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Abstract

We consider the minimal U(1)′ extension of the Standard Model (SM) with the clas-
sically conformal invariance, where an anomaly free U(1)′ gauge symmetry is introduced
along with three generations of right-handed neutrinos and a U(1)′ Higgs field. Since
the classically conformal symmetry forbids all dimensional parameters in the model, the
U(1)′ gauge symmetry is broken through the Coleman-Weinberg mechanism, generating
the mass terms of the U(1)′ gauge boson (Z′ boson) and the right-handed neutrinos.
Through a mixing quartic coupling between the U(1)′ Higgs field and the SM Higgs dou-
blet field, the radiative U(1)′ gauge symmetry breaking also triggers the breaking of the
electroweak symmetry. In this model context, we first investigate the electroweak vac-
uum instability problem in the SM. Employing the renormalization group equations at
the two-loop level and the central values for the world average masses of the top quark
(mt = 173.34 GeV) and the Higgs boson (mh = 125.09 GeV), we perform parameter
scans to identify the parameter region for resolving the electroweak vacuum instability
problem. Next we interpret the recent ATLAS and CMS search limits at the LHC Run-2
for the sequential Z′ boson to constrain the parameter region in our model. Combining
the constraints from the electroweak vacuum stability and the LHC Run-2 results, we find
a bound on the Z ′ boson mass as mZ′ & 3.5 TeV. We also calculate self-energy corrections
to the SM Higgs doublet field through the heavy states, the right-handed neutrinos and
the Z ′ boson, and find the naturalness bound as mZ′ . 7 TeV, in order to reproduce
the right electroweak scale for the fine-tuning level better than 10%. The resultant mass
range of 3.5 TeV . mZ′ . 7 TeV will be explored at the LHC Run-2 in the near future.
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1 Introduction

One of the most serious problems in the standard model (SM) is the so-called gauge hierarchy
problem, which has been motivating us to seek new physics beyond the SM for decades. The
problem originates from the fact that quantum corrections to the self-energy of the SM Higgs
doublet field quadratically diverge, and this divergence, once cut off by a physical new physics
scale being much higher than the electroweak scale, must be canceled by a fine-tuning of the
Higgs mass parameter at the tree level. Because of the chiral nature of the SM, the SM
Lagrangian possesses the conformal (scale) invariance at the classical level, except for the
Higgs mass term. It has been argued in [1] that once the classically conformal invariance and
its minimal violation by quantum anomalies are imposed on the SM, it could be free from the
quadratic divergences and hence, the classically conformal invariance might provide us with a
solution to the gauge hierarchy problem. This picture nicely fits a setup first investigated by
Coleman and Weinberg [2], namely, a U(1) gauge theory with a massless Higgs field. In this
setup, it has been shown that the U(1) gauge symmetry is radiatively broken in the Coleman-
Weinberg effective potential (Coleman-Weinberg mechanism).

Although it is tempting to apply this Coleman-Weinberg mechanism to the SM Higgs sector,
this cannot work with the observed values of top quark and weak boson masses, since the
Coleman-Weinberg potential for the SM Higgs field is found to be unbounded from below [3].
Therefore, in order to pursue this scheme, it is necessary to extend the SM. There have been
a lot of new physics model proposals (see, for example, [4, 5, 6]). In this paper, we consider
the classically conformal U(1)′ extension of the SM proposed in [7], where in addition to the
SM particle contents, three generations of right-handed neutrinos and a U(1)′ Higgs field are
introduced. By assigning generation-independent U(1)′ charges for fermions and requiring to
reproduce the Yukawa structure in the SM and to make the model free from all gauge and
gravitational anomalies, it turns out that the U(1)′ gauge symmetry is identified as a linear
combination of the SM U(1)Y and the U(1)B−L gauge groups [8]. Hence, our model is a
generalization on the classically conformal U(1)B−L extension of the SM proposed in [6]. The
U(1)′ gauge symmetry is radiatively broken by the Coleman-Weinberg mechanism, and the
U(1)′ gauge field (Z ′ boson) and the right-handed (Majorana) neutrinos acquire their masses.
A mixing quartic coupling between the U(1)′ Higgs and the SM Higgs doublet fields generates a
negative mass squared for the SM Higgs doublet field, and the electroweak symmetry breaking
is driven. Therefore, the radiative U(1)′ gauge symmetry is the sole origin of the mass scale
in this model. With the Majorana heavy neutrinos, the seesaw mechanism [9] is automatically
implemented and tiny active neutrino masses and their flavor mixing are generated after the
electroweak symmetry breaking.

The SM Higgs boson has been discovered at the LHC, and this marks the beginning of
the experimental confirmation of the SM Higgs sector. The observed Higgs boson mass of
mh = 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV from a combined analysis by the ATLAS and
the CMS [10] indicates that the electroweak vacuum is unstable [11], since the SM Higgs
quartic coupling becomes negative far below the Planck mass, for the top quark pole mass
mt = 173.34±0.76 from the combined measurements by the Tevatron and the LHC experiments
[12]. Practically, this instability may not be a problem in the SM, since the lifetime of our
electroweak vacuum is estimated to be much longer than the age of the universe [13]. However,
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in the presence of the U(1)′ Higgs field, our Higgs potential is a function of two Higgs fields,
and there might be a path to avoid hills and make the lifetime of our electroweak vacuum
very short. Because of a lack of field theoretical technology for analyzing the effective scalar
potential with multi-scalars in a wide range of field values, it would be the best way to solve
the electroweak vacuum instability problem in the context of our model.

In this paper, we investigate the electroweak vacuum stability in the classically conformal
U(1)′ extended SM. In the same model context, the electroweak vacuum stability problem and
the current experimental bounds on the model have been investigated in [7]. The purpose
of the present paper is to improve the analysis in [7] for the electroweak vacuum stability by
the renormalization group equations (RGEs) at the two-loop level, and present a complete
result for the parameter scan. We also update the constraints on the model parameters by
taking into account the recent LHC Run-2 results on search for Z ′ boson resonances [17, 18].
We will find that the LHC Run-2 results dramatically improve those obtained from the Run
1 results. In addition, we calculate the SM Higgs self-energy corrections from the effective
potential involving the heavy states, the right-handed neutrinos and the Z′ boson, after the
U(1)′ symmetry breaking, and derive the naturalness bounds to reproduce the right electroweak
scale for the fine-tuning level better than 10%.

This paper is organized as follows. Our U(1)′ model is defined in the next section. In Sec. 3,
we discuss the radiative U(1)′ symmetry breaking through the Coleman-Weinberg mechanism.
The electroweak symmetry breaking triggered by the radiative U(1)′ gauge symmetry breaking
is discussed in Sec. 4. In Sec. 5, we analyze the renormalization group (RG) evolutions of
the couplings at the two-loop level, and find a region in 3 dimensional parameter space which
can resolve the electroweak vacuum instability and keep all parameters in the perturbative
regime up to the Planck mass. In Sec. 6, we analyze the current collider bounds of the model
parameters, in particular, the recent ATLAS and CMS results of the search for the Z ′ boson
resonance at the LHC Run-2 are interpreted to the Z ′ boson case of our model. In Sec. 7,
we evaluate self-energy corrections to the SM Higgs doublet from the effective potential, and
derive the naturalness bounds to reproduce the electroweak scale for the fine-tuning level better
than 10%. We summarize our results in Sec. 8. Formulas we used in our analysis are listed in
Appendices.

Although Sec. 2 - Sec. 4 substantially overlap with our previous work [7], we have repeated
the similar discussions for readers convenience. If a reader is familiar with the basic properties
of the classically conformal U(1)′ model discussed in Sec. 2 - Sec. 4, he/she can skip over the
sections.

2 Classically conformal U(1)′ extended SM

The model we will investigate is the anomaly-free U(1)′ extension of the SM with the classically
conformal invariance, which is based on the gauge group SU(3)C×SU(2)L×U(1)Y×U(1)′. The
particle contents of the model are listed in Table 1. In addition to the SM particle content,
three generations of right-hand neutrinos νi

R and a U(1)′ Higgs field Φ are introduced. The
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SU(3)c SU(2)L U(1)Y U(1)′

qiL 3 2 +1/6 xq = 1
3
xH + 1

6
xΦ

ui
R 3 1 +2/3 xu = 4

3
xH + 1

6
xΦ

diR 3 1 −1/3 xd = −2
3
xH + 1

6
xΦ

ℓiL 1 2 −1/2 xℓ = −xH − 1
2
xΦ

νi
R 1 1 0 xν = −1

2
xΦ

eiR 1 1 −1 xe = −2xH − 1
2
xΦ

H 1 2 +1/2 xH = xH

Φ 1 1 0 xΦ = xΦ

Table 1: Particle contents. In addition to the SM particle contents, the right-handed neutrino
νi
R (i = 1, 2, 3 denotes the generation index) and a complex scalar Φ are introduced.

covariant derivative relevant to U(1)Y× U(1)′ are defined as

Dµ ≡ ∂µ − i
(

Y1 YX

)

(

g1 g1X
gX1 gX

)(

Bµ

B′
µ

)

, (2.1)

where Y1 (YX) are U(1)Y (U(1)′ ) charge of a particle, and the gauge coupling gX1 and g1X are
introduced associated with a kinetic mixing between the two U(1) gauge bosons.

For generation-independent charge assignments, the U(1)′ charges of the fermions are defined
to satisfy the gauge and gravitational anomaly-free conditions:

U(1)′ × [SU(3)C ]
2 : 2xq − xu − xd = 0,

U(1)′ × [SU(2)L]
2 : 3xq + xℓ = 0,

U(1)′ × [U(1)Y ]
2 : xq − 8xu − 2xd + 3xℓ − 6xe = 0,

[U(1)′]
2 ×U(1)Y : x2

q − 2x2
u + x2

d − x2
ℓ + x2

e = 0,

[U(1)′]
3

: 6x3
q − 3x3

u − 3x3
d + 2x3

ℓ − x3
ν − x3

e = 0,

U(1)′ × [grav.]2 : 6xq − 3xu − 3xd + 2xℓ − xν − xe = 0. (2.2)

In order to reproduce observed fermion masses and flavor mixings, we introduce the following
Yukawa interactions:

LYukawa = −Y ij
u qiLH̃uj

R − Y ij
d qiLHdjR − Y ij

ν ℓiLH̃νj
R − Y ij

e ℓiLHejR − Y i
MΦνic

Rν
i
R + h.c., (2.3)

where H̃ ≡ iτ 2H∗, and the third and fifth terms in the right-handed side are for the seesaw
mechanism to generate neutrino masses. These Yukawa interaction terms impose

xH = −xq + xu = xq − xd = −xℓ + xν = xℓ − xe,

xΦ = −2xν . (2.4)

Solutions to these conditions are listed in Table 1, which are controlled by only two parameters,
xH and xΦ. The two parameters reflect the fact that the U(1)′ gauge group can be defined as
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a linear combination of the SM U(1)Y and the U(1)B−L gauge groups. Since the U(1)′ gauge
coupling gX is a free parameter of the model and it always appears as a product xΦgX or xHgX ,
we fix xΦ = 2 without loss of generality throughout this paper. This convention excludes the
case that U(1)′ gauge group is identical with the SM U(1)Y . The choice of (xH , xΦ) = (0, 2)
corresponds to the U(1)B−L model. Another example is (xH , xΦ) = (−1, 2), which corresponds
to the SM with the so-called U(1)R symmetry. When we choose (xH , xΦ) = (−16/41, 2), the
beta function of gX1 (g1X) at the 1-loop level has only terms proportional to gX1 (g1X) (see
Appendix A). This is the orthogonal condition between the U(1)Y and U(1)′ at the 1-loop level,
under which gX1 and g1X do not evolve once we have set gX1 = g1X = 0 at an energy scale.
Although it is slightly modified (xH becomes slightly larger than −16/41), we find that the
choice of (xH , xΦ) = (−16/41, 2) is a good approximation even at the 2-loop level.

Imposing the classically conformal invariance, the scalar potential is given by

V = λH

(

H†H
)2

+ λΦ

(

Φ†Φ
)2

+ λmix

(

H†H
)(

Φ†Φ
)

, (2.5)

where the mass terms are forbidden by the conformal invariance. If λmix is negligibly small,
we can analyze the Higgs potential separately for Φ and H as a good approximation. This will
be justified in the following sections. When the Majorana Yukawa couplings Y i

M are negligible
compared to the U(1)′ gauge coupling, the Φ sector is identical with the original Coleman-
Weinberg model [2], so that the radiative U(1)′ symmetry breaking will be achieved. Once Φ
develops a vacuum expectation value (VEV) through the Coleman-Weinberg mechanism, the
tree-level mass term for the SM Higgs is effectively generated through λmix in Eq. (2.5). Taking
λmix negative, the induced mass squared for the Higgs doublet is negative and, as a result, the
electroweak symmetry breaking is driven in the same way as in the SM.

3 Radiative U(1)′ gauge symmetry breaking

Assuming λmix is negligibly small, we first analyze the U(1)′ Higgs sector. Without mass terms,
the Coleman-Weinbeg potential [2] at the 1-loop level is found to be

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(

ln

[

φ2

v2φ

]

− 25

6

)

, (3.1)

where φ/
√
2 = ℜ[Φ], and we have chosen the renormalization scale to be the VEV of Φ (〈φ〉 =

vφ). Here, the coefficient of the 1-loop quantum corrections is given by

βΦ =
1

16π2

[

20λ2
Φ + 6x4

Φ

(

g2X1 + g2X
)2 − 16

∑

i

(Y i
M)4

]

(3.2)

≃ 1

16π2

[

6 (xΦgX)
4 − 16

∑

i

(Y i
M)4

]

, (3.3)

where in the last expression, we have used λ2
Φ ≪ (xΦgX)

4 as usual in the Coleman-Weinberg
mechanism and set gX1 = g1X = 0 at 〈φ〉 = vφ, for simplicity. The stationary condition
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dV/dφ|φ=vφ
= 0 leads to

λΦ =
11

6
βΦ, (3.4)

and this λΦ is nothing but a renormalized self-coupling at vφ defined as

λΦ =
1

3!

d4V (φ)

dφ4

∣

∣

∣

∣

φ=vφ

. (3.5)

For more detailed discussion, see [5].
Associated with this radiative U(1)′ symmetry breaking (as well as the electroweak sym-

metry breaking), the U(1)′ gauge boson (Z ′ boson) and the right-handed Majorana neutrinos
acquire their masses as

mZ′ =
√

(xΦgXvφ)2 + (xHgXvh)2 ≃ xΦgXvφ, mN i =
√
2Y i

Mvφ, (3.6)

where vh = 246 GeV is the SM Higgs VEV, and we have used xΦvφ ≫ xHvh, which will be
verified below. In this paper, we assume degenerate masses for the three Majorana neutrinos,
Y i
M = yM (equivalently, mN i = mN) for all i = 1, 2, 3, for simplicity. The U(1)′ Higgs boson

mass is given by

m2
φ =

d2V

dφ2

∣

∣

∣

∣

φ=vφ

= βΦv
2
φ ≃ 3

8π2

(

(xΦgX)
4 − 8y4M

)

v2φ ≃ 3

8π2

m4
Z′ − 2m4

N

v2φ
. (3.7)

When the Yukawa coupling is negligibly small, this equation reduces to the well-known relation
derived in the original paper by Coleman-Weinberg [2]. For a sizable Majorana mass, this
formula indicates that the potential minimum disappears for mN > mZ′/21/4, so that there
is an upper bound on the right-handed neutrino mass for the U(1)′ symmetry to be broken
radiatively. This is in fact the same reason as why the Coleman-Weinberg mechanism in the
SM Higgs sector fails to break the electroweak symmetry when the top Yukawa coupling is
large as observed. In order to avoid the destabilization of the U(1)′ Higgs potential, we simply
set m4

Z′ ≫ m4
N in the following analysis. Note that this condition does not mean that the

Majorana neutrinos must be very light, even though a factor difference between mZ′ and mN

is enough to satisfy the condition. For simplicity, we set yM = 0 at vφ in the following RG
analysis.

4 Electroweak symmetry breaking

Let us now consider the SM Higgs sector. In our model, the electroweak symmetry breaking is
achieved in a very simple way. Once the U(1)′ symmetry is radiatively broken, the SM Higgs
doublet mass is generated through the mixing quartic term between H and Φ in the scalar
potential in Eq. (2.5),

V (h) =
λH

4
h4 +

λmix

4
v2φh

2, (4.1)
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Figure 1: (a) The evolutions of the Higgs quartic coupling λH (solid line) for the inputs mt =
173.34 GeV and mh = 125.09 GeV, along with the SM case (dashed line). (b) The RG
evolutions of λΦ (solid line) and λmix (dashed line). Here, we have taken xH = 2, vφ = 23 TeV
and gX(vφ) = 0.09.

where we have replaced H by H = 1/
√
2 (0, h) in the unitary gauge. Choosing λmix < 0, the

electroweak symmetry is broken in the same way as in the SM [6]. However, we should note
that a crucial difference from the SM is that in our model the electroweak symmetry breaking
originates from the radiative breaking of the U(1)′ gauge symmetry. At the tree level, the
stationary condition V ′|h=vh = 0 leads to the relation |λmix| = 2λH(vh/vφ)

2, and the Higgs
boson mass mh is given by

m2
h =

d2V

dh2

∣

∣

∣

∣

h=vh

= |λmix|v2φ = 2λHv
2
h. (4.2)

In the following RG analysis, this is used as the boundary condition for λmix at the renormal-
ization scale µ = vφ. Note that since λH ∼ 0.1 and vφ & 10 TeV by the large electron-positron
collider (LEP) constraint [14, 15, 16], |λmix| . 10−5, which is very small.

In our discussion about the U(1)′ symmetry breaking, we neglected λmix by assuming it to
be negligibly small. Here we justify this treatment. In the presence of λmix and the Higgs VEV,
Eq. (3.4) is modified as

λΦ =
11

6
βΦ +

|λmix|
2

(

vh
vφ

)2

≃ 1

2v4φ

(

11

8π2
m4

Z′ +m2
hv

2
h

)

. (4.3)

Considering the current LHC Run-2 bound from search for Z ′ boson resonances [17, 18], mZ′ & 3
TeV, we find that the first term in the parenthesis in the last equality is 5 orders of magnitude
greater than the second term, and therefore we can analyze the two Higgs sectors separately.

5 Solving the SM Higgs vacuum instability

In the SM with the observed Higgs boson mass ofmh = 125.09 GeV, the RG evolution of the SM
Higgs quartic coupling shows that the running coupling becomes negative at the intermediate
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(a)
(b)

Figure 2: (a) The result of 3-dimensional parameter scans for vφ, gX and xH , shown in
(mZ′(GeV), αgX , xH) parameter space with mZ′ ≃ xΦgXvφ, by using the inputs mt = 173.34
GeV and mh = 125.09 GeV. As a reference, a horizontal plane for xH = −16/41 is shown,
which corresponds to the orthogonal case. (b) Same 3-dimensional parameter scans as (a), but
deferent angle.

scale µ ≃ 1010 GeV [11] for mt = 173.34 GeV, and hence the electroweak vacuum is unstable.
In this section, we investigate RG evolution of the Higgs quartic coupling and a possibility to
solve the Higgs vacuum instability problem in our U(1)′ extended SM. Without the classical
conformal invariance, Ref. [19] (see also [20]) has considered the same problem, and identified
parameter regions which can resolve the Higgs vacuum instability. A crucial difference in our
model is that because of the classical conformal invariance and the symmetry breaking by the
Coleman-Weinberg mechanism, the initial values of λΦ and λmix at vφ are not free parameters.
Therefore, it is nontrivial to resolve the Higgs vacuum instability in the present model. The
Higgs vacuum stability has been investigated in [5] for the classically conformal extension of
the SM with an extend gauge groups and particle contents including a dark matter candidate.

In our RGE analysis, we employ the SM RGEs at the 2-loop level [11] from the top pole
mass to the U(1)′ Higgs VEV, and connect the RGEs to those of the U(1)′ extended SM at the
2-loop level, which are generated by using SARAH [21]. RGEs used in our analysis are listed in
Appendices. For inputs of the Higgs boson mass and top quark pole mass, we employ a central
value of the ATLAS and CMS combined measurement mh = 125.09 GeV [10], whilemt = 173.34
GeV is the central value of combined results of the Tevatron and the LHC measurements of
top quark mass [12]. There are only 3 free parameters in our model, by which inputs at vφ are
determined: xH , vφ, and gX .

In Fig. 1 (a), we show the RG evolution of the SM Higgs quartic coupling in our model
(solid line), along with the SM result (dashed line). Here, we have taken xH = 2, vφ = 23
TeV, and gX(vφ) = 0.09 as an example. Recall that we have fixed xΦ = 2 without loss of
generality. The Higgs quartic coupling remains positive all the way up to the Planck mass, so
that the Higgs vacuum instability problem is solved. There are complex, synergetic effects in the
coupled RGEs to resolve the Higgs vacuum instability (see Appendices for RGEs). For example,
the U(1)Y gauge coupling grows faster than the SM case in the presence of the mixing gauge
couplings gX1 and g1X , which make the evolution of top Yukawa coupling decreasing faster than
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Figure 3: (a) The result of parameter scan for xH and gX with a fixed vφ = 23 TeV, shown in
(mZ′, xH)-plane with mZ′ ≃ xΦgXvφ. As a reference, horizontal lines are depicted for xH = 2, 0
[U(1)B−L case], −16/41 [orthogonal case], and −1 [U(1)R case]. (b) Same as (a), but parameter
scan for xH and vφ with a fixed gX = 0.09.
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Figure 4: (a) The allowed positive xH region at the TeV scale in Fig. 3 (a) is magnified, along
with the LEP bound (dashed-dotted line), the LHC Run-1 CMS bound (thin dashed line), the
LHC Run-1 ATLAS bound (thin solid line), the LHC Run-2 CMS bound (thick dashed line)
and the LHC Run-2 ATLAS bound (thick solid line) from direct search for Z ′ boson resonance.
The region on the left side of the lines are excluded. Here, the naturalness bounds for 10%
(right dotted line) and 30% (left dotted line) fine-tuning levels are also depicted. (b) Same as
(a), but for negative xH region.
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Figure 5: (a) Same as Fig. 4 (a), but magnifying Fig. 3 (b). (b) Same as Fig. 4 (b), but
magnifying Fig. 3 (b).
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Figure 6: (a) The result of parameter scan for vφ and gX with a fixed xH = 2 in (mZ′, αgX)-
plane. (b) The allowed region at the TeV scale in (a) is magnified, along with the LEP bound
(dashed-dotted line), the LHC Run-1 CMS bound (thin dashed line), the LHC Run-1 ATLAS
bound (thin solid line), the LHC Run-2 CMS bound (thick dashed line) and the LHC Run-2
ATLAS bound (thick solid line) from direct search for Z ′ boson resonance. The region on the
left side of the lines are excluded. Here, the naturalness bounds for 10% (right dotted line) and
30% (left dotted line) fine-tuning levels are also depicted.
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Figure 7: (a) Same as Fig. 6 (a), but for xH = −2.5. (b) Same as Fig. 6 (b), but for xH = −2.5.

in the SM case. The evolution of the mixing gauge coupling is controlled by the U(1)′ gauge
coupling. Both of them are asymptotic non-free. The gauge couplings positively contribute
to the beta function of the SM Higgs quartic coupling, while the top Yukawa coupling gives a
negative contribution. As a result, the RG evolutions of the gauge and top Yukawa couplings
work to change the sign of the the beta function of the SM Higgs quartic coupling at µ ≃ 1012

GeV in Fig. 1 (a). Figure 1 (b) shows the RG evolutions of the other Higgs quartic couplings.
Note that the input of λΦ and λmix are very small because of the radiative gauge symmetry
breaking, and the two couplings remain very small even at the Planck mass. Thus, the positive
contribution of λmix to the beta function of the SM Higgs quartic coupling is negligible. This
is in sharp contrast to U(1) extended models without the conformal invariance, where λmix is
a free parameter and we can take its input to give a large, positive contribution to the beta
function, so that the Higgs vacuum instability problem is relatively easier to solve.

In order to identify a parameter region to resolve the Higgs vacuum instability, we perform
parameter scans for the free parameters xH , vφ and gX . In this analysis, we impose several con-
ditions on the running couplings at vφ ≤ µ ≤ MP (MP = 2.4× 1018 GeV is the reduced Planck
mass): stability conditions of the Higgs potential (λH , λΦ > 0), the perturbative conditions
that all the running couplings remain in the perturbative regime, namely, g2i (i = 1, 2, 3), g2X ,
g2X1, g

2
1X < 4π and λH , λΦ, λmix < 4π. For theoretical consistency, we also impose a condition

that the 2-loop beta functions are smaller than the 1-loop beta functions. In Fig. 2, we show
the result of our parameter scans in the 3-dimensional parameter space of (mZ′ , αgX , xH), where
αgX = g2X/(4π). As a reference, we show a horizontal plane corresponding to the orthogonal
case xH = −16/41. There is no overlapping of the plane with the resultant parameter regions
to resolve the electroweak vacuum instability.

In order to discuss our results in detail, we show in Figs. 3-7 the parameter scan results
on several 2-dimensional hypersurfaces in the 3D plot of Fig. 2. In Fig. 3, our results are
shown for xH and gX with a fixed vφ = 23 TeV (a) and for xH and vφ with a fixed gX = 0.09
(b) in (mZ′, xH)-plane, along with the horizontal lines corresponding to xH = 2, 0 [U(1)B−L

case], −16/41 [orthogonal case], and −1 [U(1)R case]. We can see that the resultant parameter
space is very restricted. For example, the Higgs vacuum instability can not be resolved in
the classically conformal U(1)B−L extended SM or the classically conformal orthogonal U(1)
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extended SM, for the inputs mt = 173.34 GeV and mh = 125.09 GeV. The allowed regions at
the TeV scale in Figs. 3 (a) and 3 (b) are magnified in Fig. 4 and Fig. 5, respectively. Here
we also show the collider bounds, namely the LEP bounds (dashed-dotted lines) [14, 15, 16],
the CMS bounds at the LHC Run-1 (thin dashed lines) [22], the ATLAS bounds at the LHC
Run-1 (thin solid lines) [23], the CMS bounds at the LHC Run-2 (thick dashed lines) [18],
and the ATLAS bounds at the LHC Run-2 (thick solid lines) [17], from search for Z ′ boson
mediated processes, which will be obtained in the next section. The region on the left side of
the lines are excluded. Naturalness bounds (dotted lines), which will be obtained in Sec. 7, are
also shown. These naturalness bounds for the 10% fine-tuning level are found to be compatible
to the bounds obtained by the LHC Run-2 results. The result of parameter scan for vφ and
αgX with a fixed xH = 2 is depicted in Fig. 6 (a), and the allowed region at the TeV scale is
magnified in Fig. 6 (b), along with the collider and naturalness bounds. Same plots as Fig. 6
but for xH = −2.5 are shown in Fig. 7.

6 LHC Run-2 bounds on the U(1)′ Z ′ boson

The ATLAS and the CMS collaborations have searched for Z ′ boson resonance at the LHC
Run-1 with

√
s = 8 TeV, and continued the search at the LHC Run-2 with

√
s = 13 TeV. The

most stringent bounds on the Z ′ boson production cross section times branching ratio have
been obtained by using the dilepton final state. For the so-called sequential SM Z ′ (Z ′

SSM)
model [24], where the Z ′

SSM boson has exactly the same couplings with the SM fermions as
those of the SM Z boson, the cross section bounds from the LHC Run-1 results lead to lower
bounds on the Z ′

SSM boson mass as mZ′

SSM
≥ 2.90 TeV from the ATLAS analysis [23] and

mZ′

SSM
≥ 2.96 TeV from the CMS analysis [22], respectively. Very recently, these bounds have

been updated by the ATLAS [17] and CMS [18] analysis with the LHC Run-2 at
√
s = 13

TeV as mZ′

SSM
≥ 3.4 TeV (ATLAS) and mZ′

SSM
≥ 3.15 TeV (CMS), respectively. We interpret

theses ATLAS and CMS results to the U(1)′ Z ′ boson case, and derive an upper bound on xH

or αgX as a function of mZ′.
We calculate the dilepton production cross section for the process pp → Z ′+X → ℓ+ℓ−+X .

The differential cross section with respect to the invariant mass Mℓℓ of the final state dilepton
is described as

dσ

dMℓℓ

=
∑

a,b

∫ 1

M2
ℓℓ

E2
CM

dx1
2Mℓℓ

x1E
2
CM

fa(x1,M
2
ℓℓ)fb

(

M2
ℓℓ

x1E
2
CM

,M2
ℓℓ

)

σ̂(q̄q → Z ′ → ℓ+ℓ−), (6.1)

where fa is the parton distribution function for a parton “a”, and ECM = 13 TeV (8 TeV) is
the center-of-mass energy of the LHC Run-2 (Run-1). In our numerical analysis, we employ
CTEQ5M [25] for the parton distribution functions. In the case of the U(1)′ model, the cross
section for the colliding partons with a fixed xΦ = 2 is given by

σ̂(ūu → Z ′ → ℓ+ℓ−) =
πα2

gX

81

M2
ℓℓ

(M2
ℓℓ −m2

Z′)2 +m2
Z′Γ2

Z′

(85x4
H + 152x3

H + 104x2
H + 32xH + 4),

σ̂(d̄d → Z ′ → ℓ+ℓ−) =
πα2

gX

81

M2
ℓℓ

(M2
ℓℓ −m2

Z′)2 +m2
Z′Γ2

Z′

(25x4
H + 20x3

H + 8x2
H + 8xH + 4), (6.2)
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Figure 8: (a) The cross section as a function of the Z ′
SSM mass (solid line) with k = 1.18,

along with the LHC Run-1 ATLAS result from the combined dielectron and dimuon channels
in Ref. [23]. (b) Same as (a), but with k = 1.19, along with the LHC Run-2 ATLAS result in
Ref. [17].

where the total decay width of Z ′ boson is given by

ΓZ′ =
αgXmZ′

6





103x2
H + 86xH + 37

3
+

17x2
H + 10xH + 2 + (7x2

H + 20xH + 4)
m2

t

m2

Z′

3

√

1− 4m2
t

m2
Z′



 .

(6.3)

Here, we have neglected all SM fermion masses except for mt, and assumed mi
N > mZ′/2

for simplicity. By integrating the differential cross section over a range of Mℓℓ set by the
ATLAS and the CMS analysis, respectively, we obtain the cross section as a function of xH ,
αgX and mZ′ , which are compared with the lower bounds obtained by the ATLAS and the CMS
collaborations.

In interpreting the ATLAS and the CMS results to the U(1)′ Z ′ boson, we follow the strategy
in [26], where the minimal U(1)B−L model has been investigated and an upper bound on the
U(1)B−L gauge coupling as a function of Z ′ boson mass has been obtained from the ATLAS
and the CMS results at the LHC Run-2. We first analyze the sequential SM Z ′ model to
check a consistency of our analysis with the one by the ATLAS and the CMS collaborations.
With the same couplings as SM, we calculate the differential cross section of the process pp →
Z ′

SSM +X → ℓ+ℓ− +X like Eq. (6.1). According to the analysis by the ATLAS collaboration
at the LHC Run-1 (Run-2), we integrate the differential cross section for the range of 128
GeV≤ Mℓℓ ≤ 4500 GeV [23] (128 GeV≤ Mℓℓ ≤ 6000 GeV [17]), and obtain the cross section of
the dilepton production process as a function of Z ′

SSM boson mass. Our results are shown as
solid lines in Fig. 8 (a) for the LHC Run-1 and (b) for the LHC Run-2, respectively, along with
the plots presented by the ATLAS collaborations at the LHC Run-1 [23] and the LHC Run-2
[17]. In Fig. 8 (a) and (b), the experimental upper bounds on the Z ′ boson production cross
section are depicted as the horizontal solid (red) curves. The theoretical Z ′ boson production
cross section are shown as the diagonal dashed lines, and the lower limits of the Z ′

SSM boson

12
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Figure 9: (a) The cross section ratio as a function of the Z ′
SSM mass (solid line) with k = 1.01,

along with the LHC Run-1 CMS result from the combined dielectron and dimuon channels
in Ref. [22]. (b) Same as (a), but with k = 1.65, along with the LHC Run-2 CMS result in
Ref. [18].

mass obtained by the ATLAS collaborations are found to be 2.90 TeV for the LHC Run-1
and 3.4 TeV for the LHC Run-2, respectively, which can be read off from the intersection
points of the theoretical predictions (diagonal dashed lines) and the experimental cross section
bounds (horizontal solid (red) curves). In order to take into account the difference of the parton
distribution functions used in the ATLAS and our analysis and QCD corrections of the process,
we have scaled our resultant cross sections by a factor k = 1.18 in Fig. 8 (a) and by k = 1.19
in Fig. 8 (b), with which we can obtain the same lower limits of the Z ′

SSM boson mass as 2.90
TeV and 3.4 TeV. We can see that our results (solid lines) in Fig. 8 with the factors of k = 1.18
and k = 1.19, respectively, are very consistent with the theoretical predictions (diagonal dashed
lines) presented by the ATLAS collaborations. We use these factors in the following analysis
for the U(1)′ Z ′ production process.

Now we calculate the cross section of the process pp → Z ′ + X → ℓ+ℓ− + X for various
values of gX , xH and vφ, and read off the constraints on these parameters from the cross section
bounds given by the ATLAS collaborations. In Figs. 4-7, our results from the ATLAS bounds
at the LHC Run-1 and Run-2 are depicted as thin solid lines and thick solid lines, respectively.
We can see that the LHC Run-2 results have dramatically improved the bounds from those
obtained by the LHC Run-1 results.

We apply the same strategy and compare our results for the Z ′
SSM model with the those

by the CMS Run-1 analysis [22] and the CMS Run-2 one [18]. According to the analysis by
the CMS collaboration at the LHC Run-1 (Run-2), we integrate the differential cross section
for the range of 0.6 mZ′

SSM
≤ Mℓℓ ≤ 1.4 mZ′

SSM
[22] (0.97 mZ′

SSM
≤ Mℓℓ ≤ 1.03 mZ′

SSM
[18])

and obtain the cross section. In the CMS analysis, the limits are set on the ratio of the Z ′
SSM

boson cross section to the Z/γ∗ cross section:

Rσ =
σ(pp → Z ′ +X → ℓℓ+X)

σ(pp → Z +X → ℓℓ+X)
, (6.4)

where the Z/γ∗ production cross section in the mass window of 60 GeV≤ Mℓℓ ≤ 120 GeV are
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Figure 10: The lower bound on mZ′/gX as a function xH (with a fixed xφ =2), obtained by the
limits from the final LEP 2 data [16] at 95% confidence level.

predicted to be 1117 pb at the LHC Run-1 [22] and 1928 pb at the LHC Run-2 [18], respectively.
Our results for the Z ′

SSM model are shown as the solid lines in Fig. 9 (a) and (b), along with
the plots presented in [22] and [18], respectively. The analyses in these CMS papers lead to the
lower limits of the Z ′

SSM boson mass as 2.96 TeV for the LHC Run-1 and 3.15 TeV for the LHC
Run-2, which are read off from the intersection points of the theoretical predictions (diagonal
dashed lines) and the experimental cross section bounds (horizontal solid (red) curves). In
order to obtain the same lower mass limits, we have scaled our resultant cross sections by a
factor k = 1.01 in Fig. 9 (a) and by k = 1.65 in Fig. 9 (b), respectively. With these k factors,
our results (solid lines) are very consistent with the theoretical predictions (diagonal dashed
lines) presented in Refs. [22] and [18]. We use these k factors in our analysis to interpret the
CMS results to the U(1)′ Z ′ boson case. In Figs. 4-7, our results from the CMS bounds at the
LHC Run-1 and Run-2 are depicted as thin dashed lines and thick dashed lines, respectively.
We can see that the CMS results at the LHC Run-2 have dramatically improved the bounds
obtained by the LHC Run-1 results. We find that the ATLAS and the CMS bounds we have
obtained are consistent with each other. For the LHC Run-2 results, the ATLAS bounds are
slightly more severe than the CMS bounds for mZ′ ≤ 3.5 TeV, and applicable up to mZ′ = 5
TeV, leading to the most severe LHC bound on the model parameters.

The search for effective 4-Fermi interactions mediated by the Z ′ boson at the LEP leads to
a lower bound on mZ′/gX [14, 15, 16]. Employing the limits from the final LEP 2 data [16]
at 95% confidence level, we follow [15] and derive a lower bound on mZ′/gX as a function xH .
Our result is shown in Fig. 10. In Figs. 4-7, the LEP bounds are depicted as the dashed-dotted
lines.

7 Naturalness bounds from SM Higgs mass corrections

Once the classical conformal symmetry is radiatively broken by the Coleman-Weinberg mecha-
nism, the masses for the Z ′ boson and the Majorana neutrinos are generated and they contribute
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to self-energy corrections of the SM Higgs doublet. If the U(1)′ gauge symmetry breaking scale
is very large, the self-energy corrections may exceed the electroweak scale and require us to fine-
tune the model parameters in reproducing the correct electroweak scale. See [27] for related
discussions. We consider two heavy states, the right-handed neutrino and Z ′ boson, whose
masses are generated by the U(1)′ gauge symmetry breaking.

Since the original theory is classically conformal and defined as a massless theory, the self-
energy corrections to the SM Higgs doublet originates from corrections to the mixing quartic
coupling λmix. Thus, what we calculate to derive the naturalness bounds is quantum corrections
to the term λmixh

2φ2 in the effective Higgs potential

Veff ⊃ λmix

4
h2φ2 +

βλmix

8
h2φ2

(

ln
[

φ2
]

+ C
)

, (7.1)

where the logarithmic divergence and the terms independent of φ are all encoded in C. Here,
the major contributions to quantum corrections are found to be

βλmix
⊃ −48|yM |2|Yν |2

16π2
+

12x2
Hx

2
Φg

4
X

16π2
− 4 (19x2

H + 10xHxΦ + x2
Φ)x

2
Φy

2
t g

4
X

(16π2)2
, (7.2)

where the first term comes from the one-loop diagram involving the Majorana neutrinos, the
second one is from the one-loop diagram involving the Z ′ boson, and the third one is from the
two-loop diagram [6] involving the Z ′ boson and the top quark. By adding a counter term, we
renormalize the coupling λmix with the renormalization condition,

∂4Veff

∂h2∂φ2

∣

∣

∣

h=0,φ=vφ
= λmix, (7.3)

where λmix is the renormalized coupling. As a result, we obtain

Veff ⊃ λmix

4
h2φ2 +

βλmix

8
h2φ2

(

ln

[

φ2

vφ

]

− 3

)

. (7.4)

Substituting φ = vφ, we obtain the SM Higgs self-energy correction as

∆m2
h = −3

4
βλmix

v2φ

∼ 9mνm
3
N

4π2v2h
− 9

4π
x2
HαgXm

2
Z′ +

3m2
t

32π3v2h

(

19x2
H + 20xH + 4

)

αgXm
2
Z′ (7.5)

where we have used the seesaw formula, mν ∼ Y 2
ν v

2
h/2mN [9], and set xΦ = 2. For the stability

of the electroweak vacuum, we impose ∆m2
h . m2

h as the naturalness. For example, when the
light neutrino mass scale is around mν ∼ 0.1 eV, we have an upper bound from the first term
of Eq. (7.5) for the Majorana mass as mN . 3× 106 GeV. This bound is much larger than the
scale that we are interested in, mN . 1 TeV. The most important contribution to ∆m2

h is the
second term of Eq. (7.5) generated through the one-loop diagram with the Z ′ gauge boson, and
the third term becomes important in the case of U(1)B−L model, because xH = 0 condition
makes the second term vanished.
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If ∆m2
h is much larger than the electroweak scale, we need a fine-tuning of the tree-level

Higgs mass (|λmix|v2φ/2) to reproduce the correct SM Higgs VEV, vh = 246 GeV. We simply
evaluate a fine-tuning level as

δ =
m2

h

2|∆m2
h|
. (7.6)

Here, δ = 0.1, for example, indicates that we need to fine-tune the tree-level Higgs mass squared
at the accuracy of 10% level. In Figs. 4-7, the the naturalness bounds for 10% and 30% fine-
tuning levels are plotted as the dotted lines. Interestingly, the naturalness bounds from the
30% fine-tuning level are found to be compatible to the ALTAS bounds from the LHC Run-2.

8 Conclusions

We have considered the classically conformal U(1)′ extended SM with three right-handed neutri-
nos and a U(1)′ Higgs singlet field. The U(1)′ symmetry is radiatively broken by the Coleman-
Weinberg mechanism, by which the Z ′ boson as well as the right-handed (Majorana) neutrinos
acquire their masses. With the Majorana heavy neutrinos, the seesaw mechanism is automati-
cally implemented. Through a mixing quartic term between the U(1)′ Higgs and the SM Higgs
doublet fields, a negative mass squared for the SM Higgs doublet is generated and, as a result,
the electroweak symmetry breaking is triggered associated with the radiative U(1)′ gauge sym-
metry breaking. Therefore, all mass generations occur through the dimensional transmutation
in our model.

In the context of the classically conformal U(1)′ model, we have investigated a possibility
to resolve the electroweak vacuum instability. Since the gauge symmetry is broken by the
Coleman-Weinberg mechanism, all quartic couplings in the Higgs potential except the SM Higgs
one are very small, and hence their positive contributions to the U(1)′ model are not effective
in resolving the SM Higgs vacuum instability. On the other hand, in the U(1)′ model, the SM
Higgs doublet has a nonzero U(1)′ charge, and this gauge interaction positively contributes to
the beta function. In addition, the U(1)′ gauge interaction negatively contributes to the beta
function of the top Yukawa coupling, so that the running top Yukawa coupling is decreasing
faster than in the SM case, and its negative contribution to the beta function of the SM Higgs
quartic coupling becomes milder. For three free parameters of the model, mZ′, αgX and xH ,
we have performed parameter scan by analyzing the renormalization group evolutions of the
model parameters at the two-loop level, and identified parameter regions which can solve the
electroweak vacuum instability problem and keep all coupling values in perturbative regime
up to the Planck mass. We have found that the resultant parameter regions are very severely
constrained, and also that the U(1)B−L model and the orthogonal model are excluded from
having the electroweak vacuum stability with the current world average of the experimental
data, mt = 173.34 GeV [12] and mh = 125.09 GeV [10].

We have also considered the current collider bounds on the U(1)′ Z′ boson mass from the
recent ATLAS and CMS results at the LHC Run-2 with

√
s = 13 TeV. We have interpreted

the Z ′ boson resonance search results at the LHC Run-1 and Run-2 to the U(1)′ Z′ boson case,
and obtained the collider bound on the U(1)′ charge of the SM Higgs doublet xH for a fixed
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U(1)′ gauge coupling, the collider bound on xH for a fixed VEV of the U(1)′ Higgs, or the upper
bound on the the U(1)′ gauge coupling for a fixed xH as a function of the U(1)′ Z′ boson mass
mZ′. The LEP results on search for effective 4-Fermi interactions mediated by the U(1)′ Z′

boson can also constrain the model parameter space, but the constraint is found to be weaker
than those obtained from the LHC Run-2 results.

Once the U(1)′ gauge symmetry is broken, the Z ′ boson and the right-handed neutrinos be-
come heavy, and contribute to the SM Higgs self-energy through quantum corrections. There-
fore, the SM Higgs self-energy can exceed the electroweak scale, if the states are so heavy. Since
the SM Higgs doublet has nonzero U(1)′ charge, the self-energy corrections from Z ′ boson occur
at the one loop level. This is in sharp contrast with the classically conformal U(1)B−L model [6],
where the Higgs doublet has no U(1)B−L charge, and the self-energy corrections from Z ′ boson
occur at the two-loop level. We have evaluated the Higgs self-energy corrections and found the
naturalness bounds to reproduce the right electroweak scale for the fine-tuning level better than
10%. We have found that the naturalness bounds for the 30% fine-tuning level is compatible
to the ALTAS constraint from the LHC Run-2 results, and requiring the fine-tuning level > 10
% leads to the upper bound on the U(1)′ Z ′ boson mass as mZ′ . 7 TeV.

Putting all our results together in Figs. 4-7, we have found that the U(1)′ Z ′ boson mass
lies in the range of 3.5 TeV. mZ′ . 7 TeV. This region can be explored by the LHC Run-2 in
the near future.
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A THE U(1)′ RGES AT TWO-LOOP LEVEL

In this appendix we present the two-loop RGEs for the U(1)′ extension of the SM, which are
used in our analysis. The definitions of the covariant derivative, the Yukawa interactions and
the scalar potential are given by Eqs. (2.1), (2.3) and (2.5), respectively. We only include
the top quark Yukawa coupling yt and the right-handed neutrino Majorana Yukawa coupling
yM = Y i

M (i = 1, 2, 3), since the other Yukawa couplings are negligibly small. The U(1)′ charges
xi are defined in Table 1. The U(1)′ RGEs at the two-loop level have been generated by using
SARAH [21].

A.1 The U(1)′ RGEs for the gauge couplings

The RGEs for the gauge couplings at the two-loop level are given by

µ
dgi
dµ

= β(1)
gi

+ β(2)
gi

, (A.1)
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where β
(1)
gi and β

(2)
gi are the one-loop and two-loop beta functions for the gauge couplings,

respectively, and gi represents g3, g2, g1, gX1, g1X and gX . Here, the one-loop beta functions
for the gauge couplings are given by

β(1)
g3

=
g33

16π2

[

− 7
]

,

β(1)
g2

=
g32

16π2

[

−19

6

]

,

β(1)
g1

=
1

16π2

[

g1

{

41

6
g21 +

1

3

(

82xH + 16xΦ

)

g1gX1 +
1

3

(

82x2
H + 32xHxΦ + 9x2

Φ

)

g2X1

}

+ g1X

{

41

6
g1g1X +

1

3

(

41xH + 8xΦ

)

g1gX +
1

3

(

41xH + 8xΦ

)

g1XgX1

+
1

3

(

82x2
H + 32xHxΦ + 9x2

Φ

)

gX1gX

}]

,

β(1)
gX1

=
1

16π2

[

gX1

{

41

6
g21 +

1

3

(

82xH + 16xΦ

)

g1gX1 +
1

3

(

82x2
H + 32xHxΦ + 9x2

Φ

)

g2X1
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+ gX

{

41
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=
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)
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=
1
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1

3
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82xH + 16xΦ

)
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1

3
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82x2
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Φ

)

gX1gX

}]

, (A.2)
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and the two-loop beta functions for the gauge couplings are given by

β(2)
g3

=
1

(16π2)2
· g

3
3

6

[

11g21 + 27g22 − 156g23 + 11g21X + 44g1XgXxH + 44g1gX1xH + 44g2Xx
2
H

+ 44g2X1x
2
H + 4g1XgXxΦ + 4g1gX1xΦ + 8g2XxHxΦ + 8g2X1xHxΦ + 2g2Xx

2
Φ + 2g2X1x

2
Φ − 12y2t

]

,

β(2)
g2 =

1

(16π2)2
· g

3
2

6

[

9g21 + 35g22 + 72g23 + 9g21X + 36g1XgXxH + 36g1gX1xH + 36g2Xx
2
H + 36g2X1x

2
H

+ 12g1XgXxΦ + 12g1gX1xΦ + 24g2XxHxΦ + 24g2X1xHxΦ + 6g2Xx
2
Φ + 6g2X1x

2
Φ − 9y2t

]

,

β(2)
g1

=
1

(16π2)2
· 1

18

[

199g51 + 81g31g
2
2 + 264g31g

2
3 + 398g31g

2
1X + 81g1g

2
2g

2
1X + 264g1g

2
3g

2
1X

+ 199g1g
4
1X + 1194g31g1XgXxH + 162g1g

2
2g1XgXxH + 528g1g

2
3g1XgXxH

+ 1194g1g
3
1XgXxH + 1592g41gX1xH + 324g21g

2
2gX1xH + 1056g21g

2
3gX1xH + 1990g21g

2
1XgX1xH

+ 162g22g
2
1XgX1xH + 528g23g

2
1XgX1xH + 398g41XgX1xH + 796g31g

2
Xx

2
H + 2388g1g

2
1Xg

2
Xx

2
H

+ 5572g21g1XgXgX1x
2
H + 324g22g1XgXgX1x

2
H + 1056g23g1XgXgX1x

2
H + 2388g31XgXgX1x

2
H

+ 4776g31g
2
X1x

2
H + 324g1g

2
2g

2
X1x

2
H + 1056g1g

2
3g

2
X1x

2
H + 3184g1g

2
1Xg

2
X1x

2
H + 1592g1g1Xg

3
Xx

3
H

+ 3184g21g
2
XgX1x

3
H + 4776g21Xg

2
XgX1x

3
H + 7960g1g1XgXg

2
X1x

3
H + 6368g21g

3
X1x

3
H

+ 1592g21Xg
3
X1x

3
H + 3184g1Xg

3
XgX1x

4
H + 3184g1g

2
Xg

2
X1x

4
H + 3184g1XgXg

3
X1x

4
H

+ 3184g1g
4
X1x

4
H + 246g31g1XgXxΦ + 54g1g

2
2g1XgXxΦ + 48g1g

2
3g1XgXxΦ

+ 246g1g
3
1XgXxΦ + 328g41gX1xΦ + 108g21g

2
2gX1xΦ + 96g21g

2
3gX1xΦ + 410g21g

2
1XgX1xΦ

+ 54g22g
2
1XgX1xΦ + 48g23g

2
1XgX1xΦ + 82g41XgX1xΦ + 328g31g

2
XxHxΦ + 984g1g

2
1Xg

2
XxHxΦ

+ 2296g21g1XgXgX1xHxΦ + 216g22g1XgXgX1xHxΦ + 192g23g1XgXgX1xHxΦ

+ 984g31XgXgX1xHxΦ + 1968g31g
2
X1xHxΦ + 216g1g

2
2g

2
X1xHxΦ + 192g1g

2
3g

2
X1xHxΦ

+ 1312g1g
2
1Xg

2
X1xHxΦ + 984g1g1Xg

3
Xx

2
HxΦ + 1968g21g

2
XgX1x

2
HxΦ + 2952g21Xg

2
XgX1x

2
HxΦ

+ 4920g1g1XgXg
2
X1x

2
HxΦ + 3936g21g

3
X1x

2
HxΦ + 984g21Xg

3
X1x

2
HxΦ + 2624g1Xg

3
XgX1x

3
HxΦ

+ 2624g1g
2
Xg

2
X1x

3
HxΦ + 2624g1XgXg

3
X1x

3
HxΦ + 2624g1g

4
X1x

3
HxΦ + 46g31g

2
Xx

2
Φ

+ 138g1g
2
1Xg

2
Xx

2
Φ + 322g21g1XgXgX1x

2
Φ + 54g22g1XgXgX1x

2
Φ + 48g23g1XgXgX1x

2
Φ

+ 138g31XgXgX1x
2
Φ + 276g31g

2
X1x

2
Φ + 54g1g

2
2g

2
X1x

2
Φ + 48g1g

2
3g

2
X1x

2
Φ + 184g1g

2
1Xg

2
X1x

2
Φ

+ 276g1g1Xg
3
XxHx

2
Φ + 552g21g

2
XgX1xHx

2
Φ + 828g21Xg

2
XgX1xHx

2
Φ + 1380g1g1XgXg

2
X1xHx

2
Φ

+ 1104g21g
3
X1xHx

2
Φ + 276g21Xg

3
X1xHx

2
Φ + 1104g1Xg

3
XgX1x

2
Hx

2
Φ + 1104g1g

2
Xg

2
X1x

2
Hx

2
Φ

+ 1104g1XgXg
3
X1x

2
Hx

2
Φ + 1104g1g

4
X1x

2
Hx

2
Φ + 28g1g1Xg

3
Xx

3
Φ + 56g21g

2
XgX1x

3
Φ

+ 84g21Xg
2
XgX1x

3
Φ + 140g1g1XgXg

2
X1x

3
Φ + 112g21g

3
X1x

3
Φ + 28g21Xg

3
X1x

3
Φ + 224g1Xg

3
XgX1xHx

3
Φ

+ 224g1g
2
Xg

2
X1xHx

3
Φ + 224g1XgXg

3
X1xHx

3
Φ + 224g1g

4
X1xHx

3
Φ + 100g1Xg

3
XgX1x

4
Φ

+ 100g1g
2
Xg

2
X1x

4
Φ + 100g1XgXg

3
X1x

4
Φ + 100g1g

4
X1x

4
Φ − 54g1XgXgX1x

2
Φy

2
M − 54g1g

2
X1x

2
Φy

2
M

− 51g31y
2
t − 51g1g

2
1Xy

2
t − 102g1g1XgXxHy

2
t − 204g21gX1xHy

2
t − 102g21XgX1xHy

2
t

− 204g1XgXgX1x
2
Hy

2
t − 204g1g

2
X1x

2
Hy

2
t − 15g1g1XgXxΦy

2
t − 30g21gX1xΦy

2
t

− 15g21XgX1xΦy
2
t − 60g1XgXgX1xHxΦy

2
t − 60g1g

2
X1xHxΦy

2
t − 6g1XgXgX1x

2
Φy

2
t − 6g1g

2
X1x

2
Φy

2
t

]

,

19



β(2)
gX1

=
1

(16π2)2
· 1

18

[

199g31g1XgX + 81g1g
2
2g1XgX + 264g1g

2
3g1XgX + 199g1g

3
1XgX + 199g41gX1

+ 81g21g
2
2gX1 + 264g21g

2
3gX1 + 199g21g

2
1XgX1 + 398g31g

2
XxH + 162g1g

2
2g

2
XxH

+ 528g1g
2
3g

2
XxH + 1194g1g

2
1Xg

2
XxH + 1990g21g1XgXgX1xH + 162g22g1XgXgX1xH

+ 528g23g1XgXgX1xH + 398g31XgXgX1xH + 1592g31g
2
X1xH + 324g1g

2
2g

2
X1xH

+ 1056g1g
2
3g

2
X1xH + 796g1g

2
1Xg

2
X1xH + 2388g1g1Xg

3
Xx

2
H + 3184g21g

2
XgX1x

2
H

+ 324g22g
2
XgX1x

2
H + 1056g23g

2
XgX1x

2
H + 2388g21Xg

2
XgX1x

2
H + 5572g1g1XgXg

2
X1x

2
H

+ 4776g21g
3
X1x

2
H + 324g22g

3
X1x

2
H + 1056g23g

3
X1x

2
H + 796g21Xg

3
X1x

2
H + 1592g1g

4
Xx

3
H

+ 4776g1Xg
3
XgX1x

3
H + 7960g1g

2
Xg

2
X1x

3
H + 4776g1XgXg

3
X1x

3
H + 6368g1g

4
X1x

3
H

+ 3184g4XgX1x
4
H + 6368g2Xg

3
X1x

4
H + 3184g5X1x

4
H + 82g31g

2
XxΦ + 54g1g

2
2g

2
XxΦ + 48g1g

2
3g

2
XxΦ

+ 246g1g
2
1Xg

2
XxΦ + 410g21g1XgXgX1xΦ + 54g22g1XgXgX1xΦ + 48g23g1XgXgX1xΦ

+ 82g31XgXgX1xΦ + 328g31g
2
X1xΦ + 108g1g

2
2g

2
X1xΦ + 96g1g

2
3g

2
X1xΦ + 164g1g

2
1Xg

2
X1xΦ

+ 984g1g1Xg
3
XxHxΦ + 1312g21g

2
XgX1xHxΦ + 216g22g

2
XgX1xHxΦ + 192g23g

2
XgX1xHxΦ

+ 984g21Xg
2
XgX1xHxΦ + 2296g1g1XgXg

2
X1xHxΦ + 1968g21g

3
X1xHxΦ + 216g22g

3
X1xHxΦ

+ 192g23g
3
X1xHxΦ + 328g21Xg

3
X1xHxΦ + 984g1g

4
Xx

2
HxΦ + 2952g1Xg

3
XgX1x

2
HxΦ

+ 4920g1g
2
Xg

2
X1x

2
HxΦ + 2952g1XgXg

3
X1x

2
HxΦ + 3936g1g

4
X1x

2
HxΦ + 2624g4XgX1x

3
HxΦ

+ 5248g2Xg
3
X1x

3
HxΦ + 2624g5X1x

3
HxΦ + 138g1g1Xg

3
Xx

2
Φ + 184g21g

2
XgX1x

2
Φ + 54g22g

2
XgX1x

2
Φ

+ 48g23g
2
XgX1x

2
Φ + 138g21Xg

2
XgX1x

2
Φ + 322g1g1XgXg

2
X1x

2
Φ + 276g21g

3
X1x

2
Φ + 54g22g

3
X1x

2
Φ

+ 48g23g
3
X1x

2
Φ + 46g21Xg

3
X1x

2
Φ + 276g1g

4
XxHx

2
Φ + 828g1Xg

3
XgX1xHx

2
Φ + 1380g1g

2
Xg

2
X1xHx

2
Φ

+ 828g1XgXg
3
X1xHx

2
Φ + 1104g1g

4
X1xHx

2
Φ + 1104g4XgX1x

2
Hx

2
Φ + 2208g2Xg

3
X1x

2
Hx

2
Φ

+ 1104g5X1x
2
Hx

2
Φ + 28g1g

4
Xx

3
Φ + 84g1Xg

3
XgX1x

3
Φ + 140g1g

2
Xg

2
X1x

3
Φ + 84g1XgXg

3
X1x

3
Φ

+ 112g1g
4
X1x

3
Φ + 224g4XgX1xHx

3
Φ + 448g2Xg

3
X1xHx

3
Φ + 224g5X1xHx

3
Φ + 100g4XgX1x

4
Φ

+ 200g2Xg
3
X1x

4
Φ + 100g5X1x

4
Φ − 54g2XgX1x

2
Φy

2
M − 54g3X1x

2
Φy

2
M − 51g1g1XgXy

2
t − 51g21gX1y

2
t

− 102g1g
2
XxHy

2
t − 102g1XgXgX1xHy

2
t − 204g1g

2
X1xHy

2
t − 204g2XgX1x

2
Hy

2
t − 204g3X1x

2
Hy

2
t

− 15g1g
2
XxΦy

2
t − 15g1XgXgX1xΦy

2
t − 30g1g

2
X1xΦy

2
t − 60g2XgX1xHxΦy

2
t − 60g3X1xHxΦy

2
t

− 6g2XgX1x
2
Φy

2
t − 6g3X1x

2
Φy

2
t

]

,

20



β(2)
g1X

=
1

(16π2)2
· 1

18

[

199g41g1X + 81g21g
2
2g1X + 264g21g

2
3g1X + 398g21g

3
1X + 81g22g

3
1X

+ 264g23g
3
1X + 199g51X + 398g41gXxH + 162g21g

2
2gXxH + 528g21g

2
3gXxH + 1990g21g

2
1XgXxH

+ 324g22g
2
1XgXxH + 1056g23g

2
1XgXxH + 1592g41XgXxH + 1194g31g1XgX1xH

+ 162g1g
2
2g1XgX1xH + 528g1g

2
3g1XgX1xH + 1194g1g

3
1XgX1xH + 3184g21g1Xg

2
Xx

2
H

+ 324g22g1Xg
2
Xx

2
H + 1056g23g1Xg

2
Xx

2
H + 4776g31Xg

2
Xx

2
H + 2388g31gXgX1x

2
H

+ 324g1g
2
2gXgX1x

2
H + 1056g1g

2
3gXgX1x

2
H + 5572g1g

2
1XgXgX1x

2
H + 2388g21g1Xg

2
X1x

2
H

+ 796g31Xg
2
X1x

2
H + 1592g21g

3
Xx

3
H + 6368g21Xg

3
Xx

3
H + 7960g1g1Xg

2
XgX1x

3
H + 4776g21gXg

2
X1x

3
H

+ 3184g21XgXg
2
X1x

3
H + 1592g1g1Xg

3
X1x

3
H + 3184g1Xg

4
Xx

4
H + 3184g1g

3
XgX1x

4
H

+ 3184g1Xg
2
Xg

2
X1x

4
H + 3184g1gXg

3
X1x

4
H + 82g41gXxΦ + 54g21g

2
2gXxΦ + 48g21g

2
3gXxΦ

+ 410g21g
2
1XgXxΦ + 108g22g

2
1XgXxΦ + 96g23g

2
1XgXxΦ + 328g41XgXxΦ + 246g31g1XgX1xΦ

+ 54g1g
2
2g1XgX1xΦ + 48g1g

2
3g1XgX1xΦ + 246g1g

3
1XgX1xΦ + 1312g21g1Xg

2
XxHxΦ

+ 216g22g1Xg
2
XxHxΦ + 192g23g1Xg

2
XxHxΦ + 1968g31Xg

2
XxHxΦ + 984g31gXgX1xHxΦ

+ 216g1g
2
2gXgX1xHxΦ + 192g1g

2
3gXgX1xHxΦ + 2296g1g

2
1XgXgX1xHxΦ + 984g21g1Xg

2
X1xHxΦ

+ 328g31Xg
2
X1xHxΦ + 984g21g

3
Xx

2
HxΦ + 3936g21Xg

3
Xx

2
HxΦ + 4920g1g1Xg

2
XgX1x

2
HxΦ

+ 2952g21gXg
2
X1x

2
HxΦ + 1968g21XgXg

2
X1x

2
HxΦ + 984g1g1Xg

3
X1x

2
HxΦ + 2624g1Xg

4
Xx

3
HxΦ

+ 2624g1g
3
XgX1x

3
HxΦ + 2624g1Xg

2
Xg

2
X1x

3
HxΦ + 2624g1gXg

3
X1x

3
HxΦ + 184g21g1Xg

2
Xx

2
Φ

+ 54g22g1Xg
2
Xx

2
Φ + 48g23g1Xg

2
Xx

2
Φ + 276g31Xg

2
Xx

2
Φ + 138g31gXgX1x

2
Φ + 54g1g

2
2gXgX1x

2
Φ

+ 48g1g
2
3gXgX1x

2
Φ + 322g1g

2
1XgXgX1x

2
Φ + 138g21g1Xg

2
X1x

2
Φ + 46g31Xg

2
X1x

2
Φ

+ 276g21g
3
XxHx

2
Φ + 1104g21Xg

3
XxHx

2
Φ + 1380g1g1Xg

2
XgX1xHx

2
Φ + 828g21gXg

2
X1xHx

2
Φ

+ 552g21XgXg
2
X1xHx

2
Φ + 276g1g1Xg

3
X1xHx

2
Φ + 1104g1Xg

4
Xx

2
Hx

2
Φ + 1104g1g

3
XgX1x

2
Hx

2
Φ

+ 1104g1Xg
2
Xg

2
X1x

2
Hx

2
Φ + 1104g1gXg

3
X1x

2
Hx

2
Φ + 28g21g

3
Xx

3
Φ + 112g21Xg

3
Xx

3
Φ

+ 140g1g1Xg
2
XgX1x

3
Φ + 84g21gXg

2
X1x

3
Φ + 56g21XgXg

2
X1x

3
Φ + 28g1g1Xg

3
X1x

3
Φ

+ 224g1Xg
4
XxHx

3
Φ + 224g1g

3
XgX1xHx

3
Φ + 224g1Xg

2
Xg

2
X1xHx

3
Φ + 224g1gXg

3
X1xHx

3
Φ

+ 100g1Xg
4
Xx

4
Φ + 100g1g

3
XgX1x

4
Φ + 100g1Xg

2
Xg

2
X1x

4
Φ + 100g1gXg

3
X1x

4
Φ − 54g1Xg

2
Xx

2
Φy

2
M

− 54g1gXgX1x
2
Φy

2
M − 51g21g1Xy

2
t − 51g31Xy

2
t − 102g21gXxHy

2
t − 204g21XgXxHy

2
t

− 102g1g1XgX1xHy
2
t − 204g1Xg

2
Xx

2
Hy

2
t − 204g1gXgX1x

2
Hy

2
t − 15g21gXxΦy

2
t

− 30g21XgXxΦy
2
t − 15g1g1XgX1xΦy

2
t − 60g1Xg

2
XxHxΦy

2
t − 60g1gXgX1xHxΦy

2
t

− 6g1Xg
2
Xx

2
Φy

2
t − 6g1gXgX1x

2
Φy

2
t

]

,

21



β(2)
gX

=
1

(16π2)2
· 1

18

[

199g21g
2
1XgX + 81g22g

2
1XgX + 264g23g

2
1XgX + 199g41XgX + 199g31g1XgX1

+ 81g1g
2
2g1XgX1 + 264g1g

2
3g1XgX1 + 199g1g

3
1XgX1 + 796g21g1Xg

2
XxH

+ 324g22g1Xg
2
XxH + 1056g23g1Xg

2
XxH + 1592g31Xg

2
XxH + 398g31gXgX1xH

+ 162g1g
2
2gXgX1xH + 528g1g

2
3gXgX1xH + 1990g1g

2
1XgXgX1xH + 1194g21g1Xg

2
X1xH

+ 162g22g1Xg
2
X1xH + 528g23g1Xg

2
X1xH + 398g31Xg

2
X1xH + 796g21g

3
Xx

2
H + 324g22g

3
Xx

2
H

+ 1056g23g
3
Xx

2
H + 4776g21Xg

3
Xx

2
H + 5572g1g1Xg

2
XgX1x

2
H + 2388g21gXg

2
X1x

2
H

+ 324g22gXg
2
X1x

2
H + 1056g23gXg

2
X1x

2
H + 3184g21XgXg

2
X1x

2
H + 2388g1g1Xg

3
X1x

2
H

+ 6368g1Xg
4
Xx

3
H + 4776g1g

3
XgX1x

3
H + 7960g1Xg

2
Xg

2
X1x

3
H + 4776g1gXg

3
X1x

3
H

+ 1592g1Xg
4
X1x

3
H + 3184g5Xx

4
H + 6368g3Xg

2
X1x

4
H + 3184gXg

4
X1x

4
H + 164g21g1Xg

2
XxΦ

+ 108g22g1Xg
2
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2
X1xHy

2
t

− 204g3Xx
2
Hy

2
t − 204gXg
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]

. (A.3)

A.2 The U(1)′ RGEs for the Yukawa couplings

The RGEs for the Yukawa couplings at the two-loop level are given by

µ
dyi
dµ

= β(1)
yi

+ β(2)
yi

, (A.4)

where β
(1)
yi and β

(2)
yi are the one-loop and two-loop beta functions for the Yukawa couplings,

respectively, and yi represents yt and yM . Here, the one-loop beta functions for the Yukawa
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couplings are given by

β(1)
yt =

yt
16π2

[
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1
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)(

4g1 + 8xHgX1 + xΦgX1
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,
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=
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[
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(
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]

, (A.5)

and the two-loop beta functions for the Yukawa couplings are given by

β(2)
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· 1
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β(2)
yM

=
1

(16π2)2
· 1
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(
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(
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(
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. (A.6)

A.3 The U(1)′ RGEs for the scalar quartic couplings

Finally, the RGEs for the scalar quartic couplings at the two-loop level are given by

µ
dλi

dµ
= β

(1)
λi

+ β
(2)
λi

, (A.7)

where β
(1)
λi

and β
(2)
λi

are the one-loop and two-loop beta functions for the scalar quartic couplings,
respectively, and λi represents λH , λΦ and λmix. Here, the one-loop beta functions for the scalar
quartic couplings are given by
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3

8

{

(

g1 + 2xHgX1

)2
+
(
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, (A.8)
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and the two-loop beta functions for the scalar quartic couplings are given by
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B THE SM RGES AT TWO-LOOP LEVEL

The RGEs for coupling constants of the SM up to two-loop level [11] are give by

µ
dg3
dµ

=
g33

(4π)2

[

− 7
]

+
g33

(4π)4

[

−26g23 +
9

2
g22 +

11

6
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]

,
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dg2
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=
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(4π)2
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−19

6

]

+
g32

(4π)4
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6
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2
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2
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,
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[
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. (B.1)

In our analysis, we numerically solve these SM RGEs with the following boundary conditions
at µ = mt [11]

5

g3(mt) = 1.1666 + 0.00314

(

α3(mZ)− 0.1184

0.0007

)

− 0.00046
( mt

GeV
− 173.34

)

,

g2(mt) = 0.64779 + 0.00004
( mt

GeV
− 173.34

)

+ 0.00011

(

mW − 80.384GeV

0.014GeV

)

,

g1(mt) = 0.35830 + 0.00011
( mt

GeV
− 173.34

)

− 0.00020

(

mW − 80.384GeV

0.014GeV

)

,

yt(mt) = 0.93690 + 0.00556
( mt

GeV
− 173.34

)

− 0.00042

(

α3(mZ)− 0.1184

0.0007

)

,

λH(mt) = 0.12604 + 0.00206
( mh

GeV
− 125.15

)

− 0.00004
( mt

GeV
− 173.34

)

, (B.2)

5We employed the boundary conditions in arXiv:1307.3536v4.
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using the inputs, α3(mZ) = 0.1184, mt = 173.34 GeV, mh = 125.09 GeV, and mW = 80.384
GeV.
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