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I. INTRODUCTION

Cosmic inflation is a unique paradigm in cosmology which is interesting from both the quantum gravity as well as the
particle phenomenology viewpoints. While the simple single-field slow roll scenario is consistent with observations,
this picture cannot be considered completely satisfactory until the connection between the inflaton field and the
more familiar standard model fields is established. A potentially strong connection between inflation and particle
phenomenology was pointed out a few years ago when it was shown that the standard model Higgs (albeit with a
nonminimal coupling to gravity) could perform the role of the inflaton [1]. While the inflationary predictions of this
simple model are still within the observationally allowed region [2], there are significant question marks on its viability.

One important concern is the instability of the Higgs potential in Higgs inflation. For the currently measured values
of Higgs mass (mh ≈ 125 GeV) and the top quark mass (mt ≈ 173 GeV), the Higgs self-coupling runs to negative
values well below the Planck scale or the inflationary scale (which is O(1017) GeV) [3]. Without new physics, this can
only be avoided by assuming the top quark pole mass is about 3σ below its central value [4]; even so, the inflationary
predictions could potentially be sensitive to the exact values of these parameters [5].

Another concern regarding Higgs inflation is whether the large nonminimal coupling parameter (ξ ∼ O(104)) in
this theory would affect unitarity [6–14]. The graviton exchange in the WW scattering causes tree-level unitarity
violation at the energy Mpl/ξ. This energy is lower than the scale of the Higgs field during inflation Mpl/

√
ξ, and

is comparable to the inflationary Hubble rate. If this is true, new particles and interactions should be introduced
at the scale Mpl/ξ to restore unitarity. The new physics will modify the Higgs potential at above the scale Mpl/ξ
and thus make the predictions of Higgs inflation unreliable. It was recently suggested [14] that if we consider loop
corrections at all orders unitarity may be restored. While there has been some debate on this topic [6–14], we will
not be addressing this issue in this paper.

In recent years, many extensions to the standard Higgs inflation model have been discussed [15–22]. Additionally,
there have been many efforts to connect Higgs inflation (or inflation driven by other nonminimally coupled scalars) to
the dark matter paradigm [23–36]. In particular, there have been attempts at constructing Higgs-portal type models
[27, 29, 30], where dark matter is coupled to the standard model through the Higgs field.

In this paper, we connect Higgs inflation with a scalar portal dark matter model involving a singlet fermionic dark
matter field ψ and a singlet scalar S coupled to the Higgs which functions as the portal. The model incorporates a Z2

symmetry and therefore excludes terms involving odd powers of S (apart from a Yukawa term) and also excludes Dirac
mass for ψ. From the perspective of inflation, our primary motivation is to investigate the possibility of stabilizing
the Higgs potential (or the scalar potential) using mixing between the two scalars. Through this, we seek to avoid
having to fine-tune the top quark mass in order to allow inflation. Unlike the Higgs portal models in Ref. [27, 30],
the dark matter is fermionic and thus prevents the potential perturbativity problem in the singlet scalar potential.

An added attraction of this model is the phenomenological connection between the inflationary paradigm with the
dark matter paradigm. Similar models (without the Z2 symmetry) have been studied in the context of dark matter
phenomenology in the past [37, 39–41, 43], but their relevance in the context of inflation has not been studied before.
We consider inflation driven by either the Higgs field or the singlet scalar field which is nonminimally coupled to
gravity. Reheating proceeds in the usual manner producing thermal dark matter. We explore the parameter region
that produces the correct relic abundance of dark matter and is also consistent with direct detection and collider
constraints, apart from providing successful inflation.

The paper is organized as follows. In Section II, we introduce our model. In Section III, we discuss the mechanism
of inflation and calculation of inflationary parameters. In Section IV, we discuss the phenomenological constraints we
have used for constraining the parameter space of our model. In Sections V and VI, we discuss our numerical results
and conclusions.

II. THE MODEL

We consider an extension of the standard model by adding a gauge singlet fermionic dark matter ψ and a gauge
singlet scalar S to the standard model content. Here we assume the dark matter ψ consists of two Weyl components
ψ1 and ψ2. We impose a Z2 symmetry to the theory, for which S and ψ1 are odd while ψ2 and all the SM particles
are even. In other words, under the Z2 action, we have ψ → γ5ψ. The advantage of having a Z2 symmetry is that
simplifies the model by eliminating the many odd power terms in the scalar potential, while at the same time allowing
the Yukawa coupling yψSψ̄ψ that induces a mass for the dark matter at non-zero expectation value for S.

The relevant Jordan frame Lagrangian is

L =
√
−g

[
−
M2

pl + 2ξhH
†H + ξsS

2

2
R+ ∂µH

†∂µH +
1

2
(∂µS)2 − V (H,S) + LDM

]
, (1)
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where Mpl is the reduced Planck mass and H =

(
π+

1√
2

(
φ+ iπ0

)) is the Higgs doublet.

The tree-level two-field scalar potential is

V (H,S) = −µ2
hH
†H + λh(H†H)2 − 1

2
µ2
sS

2 +
1

4
λsS

4

+
1

2
λshH

†HS2 + κS.

(2)

The soft breaking term κ is very small and only serves to raise the degeneracy of the Z2 symmetry to avoid domain
wall problem. In the rest of this paper, we shall omit this term. The tree-level potential should be bounded from
below. This is determined by the large field behavior of the potential and yields the constraint

λh > 0, λs > 0, λsh > −2
√
λhλs. (3)

The connection between the Higgs boson and dark matter is through the real scalar S. The fermion dark matter
lagrangian is given by

LDM = iψ̄γµ∂µψ − yψSψ̄ψ. (4)

Note that due to the Z2 symmetry, no Dirac mass is allowed for ψ.

After symmetry breaking, in general, both S and φ (the neutral component Higgs doublet H) in the tree-level
potential develop vacuum expectation values, denoted as

v ≡ 〈φ〉, u ≡ 〈S〉. (5)

The minimization conditions on the first derivative of the tree-level potential allows us to write the second derivatives
of the tree-level potential as a squared mass matrix of φ and S:

M2
scalar(φ, S) ≡

(
m2
φφ m2

sφ

m2
sφ m2

ss

)
=

(
λh(3φ2 − v2) + 1

2λsh(S2 − u2) λshφS
λshφS λs(3S

2 − u2) + 1
2λsh(φ2 − v2)

)
. (6)

Diagonalizing the above matrix, we can relate the mass squared eigenvalues mh and ms (with ms > mh) in terms of
these parameters and write the eigenvectors (corresponding to the “higgs” and “scalar” directions, denoted by h and
s) as (

h
s

)
=

(
cos ϕ̃(φ, S) sin ϕ̃(φ, S)
− sin ϕ̃(φ, S) cos ϕ̃(φ, S)

)(
φ
S

)
, (7)

where the mixing angle ϕ̃(φ, S) is given by

tan 2ϕ̃(φ, S) =
2m2

sφ

m2
ss −m2

φφ

(8)

We define the mixing angle today as

ϕ ≡ ϕ̃(v, u) =
1

2
arctan

λshvu

λsu2 − λhv2
(9)

In this paper, we shall consider inflation starting either on the φ-axis or the S-axis, which means that either φ
or S would take large field values (typically O(1014 GeV) or higher) while the other field would take much smaller
value (typically, O(1 TeV) or smaller). In both cases, it is easy to see that the mixing is very small (ϕ̃(φ, S) ∼ 0) and
therefore it is appropriate to describe this as inflation along the Higgs direction (h−Inflation) or inflation along the
scalar direction (s−Inflation).
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III. INFLATION

A. h−Inflation

This is a variant of the standard Higgs inflation scenario with the Higgs potential modified by interactions between
the Higgs field and the scalar s. We begin by using as input parameters the scalar mass ms, mixing angle ϕ, the
quartic interaction coefficient λsh and the dark matter Yukawa coupling yψ at the electroweak scale. By requiring
the eigenvalues of the mass matrix (7) to be mh = 125.7 GeV and ms, we can obtain the scalar vev at low energies
(u) and also the values of the self interactions λh and λs at the electroweak scale. The value of ξh is determined
by requiring the appropriate normalization of curvature perturbations during inflation and is therefore not an input
parameter. In the case of standard (tree level) Higgs inflation, a large value ξ ∼ O

(
104
)

is necessary to match the
observed amplitude of fluctuations (Eq.(16)).

The non-minimal coupling with gravity is usually dealt with by transferring the Lagrangian to the Einstein frame
by performing a conformal transformation. But before doing so, it is necessary to determine how to impose quantum
corrections to the potential [44, 45]. There are two approaches in general: one is to calculate the quantum corrections
in the Jordan frame before performing the conformal transformation; the other is to impose quantum corrections
after transferring to the Einstein frame. The two approaches give slightly different results [5], and we adopt the first
one. The running values of various couplings from electroweak scale to the planck scale in the Jordan frame can be
obtained using the renormalization group equations given in Appendix VII A. The running behavior of couplings for
a typical data point is shown in Fig. 1.

The quantum corrected effective Jordan frame Higgs potential (the two-field potential evaluated along the higgs
axis) at large field values (h) can be written as

V (h) =
1

4
λh(µ)h4 , (10)

where the scale can be defined to be µ ∼ O(h) ≈ h in order to suppress the quantum correction.
Following the usual procedure (outlined in Appendix VII B), we get to the Einstein frame by locally rescaling the

metric by a factor Ω2 = 1 + (ξhh
2 + ξss

2)/M2
pl ≈ 1 + ξhh

2/M2
pl, the ξs term neglected because we are on the h-axis

with s ∼ 0. This leads to a non-canonical kinetic term for h, which can be resolved by rewriting the inflationary
action in terms of the canonically normalized field χ as

Sinf =

∫
d4x
√
g̃

[
M2

pl

2
R+

1

2
(∂χ)

2 − U(χ)

]
(11)

with potential

U(χ) =
λh (h(χ))

4

4Ω4
(12)

where the new field χ is defined by

dχ

dh
=

√
3M2

pl (dΩ2/dh)
2

2Ω4
+

1

Ω2
≈

√√√√√1 + ξhh2/M2
pl + 6ξ2hh

2/M2
pl(

1 + ξhh2/M2
pl

)2 . (13)

Note that λh and ξh have a scale (h) dependence. The potential U(χ) for a typical data point for h−inflation is shown
in Fig. 1.

From the inflationary potential U(χ), the slow roll parameters can be calculated as

εV (χ) =
M2

pl

2

(
dU/dχ

U(χ)

)2

, ηV (χ) = M2
pl

(
d2U/dχ2

U(χ)

)
. (14)

The field value corresponding to the end of inflation χend is obtained by setting εV = 1, while the horizon exit value
χin can be calculated assuming 60 e-foldings between the two periods.

Ne−folds =

∫ χin

χend

dχ
1

Mpl

√
2εV

. (15)
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FIG. 1. Running behavior and shape of potential for h−inflation for (approximate) parameter values
{ms,mψ, u} = {450, 235, 1081} GeV and {λh, λs, λsh, ϕ} = {0.17, 0.08, 0.12, 0.17}. The plot on the top left shows the
running of λh, λs and λsh. The plot on the top right shows the running of yψ. The bottom left plot shows the running of
nonminimal coupling ξh, and the bottom right plot shows the inflationary potential. In the first three plots, the vertical dashed

lines correspond to Mpl/ξh (left) Mpl/
√
ξh (right). In the fourth plot, they correspond to the scales of end of inflation (left)

and horizon exit (right).

This allows us to calculate the inflationary observables ns and r

ns = 1 + 2ηV − 6εV ,

r = 16εV , (16)

as well as the amplitude of scalar fluctuations ∆2
R

∆2
R =

1

24π2M4
pl

U(χ)

εV
= 2.2× 10−9 . (17)

As mentioned earlier, the last constraint, coming from CMB observations [2], is used to determine ξh.

For inflation to occur, we require the Higgs potential to be stable, i.e, λh(µ) > 0 for all scales µ up to the scale of
inflation. For the standard model Higgs, this condition is not satisfied unless the top quark Yukawa coupling yt is set
to about three standard deviations below its measured central value. In our model, λh receives a positive threshold
correction at the ms scale and also a positive contribution to the beta function from λsh, therefore the constraint
on yt from the stability condition is released. In fact, we impose a more restrictive constraint of requiring that the
inflationary potential be monotonically increasing with h (or χ) for the entire range of field values relevant during
and immediately after inflation. This is done to ensure that slow roll drives the Higgs field towards the electroweak
vacuum and not away from it, and amounts to preventing λh/ξ

2
h from decreasing too quickly at high scales.
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B. s−Inflation

Much of the discussion in the previous section carries over to the s−inflation case, except that the roles of the h
and s fields are interchanged. We input the same parameters (ms, ϕ, λsh, yψ) at the electroweak scale as before.

The 1-loop corrected Einstein frame action for s-inflation (along the s-axis) is given by

Sinf =

∫
d4x
√
g̃

[
M2

pl

2
R+

1

2
(∂χ)

2 − U(χ)

]
, (18)

with potential

U(χ) =
λs (s(χ))

4

4Ω4
, (19)

where the new field χ is now

dχ

ds
=

√
3M2

pl (dΩ2/ds)
2

2Ω4
+

1

Ω2
≈

√√√√√1 + ξss2/M2
pl + 6ξ2ss

2/M2
pl(

1 + ξss2/M2
pl

)2 . (20)

The running couplings and the inflationary potential for a typical data point for s−inflation are shown in Figs 2.

For stability of the inflationary potential, we now require λs to be positive at scales relevant to inflation, and for
U(χ) monotonically increasing with χ. In this case, we do not try to avoid the instability of the potential in the Higgs
direction since we do not expect this region of the potential landscape to be explored during or after inflation; the field
rolls along the s-axis until the electroweak scale, where it runs off the axis and eventually settles in the electroweak
vev which is a minimum along both field directions.

C. Consistency constraints

In addition to requiring the stability of the inflaton potential, there are further constraints that are necessary to
consider in order to ensure the consistency of the model.

Perturbativity of λ’s: One observation to make is that unlike in the case of the standard model λh, which usually
decreases at high scales (the beta function evaluates to negative values), in our model λh, λs and λsh often run to
larger values. Therefore, it is necessary to ensure these couplings stay small enough to avoid nonperturbative effects.

We impose |λh| < 1, |λs| <
√

4π and |λsh| <
√

4π at all scales. This constraint typically restricts the couplings to
take small values, 0 < λs, λsh < 0.3 at the electroweak scale.

Isocurvature Modes For both h−inflation and s−inflation, we assumed we have an effectively single field slow
roll scenario. This is applicable only when the potential is both curved upwards and sufficiently steep in the transverse
direction during inflation. For Higgs inflation (and similarly for s−inflation), we can write the transverse (isocurvature)
mass as

m2
iso ≈

λshh
2

Ω2
. (21)

where we have assumed that ξs is small, in order to suppress a negative contribution from the λh term.

For consistency, we require this quantity to be positive and much larger than the typical Hubble parameter during
inflation

H2
inf =

1

3

U(χ)

M2
pl

. (22)

We observe that miso typically evaluates to be of O(1016) GeV whereas Hinf typically comes to be of O(1013) GeV.
Therefore, this constraint is easily satisfied in our model for both h− and s−inflation given that the less relevant
non-minimal coupling is small enough.
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FIG. 2. Running behavior and shape of potential for s−inflation for (approximate) parameter values
{ms,mψ, u} = {493, 257, 823} GeV and {λh, λs, λsh, ϕ} = {0.15, 0.18, 0.12, 0.11}. The plot on the top left shows the
running of λh, λs and λsh. The plot on the top right shows the running of yψ. The bottom left plot shows the running of
nonminimal coupling ξs, and the bottom right plot shows the inflationary potential. In the first three plots, the vertical dashed

lines correspond to Mpl/ξs (left) Mpl/
√
ξs (right). In the fourth plot, they correspond to the scales of end of inflation (left)

and horizon exit (right).

IV. PHENOMENOLOGICAL CONSTRAINTS

After the end of inflation, we expect the inflaton to execute oscillations about the minimum of its potential and
eventually settle at its minimum after transferring most of the energy into excitations of the various standard model
fields. A detailed analysis of reheating in the case of standard Higgs inflation was done in [46]. In our model, for typical
values of the various input parameters, we expect a similar process to happen for both h-inflation and s-inflation.
Moreover, as long as the Yukawa coupling yψ and mixing angle ϕ are not unnaturally small, we can expect dark
matter to enter into thermal equilibrium with the standard model particles, thus following the usual WIMP scenario.

Since the value of the inflaton field is at this stage much smaller than Mp/
√
ξ, the nonminimal coupling to gravity is

practically irrelevant for this discussion. Our model then reduces to a special case of the singlet scalar+fermion dark
matter model discussed in [37, 40, 41, 43] with the terms having odd powers of s set to zero.

A. Dark Matter Relic Density

Assuming all the (cold) dark matter in the universe is accounted for by our fermionic dark matter candidate ψ, we
require its relic density to agree with the Planck 2015 TT,TE,EE+lowP data Ωch

2 = 0.1198± 0.0015 [38].

Using the dark matter annihilation cross section derived in Appendix VII C, the thermally averaged cross section
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as a function of x = mψ/T can be written as [39]

〈σ vrel〉 (x) =
x

16m5
ψK

2
2 (x)

∫ ∞
4m2

ψ

ds s3/2σv

√
1−

4m2
ψ

s
K1

(√
s

mψ
x

)
, (23)

where K1 and K2 are modified Bessel functions. The freezout value x = xf can be calculated iteratively [37, 40, 41]
using the relation

xf = log

3Mpl

π2

√
5m2

ψ

πg∗xf
〈σ vrel(xf )〉

 . (24)

The relic density is then calculated using

Ωch
2 '

(
2.13× 108 GeV−1

)
√
g∗Mpl J (xf )

, (25)

where all mass dimensions are expressed in GeV and the integral J is given by

J (xf ) =

∫ ∞
xf

dx
〈σ vrel(x)〉

x2
. (26)

We performed the last integral by evaluating the function 〈σ vrel(x)〉 by using an interpolation. This integral is
often approximated by assuming 〈σ vrel(x)〉 to be a constant or a simple function of x; however, it was shown in [42]
that such approximations break down near the resonance region of the cross section. Since our results (Figure 5)
indicate that the surviving parameter space of our model largely falls near the resonance region, these approximations
do not serve our purposes.

B. Direct Detection Constraint

Calculation of direct detection cross section for our model proceeds in the same way as in [37]. We define the
effective coupling of dark matter to protons and neutrons as

fp = mpᾱ

(
fpTu + fpTd + fpTs +

2

9
fpTg

)
,

fn = mnᾱ

(
fnTu + fnTd + fnTs +

2

9
fnTg

)
, (27)

where mp and mn are the masses of proton and neutron respectively, and ᾱ is defined as

ᾱ =
yψ sin 2ϕ

2v

(
1

m2
h

− 1

m2
s

)
. (28)

For the hadronic matrix elements, we use the central values from [47],

fpTu = 0.020 , fpTd = 0.026 , fpTs = 0.118 , fpTg = 0.84 ,

fnTu = 0.014 , fnTd = 0.036 , fnTs = 0.118 , fnTg = 0.83 . (29)

The spin-independent cross section per nucleon can be obtained as

σSI =
m2
ψ +m2

N

m2
ψ +m2

p

m2
ψm

2
p

(mψ +mN )2
4

πA2
(Zfp + (A− Z)fn)

2
, (30)

where Z, A and mN are the atomic number, atomic mass (number) and nuclear mass respectively of the target nucleus
in the direct detection experiment. We then restrict our parameter space using the (Xenon-based) LUX bounds [48]
which are the most restrictive bounds currently available. The cross section for our surviving data points has been
shown in Figure 3.
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FIG. 3. Spin independent direct detection cross section σSI plotted as a function of dark matter mass. The black line
corresponds the the LUX bound. The green and red points correspond to h-inflation and s-inflation respectively.

C. Collider Constraints

We impose two constraints coming from collider phenomenology in our study. The first is the Electroweak Precision
Test (EWPT) constraint [49], which provides an upper bound for the value of mixing angle ϕ as a function of the
scalar mass ms for the entire range of scalar mass we consider. While the constraint allows for both positive and
negative values of ϕ, we are required to restrict to just positive values so as to ensure that λsh > 0 (which is necessary
to avoid isocurvature fluctuations).

The second constraint we consider comes from LHC physics. Due to the mixing between the Higgs boson and the
scalar S, the scalar S will decay to the same final states as the Higgs boson. Thus the search limits on the high mass
Higgs boson at the Tevatron and LHC can be used to set constraints on the mass and couplings of the scalar S. Since
the decay channels S → WW and S → ZZ put the tightest constraints, we adapt the exclusion limit in the CMS
analysis [50] and convert this limit to the one in our model. Because the event topology in our model is the same as
the one in the CMS analysis, it is reasonable to assume the same cut efficiency. Thus the exclusion limit shown in
[50] could be directly used to constrain the parameter space in our model. For each parameter point in the mS − ϕ
plane, we calculate the ratio of the total rate in our model using the formulae in the Appendix D of [51] and the rate
for the SM-like high mass Higgs boson, and compare with the experimental limit in the CMS analysis. This gives us
the allowed parameter regions in the mS − ϕ plane, which is shown in Figure 4.

V. NUMERICAL RESULTS

In our analysis, we begin by allowing the scalar mass ms to vary between 150-1500 GeV and the dark matter mass
mψ to vary between 50-1500 GeV. The mixing angle ϕ is bounded by the LHC and the EWPT constraints and is
taken to be positive, while the quartic coupling λsh is allowed to vary between 0 and 1. The remaining parameters -
u, yψ, λh, λs - are constrained by these requirements. Further, we impose the (Planck) relic density and the (LUX)

direct detection constraints, as well as the perturbativity constraint, i.e, λs, λsh <
√

4π and λh < 1 at all scales, on
all the points. All these constraints are imposed on all parameter points uniformly. Apart from these, for each type
of inflation (h− or s−), we also impose the stability constraint of requiring that the appropriate self coupling λ > 0
all the way up to inflationary scale. We also constrain the potential along the inflation axis to monotonically increase
with scale in the inflationary region, so as to ensure that the slow roll happens towards, and not away from the low
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FIG. 4. Comparison of mixing angle ϕ as a function of mass of the scalar field at its low energy vacuum, ms. The orange line
corresponds to the EWPT upper bound and the blue line corresponds to LHC physics lower bound on ms. The orange and
blue shaded regions are excluded by these bounds respectively. The green points correspond to h−inflation (λh) and the red
points correspond to s−inflation (λs).

energy vacuum.
In all our plots including both types of inflation, the green points correspond to h−inflation and the red points

correspond to s−inflation. There are many points that survive both sets of constraints, indicated by green points
coincident with red; these points have a stable potential along both axes and allow successful h−inflation as well as
s−inflation.

In the first plot in Figure 5, we show the dark matter mass as a function of the the scalar mass for points that
survive the above constraints. We note that the dark matter mass tends to take values near two straight lines. These
lines correspond to resonance regions, where the dark matter mass is either half of the Higgs mass or half the scalar
mass. Previous studies of similar models [37, 43] indicate that the relic density and direct detection constraints can
be satisfied by points that are on or near the resonance region as well as points that are off the resonance region.
In our model, owing to the absence of a Dirac mass for dark matter, fixing mψ also fixes the value of yψ. Since we
also require the perturbativity of the couplings and the stability of the potential, the allowed range of values for yψ is
limited (generally < 0.7) and therefore the constraints end up allowing only points near the resonance region which
have a smaller value of yψ and are consistent with absence of Dirac mass.

In Figure 6, we have shown the starting (electroweak scale) values of the self couplings λh and λs. The points
that allow successful h-inflation tend to have larger values of λh. This is not surprising given the requirement that
the potential be stable along the h−axis for h−inflation. This is also consistent with the the second plot (top
right) in Figure 6 comparing the starting (electroweak) value of λ on the inflation axis with the value of the same
λ at inflationary scale. This plot indicates that the inflationary value of λ (λh or λs) is strongly correlated to the
electroweak value of the same λ. The plot also shows that for s−inflation, λs generally runs to larger values irrespective
of its starting value, whereas for h− inflation, λh can run upwards or downwards depending on whether the starting
value is large or small. Therefore, if λh does not start out with a sufficiently large value, it could run to negative
values (which is indeed the problem with the standard model Higgs potential).

The third plot (bottom left) in Figure 6 showing mixing angle ϕ as a function of the quartic coupling λsh indicates
that the mixing angle tends to be larger for the Higgs inflation points. This is, again, expected because the standard
model Higgs potential is unstable and the mixing angle should be large enough to allow λh to stay positive. The
s-potential does not necessarily have such an instability, and therefore it is less dependent on the λ2sh term in its
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FIG. 5. On the left side, dark matter massmψ plotted against the scalar massms. The dashed lines correspond tomψ = (1/2)ms

and mψ = (1/2)mh respectively. On the right side, the dark matter Yukawa coupling yψ is plotted against dark matter mass
mψ. The green points correspond to h−inflation and the red points correspond to s−inflation. Note that many green points
coincide with red points, indicating a potential that can support both h−inflation and s−inflation.

beta-function for stability.
The fourth plot in Figure 6 compares ξ to

√
λ along the inflationary axis and shows an approximate linear behavior.

Given that the inflationary potential at large scales is proportional to λ/ξ2 and the slow roll parameter εV at that
scale is approximately the same order of magnitude for all our data points, this correlation is consistent with imposing
the constraint from ∆2

R in Eq. (16).
Figure 7 showing ns − r predictions for h− and s− inflation is the main result of our paper. From the plot we

can see that inflationary predictions for h- and s−inflation are not markedly different. This is expected, because at
the inflationary scale, both types of inflation involve a scalar field with a quartic potential and quadratic nonminimal
coupling to gravity; the running behavior does not significantly affect results. It is also clear that our model generically
predicts low tensor to scalar ratio and therefore most of our data points are well within the region selected by Planck.

VI. CONCLUSIONS

In this paper, we studied a model of inflation that involves a gauge singlet scalar and fermionic dark matter. The
mixing between the Higgs and the scalar singlet provides a portal to dark matter. Either the singlet scalar or the
Higgs plays the role of the inflaton field, with the non-minimal coupling to gravity providing the correct shape of the
potential for realizing successful inflation.

1. We considered the simplest case of the inflaton rolling along the Higgs-axis (h− inflation) or the scalar axis
(s−inflation). Both types of inflation generically produce ns − r values consistent with current Planck bounds.

2. Both types of inflation generically yield small values of tensor-to-scalar ratio comparable to tree level Higgs
inflation models, and a wide range of ns values including those outside of the Planck allowed regions.

3. The stability of the Higgs potential can be easily restored through the coupling with the singlet scalar.

4. The dark matter and perturbativity/stability constraints ensure that only points near the resonance regions,

mψ =
1

2
ms or mψ =

1

2
mh, successfully satisfy all the constraints. This is a significant restriction on the param-

eter space.

5. The new scalar mass can be as small as 200 GeV or as large as O(TeV). For smaller masses, the mixing angle
with the Higgs is less constrained while for larger masses the angle must be small enough due to decoupling
behavior.

6. Due to different running behavior on λh and λs, the upper bound on mixing angle coming from the perturbativity
requirement is more constraining (lower) for s−inflation, while the lower bound coming from the stability
requirement is more constraining (higher) for h−inflation, as seen from Fig. 4.
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FIG. 6. The figure on the top left shows λh and λs at the electroweak scale. The figure on top right shows the λ at the
inflationary scale as compared to λ at the electroweak scale, λ being λh or λs for h− or s−inflation (the black line corresponds
to y = x). The figure on the bottom left shows mixing angle ϕ versus λsh at the electroweak scale. The figure on the bottom

right shows
√
λ as a function of nonminimal coupling ξ evaluated at the scale of inflation. In all the plots, the green points

correspond to h−inflation and the red points correspond to s−inflation.

It is interesting to see that the favored parameter region could be further explored in near future. The constraint
on the dark matter direct detection cross section is set to become more restrictive in the coming years. Similarly,
the new run of LHC is expected to constrain the allowed range of mixing angle ϕ for larger values of ms. Based
on Figs. 3 and 4, it is clear that this would certainly restrict our parameter space further. Moreover, the ongoing
and upcoming CMB B-mode searches are expected to detect or further constrain the tensor-to-scalar ratio in the
coming years, which could improve the distinguishing power between different inflationary models. The inflationary
predictions of our model could potentially be verified with this higher level of sensitivity.
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FIG. 7. ns − r values for h−inflation and s−inflation. The plot on the left shows the complete range of Planck 2015 [2] 68%
(red) and 95% (blue) confidence limits, while the right plot zooms into the location of our data points. The filled green points
(squares) correspond to h−inflation and the empty red points correspond to s−inflation.

VII. APPENDIX

A. Appendix A: Beta Functions

The following are the one-loop beta functions for the various parameters in the Lagrangian. We use the electroweak
scale values of the various couplings consistent with [52].

βgs =
g3s

(4π)2
(−7) +

g3s
(4π)4

(
11

6
g′2 +

9

2
g2 − 26g2s − 2xφy

2
t

)
,

βg =
g3

(4π)2

(
−39− xφ

12

)
+

g3

(4π)4

(
3

2
g′2 +

35

6
g2 + 12g2s −

3

2
xφy

2
t

)
,

βg′ =
g′3

(4π)2

(
81 + xφ

12

)
+

g′3

(4π)4

(
199

18
g′2 +

9

2
g2 +

44

3
g2s −

17

6
xφy

2
t

)
,

βλh =
1

(4π)2

(
6(1 + 3x2φ)λ2h − 6y4t +

3

8
(2g4 + (g2 + g′2)2) + λh(−9g2 − 3g′2 + 12y2t ) +

1

2
λ2shx

2
s

)
,

βλsh =
λsh

(4π)2

(
12x2φλh + 4xφxsλsh + 6x2sλs + 6y2t + 2y2ψ −

9

2
g2 − 3

2
g′2
)
,

βλs =
1

(4π)2
(18x2sλ

2
s + 4λsy

2
ψ + 2x2φλ

2
sh − 2y4ψ),

βyψ =
y3ψ

(4π)2

(
9xs
2

)
,

βyt =
yt

(4π)2

[
−9

4
g2 − 17

12
g′2 − 8g2s +

23 + 4s

6
y2t

]
,

βξφ =
1

(4π)2

(
ξφ +

1

6

)[
−3

2
g′2 − 9

2
g2 + 6y2t + (6 + 6xφ)λh + λsh

]
,

βξs =
1

(4π)2

(
ξs +

1

6

)
× [6xsλs + (xφ + 3)λsh] . (31)

Here, g, g′ and yt are the standard model SU(2), U(1) and top-quark Yukawa couplings, and we also define

xφ =
1 + ξhh

2/M2
pl

1 + ξhh2/M2
pl + 6ξ2hh

2/M2
pl

,

xs =
1 + ξss

2/M2
pl

1 + ξss2/M2
pl + 6ξ2ss

2/M2
pl

. (32)
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B. Appendix B: Conformal Transformation

Here is a tool kit for obtaining the Einstein frame from an Rf(φ) type gravitational non-minimal coupling theory.
Under an arbitrary conformal transformation g → g̃ = Ω2g, the Ricci scalar transforms as

R[g] = Ω2R[g̃]− 6Ω�̃Ω, (33)

where R[g] is the Ricci scalar as a functional of a given metric g, and �̃ is the d’Alembertian for metric g̃. We find that
the homogeneous part naturally arises as a coupling between gravity and the conformal factor. Once the conformal
factor is given by some dynamical quantum fields, this coupling will serve as a gravitational non-minimal coupling.
Furthermore, the inhomogeneous part will act as a modification of the kinetic term of these quantum fields.

Starting with the action in Jordan frame

SJ =

∫
d4x
√
−g
[
−M

2
P

2
R[g]f(φ) +

1

2
gµν∂µφ∂νφ

]
, (34)

we can get rid of the non-minimal coupling by peforming a conformal transformation with

Ω2 = f(φ), (35)

but paying the price of the modification of the scalar kinetic term from the inhomogeneous part

Lkin =
1

2

[
3M2

P (dΩ2/dφ)2

2Ω4
+

1

Ω2

]
(∂φ)2 . (36)

This makes the field φ not canonically normalized any more in the Einstein frame.
In order to compute quantum correction, one needs to find a way to deal with the normalization. One way is to

define a canonically normalized field χ by

dχ

dφ
=

√
3M2

P (dΩ2/dφ)2

2Ω4
+

1

Ω2
, (37)

so that the kinetic term for χ has the standard normalization. This is used when we connect the potential with
the inflation parameters, as the latter is defined by canonically normalized fluctuations. Another way we adopt to
compute the quantum correction to the potential is to modify the Feynman rule for the scalar propagator. The
canonical momentum for φ is

π =

[
3M2

P (dΩ2/dφ)2

2Ω4
+

1

Ω2

]
g̃00φ̇ ≡ φ̇

x(φ)
, (38)

so that

[φ, φ̇] = x(φ)[φ, π], (39)

indicating that a factor of x(φ) should be added to the Feynman rule of the propagator. This factor is hence defined
as

x(φ) =
Ω2

Ω2 + 3
2M

2
P (dΩ2/dφ)2

. (40)

In the case of multiple scalar fields, the kinetic term is in general

Lkin =
1

2
γij∂µφi∂

µφj , (41)

where

γij =
3M2

P (dΩ2/dφi)(dΩ2/dφj)

2Ω4
+

1

Ω2
(42)

is the field space metric, which may be intrinsically curved, so that the fields can never be canonically normalized
globally. In our model, the off-diagonal terms in the metric always vanish along the axis. It means that as long as
the state is guaranteed to stay on one of the axes, we can ignore the curved nature of the field space.
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C. Appendix C: Dark Matter Annihilation Cross Section

For s-channel annihilation mediated by H = (h, S), the cross section has the form

〈σvrel〉(s) =
η

16πs
× 2βψ

∑
f

∣∣∣∣∣∑
r∈H

yrgf,r
s−m2

r + imrΓr

∣∣∣∣∣
2

Afγf

 , (43)

where βi = 1
2 (s − 4m2

i ) comes from the spin average of the initial dark matter state, and f runs over all the final
states. The coupling gf,r is any coupling between final state f and the scalar r ∈ H, and Af is the spin structure

of the final state f . η is 1/2 for identical particles like ZZ SS or hh, otherwise it is 1; γf =

√
1− 4m2

f

s and

γij =

√
1− 2(m2

i+m
2
j )

s +
(m2

i−m2
j )

2

s2 come from the phase space integration. For the cases we are interested in, we have

f = (qq̄,W+W−, ZZ,HH):

Aq = Nc × 4βq , (44)

AW,Z =

(
2 +

(s− 2m2
W,Z)2

4m4
W,Z

)
, (45)

AH = 1 , (46)

where Nc = 3 for quark and Nc = 1 for lepton. The couplings gf,r are

yr =
mψ

v
×
{
sϕ, r = h ,
cϕ, r = s ,

(47)

gq,r =
mq

v
×
{
cϕ, r = h ,
−sϕ, r = s ,

(48)

gW/Z,r =
2m2

W/Z

v
×
{
cϕ, r = h ,
−sϕ, r = s ,

(49)

λhhh = −6λhvc
3
ϕ − 3λsh(vcϕs

2
ϕ + uc2ϕsϕ)− 6λsus

3
ϕ , (50)

λshh = 6λhvc
2
ϕsϕ − λsh(v(−1 + 3c2ϕ)sϕ + ucϕ(1− 3s2ϕ))− 6λsucϕs

2
ϕ , (51)

λssh = −6λhvcϕs
2
ϕ − λsh(vcϕ(1− 3s2ϕ) + u(1− 3c2ϕ)sϕ)− 6λsuc

2
ϕsϕ , (52)

λsss = 6λhvs
3
ϕ − 3λsh(−vc2ϕsϕ + ucϕs

2
ϕ)− 6λsuc

3
ϕ , (53)

where cϕ ≡ cosϕ and sϕ ≡ sinϕ. When the final states are the scalars, we also have t, u channels and interference
contributions:

〈σvrel〉(t,u)ij =
η

16πs
γij × 2y2i y

2
j

[
− 2 +

(4m2
ψ −m2

i )(4m
2
ψ −m2

j )

D2 −A2

−

{
16m4

ψ − 4m2
ψs−m2

im
2
j

2AD
+
s+ 8m2

ψ −m2
i −m2

j

2D

}
log

∣∣∣∣A+D

A−D

∣∣∣∣
]
,

〈σvrel〉(int)ij =
η

16πs
γij × 4yiyjmψ

[
−2 +

{
A

D
+
s− 4m2

ψ

D

}
log

∣∣∣∣A+D

A−D

∣∣∣∣
]∑
k∈H

ykλijk(s−m2
k)

(s−m2
k)2 +m2

kΓ2
k

.

(54)

where A = 1
2 (m2

i +m2
j − s) and D = 1

2

√
[s− (mi +mj)2][s− (mi −mj)2](s− 4m2

ψ)/s are defined as in the literature
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