ≡
∫

σs(t,x
′)Us(t,x

′)

|x− x′| d3x′, (4.27)

X ≡
∫

σ(t,x′)|x− x
′|d3x′, (4.28)

Xs ≡
∫

σs(t,x
′)|x− x

′|d3x′, (4.29)

V. TWO-BODY EQUATIONS OF MOTION

A. Newtonian order

We now apply these calculations to a binary system
whose stress-energy tensor is given by Eq. (3.7). To
highlight the novel aspects of the PD approach, we ex-
plicitly work out the leading-order equations of motion
here before calculating their higher-order corrections in
the following section. In keeping with PN conventions,
we describe the leading order as Newtonian and the next-
to-leading order as post-Dickean or “1PD.”
At Newtonian order, the densities defined in Eqs. (4.9)

and (4.10) are given by

σ =
∑

A

mA(φ, ξ)δ
(3)(x− xA) +O

(

1

c2

)

, (5.1)

σs =
∑

A

mA(φ, ξ)
αA(φ, ξ)

µ0
δ(3)(x− xA) +O

(

1

c2

)

.

(5.2)

where we have introduced the scalar charge of each body

αA(φ, ξ) ≡
(

B log φ

2

)1/2(

1− 2φ
D logmA

Dφ

)

. (5.3)

Our definition of the scalar charge is the natural gen-
eralization of the expression used in Ref. [27]; with no
resummation, i.e. m(φ, ξ) = m(φ), one recovers the defi-
nition

αA = −d logm
(E)
A

dϕ̃
, (5.4)

where ϕ̃ is defined in Eq. (2.7).
Evaluating Eq. (4.22) at Newtonian order, the scalar

field for a 2-body system is given by

φ = φ0 + 2
Gµ0

2Us
c2

,

= φ0 +
2Gm1µ0α1

c2r1
+O

(

1

c3

)

+ (1 ⇋ 2) ,

(5.5)

where we have adopted the shorthand

mA ≡mA(φ(xA), ξ(xA)), αA ≡ αA(φ(xA), ξ(xA)),

rA ≡ |x− xA|, nA ≡ (x − xA)/rA.

(5.6)

Because mA and αA depend on φ, these quantities must
be expanded around the background field φ0. We sup-
press these expansions (given in Appendix A) throughout
the remainder of this paper for notational convenience,
denoting with the shorthand in Eq. (5.6) that the mass
and charge should be expanded and truncated at the ap-
propriate PD order.
On each worldline, we exactly solve (i.e. not perturba-

tively) Eq. (3.2), ignoring the divergent terms that arise
from self-interactions of each body

ξ(x1) =

{

φ0 +
2Gm2µ0α2

c2r , if F (φ) = φ

ϕ̃0 +
Gm2α2

c2r , if F (φ) =
√

2 log φ
B

(5.7)

ξ(x2) = (1 ⇌ 2) , (5.8)

where r ≡ |x1−x2| is the orbital separation of the binary
and

ϕ̃0 ≡ 2µ0

B
=

√

2 logφ0
B

. (5.9)

Note that this system of equations cannot be solved ana-
lytically, asmA and αA depend on ξ along each worldline.
This final step is analogous to the feedback model pro-
posed in Ref. [24]; with the choice of F (ϕ̃) given in Table
I, we exactly reproduce this model.
Plugging in the expressions for the metric and scalar

field into Eq. (3.3), we find the Newtonian equations of
motion

ai1 = −Gm2 (1 + α1α2)

φ0r2
ni, (5.10)

ai2 = (1 ⇋ 2) , (5.11)

where n ≡ (x1 − x2)/r. The mass mA and scalar charge
αA depend on the choice of resummation scheme; their
leading order piece is given in Appendix A.
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B. Post-Dickean order

To find the equations of motion of the binary to next
order in c−2, we expand the stress-energy tensor and eval-

uate the potentials introduced in Sec. IV (see Appendix
B).

On each worldline, we plug the above potentials into
Eq. (4.22) and numerically solve Eq. (3.2)

ξ(x1) =



























φ0 +
2Gµ0m2α2

φ0rc2
+
Gm2α2

φ0rc4

[

−µ0(v2 · n)2 + α2

(

B

2
+ 2µ0

2

)

Gm2

φ0r

−
(

2µ0
2α1 + µ0 (3 + α1α2)

) Gm1

φ0r

]

,
if F (φ) = φ

ϕ̃0 +
Gm2α2

φ0rc2
+ Gm2α2

φ0rc4

[

− 1
2 (v2 · n)2 −

(

3
2 + µ0α1 +

1
2α1α2

)

Gm1

φ0r

]

, if F (φ) =
√

2 logφ
B

(5.12)

ξ(x2) = (1 ⇋ 2) . (5.13)

Substituting Eqs. (4.19)-(4.22) into Eq. (3.3), we find the following equation of motions for each particle

ai(1) =− Gm2 (1 + α1α2)

φ0r2
ni +

Gm2

φ0r2c2
ni
[

− (1− α1α2) v
2
1 − 2(v22 − 2v1 · v2)

+
3

2
(1 + α1α2) (v2 · n)2 + 4 (1 + α1α2)

Gm2

φ0r
+ (5 + µ0α1) (1 + α1α2)

Gm1

φ0r

]

+
Gm2

φ0r2c2
(v1 − v2)

i [4 (v1 · n)− (3− α1α2) (v2 · n)] ,

(5.14)

ai(2) = (1 ⇋ 2) , (5.15)

wherem and α themselves receive post-Dickean corrections dependent on the resummation scheme used (see Appendix
A).
For reference later, the 1PN equations of motion (with no resummation of the mass) are recovered with the choice

m(PN)

ai1 (PN) =− Gm̄2 (1 + ᾱ1ᾱ2)

φ0r2
ni +

Gm̄2

φ0r2c2
ni
[

− (1− ᾱ1ᾱ2) v
2
1 − 2

(

v22 − 2v1 · v2

)

+
3

2
(1 + ᾱ1ᾱ2) (v2 · n)2 +

(

4 + 4ᾱ1ᾱ2 − ᾱ′
1ᾱ

2
2

) Gm̄2

φ0r
+
(

(5 + ᾱ1ᾱ2) (1 + ᾱ1ᾱ2)− ᾱ′
2ᾱ

2
1

) Gm̄1

φ0r

]

+
Gm̄2

φ0r2c2
(v1 − v2)

i [4 (v1 · n)− (3− ᾱ1ᾱ2) (v2 · n)] ,

(5.16)

ai2 (PN) = (1 ⇋ 2) , (5.17)

where we have introduced the shorthand

m̄i ≡ mi(φ0), (5.18)

ᾱi ≡ µ0

(

1− 2
d logmi

d logφ

)

φ=φ0

, (5.19)

ᾱ′
i ≡

Bᾱi
2µ0

− 4µ2
0

(

d2 logmi

d(logφ)2

)

φ=φ0

. (5.20)

The apparent differences between Eqs. (5.14)–(5.15)
and Eqs. (5.16)–(5.17) are simply artifacts of the differ-
ent notations. The disparities stem from the presence in
Eq. (5.16) of higher-order terms from expansions like Eq.
(2.13). These terms are absorbed into the definitions of
mA and αA in the PD expansion [see Eq. (5.6)]. We em-
phasize the differences between these two notations be-

cause the analytic model proposed in Ref. [24] directly
adapted the equations of motion written as in Eqs. (5.16)
and (5.17). Beyond post-Newtonian order, we expect a
greater proportion of the corresponding terms in each
notation to differ.

For a generic resummation scheme, the 1PD Eqs.
(5.14) and (5.15) are not solutions to the Euler-Lagrange
equations for any Fokker Lagrangian (a Lagrangian de-
pendent solely on the the positions and velocities of the
two bodies). A simple calculation reveals that the equa-
tions of motion can be integrated back to such a La-
grangian only when no resummation is performed, i.e.
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when m(PN) is used.6 The absence of a PD Fokker La-
grangian suggests that our model of DS requires the two-
body phase space to be augmented with additional de-
grees of freedom besides the bodies’ positions and veloc-
ities, such as the scalar field ξ. We conjecture that any
other extension to the PN formalism to incorporate DS
will also require new, dynamical degrees of freedom.

VI. STRUCTURE OF THE FAR-ZONE FIELDS

Having solved the dynamics of the binary, we now shift
our attention to observables that can be extracted from
the asymptotic geometry of the system. Our interest in
this type of quantity is twofold. First, such objects en-
code all information needed to estimate GW signals (e.g.
the waveform and its phase evolution estimated from the
Bondi mass and flux). Second, there are several gauge-
invariant quantities defined asymptotically that are easily
computed in numerical relativity (e.g. the ADM mass
and angular momentum) and thus can be used to di-
rectly check the validity of our model. For simplicity, in
this work we restrict our attention to the scalar mass, a
coordinate independent measure of a spacetime’s scalar-
ization. We define the scalar mass at retarded time τ
as

MS(τ) ≡ − c2

8πG

∮

|x|→∞
t−|x|=τ

δij∂iφdSj , (6.1)

= −φ0c
2

8πG

∮

|x|→∞
t−|x|=τ

δij∂iΨ dSj , (6.2)

where Sj is the surface-area element in flat space. We
leave the other useful quantities described above for fu-
ture work.
Calculating the scalar mass requires knowledge of the

scalar field at a distance |x| = R ≫ R (recall that R
is the boundary of the near zone). As in the near zone,
we will recycle the tools used to determine the scalar
field in the radiation zone from previous PN calculations.
We summarize this calculation for a generic stress-energy
tensor below; for more detail, see Refs. [45, 59]

At the order at which we work, the scalar field at null
infinity receives contributions from both the near and
radiation zones, which we denote as ΨN and ΨC−N , re-
spectively. We compute each piece separately, dropping
any terms dependent on R, which we assume will cancel
when the pieces are combined (as was done in Sec. IV).

A. Near-zone contribution to the scalar field

The contribution to the scalar field at the point (t,x)
in the radiation zone from points (t′,x′) in the near zone
is found by expanding the integral expression given in
Eq. (3.23) in powers of |x′|/R

ΨN =

∞
∑

m=0

2G

c2+m
1

m!

∂m

∂tm

∫

M′

τs(τ,x
′)
(N̂ · x′)

R
d3x′,

(6.3)

=
2G

c2

∞
∑

m=0

(−1)m

m!
∂k1 · · ·∂km

(

1

R
Ik1···kms (τ)

)

,

(6.4)

where N̂ ≡ x/R, M′ is the intersection of the near zone
with a hypersurface of constant retarded time τ = t−R,
and we have introduced the scalar multipole moments

Ik1···kms (τ) ≡
∫

M′

τs(τ,x)x
k1 · · ·xkmd3x. (6.5)

We note that the terms that fall off faster that R−1 in
Eq. (6.4) will not contribute to the scalar mass; dropping
these terms, the remaining piece of the scalar field is given
by

ΨN =

∞
∑

m=0

2G

Rc2+m
1

m!
N̂k1 · · · N̂km

dm

dtm
Ik1···kms (τ), (6.6)

We also note that only terms with even parity (with re-
spect to inversions of x) will contribute to the scalar
mass. These are the terms in Eq. (6.6) with even m.
The source τs in the near zone is needed at higher order

than what was given in Eq. (4.16) to calculate the 1PD
scalar mass

6 This result contradicts the assertion of Ref. [24] that such a
Lagrangian can be constructed by resumming (or not expanding)

the scalar charge α in the PK Lagrangian of Ref. [43].
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τs =
µ0

2

φ0

[

σs + 2
G

φ0c2
σsU +

G(B − 2µ0
2)

φ0c2
σsUs −

1

8π

G(B + 4µ0
2)

φ0c2
(∇Us)2

]

+
Gµ2

0(1 + µ2
0)

φ20c
4

σs

{

G

φ0

[

2U2 − (2B − 4µ2
0)(UUs +Φs2)− 12µ2

0Φ2s

]

− (4Φ1 − Ẍ)

+
G(B2 − 10Bµ2

0 + 8µ2
0)

4φ0
U2
s +

G(B − 8µ2
0)(B − 2µ2

0)

2φ0
Φs2s +

B − 2µ2
0

2
Ẍs

}

− Gµ2
0

8πφ20c
4

{

8UÜs + 16V j∂jU̇s + 8Φij1 ∂i∂jUs − (B + 4µ2
0)(U̇

2
s −∇Us ·∇Ẍs) +

Gµ2
0(6B + 8µ2

0)

φ0
Us (∇Us)

2

− G

φ0

[

−4(B + 4µ2
0)∇Us ·∇Φs2 − 8P ij2 ∂i∂jUs − 8µ2

0P
ij
2s∂i∂jUs

]

+
G(B − 8µ2

0)(B + 4µ2
0)

φ0
∇Us ·∇Φs2s

}

,

(6.7)

where, in addition to the potentials introduced in Sec.
IV, we define

Φ1 ≡
∫

σii(t,x′)

|x− x′| d
3x′, (6.8)

Φij1 ≡
∫

σij(t,x′)

|x− x′| d
3x′, (6.9)

P ij2 ≡ 1

4π

∫

∂iU(t,x′)∂jU(t,x′)

|x− x′| d3x′, (6.10)

P ij2s ≡
1

4π

∫

∂iUs(t, x
′)∂jUs(t, x

′)

|x− x′| d3x′. (6.11)

B. Radiation-zone contribution to the scalar field

We rewrite the integral in Eq. (3.23) in a more useful
way when working far from the system

Ψ =
2G

c2

∫

τs(R
′ + τ ′,x′)δ(t′ − t+ |x− x

′| −R′)

|x− x′| d4x′,

(6.12)

where R′ = |x′| and τ ′ = t′ −R′. Thus, the contribution
to the scalar field from the radiation zone (i.e. R′ > R)
is given by

ΨC−N =
2G

c2

∫ τ

τ−2R

dτ ′
∫ 2π

0

dφ

∫ 1

1−υ

τs(τ
′ +R′,x′)

t− τ ′ − N̂′ · x
(R′)2d(cos θ′) +

2G

c2

∫ τ−2R

−∞

∮

τs(τ
′ +R′,x′)

t− τ ′ − N̂′ · x
(R′)2d2Ω′ (6.13)

where υ = (τ − τ ′)(2R − 2R+ τ − τ ′)/(2RR) and N̂
′ = x

′/R′. The source τs takes a different form in the radiation
zone than in Eq. (6.7). To the order at which we work, the source in the radiation zone is given by

τs = −B + 4µ2
0

32πGµ2
0

[

c2(∇Ψ)2 − Ψ̇2
]

− 1

8πG
NΨ̈. (6.14)

The stress-energy tensor does not appear in this expression (under the guise of σ or σs) because the radiation zone
does not contain any matter. In computing the source τs, we can ignore the radiation-zone contribution to the scalar
field, as the corresponding contributions to the source will enter at beyond the order that we work. Thus, we use
the scalar field as given in Eq. (6.4); the metric field N can be expanded in a similar way. At this order, only the
monopole and dipole pieces of these fields appear in τs.

N =
4G

c2
I
R

+ · · · , (6.15)

Ψ =
2G

c2
Is
R

− 2G

c2
∂i

(Iis
R

)

+ · · · , (6.16)

where the mass monopole moment I is defined as in Eq. (6.5) with τ00. Plugging these expressions into Eq. (6.14),
we find

τs =− G(B + 4µ2
0)

2πµ2
0c

2

(

Isİs
R3c

+
(Is)2
R4

)

− G

πc4
IÏs
R2

− G(B + 4µ2
0)

πc2

(

IsÏjs
R3c2

+
2Isİjs
R4c

+
2IsIjs
R5

+
İsİjs
R3c2

+
İsIjs
R4c

)

N̂ j − G

πc4

(

I ...I js
R2c

+
IÏjs
R3

)

N̂ j .

(6.17)
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where we’ve used the fact that the moments are functions of retarded time, so that ∂jIjs = −İjsN̂ j/c. The first line
of Eq. (6.17) contains the lowest order terms, which enter at c−3 order relative to the leading contribution to ΨN

from the near zone, while the second line contains terms that are suppressed by one additional factor of c.
We note that all of the terms in τs in the radiation zone take the form

τs(l, n) =
1

4π

f(τ)

Rn
N̂k1 · · · N̂kl . (6.18)

With this information, each corresponding term in Eq. (6.13) can be rewritten as

ΨC−N (l, n) =
2G

Rc2
N̂k1 · · · N̂kl

[

∫ R

0

f(τ − 2s)A(s,R)ds+

∫ ∞

R

f(τ − 2s)B(s,R)ds

]

, (6.19)

with

A(s,R) ≡
∫ R+s

R

Pl(Λ)

pn−1
dp, (6.20)

B(s,R) ≡
∫ R+s

s

Pl(Λ)

pn−1
dp, (6.21)

Λ ≡R+ 2s

R
− 2s(R+ s)

Rp
, (6.22)

and where Pl(Λ) are Legendre polynomials.
Given Eq. (6.17), we see that l = 0, 1 and n = 2−5 integrals contribute to the scalar field at this order. However, by

inspection, the l = 1 terms have odd parity, and thus will not contribute to the scalar mass. The l = 0 contributions
[in the notation of Eq. (6.19)] are given by

ΨC−N (0, 2) =− 4G2

Rc6

∫ τ

−∞

du

(

log
(

R+
τ

2
− u

2

) [

IÏs
]

u
− log

(

R+
τ

2
− u

2

) [

IÏs
]

u−2R

)

− logR
∫ τ

τ−2R

du
[

IÏs
]

u
,

(6.23)

ΨC−N (0, 3) =
2G2

Rc5
B + 4µ2

0

µ2
0

(

I2
s (τ)

2R
− I2

s (τ)

2R −
∫ τ

−∞

du

(

[

I2
s

]

u

(2R+ τ − u)2
−

[

I2
s

]

u−2R

(2R+ τ − u)2

))

, (6.24)

ΨC−N (0, 4) =
4G2

Rc4
B + 4µ2

0

µ2
0

(

∫ τ

−∞

du

(

[

I2
s

]

u

(2R+ τ − u)2
−

[

I2
s

]

u−2R

(2R+ τ − u)2

)

− 1

(2R)2

∫ τ

τ−2R

du
[

I2
s

]

u

)

, (6.25)

where we have used the shorthand [fg]x = f(x)g(x). Nearly all of these terms are hereditary, i.e. depend on the full
history of the system up to the retarded time τ . The one exception is the first term in Eq. (6.24), but this term falls
off too quickly with R to contribute to the scalar mass.

VII. TWO-BODY SCALAR MASS

Having expressed the scalar field in the radiation zone entirely in terms of the (even) scalar multipole moments, we
now specialize to an inspiraling binary system. Plugging the potentials for a two-body system (Appendix B) into Eq.
(6.7), we integrate to find the scalar moments. Integrals containing σs can be evaluated directly as they contain delta
functions at the worldlines of the bodies. The remaining terms are integrated by parts, using techniques analogous to
those outlined in Sec. III of Ref. [59]. The multipoles needed to compute the scalar mass at 1PD order are given by

Is =
µ0m1α1

φ0

{

1− v21
2c2

− Gm2

φ0rc2
(1 + µ0α2)−

v41
8c4

+
Gm2

φ0rc2

[

(

2µ0(1− α2µ0)−Bα2

4µ0

)

v21
c2

− 3

2

(v2 · n)2
c2

+

(

Bα2 − 8µ0 + 6α2µ
2
0

4µ0

)

(v1 · n)2
c2

+

(

α2(B + 4µ2
0)

4µ0

)

(v1 · v2)

c2
−
(

Bα2 − 16µ0 + 4α2µ
2
0

4µ0

)

(v1 · n) (v2 · n)
c2

]

+
G2m1m2

φ20r
2c4

[

−1

2
+ µ0α1 −

(B − 6µ2
0)α2

4µ0
− (B + 6− 6µ2

0)α1α2

4
− (B + 2µ2

0)α1α
2
2

4µ0

]

+
G2m2

2

2φ20r
2c4

−Gm2

φ0c4

[

Bα2 − 4µ0(1− α2µ0)

2µ0

]

(a1 · n)
}

+ (1 ⇋ 2) ,

(7.1)
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Iijs =
µ0m1α1x

i
1x
j
1

φ0

[

1− v21
2c2

− Gm2

φ0rc2
(1 + µ0α2)

]

+
Gm1m2α1α2(B + 4µ2

0)r

4φ20µ0c2
δij + (1 ⇋ 2) , (7.2)

Iijkls =
µ0m1α1x

i
1x
j
1x
k
1x

l
1

φ0
+ (1 ⇋ 2) . (7.3)

We evaluate Eq. (6.6) with these moments to compute the near zone contribution to the scalar field. Before proceeding,
we briefly detail how time derivatives of the masses mi and scalar charges αi are handled. Recall that the dependence
of each body’s mass (and scalar charge) on the local scalar field is decomposed into a resummed and expanded piece,
represented by its dependence on ξ and φ, respectively. Thus, the derivative of the mass would be given by

dmA

dt
=
∂mA

∂φ
vµA∂µφ+

∂mA

∂ξ
vµA∂µξ, (7.4)

where vµA = uµA/u
0
A. To reinforce that the fields φ and ξ really represent the same physical scalar, we relate the two

through Eq. (3.2). Thus (assuming differentiability), their gradients along each worldline are related as

uµA∂µξ =
dF

dφ
uµA∂µφ. (7.5)

In truth, because we expand only φ and not ξ, Eqs. (3.2) and (7.5) only hold in an approximate sense [e.g. up to
1PD order when using Eq. (5.12)]. Nevertheless, one finds that

dmA

dt
=
DmA

Dφ
vµ∂µφ+O

(

1

c4

)

. (7.6)

Because the time dependence of the mass enters only through the scalar field (whose leading order term is constant), its
derivative is suppressed by an additional factor of c−2 more than dimensional analysis would suggest, i.e. ṁ/m ∼ c−2.
This suppression greatly simplifies our calculation of the scalar field.

Equipped with the scalar moments and a prescription for differentiating with respect to time, we calculate the
near-zone contribution to the scalar field of a binary system

ΨN =Ψ
(−1)
N +Ψ

(0)
N +Ψ

(1)
N , (7.7)

with

Ψ
(−1)
N =

2Gµ0m1α1

φ0Rc2
+ (1 ⇋ 2) (7.8)

Ψ
(0)
N =

2Gµ0m1α1

φ0Rc2

{

− v21
2c2

+
(N̂ · v1)

2

c2
− Gm2

φ0rc2

(

1 + µ0α2 + (1 + α1α2)
(N̂ · x1)

2 − (N̂ · x1)(N̂ · x2)

r2

)}

+ (1 ⇋ 2)

(7.9)
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Ψ
(1)
N =

2Gµ0m1α1

φ0Rc2

{

− v41
8c4

+
Gm2

φ0rc2

[(

1 + µ0α2

2

)

v21
c2

−
(

4− µ0α2

2

)

(v1 · n)2
c2

− 3(v2 · n)2
2c2

+
4(v1 · n)(v2 · n)

c2

]

−G
2m1m2

φ0r2c4

[

1

2
− µ0α1 −

5µ0α2

2
+

(6 +B − 6µ2
0)α1α2

4
+ 2α2

2 −
µ0α1α

2
2

2

]

− 3G2m2
2

2φ20r
2c4

−
(

v21
2c2

+
Gm2(1 + µ0α2)

φ0rc2

)

(v1 · N̂)2

c2
+
Gm2

φ0rc2
(−4(v1 · n) + (3− α1α2)(v2 · n))

(x1 · N̂)(v2 · N̂)

rc

+
Gm2

φ0rc2

[(

8−
(

2µ0 +
B

µ0
+ 4µ0φ0

D(logm1α1)

Dφ

)

α2 + 2α1α2

)

(v1 · n)
c

−
(

5−
(

2µ0 +
B

µ0
+ 4µ0φ0

D(logm1α1)

Dφ

)

α2 − α1α2

)

(v2 · n)
c

]

(x1 · N̂)(v1 · N̂)

rc

+
Gm2

φ0rc2

[

4µ2
0(v1 · n)
c

− 4µ2
0(v2 · n)
c

]

(x2 · N̂)(v2 · N̂)

rc

+
Gm2

φ0rc2

[

− (1− 3α1α2)v
2
1

2c2
− 2v22

c2
+

4(v1 · v2)

c2
+

3(1 + α1α2)(v2 · n)2
2c2

+
Gm1(1 + α1α2)(5 + µ0α1)

φ0rc2
+
Gm2(1 + α1α2)(5 + µ0α2)

φ0rc2

]

(x1 · N̂)(n · N̂)

r

+
Gm2

φ0rc2

[

1

2

(

2−
(

µ0 +
B

2µ0
+ 2φ0µ0

D(logm1α1)

Dφ

)

α2 + α1α2

)

v21
c2

+
1

2

(

1−
(

µ0 +
B

2µ0
+ 2φ0µ0

D(logm1α1)

Dφ

)

α2

)

v22
c2

−1

2

(

3−
(

2µ0 +
B

µ0
+ 4φ0µ0

D(logm1α1)

Dφ

)

α2 + α1α2

)

(v1 · v2)

c2

−3

2

(

2−
(

µ0 +
B

2µ0
+ 2φ0µ0

D(logm1α1)

Dφ

)

α2 + α1α2

)

(v1 · n)2
c2

−3

2

(

1−
(

µ0 +
B

2µ0
+ 2φ0µ0

D(logm1α1)

Dφ

)

α2

)

(v2 · n)2
c2

+
3

2

(

3−
(

2µ0 +
B

µ0
+ 4φ0µ0

D(logm1α1)

Dφ

)

α2 + α1α2

)

(v1 · n)(v2 · n)
c2

−1

2

(

2 + 3α1α2 + 2µ2
0α

2
2 + α2

1α
2
2 −

(

µ0 +
B

2µ0
+ 2φ0µ0

D(logm1α1)

Dφ

)

(1 + α1α2)α2

)

Gm2

φ0rc2

−1

2

(

1 + α1α2 + 2µ2
0α

2
2 −

(

µ0 +
B

2µ0
+ 2φ0µ0

D(logm1α1)

Dφ

)

(1 + α1α2)α2

)

Gm1

φ0rc2

]

(x1 · N̂)2

r2

+
Gm2

φ0rc2

[

µ2
0v

2
1

c2
+
µ2
0v

2
2

c2
− 2µ2

0(v1 · v2)

c2
− 3µ2

0(v1 · n)2
c2

− 3µ2
0(v2 · n)2
c2

+
6µ2

0(v1 · n)(v2 · n))
c2

−Gµ
2
0m2

φ0rc2
− Gµ2

0m1

φ0rc2

]

(x2 · N̂)2

r2
+

(v1 · N̂)4

c4
− 2Gm2(1 + α1α2)

φ0rc2
(x1 · N̂)2(v1 · N̂)2

r2c2

−6Gm2(1 + α1α2)

φ0rc2
(x1 · N̂)(v1 · N̂)2(n · N̂)

rc2
+

2Gm2(1 + α1α2)

φ0rc2
(x1 · N̂)2(v1 · N̂)(v2 · N̂)

r2c2

+
6Gm2(1 + α1α2)

φ0rc2

[

(v1 · n)
c

− (v2 · n)
c

]

(x1 · N̂)2(v1 · N̂)(n · N̂)

r2c

+
Gm2(1 + α1α2)

φ0rc2

[

(v1 · n)
c

− (v2 · n)
c

]

(x1 · N̂)3(v1 · N̂)

r3c

−Gm2(1 + α1α2)

φ0rc2

[

(v1 · n)
c

− (v2 · n)
c

]

(x1 · N̂)3(v2 · N̂)

r3c
+

3G2m2
2(1 + α1α2)

2

2φ20r
2c4

(x1 · N̂)2(n · N̂)2

r2

Gm2(1 + α1α2)

φ0rc2

[

v21
2c2

+
v22
2c2

− (v1 · v2)

c2
− 5(v1 · n)2

2c2
− 5(v2 · n)2

2c2
+

5(v1 · n)(v2 · n)
c2

−Gm1(1 + α1α2)

3φ0rc2
− Gm2(1 + α1α2)

3φ0rc2

]

(x1 · N̂)3(n · N̂)

r3

}

+ (1 ⇋ 2) ,

(7.10)



16

where we have dropped the pieces that do not contribute
to the scalar mass and have used Eqs. (5.10) and (5.11)
to eliminate the bodies’ accelerations.
To the order at which we work, the radiation-zone con-

tribution to scalar mass is zero. The scalar monopole Is
is the only multipole that enters in Eqs. (6.23)–(6.25); as
discussed above, at leading order, the monopole is con-
stant in time. This insight allows one to trivially evaluate
these hereditary integrals. The non-zero terms either de-
pend on the arbitrarily chosen boundary R (and thus are
canceled by near-zone contributions to the scalar field)
or fall off too quickly with R to contribute to the scalar
mass.
Computing the scalar mass from the scalar field given

in Eqs. (7.7)–(7.10) is most easily done in the center
of mass frame. However, we cannot compute the exact
transformation to this frame in the PD formalism with-
out first calculating the total momentum of the system.7

Instead, we consider frames in which the two bodies’ po-
sitions are related by x1 ∝ −x2. Without dissipative
effects, we expect the center of mass frame to satisfy this
criterion.

Furthermore, we restrict our attention to binary sys-
tems undergoing circular motion. Neutron-star binaries
are expected to radiate away any eccentricity relatively
early in their evolution, long before they would be de-
tectable by ground-based experiments like LIGO, thereby
justifying this approximation.

We plug the expression for the scalar field in Eq. (7.7)
into Eq. (6.2) to obtain the scalar mass. This surface in-
tegral can be computed easily using the standard angular
coordinates (θ, φ) on the coordinate sphere of radius R.
The scalar mass takes the exact same form as the scalar
field with the N̂-dependent terms replaced by the geo-
metric quantities derived below

−
∮

R→∞

∂i

(

f(θ, φ)

R

)

dSi =

∫

f(θ, φ)d(cos θ)dφ, (7.11)

and
∫

(N̂ · xA)(N̂ · xB)d(cos θ)dφ =
4π

3
γ̃ABxAxB, (7.12)

∫

(N̂ · vA)(N̂ · vB)d(cos θ)dφ =
4π

3
γ̃ABvAvB , (7.13)

∫

(N̂ · xA)(N̂ · xB)(N̂ · xC)(N̂ · xD)d(cos θ)dφ =
4π

5
γ̃AB γ̃CDxAxBxCxD, (7.14)

∫

(N̂ · vA)(N̂ · vB)(N̂ · vC)(N̂ · vD)d(cos θ)dφ =
4π

5
γ̃AB γ̃CDvAvBvCvD, (7.15)

∫

(N̂ · xA)(N̂ · xB)(N̂ · vC)(N̂ · vD)d(cos θ)dφ =
4π

15
γ̃AB γ̃CDxAxBvCvD, (7.16)

where we have defined

γ̃AB ≡
{

1, if A = B

−1, if A 6= B
. (7.17)

The scalar mass is given by

MS =
m1α1µ0

φ0

[

1− v21
6c2

− Gm2

φ0rc2

(

1 + µ0α2 +

(

1 + α1α2

3

)

r1
r

)]

+
[

1PD
]

+ (1 ⇋ 2) , (7.18)

7 In the PN formalism, the transformation to the center of mass
frame is derived by forcing the total momentum of the binary sys-
tem to vanish. The momentum is difficult to calculate within the
PD approach because the equations of motion cannot be derived
from a Lagrangian dependent solely on the particles’ positions
and velocities. Thus, the exact transformation to the center of
mass frame remains unknown.

where the 1PD terms are represented only schematically
for the sake of compactness.
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FIG. 4. Scalar mass of a (1.35 + 1.35)M⊙ neutron-star binary system on a circular orbit as a function of the orbital angular
frequency and gravitational wave frequency (fGW = Ω/π). The scalar mass is computed at Newtonian (dashed) and 1PD (solid)
order for resummation schemes listed in Table I. We also plot the quasi-equilibrium configuration calculations (QE) reported
in Ref. [26] (dotted). The bottom panels depict the magnitude of the fractional error between the PD and quasi-equilibrium
results. We use the APR4 equation of state with (left) B = 9, ϕ̃0 = 3.33× 10−11 and (right) B = 8.4, ϕ̃0 = 3.45× 10−11.

VIII. VALIDITY OF THE POST-DICKEAN

EXPANSION

The PD expansion was motivated through analogy:
spontaneous and dynamical scalarization are suspected
to arise from similar mechanisms, and so the analytic
techniques applied to the former (resummation of ex-
pansions in Gm/Rc2) should also be used with latter
(partial resummation of expansions in Gm/rc2). While
such reasoning seems plausible, ultimately, the validity
of our model can only be checked via comparison with
high-precision numerical calculations. In absence of long
numerical-relativity simulations of DS, we compare the
PD approximation to recent quasi-equilibrium configura-
tion calculations. We also closely examine the differences
between the PD approximation and the analytic model
proposed in Ref. [24] for completeness

A. Quasi-equilibrium configurations

The scalar mass of an equal-mass binary system was
calculated along sequences of quasi-equilibrium config-
urations in Ref. [26]. Inherent to these calculations
is the assumption of a conformally flat and stationary
spacetime; physically, each configuration represents a bi-
nary system following a circular orbit. Despite neglecting
the loss of energy and angular momentum through the

emission of gravitational radiation, this setup is believed
to closely resemble the adiabatic inspiral of a neutron-
star binary system. Systematic errors enter these quasi-
equilibrium calculations through the physical assump-
tions made above and imperfect numerical convergence,
particularly at higher frequencies. At present, the mag-
nitude of these errors is not well-understood.
We compare the PD predictions of the scalar mass with

these numerical results to validate the accuracy of the
model. Figure 4 depicts the scalar mass as a function of
orbital frequency Ω for a (1.35+1.35)M⊙ binary system,
where the PD corrections to Kepler’s third law for an
equal mass system (derived from the equations of motion)

Ω2 =
GM(1 + α2)

r3φ0
− G2M2(1 + α2)(11 + 2µ0α+ α2)

4r4φ20c
2

,

(8.1)

are used to replace the r-dependence in Eq. (7.18), and
whereM = m1+m2 and α = α1 = α2. The scalar mass is
computed at Newtonian (dashed) and 1PD (solid) order;
note that the former calculation is done consistently at
Newtonian order [e.g. only the first term in Eq. (8.1) is
used]. We employ the APR4 equation of state, for which
the allowed range of theory parameters in which DS can
occur is spanned by B ∈ [8, 9] (see Ref. [23] for more
detail). From this range, we focus on the cases B = 9 and
B = 8.4, corresponding to the choices ϕ̃0 = 3.33× 10−11
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and ϕ̃0 = 3.45 × 10−11 considered in Ref. [26]. For
all PD calculations, we use a Newton-Raphson method
to numerically solve Eqs. (5.12) and (5.13) to within a
fractional error of 10−7.

Recall that the PD expansion encodes a flexibility in
“what to resum” in the choice of m(φ, ξ) and F (φ). We
compare each combination of the choices in Table I in
Fig. 4, denoting each resummation scheme by the pair
(m,F ). The scalar mass estimated with the (m(RJ), F (φ))
and (m(RE), F (φ)) resummation schemes differ by only
∼ 0.01%; to improve legibility, we only plot the former
(in red).

The two most important features depicted in Fig. 4
that we hope to recover with our model are the frequency
at which DS occurs ΩDS and the magnitude of the scalar
mass after scalarization. We extract the onset of DS
from the figure using the fitting procedure detailed in
Ref. [26]; these values are given in Table II. One finds
that the scalar mass MS can be well approximated by

(

1 +

(

MS

Mµ0

)2
)10/3

=

{

1, if Ω < ΩDS

a0 + a1x, if Ω > ΩDS

(8.2)

where x ≡
(

GMΩ/c3
)2/3

. We determine the coefficients
a0 and a1 by fitting the high frequency part of the curves
in Fig. 4 and then find ΩDS from the intersection of this
linear function with 1.

The 1PD predictions for both the location and magni-
tude of scalarization match the results of Ref. [26] at the
. 10% level for the choice F (ϕ̃). (Note that the peaks in
the relative error seen in the bottom panels of Fig. 4 stem
from the slight misalignment of the scalar mass predic-
tions at the sharp onset of DS.) Interestingly, for systems
that scalarize later in the inspiral (i.e. smaller values of
B), the Newtonian order prediction in the (m(RE), F (ϕ̃))
scheme agrees more closely with the numerical results.
Without a more comprehensive study of various resum-
mation schemes or the PD expansion at higher order, it
is difficult to say whether this agreement is coincidental.

The choice of m(φ, ξ) seems to have little effect on the
scalar mass predictions of the PD model. The two resum-
mation schemes with F (φ) are essentially indistinguish-
able, while the schemes with F (ϕ̃) appear to converge to
within a few percent at 1PD order.

On the other hand, the choice of F (φ) drastically al-
ters the growth of the scalar mass. Of the two options
presented in Table I, only F (ϕ̃) reproduces the sharp tran-
sition consistent with dynamical scalarization. The sig-
nificance of the choice of F can be seen by studying the
behavior of the scalar charge α(φ, ξ). Because the defini-
tion of ξ relies on the choice of resummation scheme [see
Eq. (3.2)], we invert this definition and instead consider
the dependence of the charge on an auxiliary field χ that

TABLE II. Orbital angular frequency and gravitational wave
frequency at which dynamical scalarization occurs (fGW =
Ω/π) for the systems considered in Fig. 4. Only resumma-

tion schemes with the choice F (ϕ̃) produce DS. For compari-
son, we list the results of the quasi-equilibrium configuration
calculations (QE) of Ref. [26].

B Model Order GMΩDS/c
3 fGW

DS

[Hz]

9.0 (m(RJ), F (ϕ̃)) Newtonian 0.0044 106

9.0 (m(RJ), F (ϕ̃)) 1PD 0.0047 112

9.0 (m(RE), F (ϕ̃)) Newtonian 0.0052 124

9.0 (m(RE), F (ϕ̃)) 1PD 0.0051 122
9.0 QE —— 0.0051 123

8.4 (m(RJ), F (ϕ̃)) Newtonian 0.0282 674

8.4 (m(RJ), F (ϕ̃)) 1PD 0.0212 508

8.4 (m(RE), F (ϕ̃)) Newtonian 0.0217 520

8.4 (m(RE), F (ϕ̃)) 1PD 0.0212 508
8.4 QE —— 0.0223 534

is the same in all resummation schemes, defined as

χ ≡
√

2 log(F−1(ξ))

B
=







√

2 log ξ
B , if F (φ) = φ

ξ, if F (φ) =
√

2 log φ
B

(8.3)

Figure 5 shows the leading order piece of the scalar charge
α in the (m(RJ), F (φ)) and (m(RE), F (ϕ̃)) resummation
schemes given in Eqs. (A2) and (A4). The resummed
scalar charges in each scheme agree at χ = ϕ̃0, but they
scale as

α(RJ,φ) ∼ d logm

dξ
∼ d logm

dχ

1

Bχ
e−Bχ

2/2 ∼ d logm

dχ

1

χ
,

(8.4)

α(RE,ϕ̃) ∼ d logm(E)

dξ
∼ d logm

dχ
− Bχ

2
∼ d logm

dχ
, (8.5)

where we have used the fact that χ≪ 1.
Without the additional factor of χ−1, the scalar charge

in the (m(RE), F (ϕ̃)) scheme grows with the local scalar
field (the red curve in Fig. 5). This trend enables a
positive feedback loop that ultimately emulates DS [24].
Intuitively, an increase in the field χ at one body increases
its charge α, which, in turn, increases the field χ at the
other body (and so on). No such feedback is possible
within the (m(RJ), F (φ)) resummation scheme because α
does not increase with greater ξ.

B. Earlier analytic models

The first analytic model of DS was proposed in Ref.
[24]. This model used the 2.5PN equations of motion
computed in Ref. [46], but altered the coefficients using
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FIG. 5. Newtonian order contribution to the scalar charge
α of each neutron star in a (1.35 + 1.35)M⊙ binary system

as a function of the auxiliary field χ in the (m(RJ), F (φ)) and

(m(RE), F (ϕ̃)) resummation schemes. We use the APR4 equa-
tion of state with B = 9, ϕ̃0 = 3.33 × 10−11.

a feedback mechanism designed to mimic DS. To 1PN or-
der, these modified equations of motion are given in Eqs.
(5.16)–(5.19) but with the important difference that m̄i

and ᾱi are evaluated at an enhanced field value ϕB in-
stead of at φ0. To determine ϕB the authors numerically
solved the Newtonian order relations

ϕ
(1)
B = ϕ̃0 +

Gm̄2(ϕ
(2)
B )ᾱ2(ϕ

(2)
B )

φ0rc2
, (8.6)

ϕ
(2)
B = (1 ⇋ 2) . (8.7)

Additionally, the authors explicitly set the derivatives of
the scalar charge ᾱ′, ᾱ′′ to zero.
As reported in Ref. [24], this model captures dynami-

cal scalarization and produces results (qualitatively) con-
sistent with numerical-relativity simulations. The model
is easily implemented because it directly augments the
PN results of Ref. [46] with Eqs. (8.6) and (8.7). How-
ever, mixing the Newtonian order feedback mechanism
with higher-order equations of motion produces technical
ambiguities in the model; we address these uncertainties
in greater detail in Appendix C.
Comparing Eq. (5.7) with Eq. (8.6), we immediately

see that our PD approach recovers the feedback mech-
anism of Ref. [24] at Newtonian order with the resum-
mation schemes that use F (ϕ̃). Similarly, comparing Eq.
(5.10) with Eq. (5.16), we see that the equations of mo-
tion for the binary system agree at Newtonian order with
those of Ref. [24] provided we also use m(RJ).
Disparities arise between the two formalisms beyond

Newtonian order. For the same resummation scheme
adopted above, the auxiliary field given in Eq. (5.12) is
the natural extension of the feedback model of Ref. [24]
to higher order. Beyond the difference between ξ and ϕB,
the equations of motion of each approach [Eq. (5.14) and
Eq. (5.16)] differ only in the terms proportional to r−2

(recall thatmi and αi receive PD corrections as discussed

in Appendix A). However, as discussed at the end of Sec.
V, we expect a greater proportion of terms in the model
of Ref. [24] to disagree with the PD equations of motion
beyond post-Newtonian order.
To provide some context of the PD expansion’s place

relative to previous models, the scalar mass predicted by
each of the analytic approximations discussed above is
plotted in Fig. 6. As discussed in Sec II B, the unal-
tered PN approximation (denoted in red) does not re-
produce DS, giving a scalar mass orders of magnitude
smaller than numerical predictions. In contrast, the PD
approximation (blue and green) agrees with the quasi-
equilibrium calculations (dotted black) reported in Ref.
[26] at the level of . 10% when equipped with the proper
resummation scheme. This level of accuracy is compara-
ble to that achieved by the analytic model proposed in
Ref. [24] (solid black). In addition, the technical am-
biguities found in this earlier model (see Appendix C)
generate some systematic uncertainty in its predictions.
As a rough estimate of this uncertainty, we denote with
the pink region the range of values spanned by all of the
alternatives considered in Figs. 7 and 8. The PD formal-
ism alleviates this issue by resumming the PN approxi-
mation in a mathematically consistent way, albeit with a
freedom in the exact choice of quantities to resum.

IX. CONCLUSIONS

In this paper, we proposed the post-Dickean expansion,
a new model of dynamical scalarization constructed by
resumming the post-Newtonian expansion. The motiva-
tion for this approach stems from the success of previous
analytic treatments of spontaneous scalarization, a phe-
nomenon suspected to be closely related to DS. By ap-
propriating tools from recent PN calculations [45, 46, 59],
we derived the equations of motion and the scalar mass
(a measure of scalarization) of a binary system at post-
Newtonian order. Comparisons with recent numerical
results [26] indicate that our new formalism captures DS
accurately. The PD model exactly coincides with the an-
alytic model introduced in Ref. [24] at leading order, but
the ambiguities that arise at higher order in that earlier
work are avoided with the PD approach because of its
more rigorous and self-consistent formulation.
While this work establishes a framework for modeling

DS, several further steps remain before it can be used to
generate waveforms needed to test GR with GW detec-
tors. Fortunately, most of these remaining calculations
are straightforward, albeit lengthy. The waveform was
recently computed to 2PN order in Ref. [59, 60].8 Sim-
ilarly to what was done in Secs. IV and VI, the PD

8 Advanced LIGO is most sensitive to a GW’s transverse-traceless
polarizations, for which the 2PN calculation was done. An ad-
ditional transverse “breathing” mode would accompany the sig-
nal; this third polarization is determined by Ψ and has only been
computed to 1.5PN order [45].
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FIG. 6. Scalar mass as a function of orbital frequency Ω and gravitational wave frequency fGW of the binary system depicted in
Fig. 4. The post-Dickean curves are calculated at 1PD order with the resummation schemes using F (ϕ̃). The model proposed
in Ref. [24] is plotted in black alongside the variations that we develop in Appendix C, which are collectively depicted by
the pink region. For comparison, we plot the 1PN scalar mass (red) computed using the results of Ref. [45] (we use the 2PN
equations of motion of Ref. [46] to restrict to circular orbits). The bottom panels depict the magnitude of the fractional error
between the models and the quasi-equilibrium configurations (QE) of Ref. [26].

waveform can be calculated in precisely the same way as
the PN result with a slightly modified stress-energy ten-
sor. To reach the 2PD accuracy, one would also need to
derive the equations of motion at that order. Again, all
of the necessary steps have been completed for the PN
calculation [46], so one can simply recycle that work with
a new stress-energy tensor to produce the corresponding
PD result.

The evolution of a binary system directly impacts the
GW signal it produces. Thus, in conjunction with the
waveform calculation sketched above, one would need to
estimate the phase evolution of a binary in the PD for-
malism. One approach, analogous to what was done in
Refs. [24, 25], would be to directly integrate the equa-
tions of motion. However, earlier surveys of PN models
in GR indicate that such a procedure can produce unreli-
able waveforms [61]. Instead, a better approximation can
be found by balancing the change in the (conservative)
binding energy and the radiated flux far from the system.
The flux was computed to 1PN order in Ref. [45]; this
calculation could be redone in the PD expansion with a
modified stress-energy tensor.

Unfortunately, the PD binding energy cannot be eas-
ily recomputed with existing PN work. To date, this
energy has been calculated in the PN approach by inte-
grating the (conservative) equations of motion to produce
a Lagrangian and performing a Legendre transformation.

However, as discussed at the end of Sec. V, no such La-
grangian exists for the PD equations of motion because of
the presence of the auxiliary field ξ. Without this short-
cut, one would need to instead calculate the ADM energy
at spatial infinity. To our knowledge, the full asymptotic
metric has not been computed at spatial infinity to any
PN order for the class of ST theories we consider. In prin-
ciple, the 1PD energy could be estimated at null infinity
because the system is fully conservative up to that order,
but the results of Ref. [59] would have to be considerably
extended, as the author computed only the traceless piece
of the asymptotic metric. A more systematic approach
should mimic the PN calculation of the ADM Hamilto-
nian in GR [62], in which all of the gravitational degrees
are integrated out, leaving an energy dependent only on
each body’s position, momentum, and local scalar field
ξ.

Besides the litany of PN results that need to be re-
computed in the PD formalism to produce waveforms,
the model could offer a better physical understanding of
DS. Surprisingly, we found that the PD predictions were
largely independent of the choice m(φ, ξ) in the resum-
mation scheme. While this result needs to be confirmed
with a more comprehensive survey of possible schemes,
the dependence of our formalism on the sole function
F (φ) suggests that DS could be modeled with a single
effective potential for the scalar charge at the level of
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the action. An analogous method was employed in Ref.
[63], in which the quadrupole modes of a neutron star
were promoted to dynamical field variables governed by
an effective potential to model their response to the tidal
fields produced by a companion black hole. This proce-
dure could be adopted for dynamical scalarization, where
each body’s scalar monopole (i.e. scalar charge) dynam-
ically responds to the monopolar scalar field sourced by
the companion star [64]. This investigation could offer a
more intuitive view of DS as a non-linear phenomenon.
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Appendix A: Post-Dickean expansion of mass and

scalar charge

The exact form of the mass m and the scalar charge
α defined in Eq. (5.6) depend on how the mass is re-
summed, that is, on our choice of m(φ, ξ) and F (φ). For
example, using the expressions in m(RJ) and F (φ) given
in Table I, the mass and scalar charge are given at 1PD
order by

m
(RJ,φ)
A =mA(ξ), (A1)

α
(RJ,φ)
A =µ0

(

1− 2φ0
d logmA

dξ

)

+
Bµ0

2

(

1− 2φ0
d logmA

dξ

)(

1− 2φ0
d logmB

dξ

)

GmB

φ0rc2

− 4µ0
3

(

d logmA

dξ

)(

1− 2φ0
d logmB

dξ

)

GmB

rc2
+O

(

1

c4

)

,

(A2)

where A 6= B, while the choice of m(RE) and F (ϕ̃) gives

m
(RE,ϕ)
A =

√

φ0m
(E)
A (ξ)

(

1 +
Gm

(E)
B µ0αB√
φ0rc2

)

+O
(

1

c4

)

, (A3)

α
(RE,ϕ)
A = −d logm

(E)
A (ξ)

dξ
. (A4)

Note that the expressions in Eqs. (A2) and (A3) receive
higher-order corrections, while Eqs. (A1) and (A4) are
exact. In general, whenever the function m(φ, ξ) can be
factored into

m(φ, ξ) = mφ(φ)mξ(ξ), (A5)

the quantities

m̃(ξ) ≡ mξ(ξ), (A6)

q ≡ −d logmξ

dξ
=

(

d logmφ

dφ
− D logm(φ, ξ)

Dφ

)/

dF

dφ
,

(A7)

are exact at all orders in the PD expansion. These quanti-
ties represent the resummed piece of the mass and scalar
charge; for the resummation schemes defined in Table
I, these quantities are listed in Table III. When using a
particular resummation scheme, it is most convenient to
work with these variables instead of m and α so as to
avoid the additional bookkeeping required to track the
PD corrections to the mass and scalar charge.

TABLE III. Resummed piece of the mass m and scalar charge
α for the resummation schemes given in Table I. We denote
the differential operator D

Dφ
with the abbreviation D.

Resummation Scheme m̃(ξ) q(ξ)

m( ) F ( )

RJ φ m −D logm

RJ ϕ̃ m −2φ
(

B log φ
2

)1/2
D logm

RE φ m(E) 1
2φ

−D logm

RE ϕ̃ m(E)
(

B log φ
2

)1/2
(1− 2φD logm)

Appendix B: Two-body potentials at post-Dickean

order

The sources defined in Eqs. (4.9)–(4.12) computed at
1PD order are
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σ = m1

(

1 +
3v21
2c2

− Gm2(1 − 5µ0α2)

φ0rc2

)

δ(3)(x− x1) +O
(

1

c4

)

+ (1 ⇋ 2) , (B1)

σs =
m1α1

µ0

(

1− v21
2c2

− Gm2(6µ0 +Bα2 − 6µ2
0α2)

2µ0φ0rc2

)

δ(3)(x − x1) +O
(

1

c4

)

+ (1 ⇋ 2) , (B2)

σi =
m1v

i
1

c
δ(3)(x − x1) +O

(

1

c3

)

+ (1 ⇋ 2) , (B3)

σii =
m1v

2
1

c2
δ(3)(x− x1) +O

(

1

c4

)

+ (1 ⇋ 2) , (B4)

where r = |x1 − x2| and we have suppressed the expansions in mi and αi using the notation of Eq. (5.6). Hence, the
two body potentials needed to compute the equations of motion and scalar mass in Secs. V and VII are given by

U ≡
∫

σ(t,x′)

|x− x′|d
3x′ =

m1

r1

(

1 +
3v21
2c2

− Gm2(1 − 5µ0α2)

φ0rc2

)

+O
(

1

c4

)

+ (1 ⇋ 2) , (B5)

Us ≡
∫

σs(t,x
′)

|x− x′| d
3x′ =

m1α1

µ0r1

(

1− v21
2c2

− Gm2(6µ0 +Bα2 − 6µ2
0α2)

2µ0φ0rc2

)

+O
(

1

c4

)

+ (1 ⇋ 2) , (B6)

Ms ≡
∫

σs(t,x
′)d3x′ = µ0

−1m1α1 +O
(

1

c2

)

+ (1 ⇋ 2) ,

Ṁs = O
(

1

c3

)

,

(B7)

V i ≡
∫

σi(t,x′)

|x− x′| d
3x′ =

m1

r1

vi1
c

+O
(

1

c3

)

+ (1 ⇋ 2) , (B8)

V is ≡
∫

σs(t,x
′)v′i

|x− x′| d3x′ =
m1α1

µ0r1

vi1
c

+O
(

1

c3

)

+ (1 ⇋ 2) , (B9)

Φ1 ≡
∫

σii(t,x′)

|x− x′| d
3x′ =

m1

r1

v21
c2

+O
(

1

c3

)

+ (1 ⇋ 2) , (B10)

Φij1 ≡
∫

σij(t,x′)

|x− x′| d
3x′ =

m1

r1

vi1v
j
1

c2
+O

(

1

c3

)

+ (1 ⇋ 2) , (B11)

Φs2 ≡
∫

σs(t,x
′)U(t,x′)

|x− x′| d3x′ =
m1m2α1

µ0r1r
+O

(

1

c2

)

+ (1 ⇋ 2) , (B12)

Φ2s ≡
∫

σ(t,x′)Us(t,x
′)

|x− x′| d3x′ =
m1m2α2

µ0r1r
+O

(

1

c2

)

+ (1 ⇋ 2) , (B13)

Φs2s ≡
∫

σs(t,x
′)Us(t,x

′)

|x− x′| d3x′ =
m1m2α1α2

µ0
2r1r

+O
(

1

c2

)

+ (1 ⇋ 2) , (B14)

X ≡
∫

σ(t,x′)|x − x
′|d3x′ = m1r1 +O

(

1

c2

)

+ (1 ⇋ 2) ,

Ẍ =
d2m1

dt2
r1 + 2

dm1

dt

dr1
dt

+m1
d2r1
dt2

+O
(

1

c2

)

+ (1 ⇋ 2) ,

= m1

(

a1 · n1 +
v21
r1

− (v1 · n1)
2

r1

)

+O
(

1

c2

)

+ (1 ⇋ 2) ,

(B15)

Xs ≡
∫

σs(t,x
′)|x− x

′|d3x′ = µ0
−1m1α1r1 +O

(

1

c2

)

+ (1 ⇋ 2) .

Ẍs = µ0
−1

[

d2(m1α1)

dt2
r1 + 2

d(m1α1)

dt

dr1
dt

+m1α1
d2r1
dt2

]

+ (1 ⇋ 2) ,

=
m1α1

µ0

(

a1 · n1 +
v21
r1

− (v1 · n1)
2

r1

)

+O
(

1

c2

)

+ (1 ⇋ 2) ,

(B16)
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where the time derivatives of the masses and scalar charges are pushed to higher PD order because

dmA

dt
=
DmA

Dφ
vµA∂µφ(xA) ∼ O

(

1

c3

)

, (B17)

where vµA ≡ uµA/u
0
A.

Appendix C: A closer look at the model of

Palenzuela et. al.

Another analytic model of dynamical scalarization was
proposed in Ref. [24]. This model augments the PN
equations of motion with a feedback mechanism that
simulates the non-perturbative growth of the scalar field
around each body (see Sec. VIII B for more detail). This
prescription is uniquely defined when working at leading
order but becomes ambiguous when extended to higher
PN orders. The construction given in Ref. [24] uses the
2.5PN equations of motion (given in Ref. [46]) and a
Newtonian order feedback mechanism [Eqs. (8.6) and
(8.7)]. The authors also set to zero all derivatives of the
scalar charge [the first of which is given in Eq. (5.20)].
While this particular set of choices leads to predictions

consistent with numerical-relativity, we would like to ex-
plore other realizations of this model for two reasons.
First, we want to understand the impact of these algo-
rithmic decisions; if a particular choice greatly impacts
the model’s performance, understanding its physical sig-
nificance is important. Second, we would like to track
the changes to the model at each order so as to check
the best way to improve the results of Ref. [24] with
future PN calculations. We address these two concerns
by investigating the effects of including derivatives of the
scalar charge and using a higher-order feedback mecha-
nism. The authors of Ref. [24] briefly mention these two
modifications and argue that they do not significantly
impact the model; we expand on this discussion here, of-
fering a precise, quantitative description of their effects.
Including derivatives of the scalar charge: The deriva-

tives of the scalar charge enter this model through the
equations of motion [see Eqs. (5.16) and (5.17)] and the
feedback mechanism [see Eqs. (C2) and (C3)] beginning
at 1PN order. The decision to set these derivatives to
zero was made in Ref. [24] to ensure that m̄(φ) and
ᾱ(φ) were evaluated at each star rather than expanded
about the background value φ0. However, this proce-
dure is problematic, as simply setting the derivatives of
ᾱ to zero does not properly resum these expansions. For
example, ᾱ itself appears in every term of the Einstein-
frame mass [analogous to Eq. (2.13)]

m̄(E)(ϕ̃) =m(E)(ϕ̃0)

[

1 + ᾱ∆

−1

2
(ᾱ2 − ᾱ′)∆2 + · · ·

]

, (C1)

where ∆ ≡ (ϕ̃ − ϕ̃0). Removing the derivatives of ᾱ
eliminates most of the terms in the expansions of m̄(φ)

and ᾱ(φ) but leaves certain higher-order terms propor-
tional to powers of the scalar charge. A fully consistent
treatment should absorb these extraneous terms into the
definitions of m̄(φ) and ᾱ(φ); instead, this model’s treat-
ment of m̄ and ᾱ as unexpanded quantities ensures that
the surviving terms in the expansion are effectively dou-
ble counted.
Even without a mathematically rigorous motivation,

the choice to drop the derivatives of the charge still yields
predictions in qualitative agreement with numerical rela-
tivity. However, there are many other equally valid ways
to alter the coefficients in expansions like that of Eq.
(C1) — for example, the coefficients containing ᾱ′ could
be halved rather than set to zero. To provide some bound
on the effect of these choices, in Fig. 7 we compare the to-
tal scalar mass predicted by the model of Ref. [24] when
all derivatives of the scalar charge are dropped (red) and
when all are kept (blue). We restrict to circular orbits
using the Newtonian, 1PN, and 2PN equations of motion
(dashed, dot-dashed, and solid lines, respectively) — the
exact prescription used in Ref. [24] is the solid, red curve.
The inclusion of these terms increases the scalar mass

by approximately 20− 50% both before and after scalar-
ization. This result is consistent with our previous ob-
servation that higher-order terms left in the PN expan-
sion should produce extraneous contributions when the
mass and charge are resummed. In addition, we note
that the model of Ref. [24] overestimates the scalar mass
compared to the PD approximation at the same order.
Combining these two observations, we argue that dou-
ble counting can become a significant issue when using
a simple feedback mechanism like that of Ref. [24], and
that while simply dropping particular terms from the PN
expansion can help remedy these issues, it is not the ideal
solution. Instead, the corresponding resummation should
be accounted for in a more systematic way, as is done
with the PD approach.
Extending the feedback mechanism to 1PN order: The

feedback mechanism used in Ref. [24] contains only the
leading order contributions to the scalar field despite
being paired with the 2.5PN equations of motion com-
puted.9 The impact of using approximants of such dif-

9 The authors of Ref. [24] considered the effect of adding to this
feedback mechanism the order O(1/r2) terms from the field felt
by a static test mass far from an isolated body. These terms were
shown to have negligible impact on their model. Here, we con-
sider the 1PN corrections to the scalar field felt by each body in
a comparable-mass binary system, which comprise a more com-
prehensive set of O(1/r2) corrections.
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FIG. 7. Scalar mass predicted by the model of Ref. [24] for a (1.35 + 1.35)M⊙ neutron-star binary system on a circular
orbit as a function of the orbital frequency and gravitational wave frequency. The scalar mass at Newtonian and 1PN order
computed without (with) the derivatives of scalar charge is plotted in red (blue) using the Newtonian, 1PN, and 2PN equations
of motion (dashed, dot-dashed, and solid lines, respectively) and the Newtonian order feedback mechanism given in Eq.
(8.6). We also plot the quasi-equilibrium configurations (QE) reported in Ref. [26] (dotted). The bottom panels depict the
magnitude of the fractional error between the PD and quasi-equilibrium results. We use the APR4 equation of state with (left)
B = 9, ϕ̃0 = 3.33× 10−11 and (right) B = 8.4, ϕ̃0 = 3.45× 10−11.

ferent order is unclear, but the mismatch may lead to
certain unintuitive predictions. We consider instead us-
ing the natural 1PN extension of the feedback mechanism

ϕ
(1)
B =ϕ̃0 +

Gm̄2ᾱ2

φ0rc2
+
Gm̄2

φ0rc4

[

−1

2
ᾱ2(v2 · n)2

−
(

3

2
ᾱ2 +

3

2
ᾱ1ᾱ

2
2 − ᾱ1ᾱ

′
2

)

Gm̄1

φ0r

]

,

(C2)

ϕ
(2)
B =(1 ⇋ 2) , (C3)

where m̄i, ᾱi, and ᾱ
′
i are evaluated at ϕ

(i)
B .

We compare the total scalar mass computed using the
Newtonian (red) and 1PN feedback models (green) with
equations of motion at Newtonian, 1PN, and 2PN order
in Fig. 8, making the additional choice to set all deriva-
tives of the scalar charge to zero, as was done in Ref. [24].
The inclusion of higher-order effects in these two aspects
of the model produces competing shifts in the predicted
onset of DS: the choice of 1PN feedback system over the
Newtonian system pushes this transition point to higher
frequency, while the 1PN terms in the equations of mo-
tion push the transition to lower frequency. These two
effects nearly cancel each other in such a way that the
predictions when working consistently at Newtonian or-
der (i.e. Newtonian order feedback and equations of mo-
tion) are very close to those when working consistently at

1PN order. We observe that working consistently at one
order generally improves the agreement with the quasi-
equilibrium configuration calculations of Ref. [26]. The
most accurate model depicted in Fig. 8 uses the 1PN
feedback model in conjunction with the 2PN equations
of motion, but in line with the previous observation, we
suspect that adding the 2PN corrections to Eqs. (C2)
and (C3) will improve these predictions; we leave the cal-
culation and implementation of these higher-order terms
for future work.

To recap, some of the technical aspects in the construc-
tion of the model proposed in Ref. [24] are ambiguous;
the prescription for these options is only precisely spec-
ified when working at Newtonian order. These choices
arise because the model splices a non-linear feedback
mechanism on to independently computed PN equations
of motion. We find that the model is most accurate when
one uses a feedback mechanism and equations of motion
of the same order and when one drops some of the higher-
order terms in the PN expansions (e.g. the derivatives of
the charge) to minimize double counting.

The PD formalism avoids these issues by performing
a resummation of the post-Newtonian expansion at the
level of the action. By carrying through this resumma-
tion consistently, a non-linear feedback mechanism anal-
ogous to Eqs. (C2) and (C3) organically arises along-
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FIG. 8. Same as Fig. 7 but also including the predictions of the model of Ref. [24] computed using the 1PN extension of the
feedback model (green) given in Eq. (C2). The derivatives of the scalar charge were dropped in computing all of the plotted
curves.

side the equations of motion. Thus, the PD model gives results at a consistent order while also avoiding double
counting.
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Phys. Rev. D 54, 1474 (1996).
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