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The Weak Annihilation Cusp inside the Dark Matter Spike About a Black Hole

Stuart L. Shapiro1, ∗ and Jessie Shelton1

1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM)
in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic,
analytic model for an isotropic phase space distribution function that accounts for annihilation and
reproduces the “weak cusp” found by Vasiliev for DM deep within the spike and away from its
boundaries. The DM density in the cusp varies as r−1/2 for s-wave annihilation, where r is the
distance from the central black hole, and is not a flat “plateau” profile. We then extend this model
by incorporating a loss-cone that accounts for the capture of DM particles by the hole. The loss-cone
is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic
distribution function. Finally, we evolve an initial spike distribution function by integrating the
Boltzmann equation to show how the weak cusp grows and its density decreases with time. We
treat two cases, one for s-wave and the other for p-wave DM annihilation, adopting parameters
characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density
profile for p-wave annihilation is weaker, varying like ∼ r−0.34, but is still not a flat plateau.

PACS numbers: 95.35.+d, 98.62.Js, 98.62.-g

I. INTRODUCTION

A supermassive black hole (SMBH) will steepen the
density profile of dark matter (DM) within the hole’s
sphere of influence, rh = GM/v20 . Here, M is the mass
of the hole and v0 is the (1D) velocity dispersion in the
innermost halo just outside rh. The precise profile for
this DM density spike depends both on the properties of
DM and the formation history of the SMBH. If the DM
is collisionless with a cuspy, spherical, inner halo density
obeying a generalized Navarro-Frenk-White (NFW [1])
profile then the density profile in the absence of the hole
will follow a power-law, ρ(r) ∼ r−γc . Simulations with
DM alone yield typical values of 0.9 <∼ γc <∼ 1.2 [2, 3],
but if baryons undergo dissipative collapse into the disk
they can induce the adiabatic contraction of the central
DM halo into a steeper power law [4–6], with values as
high as γc ∼ 1.6 allowed for the Milky Way [7].

If the SMBH grows adiabatically from a smaller
seed [8] the SMBH then modifies the profile inside rh,
forming a DM spike within which ρ(r) ∼ r−γsp , where
γsp = (9 − 2γc)/(4 − γc) [9]. For 0 < γc ≤ 2 the power-
law γsp varies at most between 2.25 and 2.50 for this
case. However, gravitational scattering off of a dense
stellar component inside rh could heat the DM, soften-
ing the spike profile and ultimately driving it to a final
equilibrium value of γsp = 1.5 [10–12], or even to dis-
ruption [13]. Other spikes, characterized by other power
laws, are obtained from different formation histories for
the BH within its host halo, such as the sudden forma-
tion of a SMBH through mergers or gradual growth from
an inspiraling off-center seed [14], or in the presence of
DM self-interactions [15], as reviewed in e.g. [16, 17].
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DM annihilations in the innermost region of the spike
weaken the density profile there. For standard WIMP
models, wherein the annihilation cross section 〈σv〉 is a
constant (i.e., s-wave annihilation) it was suggested [9]
that an “annihilation plateau” would form at the central
region of the spike, in which case the DM profile would
be flat. Let r = rann be the radius at which the DM den-
sity in the spike reaches ρann, the “annihilation plateau”
density. At this radius the annihilation timescale equals
the Galaxy age T , so that

ρann =
mχ

〈σv〉T
(1)

Here mχ is the DM particle mass.
Vasiliev [18] subsequently showed that an annihilation

plateau arises only if all DM particles move in strictly
circular orbits about the central black hole. He demon-
strated that if the DM distribution function is isotropic,
which he noted was likely, the density continues to rise
with decreasing distance r from the black hole, forming a
“weak cusp” and not a plateau. Within the weak cusp the
density increases as r−1/2 for s-wave annihilation. The
reason is that particles in eccentric orbits with apocen-
ters outside rann continue to contribute to the density
inside rann and thereby maintain a weak inner cusp.

The distinction between an “annihilation plateau” and
a “weak cusp” may have important observational con-
sequences. Due to their extraordinarily high DM densi-
ties, BH-induced density spikes can appear as very bright
gamma-ray point sources in models of annihilating DM
[9–11, 17, 19–22]. Many of these models are now be-
coming detectable with the current and near-future high-
energy gamma ray experiments, and indeed the excess of
∼ 1 − 5 GeV gamma rays from the inner few degrees
of the Galactic Center (GC) observed by Fermi may be
prove to be a first signal of annihilating DM [23–25], al-
though tension with limits from dwarf galaxies [26] and
the statistical properties of the photons in the GC ex-
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cess, [27, 28] may indicate an astrophysical explanation
for the GC excess such as a new population of pulsars
(see, e.g. , [29–31]). In any case, self-annihilating DM
within a spike can easily lead to gamma-ray point sources
bright enough to be seen potentially by existing gamma-
ray telescopes [17, 22]. Now the dominant contribution
to the annihilation signal from the spike comes from the
region near rann. This holds whether it originates from
DM s-wave or from p-wave annihilations [17, 22]. The
magnitude of the signal thus depends on the density and
velocity profiles in the region where the spike transitions
to a weak cusp.

This result seems not be have been fully appreciated,
since it has not been incorporated in many recent ap-
plications. Consequently it seems worthwhile to revisit
the issue. In general, a weak cusp of this form is ob-
tained whenever DM initially following a power-law den-
sity profile attains sufficiently high densities that its self-
annihilation becomes important. Thus in principle a
weak cusp can form even in the absence of a spike, e.g.
for a standard NFW cusp, γc = 1. In practice, given
typical Galactic parameters and a thermal s-wave anni-
hilation cross-section, the DM density would only reach
ρann for radii very near the BH, rendering the weak cusp
observationally insignificant. For p-wave annihilations,
and for γc <∼ 1, the weak cusp would not exist at all in
this case.

We begin by providing a simple physical argument
leading to analytic expressions for an isotropic phase
space distribution function and resulting density and ve-
locity dispersion profiles in a DM spike with a weak cusp.
Our radial density profile for this case agrees with the
result found by Vasiliev [18], who provided a scaling ar-
gument that also allows for an anisotropic initial spike.
We next refine our analytic model by incorporating a
loss-cone boundary condition that accounts for the di-
rect capture of DM particles by the black hole, making
the distribution anisotropic. Finally, we integrate the col-
lisionless Boltzmann equation numerically, allowing for
an anisotropic distribution function, and study how the
weak cusp forms in the spike and grows with time. We
again confirm the numerical results reported in [18] for
s-wave annihilation but now we extend the analysis to in-
clude p-wave annihilation, with cross sections that vary
as 〈σv〉 ∝ v2(r)/c2, where v(r) is the DM velocity disper-
sion and c the speed of light. We find that the annihila-
tion cusp is even weaker (i.e. less steep) for p-wave than
for s-wave annihilations, but it still is not a flat plateau.

In Section II we present our simple, pedagogic, analytic
model for an isotropic DM spike with a weak cusp and in
Section III we improve the model by including a capture
loss-cone, which induces an anisotropy. In Section IV
we solve the Boltzmann equation directly and determine
the time-dependent growth of the weak cusp, both for s-
wave and p-wave DM annihilations. We adopt units with
G = 1 = c unless otherwise noted.

II. ISOTROPIC MODEL: f = f(E)

A. Density

An isotropic distribution function for a stationary dis-
tribution of collisionless matter of a single species is of the
form f = f(E), where E is the energy per unit mass of a
particle. We adopt Newtonian gravitation and consider
the energy of particles in orbit about the black hole:

E =
1

2
v2 + Φ(r), Φ(r) = −M

r
. (2)

The mass density in the spike is obtained from the
distribution function f(E) according to

ρ(r) = 4π

∫
v2fdv

= 4π

∫ 0

−M/r

[2(E +
M

r
)]1/2f(E)dE (3)

We will adopt the following simplification: let there
be no surviving particles with orbits that reside entirely
within rann, while let the particles whose orbits are ei-
ther partly or entirely outside rann be described by the
unperturbed spike distribution function. Thus we assume
that all particles that orbit entirely within rann have been
annihilated in the age of the Galaxy, while those which
spent part or all of their time outside this radius have
avoided annihilation altogether. Crudely, particles spend
most of their time near apocenter, not pericenter, so they
are more likely to survive whenever their orbits take them
outside rann. Mathematically, this assumption may be
expressed as

f = f(E), 0 ≥ E ≥ −M/rann,

= 0, E < −M/rann (4)

Inserting eqn. (4) into eqn. (3) yields

ρ(r) = 4π

∫ 0

−M
r

[
2

(
E +

M

r

)]1/2
f(E)dE, r ≥ rann, (5)

= 4π

∫ 0

− M
rann

[
2

(
E +

M

r

)]1/2
f(E)dE, r < rann. (6)

By construction eqn. (5) gives the unperturbed spike
profile for all r ≥ rann. Substituting the variable y =
−Er/M and adopting a power-law spike distribution
function, f(E) = K|E|p, where K is a (normalization)
constant, we obtain

ρ(r) = 25/2πI1/2(p; 1)K

(
M

r

)(p+3/2)

= ρann

(rann
r

)(p+3/2)

, r ≥ rann, (7)

where

I1/2(p; q) ≡
∫ q

0

(1− y)1/2ypdy, (8)
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and I1/2(p; 1) = B(p + 1, 3/2), where B(x, y) is the
familiar beta function. For a power-law spike profile
γsp = p+ 3/2.

Consider now the density profile for r < rann given by
eqn. (6),

ρ(r) = 25/2πI1/2(p;
r

rann
)K

(
M

r

)(p+3/2)

(9)

= ρann
I1/2(p; r

rann
)

I1/2(p; 1)

(rann
r

)(p+3/2)

, r < rann.

Here I1/2(p; r
rann

)/I1/2(p; 1) = B(p + 1, 3/2; r
rann

), where

B(a, b;x) is the incomplete beta function. Evaluating the
density for r/rann � 1, noting I1/2(p, q) ≈ qp+1/(p + 1)
for q � 1, yields

ρ(r) ≈ 25/2π

p+ 1
K

(
M

rann

)(p+1)(
M

r

)1/2

=
ρann

(p+ 1)I1/2(p; 1)

(rann
r

)1/2
, r � rann. (10)

Eqn (10) is exactly what we set out to prove: the density
well inside rann scales like r−1/2. Notice that this scaling
behavior is independent of the power p. A continuous
match between the inner and outer spike profiles can be
obtained by numerically evaluating eqn. (9) and joining
it onto eqn. (7), which we do in Fig. 1.

In the absence of annihilation, the adiabatic spike that
forms in a DM cluster initially characterized by a power-
law density profile ρ(r) ∼ r−γ , 0 < γ < 2 gives rise to a
power-law profile with 2.25 < γsp < 2.50 [9]. The profiles
when annihilation is incorporated are plotted in Fig. 1
for the limiting values of γsp. A DM cluster that has an
isothermal (and not a power-law) core initially forms an
adiabatic spike with γsp = 1.5 [8]. The spike profile for
this value (which may also be reached if the DM spike
is subsequently heated by scattering off stars [10, 11]) is
also shown in the figure, again allowing for annihilations.

It can be shown that the contribution of DM particles
unbound to the BH, with energies E = 3v20/2 > 0, also
scales as r−1/2 everywhere inside the BH zone of influ-
ence, i.e r <∼ M/v20 (see [32], eqn. (14.2.22)). However,
their contribution inside rann is much smaller in magni-
tude than the contribution of (eccentric) bound particles,
as the spike density of these contributing bound particles
is much larger than unbound particles.

We also note that at first glance there is nothing in
the above argument that distinguishes s-wave from p-
wave annihilation. The key point is that the timescale
for annihilation decreases with decreasing r in a canoni-
cal spike. It is this feature that is reflected in equation (4)
for the distribution function. This decrease is even more
rapid as r decreases for p-wave than for s-wave annihi-
lation, given the additional velocity dependence in the
former case. So we again expect a weak cusp to form in
the innermost region about the black hole. However, we
note that in the case of p-wave annihilation the annihi-
lation density ρann given by eqn. (1) is not a constant

FIG. 1: DM density profile in an adiabatic spike around a
black hole, allowing for annihilation. For r ≥ rann the density
varies as r−γsp , where γsp = 2.5 (black solid line), 2.25 (blue
dotted line) and 1.5 (red dashed line). For r < rann annihi-

lations soften the spike to a “weak cusp” with ρ(r) ∼ r−1/2.
Here ρ and r are normalized to their values at rann.

but decreases with decreasing radius. For purely circu-
lar orbits we would then expect that instead of a flat
plateau density profile inside rann we would have a den-
sity that decreases as r decreases. As the orbits in the
cusp are dominated by highly eccentric and not circular
orbits, the cusp will not exhibit this decrease. However,
we do anticipate that the cusp profile for p-wave anni-
hilations will be somewhat weaker (i.e. flatter) than for
s-wave annihilations due to the decreasing value of ρann
with decreasing distance. This expectation is borne out
by our solution to the Boltzmann equation in Section IV.

The canonical profiles for an adiabatic spike differ con-
siderably from those arising in the case of self-interacting
DM (SIDM), as shown in [15]. Moreover, the effects of
annihilation are washed out for SIDM, as the the distri-
bution function is constantly replenished inside rann by
DM elastic scatterings. Hence there is no transition to a
“weak cusp” inside the spike for SIDM.

Finally, we emphasize that equation (4) for the distri-
bution function is only approximate. The true distribu-
tion function, though spherical, is not strictly isotropic
and is better described by a function of the form f(E, J),
where J is the angular momentum per unit mass of a DM
particle. To obtain the correct function an integration
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of the time-dependent Boltzmann equation with an an-
nihilation sink term is required to determine f(E, J ; t).
Vasiliev performed such an integration for s-wave anni-
hilation. We will repeat the calculation in Section IV,
incorporating a capture loss-cone, and also do the calcu-
lation for p-wave annihilation.

B. Velocity Dispersion

Now consider the (3-d) velocity dispersion everywhere
in the spike. It is obtained from

v2(r) =
4π

ρ(r)

∫
v4fdv

=
4π

ρ(r)

∫ 0

−M/r

[
2

(
E +

M

r

)]3/2
f(E)dE,(11)

which, when eqn. (4) is inserted, yields

v2(r) =
27/2π

ρ(r)
KI3/2(p; 1)

(
M

r

)p+5/2

, r ≥ rann, (12)

=
27/2π

ρ(r)
KI3/2(p;

r

rann
)

(
M

r

)p+5/2

, r < rann.

(13)

Here

I3/2(p; q) ≡
∫ q

0

(1− y)3/2ypdy, (14)

where I3/2(p; 1) = B(p + 1, 5/2) and where
I3/2(p; r/rann)/I3/2(p; 1) = B(p + 1, 5/2; r/rann).
Evaluating eqs. (12) and (13), using eqs. (7), (9) and
(10) for n(r), yields

v2(r) =
3

p+ 5/2

M

r
, r ≥ rann, (15)

= 2
I3/2(p; r/rann)

I1/2(p; r/rann)

(
M

r

)
, r < rann, (16)

and

v2(r) ≈ 2
M

r
, r � rann. (17)

The corresponding values for the 1-d velocity disper-

sion v2
î
(r) = v2(r)/3, î = {r̂, θ̂, φ̂}, are

v2
î
(r) =

1

p+ 5/2

M

r
, r ≥ rann, (18)

=
2

3

I3/2(p; r/rann)

I1/2(p; r/rann)

(
M

r

)
, r < rann, (19)

and

v2
î
(r) ≈ 2

3

M

r
, r � rann. (20)

FIG. 2: DM velocity dispersion (3D) in an adiabatic spike
around a black hole, allowing for annihilation. Curves are
labeled as in Fig. 1. Here v is normalized to (M/r)1/2, where
M is the mass of the black hole.

Hence in both power-law regimes, with ρ(r) ∼ r−β , where
β = p + 3/2 for r ≥ rann and β = 1/2 for r � rann, we
find v2

î
(r) = v2(r)/3 = M

r
1

1+β , as assumed in [17]. A

continuous transition between the inner and outer spike
is obtained by evaluating eqn. (13) numerically for 0 <
r/rann < 1. We do this in Fig. 2 for the profiles shown
in Fig. 1.

Finally, we note that the above results should apply
well to p-wave as well as s-wave annihilations, allowing
for the smaller value of rann and the slight decrease in β
in the weak cusp for p-wave annihilations (from β = 0.5
to β ≈ 0.34; see Section IV).

III. LOSS-CONE: f = f(E, J)

We now incorporate a realistic inner boundary condi-
tion that all particles that ever reach inside rbh = 4M
are captured by the black hole within a single orbital
period. As a result, since DM is assumed collisionless
(except for annihilations), those capture orbits are never
replenished and the distribution function vanishes for
these trajectories. Here we take rbh to be the radius
of marginally bound circular orbits and the minimum
periastron of all parabolic orbits about a Schwarzschild
black hole [15, 32, 33]. This capture constraint induces
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a loss-cone in phase space: for any particle of energy E,
there are no particle orbits with angular momentum per
unit mass satisfying J ≤ Jloss(E), where Jloss(E) is the
angular momentum at which rp(E, Jloss) = rbh. Here
rp(E, J) is the pericenter radius of bound particles of
energy E and angular momentum J in (elliptical) orbit
about the black hole. Accordingly, we have

Jloss(E) = rbh

[
2

(
E +

M

rbh

)]
. (21)

Following [18], we change phase-space variables from
{E, J} to {E,R}, defining R ≡ J2/J2

c , where Jc =
M/(−2E)1/2 is the angular momentum of a circular orbit
of energy E. Hence 0 ≤ R ≤ 1. Eqn. (21) then gives

Rloss(E) = 4
rbh
M

(|E|(1− |E|rbh
M

), 0 ≥ E ≥ − M

(2rbh)
,

(22)

Orbits with E < −M/(2rbh) cannot avoid penetrat-
ing the inner boundary at rbh and hence don’t sur-
vive capture. Annihilations thus are relevant only when
rann > 2rbh. Incorporating the loss-cone boundary condi-
tion in our simple distribution function that accounts for
annihilations when rann > 2rbh yields a two-dimensional
distribution function,

floss(E,R) = f(E), 0 ≥ E ≥ − M

rann
and R ≥ Rloss(E),

= 0, E < − M

rann
or R < Rloss(E). (23)

The above form guarantees that floss(E,R) = 0 for all
E < −M/(2rbh). Strictly a function of the integrals of
motion E and J (or E and R), floss(E,R) is a steady-
state solution of the collisionless Boltzmann equation, ac-
cording to Jeans Theorem.

Obtaining the density and velocity dispersion profiles
generated by this distribution function requires a two-
dimensional integration over velocity space inside the
spike. Using the expression

d3v =
2πJ2

c dRdE

r2|vr̂|
, (24)

where vr̂ is the radial velocity, we determine these mo-
ments according to

ρ(r) = 2−1/2π

(
M

r

)3/2

(25)

×
∫ 1

0

dε

ε

∫ 4ε(1−ε)

0

dR floss(−
ε

r
,R)

1√
1− ε− R

4ε

,

ρv2(r) = 21/2π

(
M

r

)5/2

(26)

×
∫ 1

0

dε(1− ε)
ε

∫ 4ε(1−ε)

0

dR floss(−
ε

r
,R)

1√
1− ε− R

4ε

,

where ε ≡ −Er/M .
The results of the integrations are shown in Fig. 3 for

density profiles and Fig. 4 for the velocity profiles. Shown
are curves for the same power-law spikes f(E) = K|E|p
plotted in Figs 1 and 2, but now clipped in R in accord
with Eqn. (23). Here we normalize radii to a fiducial
outer spike radius r0, where the density is assumed to be
ρ0. We fix the annihilation radius at rann/r0 = 2.2×10−3

and the capture radius at rbh/r0 = 5× 10−8. As we will
see in the next section, if we assign r0 to reside near
the outer radius of the DM spike, where the particles
bound to the black hole join onto the ambient nuclear
core, then these dimensionless ratios are within an order
of magnitude of those inferred for the DM spike in the
Milky Way. In this case r0 ≈ M/v20 , where v0 is the
velocity disperson characterizing the the nuclear core and
M is the mass of Sgr A*. We postpone making a more
careful match to realistic Milky Way parameters to the
next section.

As is intuitive, the above density profiles differ little
from those found in the absence of a loss-cone bound-
ary condition, except at radii approaching rbh, where
the loss-cone grows to occupy an appreciable fraction
of phase space. For rbh <∼ r � rann we again find

n(r) ∼ r−1/2. The magnitude of the 3-d velocity dis-
persion remains fairly insensitive to the presence of the
loss-cone, but the eccentric orbits, which dominate the
weak cusp, are also destroyed as r → rbh.

IV. EVOLUTION: f(E,R; t)

We now consider the evolution with time of the DM
profile in the spike by integrating the Boltzmann equa-
tion directly, allowing for annihilation. We adopt the ap-
proach in [18], but now we incorporate a loss-cone bound-
ary condition in f(E,R; t) and treat two cases: one for s-
wave and the other for p-wave annihilation. We again as-
sume that the black hole grew to its present mass M adia-
batically at the center of the inner, spherical, DM Galac-
tic halo, where the density profile was ρ(r) ∼ r−γc , and
that this growth occurred over a time t� T = 1010 yrs.
The result is the formation of a DM spike about the
black hole that obeys a new power-law density profile
ρ(r) ∼ r−γsp , with γsp = (9 − 2γc)/(4 − γc) [9], corre-
sponding to a power-law phase-space distribution func-
tion f(E) ∝ |E|p with p = γsp − 3/2.

We specialize to parameters appropriate to the Milky
Way nucleus and typical WIMP particle models, which
is the basis of the “canonical” adiabatic spike in [17, 22].
We recall that γc = 1 is the standard NFW value for
the central DM halo. Following [17] we take instead
γc = 1.26, the best-fit value reported in [23] , which pro-
vides a recent analysis of the Fermi data of the ∼ 1 − 3
GeV gamma-ray excess from the Galactic center and the
possibility that it might be a signal of DM annihilations.
This value then yields γsp = 2.36 and p = 0.86 for an
adiabatic spike.
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FIG. 3: DM density profile in an adiabatic DM spike around
a black hole, allowing for annihilation and black hole capture.
Curves are labeled as in Fig. 1. The densities and radii are
normalized to their values at fiducial radius r0 in the outer
spike. The annihilation radius is fixed at rann/r0 = 2.2×10−3

and the capture radius at rbh/r0 = 5 × 10−8.

The outer boundary of the spike is taken to be at
rb = 0.2rh = 0.34 pc, where rh = M/v20 , M = 4 ×
106 M� [34, 35] and v0 = 105 kms−1 [36]. The inner
boundary is at rbh = 6× 106 km. From the DM density
in the solar neighborhood, ρD = 0.008 M�pc−3 [37] at
a distance D = 8.5 kpc from the Galactic center [23],
we infer the DM density at rb to be ρb = ρD(D/rb)

γc =
2.8× 103 M�pc−3.

The DM annihilation cross sections are given by

〈σv〉 = 〈σv〉can

(
v2

v2fo

)s
(27)

where s = 0 for s-wave annihilation and s = 1 for p-wave
annihilation. Here we follow [17, 23] and take 〈σv〉can =
1.7 × 10−26 cm3s−1, close to the value expected for a
thermal relic origin of DM, with the freeze-out parameter
vfo = c/4 for s = 1. For the DM mass we choose mχ =
35 GeV.

Given the above particle models we calculate that
at t = T = 1010 yrs the annihilation plateau
densities defined by Eqn. (1) in the DM spike are
ρann(s−wave) = 1.7× 108 M�pc−3 and ρann(p−wave) =
6.6× 1010 M�pc−3. These densities are reached at radii
rann(s−wave) = 3.1 × 10−3 pc and rann(p−wave) =

FIG. 4: DM velocity dispersion (3D) in an adiabatic DM spike
around a black hole, allowing for annihilation and black hole
capture. Curves are labeled and parameters assigned as in
Fig. 3. Here v is normalized to (M/r)1/2.

2.5 × 10−4 pc in the spike, within which we expect the
density spike to transition to a weak cusp. The cusp is
smaller for p-wave than for s-wave annihilation since the
annihilation cross-section is reduced by ∼ v2/c2, so the
timescale for p-wave annihilation to destroy matter in the
innermost spike is correspondingly longer.

The Boltzmann equation may be written as

∂f(r,v; t)

∂t
= −ρ(r)

mχ
〈σv〉f(r,v; t), (28)

which can be transformed to yield

∂f(E,R; t)

∂t
= −ρ〈σv〉

mχ
f(E,R; t), (29)

or

∂f(E,R; τ)

∂τ
= − ρv2s

ρav2sfo
f(E,R; τ). (30)

Here τ = t/T , ρa is given by Eqn. (1) for s = 0, and is
thus a constant, and the overbar denotes a radial average
over orbital period P (E),

ρv2s =
1

P (E)

∮
ρ(r)v2s(r)

dr

vr̂
(31)

=

∫ 1+
√
1−R

1−
√
1−R

ρ(xrc)v
2s(xrc)

dx

π
√

2/x− 1−R/x2
.
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In writing Eqn. (31) we set r = xrc, where rc =
M/(−2E) is the radius of a circular orbit with energy
E. The profiles for ρ and v appearing in the integrands
in Eqn. (31) are obtained at time τ from Eqn (25), with
floss(E,R) replaced by the current value of f(E,R; τ).
Loss-cone boundary conditions are imposed throughout
the evolution. We take as initial data an adiabatic dis-
tribution function specified by Eqn. (23), with f(E) =
K|E|p, p = 0.86 and rann = 0 (i.e., no annihilation im-
print at τ =0).

We integrate the evolution Eqn. (30) by finite differ-
encing in E and R and evolving in time τ by a first-order
semi-implicit method. All time integrations and phase-
space quadratures are repeated with finer resolution to
check reliability. Results for the density and velocity pro-
files are summarized in Figs. (5) and (6), respectively.

The s-wave profile in Fig. (5) exhibits a weak cusp in-
side the annihilation region at each time, within which
the density varies as r−1/2. This result is in accord with
our simplfied models constructed in Sections II and III.
As ρann decreases with time, the weak cusp grows, eating
its way outward into the steeper spike. The p-wave profile
behaves qualitatively similarly, with two notable differ-
ences. The first is that for the same evolution time the
p-wave cusp is smaller, as described above. The second
is that the p-wave cusp is somewhat shallower, varying
as r−0.34 rather than r−1/2. This may be understood by
noting that the annihilation plateau density ρann given
by Eqn. (1) decreases with decreasing distance from the
black hole, since the velocity dispersion and annihilation
cross-section increase. Hence while the cusp is still filled
with high eccentricity particles from outside the cusp that
plunge inside at pericenter, the lower eccentricity parti-
cles in the cusp are driven to lower (“plateau”) densities
the closer they are to the black hole. This effect causes
the overall slope of the density profile in the cusp to fall
slightly below 1/2 to ∼ 0.34 by t = 1010 yrs.

The velocity profiles plotted in Fig. 6 also show that
the cusps grow in size with time and at any one time are
larger for s-wave annihilation than for p-wave annihila-
tion. Otherwise the profiles in are identical in the unper-
turbed spike regions and very close in the cusp regions,
conforming to those found for the simplified models in
Section II and III.

Next we consider the luminosity profiles arising from
DM annihilation within the spike. The photon luminosity
emerging from radius r is given by

L(r) =

∫ r

rbh

1

2

ρ(r)2

m2
χ

(2εγmχ)〈σv〉4πr2dr, (32)

where εγ is the fraction of the annihilation energy that
goes into photons. The region between r and 2r that
contributes most of the luminosity is centered near the
peak of the function dL(r)/d ln(r), where according to
Eqns. (27) and (32),

dL(r)

d ln(r)
∝ r3ρ2

(
v2(r)

v2fo

)s
. (33)

FIG. 5: Evolution of the density profile in a DM spike
around Sgr A*, allowing for s-wave (top) and p-wave (bot-
tom) annihilation and black hole capture. The dotted curve
shows the initial adiabatic profile at t = 0. Moving down-
ward, successive solid curves show the profiles at t/T =
1.6 × 10−7, 4.8 × 10−6, 8.2 × 10−4, 2.4 × 10−2 and 1.0 (top)
and at t/T = 4.9 × 10−8, 7.6 × 10−7, 2.0 × 10−5, 5.1 × 10−3

and 1.0 (bottom), where T = 1010 yrs. The densities and radii
are normalized to their values near the spike outer boundary
at rb = 0.34 pc, where ρb = 2.8 × 103 M�pc−3.
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FIG. 6: Evolution of the velocity dispersion (3D) in a DM
spike around Sgr A*, allowing for s-wave (top) and p-wave
(bottom) annihilation and black hole capture. The dotted
curve shows the initial adiabatic profile at t = 0. Moving
upward, successive solid curves show the profiles at t/T =
1.6 × 10−7, 4.8 × 10−6, 8.2 × 10−4, 2.4 × 10−2 and 1.0 (top),
and at t/T = 4.9 × 10−8, 7.6 × 10−7, 2.0 × 10−5, 5.1 × 10−3

and 1.0 (bottom), where T = 1010 yrs. Radii are normalized
to the value near the spike outer boundary at rb = 0.34 pc,
and velocities are normalized to (M/r)1/2.

This function is plotted in Fig. 7 for the two cases,
along with the corresponding density profiles. Results
are shown for both the initial spike and the spike at
t = T = 1010 yrs. Several features are evident from
the plot. The first is that for both s-wave and p-wave
annihilation the dominant emission originates from the
innermost region of the spike near r >∼ rbh initially, but
moves out to the outer edge of the weak cusp r ∼ rann at
later times. As annihilations eat their way further into
the spike and rann moves outward with time, the magni-
tude of the luminosity falls. Apart from the initial time,
when the luminosities are comparable, the luminosity is
greater for s-wave annihilation than for p-wave annihila-
tion. This difference results from the fact that the main
radiating region around rann has a much smaller volume
and the cross-section has an additional factor of v2/c2 for
p-wave versus s-wave annihilation.

We note that for a flat plateau instead of a weak cusp
the luminosity profile plotted in Fig. 7 would plummet
faster for all r < rann and thereby reduce the overall
annihilation flux. For the Galactic parameters adopted
here it is a ∼ 10% reduction for s-wave annihilation and
less for p-wave annihilation, but can be larger for different
parameters or DM halos.

Fig. 7 shows that most of the luminosity from the
spike originates from the region around rann and that
rann � M at t = 1010 yrs. As a result, our Newtonian
analysis of the bulk profiles in this region and, hence, the
annihilation luminosity, are little modified by relativistic
corrections. However, it has been suggested that a high-
energy tail in the (gamma-ray) spectrum might arise from
the Penrose process in the vicinity of a rapidly spinning
Kerr black hole [38]. Here a fully relativistic treatment is
necessary, but the ambient spike and weak cusp should
be close to the profiles obtained here for all r �M .

V. SUMMARY

We have reinvestigated the effect of DM self-
annihilations on the distribution of collisionless DM in
a spherical density spike around a BH. These spikes
can reach the so-called “annihilation plateau” density
ρann = mχ/(〈σv〉T ) at a radius r = rann, where the
timescale for DM annihilation becomes equal to the age
of the Galaxy. Interior to this radius, DM annihilations
are important for determining the radial density and ve-
locity dispersion profiles of DM, with potentially observ-
able consequences for indirect detection. We revisit and
extend the results of [18] for s-wave annihilation cross-
sections, and provide the first results for non-constant
annihilation cross-sections, with the very well-motivated
case of p-wave annihilations.

We first give a simple physical argument for the case of
an isotropic phase space distribution function that yields
analytic expressions for the DM density and velocity dis-
persion profiles within a DM spike with a weak cusp.
This argument reproduces the result of [18] for the DM
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FIG. 7: The luminosity profile from annihilation in a DM
spike around Sgr A*. The heavy solid (black) curves show
the luminosity for s-wave annihilation at t = 0 (upper) and
at t = 1010 yrs (lower). The heavy dotted (blue) curves show
the luminosity for p-wave annihilation at t = 0 (upper) and at
t = 1010 yrs (lower). For comparison, the dashed (red) curve
shows the DM adiabatic density profile at t = 0, while the
density profile at t = 1010 yrs is shown for s-wave annihilation
by the thin solid (black) curve and for p-wave annihilations by
the thin dotted (blue) curve. All luminosities are normalized
by the initial s-wave luminosity at the spike outer boundary
at rb = 0.34 pc. All radii are normalized by rb.

density profile in the case of a velocity-independent s-
wave annihilation cross-section, where the density follows
a power law ρ(r) ∝ r−1/2 for radii below rann. We then
extend this analytic model to incorporate the direct cap-
ture of DM particles by the BH via a loss-cone boundary
condition, making the resulting distribution anisotropic.
Finally, to provide a full description of the (spherically
symmetric) system, we integrate the collisionless Boltz-
mann equation numerically and study the formation of
the weak cusp and its subsequent evolution with time.
We find that the increasing annihilation cross-section
at decreasing radii in the case of p-wave annihilations
flattens the annihilation cusp relative to that obtained
with s-wave annihilations, yielding ρ(r) ∝ r−0.34 for the
Galactic parameters adopted here, but still yields a cusp.
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