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Abstract

Dark matter may interact with the Standard Model through the kinetic mixing of dark photons, A′,

with Standard Model photons. Such dark matter will accumulate in the Sun and annihilate into

dark photons. The dark photons may then leave the Sun and decay into pairs of charged Standard

Model particles that can be detected by the Alpha Magnetic Spectrometer. The directionality

of this “dark sunshine” is distinct from all astrophysical backgrounds, providing an opportunity

for unambiguous dark matter discovery by AMS. We perform a complete analysis of this scenario

including Sommerfeld enhancements of dark matter annihilation and the effect of the Sun’s magnetic

field on the signal, and we define a set of cuts to optimize the signal probability. With the three years

of data already collected, AMS may discover dark matter with mass 1 TeV . mX . 10 TeV, dark

photon masses mA′ ∼ O(100) MeV, and kinetic mixing parameters 10−11 . ε . 10−8. The proposed

search extends beyond existing beam dump and supernova bounds, and it is complementary to

direct detection, probing the same region of parameter space.
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I. INTRODUCTION

One of the clear signs for physics beyond the Standard Model (SM) is the existence of dark
matter. The correct present-day abundance of dark matter can be realized if dark matter
with weak-scale mass annihilates into SM particles with approximately weak-interaction
couplings. This framework implies promising direct, indirect, and collider searches for dark
matter, but this promise is not generic to all dark matter candidates. One limit in which
thermal relic dark matter may hide from experimental searches is if it interacts through a
light mediator. In this case, annihilation into on-shell mediators may occur with the correct
couplings for a thermal relic, but direct detection and collider bounds can be parametrically
suppressed by the mediator coupling to the SM.

A simple realization of this scenario is a dark sector with a broken U(1) gauge symmetry,
which provides a massive “dark photon” [1, 2]. This dark photon may kinetically mix with
the SM photon with a very small mixing parameter if, for example, the mixing is produced
by loops of heavy particles [3, 4].

This type of dark sector predicts a novel class of indirect detection signals. In this
framework, dark matter is captured by large gravitating bodies and annihilates into dark
photons. The decay products of these dark photons can be detected if they escape the
gravitating object. The formalism for dark matter capture and annihilation was developed
many years ago for the case of dark matter annihilating in the Sun or Earth to neutrinos [5–
14]. In the past few years, studies have begun to explore the case of annihilation into new,
light SM singlet particles [15], including the specific case of dark photons [16–18].

In Ref. [19], we carried out a detailed examination of dark matter annihilating to dark
photons in the center of the Earth. We found that this could result in spectacular signals
in the IceCube Neutrino Observatory and possibly also space-based detectors such as the
Fermi Large Area Telescope (LAT) and the Alpha Magnetic Spectrometer (AMS). As an
example, in currently unconstrained regions of parameter space with dark matter masses
100 GeV . mX . 10 TeV, dark photon masses mA′ ∼ MeV − GeV, and kinetic mixing
parameters 10−9 . ε . 10−7, this scenario predicts up to thousands of TeV-energy e+/e−,
µ+/µ−, and hadron pairs from the center of the Earth streaming through the IceCube detector
each year. Experimental searches for this signal will therefore either exclude new regions of
parameter space or provide the first unambiguous signal of dark matter. Additionally, in
contrast to the standard case of indirect detection of neutrinos, in the dark photon case, all
of the annihilation products from a single dark matter particle can be detected, allowing one
to reconstruct the dark matter mass from a few clean signal events.

In this work we examine the complementary possibility that dark matter accumulates not
in the Earth, but in the Sun, annihilating to dark photons (“dark sunshine”) which decays
to SM particles. The complete process is shown schematically in Fig. 1.

At first sight, replacing the Earth with the Sun may appear to be a simple substitution,
but this is far from the case. There are some obvious differences: the longer propagation
distance required for dark photons to escape the Sun compared to the Earth implies that
searches for solar dark photons probe smaller kinetic mixing parameters ε. In addition, the
Sun’s size provides more targets and a bigger gravitational potential to assist dark matter
capture, and the solar capture rate is more reliably calculated than the Earth’s. There is also
a very significant new complication, however: for dark photons from the Sun, the magnetic
fields of the Sun and Earth deflect the dark photon decay products, potentially ruining the
directionality of the signal. Cuts to define the signal region and optimize the signal above
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FIG. 1: Dark matter is captured by elastic XN → XN scattering off nuclei, collects in the center

of the Sun, and annihilates to dark photons, XX → A′A′. These dark photons then leave the

Sun and decay to SM particles, including positrons that may be detected by the Alpha Magnetic

Spectrometer on the International Space Station.

background must, therefore, be very carefully defined.
In this work, we perform a complete, systematic analysis of solar capture of dark matter

and its subsequent annihilation into dark photons. We go beyond prior analyses by including
the effect of non-perturbative Sommerfeld enhancements of the annihilation rate. We also
consider self-capture in the Sun [20], which we find to be a subleading effect in the regions
of parameter space with significant event rates. In addition, we model the effect of the
solar magnetic field on the signal. We focus on the reach of AMS-02 to detect the signal in
positrons and optimize the signal over background by defining stringent cuts to reduce the
background to almost negligible levels. The analysis makes essential use of AMS’s excellent
angular resolution [21], which has not previously been utilized in its dark matter searches.

Including these effects, we show that AMS can discover dark matter through the dark
sunshine signal for parameters 100 GeV . mX . 10 TeV, mA′ ∼ O(100) MeV, and
10−11 . ε . 10−8. The signal probes a region in parameter space that is unconstrained by
beam dump and supernova bounds. This region is also probed by direct detection, and so this
suggested search provides a complementary probe. Such values of ε are naturally induced,
for example, by degenerate bi-fundamentals in grand unified theories [22]. These values of
mA′ and ε also produce dark matter self-interactions that have been suggested to solve small
scale structure anomalies [23] and may simultaneously explain the excess of gamma rays
from the galactic center recently observed by the Fermi Large Area Telescope [24].

The Fermi-LAT collaboration has set investigated the possibility of dark matter captured
in the Sun annihilating into on-shell mediators [25]. The approach taken there was to use
light mediators as a general motivation for searches for asymmetries, for example, for an
excess of positrons from the hemisphere including the Sun over the opposite hemisphere.
This study is complementary to that work in that we maximize the search reach by defining
more stringent cuts that reduce the background to near-negligible levels. In addition, we
consider the dark photon mediator specifically, determine the reach in this model’s parameter
space, and compare it to the reach of other experimental and observational constraints.

3



II. DARK MATTER INTERACTIONS THROUGH A DARK PHOTON

The dark photon A′ is the gauge boson of a broken U(1) symmetry that kinetically mixes
with the hypercharge boson. The diagonalization of the Hamiltonian from the kinetically
mixed gauge–basis states to physical states is detailed in the Appendix. When the dark
photon mass is very light, the mixing with the Z boson is negligible and this system may be
treated as a mixing between the photon and the dark photon. The effective Lagrangian for
the photon–dark photon system is

L = −1

4
FµνF

µν − 1

4
F ′µνF

′µν +
1

2
m2
A′A

′2 −
∑
f

qfe(Aµ + εA′µ)f̄γµf − gXA′µX̄γµX , (1)

where we sum over SM fermions f with electric charge qf , ε is the kinetic mixing parameter
in the physical basis, and gX is the dark U(1) gauge coupling. We present our results in terms
of the electromagnetic and dark fine structure constants, α = e2/(4π) and αX = g2

X/(4π).
Dark photons decay to SM fermions, f , with a branching ratio

Γ(A′ → ff̄) =
ε2q2

fα(m2
A′ + 2m2

f )

3mA′

√
1−

4m2
f

m2
A′

. (2)

In the limit where mX � mA′ � me, the dark photon decay length is

L = R� Br(A′ → e+e−)

(
1.1× 10−9

ε

)2(
mX/mA′

1000

)(
100 MeV

mA′

)
, (3)

where R� = 7.0× 1010 cm = 4.6× 10−3 au is the radius of the Sun, and the branching ratio
to e+e− can be determined from hadron production at colliders and is between 40% and
100% for the range 1 MeV . mA′ . 500 MeV [26].

We consider two choices for the dark photon couplings. First, we consider the case
where the present dark matter abundance is set by thermal freeze out with respect to the
annihilation process XX̄ → A′A′. The Born approximation cross section valid at freeze out
is [27]

〈σannv〉Born =
πα2

X

m2
X

(1−m2
A′/m

2
X)

3/2

[1−m2
A′/(2m

2
X)]

2 . (4)

Obtaining the observed ΩXh
2 = 0.12 from thermal freeze out requires 〈σannv〉 = 2.2 ×

10−26 cm3/s [28], so that

αth
X = 0.035

(mX

TeV

)
. (5)

Alternatively, one may assume that the dark matter abundance is set by non-thermal
dynamics and allow αX to take its maximal experimentally-allowed value. The most stringent
bounds come from the imprint of dark matter annihilation products on the cosmic microwave
background (CMB) [29–32]. We fit the results of Ref. [32] and find that the maximum
coupling allowed by the CMB is

αmax
X = 0.17

(mX

TeV

)1.61

(6)

in the range of phenomenologically relevant masses.
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III. EXPERIMENTAL BOUNDS ON DARK PHOTON MEDIATORS

Here we briefly review the bounds on dark photons that are most relevant in the parameter
space relevant to this work.

A. Direct Detection

Direct detection experiments bound dark photon mediated interactions with weak-scale
dark matter. These were recently examined in Ref. [33], which highlighted that the exclusion
contour in the (mA, ε) plane becomes independent of mX for small mA when the contact-
interaction limit breaks down. This is easy to understand: in the mA � mX limit, the
X–nucleon cross section and annihilation rate scale as

σXn ∼ αXρ0 ∼
αX
mX

〈σannv〉 ∼
α2
X

m2
X

. (7)

Fixing αX to yield the thermal relic cross section 〈σannv〉 = 2.2×10−26 cm3/s gives αX ∼ mX ,
and so the direct detection bounds are constant in mX for a thermal relic.

B. Colliders and Fixed-Target Experiments

Direct searches for dark photons production at colliders and beam dump experiments
are reviewed in Ref. [34]. These searches do not make use of the dark photon–dark matter
coupling and can thus be plotted in the (mA′ , ε) plane independently of the dark matter
mass. In the mass range probed by this study, MeV < mA′ < GeV and 10−12 < ε < 10−7,
the most relevant bounds are from the E137 beam dump experiment [35, 36], the LSND
neutrino experiment [37–39], and the CHARM fixed target experiment [40, 41]. For the dark
matter mass range where AMS is sensitive to solar dark photons, these collider experiments
are less sensitive than the direct detection bounds from LUX presented in Ref. [33].

C. Indirect Detection

Bounds on dark matter annihilation into dark photons in the present day coming from the
diffuse positron spectrum constrain the dark sector coupling, αX [15, 16, 18]. These bounds
do not reach the thermal coupling and are weaker than the CMB bounds that define our
maximal coupling in Eq. (5).

D. Supernova Bounds

Independent of the dark matter properties, light mediators are constrained by the cooling
of supernova by mediator emission [34, 42–45]. In particular, Ref. [45] recently refined the
analysis of supernova cooling and found that the bounds on dark photons are nearly an order
of magnitude weaker than previously published limits. Separately, the absence of a prompt
MeV γ-ray signal from supernova 1987A sets additional bounds on the (ε,mA′) plane [44].
Ref. [46] pointed out that dark matter interactions may weaken these bounds when the dark
matter is light (mX . GeV).
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E. Cosmology

The cosmic microwave background sets bounds on dark matter annihilation products
in the early universe [29–31]. In addition to the CMB bounds from Ref. [32] that set the
maximum phenomenologically allowed αX in Eq. (6), the impact of late dark photon decays
on big bang nucleosynthesis and the CMB constrains the (mA′ , ε) plane for mA′ . GeV [47].

IV. DARK MATTER ACCUMULATION IN THE SUN

Dark matter is captured in the Sun if elastic collisions with solar nuclei transfer enough
energy that the dark matter’s velocity falls below the Sun’s escape velocity. Dark matter may
also be self-captured by scattering off of already-captured dark matter [20]. The captured
dark matter accumulates in the solar core and thermalizes. This accumulation is balanced
by annihilation into pairs of dark photons. Due to the low temperature at the core of the
Sun, this annihilation rate is Sommerfeld enhanced from dark photon-mediated interactions
at low relative velocity.

The number of dark matter particles in the Sun, NX , satisfies the rate equation

ṄX = Ccap + CselfNX − CannN
2
X , (8)

where the C coefficients encode the capture rate, self-capture rate, and annihilation rate.
We ignore the effect of dark matter evaporation, which is negligible for dark matter masses
above O(10) GeV [9, 10]. The equilibrium time scale for this expression is

τ =
1√

CcapCann + 1
4
C2

self

. (9)

Below we show that the self-capture effect on the equilibrium time is negligible for
our parameter range of interest. The solution to the rate equation in the relevant limit
C2

self � CcapCann is

NX =

√
Ccap

Cann

tanh
t

τ
Γann ≡

1

2
CannN

2
X =

1

2
Ccap tanh2 t

τ
. (10)

The factor of 1/2 accounts for the fact that two dark matter particles are removed in each
annihilation. When the age of the Sun is greater than the equilibrium time, τ� ' 4.5 Gyr > τ ,
the Sun is saturated with dark matter and the annihilation rate is maximized and matches
the accumulation rate. For τ� < τ , the dark matter population in the Sun is still growing
and the tanh2(τ�/τ) factor suppresses the annihilation rate relative to the capture rate.

We now examine each term in Eq. (8).

A. Dark Matter Capture

The capture rate for dark matter scattering off of a particular nuclear species N in the
Sun is the integral of the differential cross section over the volume of the Sun; the incident
dark matter velocity, w; and the nuclear recoil energies, ER, for which capture occurs:

CN
cap = nX

∫ R�

0

dr 4πr2nN(r)

∫ ∞
0

dw 4πw3f�(w, r)

∫
dER

dσN
dER

∣∣∣∣
capture

, (11)
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where nX = ρX/mX is the local dark matter number density, nN (r) is the N number density
at a distance r from the solar center, f�(w, r) is the dark matter velocity distribution at that
position, and dσN/dER is the elastic scattering cross section. The full capture rate is the
sum over all nuclear species in the Sun, Ccap =

∑
N C

N
cap.

The velocity of dark matter asymptotically far from the Sun, u, is distributed according
to a Maxwell–Boltzmann-like velocity distribution. In the neighborhood of the Sun, this
distribution is distorted due to the solar gravitational potential. Taking this acceleration
into account and invoking energy conservation, the incoming dark matter velocity w for an
interaction with a nucleus in the Sun is

w2 = u2 + v2
�(r) , (12)

where v�(r) is the escape velocity at a distance r from the solar center. The dark matter
velocity distribution, f�(w, r), thus satisfies

w3f�(w, r) dw = u
[
u2 + v2

�(r)
]
f(u) du . (13)

This may then be substituted directly into Eq. (11). We use the asymptotic velocity
distribution in the solar rest frame,

f�(u) =
1

2

∫ 1

−1

dc f

(√
u2 + u2

� + 2uu�c

)
, (14)

where u� = 233 km/s is the solar velocity in the galactic rest frame, and

f(u) = N

[
exp

(
v2

gal − u2

ku2
0

)
− 1

]k
Θ(vgal − u) , (15)

where vgal is the galactic escape velocity and N is chosen to normalize the distribution to
integrate to unity. The Maxwell–Boltzmann distribution is recovered for k = 0 and vgal →∞.
The astrophysically favored range of parameters is [48]

220 km/s < u0 < 270 km/s 450 km/s < vgal < 650 km/s 1.5 < k < 3.5 . (16)

In this analysis we use the central values of these ranges. We confirm that varying these
parameters in this range does not perceptibly alter the dark matter capture rate in the
Sun [49].

The differential elastic scattering cross section in the non-relativistic limit is

dσN
dER

= 8πε2αXαZ
2
N

mN

w2(2mNER +m2
A′)

2
|FN |2 , (17)

where the Helm form factor is

|FN |2 = exp

(
−ER
EN

)
EN =

0.114 GeV

A
5/3
N

, (18)

for a target nucleus N with mass mN and atomic number AN . Dark matter captures in
the Sun when the outgoing X velocity is less than the escape velocity v�(r) at distance r
from the solar center. This occurs if sufficient energy, ER, is transferred to the nucleus. The

7



minimum energy transfer from an incident X with velocity w to the nucleus at distance r
from the Sun in order for the dark matter to be captured is

Emin =
1

2
mX

[
w2 − v2

�(r)
]
. (19)

The range of allowed recoil energies is determined by kinematics. Writing the dark matter–
nucleus reduced mass as µN , the lab frame recoil energy is

ER =
1

2
Emax(1− cos θCM) Emax =

2µ2
Nw

2

mN

, (20)

where we have identified the maximum kinematically permitted recoil energy, Emax. Capture
occurs when Emax > ER > Emin. It is convenient to write this as∫

dER
dσN
dER

∣∣∣∣
capture

=

∫ Emax

Emin

dER
dσN
dER

Θ(∆E) ∆E = Emax − Emin . (21)

One may then substitute the results of Eqs. (13, 17, 21) into Eq. (11). In Ref. [19] we showed
that the resulting capture rate may be succinctly written as

Ccap = 32π3ε2αXαnX
∑
N

Z2
N

mNEN
exp

(
m2
A′

2mNEN

)
cNcap (22)

cNcap =

∫ R�

0

dr r2nN(r)

∫ ∞
0

du uf�(u)Θ(∆xN)

[
e−xN

xN
+ Ei(−xN)

]xmin
N

xmax
N

, (23)

where we use the substitution variable xN and exponential integral function [50],

xN =
2mNER +m2

A′

2mNEN
Ei(z) ≡ −

∫ ∞
−z

dt
e−t

t
. (24)

We use the AGSS09 solar composition model to extract the nN(r) [51–53]. Ref. [48]
tabulated the elements that give the largest contributions to dark matter capture: O, Fe,
Si, Ne, Mg, He, S, and N. These are given in decreasing order of importance, but they are
all significant, with the nitrogen contribution just a factor of 5 below that of oxygen in the
mX � mN limit. Hydrogen, the most abundant nucleus in the Sun, is a subdominant target,
since the capture rate is proportional to µ2

NmNZ
2
N .

B. Dark Matter Annihilation

Captured dark matter thermalizes in the Sun for X–proton spin-independent scattering
cross sections above 10−51, 10−50, and 10−47 cm2 for mX = 100 GeV, 1 TeV, and 10 TeV,
respectively [54]. As we will see below, these values are greatly exceeded here. The dark
matter, then, thermalizes and is Boltzmann distributed in a core near the center of the Sun,
with number density

nX(r) = n0e
−r2/r2X rX =

√
3T�

2πGNρ�mX

≈ 0.03R�

(
100 GeV

mX

)1/2

. (25)
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Writing Γann = 1
2

∫
d3xn2

X(x)〈σannv〉 and using the definition for Cann in Eq. (10) gives

Cann = 〈σannv〉
(
GNmXρ�

3T�

)3/2

, (26)

where the solar density and temperature are ρ� = 151 g/cm3 and T� = 15.5× 106 K.
The captured dark matter is extremely cold, with typical velocity

v0 =
√

2T�/mX = 5.1× 10−5
√

TeV/mX . (27)

The thermally–averaged XX → A′A′ cross section for annihilation is therefore significantly
modified from the tree-level expression given in Eq. (4) to

〈σannv〉 = S 〈σannv〉Born , (28)

where S is the non-relativistic Sommerfeld enhancement [55] of the Born approximation
annihilation rate. An analytic expression for S for the case of mA′ 6= 0 may be derived
by approximating the Yukawa potential with the Hulthén potential [56–58], giving an
enhancement of S-wave processes of

Ss =
π

a

sinh(2πac)

cosh(2πac)− cos(2π
√
c− a2c2)

c�1−→ π αX/v

1− e−παX/v
, (29)

where a = v/(2αX) and c = 6αXmX/(π
2mA′). The Sommerfeld enhancement, S, is the

thermal average of Ss,

〈SS〉 =

∫
d3v

(2πv2
0)3/2

e−
1
2
v2/v20 SS . (30)

The general form of Ss on the left-hand side of Eq. (29) encodes the effects of resonances
generated by the long-range potential. Ref. [19] showed that these resonances play a crucial
role for dark matter accumulation in smaller bodies such as the Earth which would otherwise
not be in thermal equilibrium. In contrast, in the regime of parameter space of interest, the
Sun is already in thermal equilibrium so that tanh τ�/τ ≈ 1 in Eq. (10) and the effect of the
detailed modeling of enhancements to Cann is negligible.

C. Dark Matter Self-Capture

The effect of dark matter self-capture in the Sun, parametrized by Cself in Eq. (8), is
studied in detail by Zentner in Ref. [20]. Cself becomes relevant in the regime of very large
self-interactions relative to the annihilation rate. One may obtain large self-interactions in
the limit of a light mediator since a low-velocity self-interaction enhancement analogous to
Sommerfeld enhancement may boost the capture rate; indeed, such a scenario is separately
of interest as a proposed solution to small-scale structure anomalies in astrophysics [23].

In the dark photon framework discussed here, we find that in the regions of parameter
space where a signal is detectable in AMS, the effect of self-capture is negligible. Heuristically,
this may be understood as resulting from the fact that, although the self-capture rate is
indeed non-perturbatively-enhanced at small velocities, the annihilation rate is Sommerfeld-
enhanced even more. This is because the self-scattering occurs with velocities w & v�, while
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the annihilation occurs at the much smaller velocities v0 � v� in Eq. (30). As a result, as
we will show below, the self-capture contribution to the equilibrium time in Eq. (9) may be
safely ignored.

For completeness, however, we demonstrate how recent self-interacting dark matter
results are applied to self-capture. Following Ref. [23], the relevant cross section for self-
scattering is the viscosity cross section, dσV /dΩ = sin2 θ dσ/dΩ, which regulates forward and
backward scattering divergences that do not affect the dark matter phase space evolution.
For distinguishable particles, one may approximate this with the transfer cross section,
dσT/dΩ = (1− cos θ)dσ/dΩ. The transfer cross section only regulates the forward divergence,
but there is an extensive literature on this cross section in the classical limit (mXw/mA′ � 1)
from the plasma physics literature [59, 60], which may be applied to the present case [61],
yielding

σT '
π

m2
A′


4β2 ln(1 + β−1) if β . 10−1

4β2 (1 + 1.5β1.65)
−1

if 10−1 . β . 103(
ln β + 1− 1

2 lnβ

)2

if β & 103

β ≡ 2αXmA′

mXw2
, (31)

Over most of the regime for solar dark matter self-capture, Cself ∼ σT ∼ α2
X . Parametrically,

CcapCann ∼ ε2αα3
XS C2

self ∼ α4
X , (32)

where S ∼ αX . Since both terms scale as α4
X , one cannot tune the dark sector coupling to

suppress the ordinary capture rate relative to the self-capture rate. Thus self-capture can
only become a dominant effect in the small ε regime. We show below that this only occurs
for ε so small that the Sun is not in equilibrium. In the extreme case, when ε is so small
that CcapCann � C2

self, then τ ≈ 2/Cself in Eq. (9) is typically much larger than the age of
the Sun, τ�, and the annihilation rate is suppressed.

Beyond the classical regime, Eq. (31) must be modified. In the so-called resonant regime
where

αXmX

mA′
& 1 and

mXv

mA′
. 1 , (33)

one may approximate the Yukawa potential between the dark matter particles with the
Hulthén potential which may be solved analytically for S-wave scattering. In the regime
of mA′/mX . v, however, higher partial waves are required and one must perform a full
numerical integration of the Schrödinger equation. A detailed investigation of this limit is
beyond the scope of this study.

D. Equilibrium Time

Fig. 2 presents results for the equilibrium time, τ , defined in Eq. (9). The region for which
τ is less than the age of the Sun, τ�, is shaded in green. The contours in Fig. 2 reflect the
Sommerfeld resonances from Eq. (29). Unlike the case of the Earth studied in Ref. [19], these
resonances do not play a major role since, in the region probed by AMS, tanh2 τ�/τ ≈ 1 and
the annihilation rate in Eq. (10) is not affected by further enhancements. The bottom right
plot shows the regime where self-interactions are significant and cause a noticeable deviation
from the Cself = 0 limit. As noted above, this only occurs in the region where the Sun is not
yet in equilibrium so that the dark matter annihilation rate is suppressed.
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FIG. 2: Contours of constant τ/τ�, the equilibrium timescale in units of the Sun’s age, in the

(mA′ , ε) plane for mX = 100 GeV (top left), 1 TeV (top right), and 10 TeV (bottom left). The

dark sector fine-structure constant αX is set by requiring ΩX ' 0.23. In the green shaded regions,

τ� < τ and the Sun’s dark matter population has reached equilibrium. Bottom–Right: contours

for mX = 1 TeV, as in the top right, but extending to very low ε. The dashed line shows the case

where self-capture has been ignored. The effect of self-capture becomes relevant only for very low ε,

where equilibrium times are large and the annihilation signal is highly suppressed.

V. POSITRON SIGNAL AND BACKGROUND AT AMS

The dark photons produced by dark matter annihilation in the Sun decay to all
kinematically-accessible charged SM particles, leading to a variety of possible signals (e+e−,
µ+µ−, π+π−, etc.) that can be detected in a number of experiments. We consider the e+e−

signal for dark photons with mA′ > 2me. We specifically focus only on positrons, since the e+

and e− signals have identical properties and the positron background is smaller [62], and we
consider the AMS-02 experiment on the International Space Station (ISS), which is optimal
for positron detection.

11



EarthEarth Magnetic Field

AMS-02

not to scale

Ray Tracing Radius

AMS-02

positron
trajectories

(different energies)

AMS
Detector

higher energy

lower energy

FIG. 3: Schematic depiction of positron trajectories bending in the Earth’s magnetic field. For each

positron energy, one considers a solid angle πθ2
cut given by Eq. (39). Since the Earth’s magnetic field

is well known this mapping is well defined. The inset shows the origin of the angular dependence

implicit in the Sun exposure in Eq. (37).

The positron signal and background are very different: the signal has a hard spectrum and
points back to the Sun, while the astrophysical background drops rapidly with energy and is
effectively isotropic. In principle, it is therefore easy to isolate the signal by considering very
energetic positrons that point back to the Sun. In practice, however, the signal is greatly
complicated by the magnetic fields of the Sun and Earth, which each significantly deflect
even TeV positrons. In the following, we begin by accounting for the Sun’s magnetic field,
which is not well constrained, and neglecting the Earth’s magnetic field, which is relatively
well understood.

Our general strategy is the following: for fixed parameters mX , mA′ , and ε, and a given
experimental live time T , we consider only positrons with energies above Ecut that point
back to the Sun within an angle θcut. For a particular choice of Ecut, we choose θcut(Ecut)
so that the number of background positrons is NB = 1. We then determine the number of
signal positrons, NS, that pass these cuts, given a model for the Sun’s magnetic field. We
then determine the optimal value of the energy cut, Eopt

cut , which maximizes NS, and we use
these maximal values of NS to determine the reach of AMS.

This procedure neglects the Earth’s magnetic field. Since this magnetic field is well
mapped, we assume that its effect on the signal may be de-convoluted so that positrons can
be ray-traced back to a distance of several R⊕ from the Earth, where the Earth’s magnetic
field is negligible. It is at this position that the solid angle of size πθ2

cut should be defined.
This is shown schematically in Fig. 3.

In the remainder of this section we discuss the number of background events NB, the
bending of positrons in the solar magnetic field, the number of signal events NS, and the
optimization of NS.

A. Number of Background Events: Energy and Angular Cuts

We define the signal to be positrons with energies above Ecut that point back to the Sun
within an angle θcut. Together, these parameters control the number of background positrons.
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The background isotropic positron flux has been precisely measured by AMS [62] to be

dΦ

dE
≈ 1.5× 10−9

GeV cm2 sr s

(
E

100 GeV

)−2.8

. (34)

The number of background events in the signal region is, then,

NB(Ecut, θcut) = ξ�Ω�(θcut)

∫ ∞
Ecut

dΦ

dE
dE , (35)

where, for small θcut,

Ω�(θcut) = π θ2
cut sr ' 9.6× 10−4 sr

(
θcut

1◦

)2

(36)

is the solid angle subtended by θ < θcut, and ξ� is the exposure of AMS to the Sun, a function
of positron energy, the ISS’s orbit, and AMS’s fixed orientation on the ISS. For positron
energies above 50 GeV, a detailed calculation finds that in 924 days of livetime, AMS’s
exposure to the Sun was ξ� ' 1.6× 105 m2 s [63]. Assuming uniform operating conditions,
then,

ξ� = 6.3× 104 m2 s
T

yr
' 20 cm2 T , (37)

where T is the AMS livetime, that is, its total time in orbit. The “effective area” 20 cm2 is
much smaller than the geometric size of the detector due, in part, to the fact that the Sun is
only in the field of view a small fraction of the time. For comparison, if AMS spent 100% of
its livetime with the sun at the center of its field of view, the exposure would be about 80
times larger [63].

The resulting number of background events is

NB(Ecut, θcut) = 0.051

(
100 GeV

Ecut

)1.8(
θcut

1◦

)2(
T

yr

)
. (38)

Fixing θcut as a function of Ecut for a given T by requiring only a single background event,
NB = 1, yields

θcut(Ecut) = 4.4◦
(

Ecut

100 GeV

)0.9 (yr

T

)1/2

. (39)

B. Bending of Signal Positrons by the Solar Magnetic Field

Before quantifying the number of signal events, let us examine the bending of a signal
positron by the solar magnetic field. In the absence of magnetic fields between the Sun and
the Earth, positrons from solar dark photon decays would point back to within a degree (for
mX > 100 GeV) of the center of the Sun where the dark matter is concentrated within a
core of radius rX from Eq. (25). The AMS electromagnetic calorimeter’s angular resolution

is parametrized by ∆θ68 '
√

5.8◦2/(E in GeV) + 0.23◦2 [21]; the angular resolution from
the tracker is even better [63]. For the positron energies we will consider, the experimental
angular resolution is therefore less than a degree and is negligible.
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The signal, however, is smeared out by the solar magnetic field, which bends charged
particles as they travel to the Earth. Because of the solar wind, the magnetic field of the Sun
differs from a dipole and varies with the 11-year solar cycle. As an approximation, we use the
Parker model for the heliospheric magnetic field, which has radial and azimuthal components
in heliocentric coordinates [64]; see Refs. [65, 66] for reviews. Since the positrons propagate
in the radial direction, it is sufficient to model the azimuthal part of the magnetic field,

Bφ =

(
3.3 nT√

2

)
au

r
, (40)

where we have used the facts that at R = au, |B| = 3.3 nT and the radial and azimuthal
components of the field are equal in magnitude. We ignore a subleading r−2 piece in Bφ

which is suppressed by a factor of R� = 0.005 au. This model was invoked in Ref. [67] to
explain the PAMELA positron excess as the result of increased activity during the solar
cycle. With this magnetic field, the bending angle of a positron of energy E produced at a
dark photon decay position rd from the Sun is

θbend(rd, E) = 8.9◦
(

TeV

E

)∫ au

rd

Bφ(r′) dr′

au (3.3 nT)
= 6.3◦

(
TeV

E

)
ln

au

rd
. (41)

C. Number of Signal Events

The total number of signal events NS is

NS = N0
S Br(A′ → e+e−)Pdet , (42)

where

N0
S = 2Γann

ξ�
4π(1 au)2

(43)

is the number of dark photons produced when the Sun is in AMS’s field of view, Br(A′ → e+e−)
is the probability that a dark photon decays to a positron, and Pdet is the probability that
such a positron is detected within the signal region by AMS. In Eq. (43), the factor of 2
accounts for the two dark photons produced per dark matter annihilation, and ξ� is the
exposure defined in Eq. (37). N0

S and Br(A′ → e+e−) are completely determined by the
model parameters, while Pdet depends also on the cut parameters.

We now determine the detection probability Pdet. For a positron to be detected in the
AMS signal region, (1) it must be created by a dark photon that decays after traveling a
distance between R� and 1 au, and (2) it must not be deflected out of the signal region by
the solar magnetic field. Letting rd be the distance a dark photon travels before it decays.
condition (2) implies

θbend(rd, E) ≤ θcut(Ecut) , (44)

or, given Eqs. (39) and (41),

rd ≥ rmin
d (E,Ecut) ≡ au e−E/E0(Ecut) , (45)
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FIG. 4: Schematic depiction of the signal region of integration, Eq. (47), in the plane of A′ decay

distance rd and positron energy E. The beige shading represents the magnitude of the integrand,

Eq. (48). We integrate over the box R� < rd < au, Ecut < E < mX and then subtract the integral

over the red shaded region bounded by R� and rmin
d .

where

E0(Ecut) ≡ 1.5 TeV

(
100 GeV

Ecut

)0.9(
T

yr

)1/2

. (46)

Positrons that do not satisfy Eq. (45) are produced too far from the Earth and are deflected
too much to satisfy the angle cut. Given the two constraints on rd, the signal region in the
space of dark photon decay position rd and positron energy E is bounded by

R� ≤ rd ≤ au rmin
d (E,Ecut) ≤ rd Emin ≤ Ecut ≤ E ≤ mX , (47)

where Emin = 50 GeV is the minimum positron energy cut from AMS. This region is shown
in Fig. 4.

The probability density for positrons to be produced at position rd and energy E is

dPdet

drd dE
=
e−rd/L

L

1

mX

, (48)

where the decay length, L, is defined in Eq. (3), and we have used the fact that for
me � mA′ � mX , the positron energies are evenly distributed in the range 0 ≤ E ≤ mX .
Ref. [25] confirms that these positrons do not lose appreciable energy propagating to Earth.

The probability for a positron to be detected in the AMS signal region is, then,

Pdet =

∫
dPdet

drd dE
drd dE =

∫
e−rd/L

drd
L

dE

mX

≡ P 0
det − PB

det Θ(E∗ − Ecut) , (49)

where the region of integration is defined by Eq. (47). P 0
det and PB

det are defined to be the
integral over the box and the red region, respectively, in Fig. 4. P 0

det is the probability, in the
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FIG. 5: Left: Contours of fixed decay length L = R⊕ ' 6400 km, R� ' 7.0× 106 m, and 1 au

in the (mA′ , ε) plane for mX = 10 TeV. The dip at 775 MeV comes from resonant A′ decays via

ρ mesons mixing. The decay lengths shape the probability contours through Eq. (53). Right:

Factors determining the signal reach for dark sunshine searches at AMS for livetime T = 3 years

and mX = 10 TeV. Black: N0
S , the number of dark photons produced when the Sun is in AMS’s

field of view. Red: Pmax
det , the optimal positron detection probability at each point in the (mA′ , ε)

plane. Green: NS , signal region reach. In most of this plane, Br(A′ → e+e−) = 1, and so the

green contours are products of the red and black contours. For example, the NS = 1 contour passes

through the intersection of the N0
S = 10 and Pmax

det = 0.1 contours.

absence of magnetic fields, that a dark photon will decay after traveling a distance between
R� and 1 au to produce a positron with energy greater than Ecut. P

B
det is the correction to

this näıve probability caused by the angular cuts to account for the solar magnetic field. E∗
is defined to be the energy for which rmin

d (E∗, Ecut) = R�. Above this energy the condition
Eq. (45) is trivial since dark photons must decay beyond R� or else their decay products are
caught in the Sun. The upper limit of the dE integral in PB

det is

E× ≡ min (E∗,mX) where E∗ = E0 log
au

R�
. (50)

This definition of E× is necessary since E∗ > mX for sufficiently small Ecut. For the Parker
model of the solar magnetic field, the integrals can be evaluated exactly:

P 0
det =

mX − Ecut

mX

(
e−

R�
L − e− au

L

)
(51)

PB
det =

E0

mX

[
Ei

(
−au

L
e
−E×

E0

)
− Ei

(
−au

L
e
−Ecut

E0

)]
+
E× − Ecut

mX

e−
R�
L , (52)

where the Ei function is defined in Eq. (24).
The difference of exponentials in Eq. (51) determines the shape of the region of dark

photon parameter space that can be reached. When L� R� this term drops rapidly because
few dark photons decay outside the Sun. When L� au, one may expand the exponentials
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so that

P 0
det ≈

mX − Ecut

mX

au

L
∝ ε2m2

A′ . (53)

This is illustrated in Fig. 5, which shows contours of constant decay length L and how
these shape the N0

S and NS reach. Values of Ecut are chosen for each choice of (mA′ , ε) to
optimize Pdet. Decreasing the dark matter mass mX produces lower energy positrons which
are subsequently deflected more by the magnetic fields so that the probability decreases. For
example, at mX = 100 GeV the maximum probability is reduced by two orders of magnitude
relative to mX = TeV, significantly reducing the reach of AMS.

D. Optimizing the Signal

Throughout this study we choose Ecut to optimize the signal probability Pdet while fixing
the number of background events, NB = 1. Because the probability is a concave function of
Ecut, the choice of Ecut as a function of mX ,mA′ , and ε is found by solving dPdet/dEcut = 0,
where

dPdet

dEcut

= − 1

mX

(
e−

R�
L − e− au

L

)
+

1

mX

Θ(E∗ − Ecut)

[
F1Θ(mX − E∗) + F2

]
(54)

F1 =
0.9E0

Ecut

[
e−

R�
L − exp

(
−au

L
e
−E×

E0

)]
log

au

R�
(55)

F2 = e−
R�
L − exp

(
−au

L
e
−Ecut

E0

)
. (56)

This equation is solved numerically to give the choice Eopt
cut that optimizes Pdet. To clarify

the nature of this optimization, we show the effect of varying Ecut in Fig. 6. Figure 7 shows
a set of representative Eopt

cut contours in the (mA′ , ε) plane for mX = 10 TeV.

VI. RESULTS: AMS REACH

To provide a rough estimate of AMS’s discovery potential, in Fig. 8 we show results for
the number of signal events that pass the optimized cuts detailed in the previous section.
Contours of NS are given in the (mA′ , ε) plane for both thermal (αth

X ) and maximal (αmax
X )

dark sector couplings and for the benchmark dark matter masses, mX = 100 GeV, TeV, and
10 TeV. These are the same benchmark masses used in our recent analysis of Earth capture
of dark matter [19].

The NS contours are shaped by the signal probability Pdet shown in Fig. 5 and described
in Sec. V C. This is in contrast to the case of Earth capture where the low-ε portion of the
contours were shaped by the equilibrium condition and followed the Sommerfeld resonances
analogous to Fig. 2. Although the two scenarios are qualitatively similar, their signal reach
is limited by different physics. For a fixed mX , the search for dark photons from the Sun
probes a region in the (mA′ , ε) plane probes a region below that of the Earth capture scenario
presented in Ref. [19]. This is as expected: solar dark photons must propagate further to
escape the Sun than those from the Earth, and they thus provide sensitivity to a region of
longer decay lengths L and smaller ε.
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FIG. 6: Schematic description of the signal region in the plane of decay distance rd and positron

energy E. As one varies Ecut, the rmin
d line shifts downward while the lower limit of the dE

integration shifts upward. The optimal Ecut is then when the integral over the red and green regions

are equivalent. The shading represents the magnitude of the integrand, Eq. (48).
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FIG. 7: Left: Contours of Eopt
cut , the value of Ecut that maximizes the probability Pdet in the

(mA′ , ε) plane for mX = 10 TeV. In the region below lowest plotted contour, 550 GeV, Eopt
cut > E∗

so that the PBdet term in Eq. (49) vanishes—the solar magnetic field does not affect the choice of

cuts—and Eopt
cut = Emin. Right: Contours of the corresponding values of θcut from Eq. (39).

The NS contours are not significance contours. A more detailed analysis is required to
obtain significant contours, but we note that, in particular, in looking for an excess of signal
positrons, we have treated all positrons with energies above Ecut with equal weight. This is a
great oversimplification. For example, for models with mX = 10 TeV, the signal is optimized
for Ecut ∼ 1 TeV, as seen in Fig. 7, and so any positrons from the Sun’s direction with energy
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FIG. 8: Top and Bottom–Left: Red: Number of AMS signal events NS for mX =

100 GeV, 1 TeV, 10 TeV, NB = 1 background event, and livetime T = 3 years in the (mA′ , ε)

plane. The dark sector fine-structure constant αX is set by requiring ΩX ' 0.23. Green: The

NS = 1 reach for αX = αmax
X , the maximal allowed coupling from CMB bounds [29–31], as written

in Eq. (6). Blue: Current bounds from direct detection [33]. Gray: Regions probed by other

dark photon searches discussed in Sec. III. Bottom–Right: Comparison of indirect and direct

detection sensitivities in the (mX , σ) plane for mA′ = 100 MeV. Red: NS = 1 signal event contours

for αX = αth
X (solid) and αmax

X (dashed). Green: Same, but for NS = 10. The direct detection

bounds are from the LUX Collaboration [68]; note that in this regime the point-like interaction

limit is valid; this is not the case for the low mA′ region [33, 69, 70]. Also shown is the “neutrino

floor,” where coherent neutrino scattering affects direct detection experiments [71].

between around 1 and 10 TeV contributes to NS. But at the upper end of this range, the
background is completely negligible, even integrated over the whole sky. If AMS detected
just one multi-TeV positron, and it came from the direction of the Sun, this would be quite
significant. In this case, the NS = 1 contours may be thought of as characterizing the reach
of AMS, whereas in other cases, requiring NS = 5 over a background of NB = 1 might be
more reasonable.
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FIG. 9: Same as Fig. 8 but with no solar B field. Comparing to Fig. 8, one sees that a large fraction

of potential signal positrons are deflected for lighter dark matter masses.

With this caveat in mind, we now compare the signal reach to the sensitivities of other
probes. In Fig. 8, the dark photon bounds from colliders, beam dumps, and cosmology
outlined in Sec. III are shown in gray. For dark matter masses MX & TeV, the search reach
extends well beyond these bounds—the latter in part due to the recent reanalysis in Ref. [45]
which had found that prior estimates have overestimated the reach of these searches by about
an order of magnitude. Even given collider experiment and cosmology bounds, AMS could
detect tens or even hundreds of high energy positrons from the Sun.

Direct detection experiments are, however, more sensitive. Current bounds from LUX are
also shown in Fig. 8 in blue. For the framework analyzed here, with the exception of a modest
region in the mX = TeV plot, the AMS reach contours probe the same region of parameter
space as existing direct detection searches. This is due, in part, to the solar magnetic field
deflecting the positrons and smearing out what is otherwise a very clean directional signal
for AMS. The severity of this effect can be seen by comparing to Fig. 9, which shows the
signal contours in the case where the solar magnetic field is ignored.

One may extend the signal reach by increasing the solar exposure. As a benchmark
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FIG. 10: Same as Fig. 8 but for a hypothetical high-exposure experiment with ξhigh
� = 80ξ�. The

condition of a single background event NB = 1 in Eq. (39) sets such strong cuts that there are no

signal positrons for mX . 500 GeV.

for this, Fig. 10 shows the reach of a hypothetical ‘high solar exposure’ experiment which
the same properties as AMS but that points to the sun during its entire livetime. This
corresponds to an exposure that is 80 times larger for T = 3 years livetime [63].

Direct detection experiments and the indirect detection signal analyzed here are, however,
quite complementary. As an example, in this paper we have focused on the case where
dark matter scatters elastically. However, the model already has all of the ingredients to
introduce a pseudo-Dirac splitting between the dark matter states, if one assumes that the
order parameter that controls the dark photon mass also gives a small Majorana mass to
the X and X̄. This was most recently explored in Ref. [72] for collider searches of dark
matter–dark photon systems. As is well known, only a modest splitting is required to suppress
the direct detection signal [73]. In such a case, the solar capture process is largely unchanged.
The splitting sets a lower bound on the relative velocity of dark matter–ordinary matter
scattering, which sets an upper bound on the Sommerfeld enhancement. However, since the
Sun is a large enough target that it is in equilibrium through most of the relevant parameter
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space, this reduced Sommerfeld enhancement does not have a large effect on the dark matter
annihilation rate. Thus it is simple to consider a regime in theory-space where the high-mX

bounds in Fig. 8 probe new territory. We emphasize that this regime does not require any
new ingredients beyond the assumptions implicit in the benchmark model of this paper. We
leave a detailed study of this scenario to future work.

In the bottom–right panels of Figs. 8–10, we show these results in the usual direct detection
plane (mX , σXn) where σXn is the X-nucleon cross section. We fix mA′ = 100 MeV. The
reach of the solar dark photon signal appears to be greater for αth

X than for αmax
X . This is

because σXn ∼ αXε
2 so that σXn corresponds to a smaller value of ε when assuming the

maximal αmax
X dark sector coupling versus the thermal value αth

X .

VII. CONCLUSIONS

We have presented a novel method to discover dark sectors whose gauge bosons kinetically
mix with the SM. Dark matter is captured by the Sun and can yield a smoking gun signature
when it annihilates to dark photons that exit the Sun. These dark photons then decay into
e+e− pairs that may be searched for using directional discrimination from a space-based
telescope such as AMS with its fantastic angular resolution. This search is insensitive to
difficult-to-quantify astrophysical backgrounds and provides an opportunity for unambiguous
dark matter discovery by AMS.

We have presented a complete treatment in the dark photon scenario that includes
several effects that had heretofore been neglected. Our analysis incorporates the effect of
non-perturbative Sommerfeld enhancements in the dark matter annihilation rate at the
center of the Sun, which enlarges the region of parameter space in which dark matter
capture and annihilation are in equilibrium. This is a necessary condition for a maximal
annihilation rate. We have also addressed the non-perturbative enhancements in dark matter
self-scattering at low velocities. These affect the rate of dark matter self-capture. In most of
the phenomenologically relevant parameter space, self-capture remains a subdominant effect.
We pointed out regimes that may be of interest for self-interacting dark matter models, where
there may be significant deviations from our analysis.

We modeled the effects of the solar magnetic field on the experimental reach of the AMS
detector. These magnetic fields smear out the signal, weakening the directionality of the
signal, which would otherwise be effectively point-like. Assuming high-energy positrons can
be accurately ray-traced back to regions where the Earth’s magnetic field is negligible, we
defined a set of cuts that optimize the signal probability Pdet subject to a fixed number of
allowed background events, and we estimated the reach for AMS with three years of data.
The reach extends beyond regions probed by beam dump and supernova bounds, and is
similar to the regions probed by direct detection. These latter bounds, however, are much
less stringent if the dark matter section includes even very small pseudo-Dirac mass splittings.
Such splittings are generic in our framework and require no additional ingredients. We leave
a detailed exploration of this scenario to future work, but remark that such inelasticities
may open up new astrophysical objects for dark matter capture, such as the moon. For
comparison, we have also shown results for the case where the signal is not degraded by
bending in a solar magnetic field, and for a hypothetical AMS-like experiment that points at
the Sun and so has 80 times its exposure. In both of these cases, again requiring negligible
background, the number of signal events is improved by an order of magnitude.

In Ref. [19] we showed that the IceCube experiment can be used to search for captured
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dark matter in the Earth annihilating into dark photons. For dark sunshine leading to
positrons and electrons, however, the IceCube signal is suppressed, since these positrons
and electrons will be captured in the Earth before entering IceCube. However, if the dark
photons decay into muons, these muons may penetrate through kilometers of earth to reach
IceCube. Because the amount of earth between the Sun and IceCube is time dependent, this
signal would have an annual modulation. Separately, we have shown in the appendix that
gauge invariance requires dark photons to have a small coupling to the weak neutral current.
For small masses this is suppressed relative to the coupling to the electric current, but such
a neutrino signal would not be affected by the solar magnetic fields which afflict the positron
signal. It may then be interesting to recast IceCube searches for solar neutrinos in terms of
an excess coming from intermediate dark photons that decay to neutrinos.
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Appendix: Diagonalization of the Dark Photon Hamiltonian

Here we present a systematic derivation of the transformation from the dark photon gauge
eigenstates to the mass eigenstates. The results in this appendix are known in the literature,
see e.g. [75, 76]; we present the derivation for clarification and to establish conventions. For
simplicity, in this appendix we write the field strengths as A′µν = ∂[µA

′
ν].

1. Kinetic Mixing Between Massless and Massive Abelian Gauge Bosons

We first examine the case of a massive U(1) gauge boson, D, mixing with a massless U(1)
gauge boson, B. This is the diagonalization relevant for a dark photon (D = A′) which
kinetically mixes with hypercharge in the limit mD � v so that the mixing is effectively only
with the photon (B = A). The gauge-basis Lagrangian is

L = −1

4
DµνD

µν − 1

4
BµνB

µν +
ε

2
BµνD

µν +
1

2
m2
DDµD

µ . (A.1)
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We first remove the kinetic mixing term with a π/4 rotation,

D =
D1 −B1√

2
B =

D1 +B1√
2

, (A.2)

where B1 and D1 are the rotated fields. The kinetic terms are now diagonal, but are not
canonically normalized,

L = −1

4
(1− ε)D1µνD

µν
1 −

1

4
(1 + ε)B1µνB

µν
1 +

1

4
m2
D(D1 −B1)µ(D1 −B1)µ . (A.3)

To canonically normalize the kinetic terms, we perform a rescaling,

D1 =
D2√
1− ε B1 =

B2√
1 + ε

. (A.4)

With this, the kinetic terms are now universal and do not transform under subsequent
rotations so that we are free to diagonalize the mass term. Were it not for the rescaling in
Eq. (A.4), this would simply be a −π/4 rotation. Plugging in a general rotation,

D2 = c3D3 − s3B3 B2 = s3D3 + c3B3 , (A.5)

one finds that the mass matrix is diagonalized when1

s3 = −
√

1− ε
2

c3 =

√
1 + ε

2
. (A.6)

The choice of sign amounts to the sign of the B coupling. Plugging this in gives the
transformation from the gauge to energy eigenbasis:

D =
1√

1− ε2
D3 B = B3 +

ε√
1− ε2

D3 . (A.7)

From this we see that the dark photon picks up an O(ε) coupling to the B-current, jB ·B ⊃
εeffjB ·D3, where εeff = ε/

√
1− ε2, while the B does not pick up any coupling to the dark

current as expected by gauge invariance. The dark photon mass is rescaled to mD/
√

1− ε2.
For the case where mD = 0, the gauge Lagrangian is diagonalized and normalized after

Eq. (A.4) and the rotation in Eq. (A.5) with parameters in Eq. (A.6) is not strictly necessary.
In fact, in this case one may chose to rotate the D2 and B2 into each other with any
arbitrary SO(2) rotation. The choice in Eq. (A.6) is convenient because it is close to the
gauge basis. Phenomenologically, however, it is common to pick a rotation such that the
ordinary photon couples to the dark current proportional to ε so that the dark matter appears
to be millicharged under electromagnetism. Ref. [76] calls this the Holdom phase. This
interpretation is equivalent since in the case where mD is negligibly small, the photon and
dark photon propagators are identical. Whether a process is identified as coming from a dark
photon with ε coupling to jEM or an ordinary photon with ε coupling to jX is equivalent;
and in general both diagrams must be included.

1 A shortcut to obtain this result is to observe that invariance of the unbroken U(1) gauge symmetry implies

that the mass term for B3 should also vanish. This coefficient of the mass matrix is simpler to solve than

the off-diagonal element and gives s3 ∝ ±
√

1− ε and c3 ∝ ∓
√

1 + ε.
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2. Dark Photon–Hypercharge Mixing

The dark photon–photon mixing is only an effective description since at high energies
one must satisfy electroweak gauge invariance. This imposes that the UV mixing is actually
between the dark sector U(1) and hypercharge, which is itself broken by the Higgs vev, v.
Thus one must generically consider the mixing between the D, the photon A, and the Z
boson. The amount of D–A mixing versus D–Z mixing determines the extent to which the
D picks up the electroweak chiral couplings versus the vector-like electromagnetic couplings.

The hypercharge boson is related to the SM mass eigenstates by B = −sWZ + cWA. The
mixing in Eq. (A.1) is thus

ε

2
BµνD

µν = −εsW
2
ZµνD

µν +
εcW

2
AµνD

µν , (A.8)

with A massless and Z picking up an electroweak symmetry breaking mass of MZ . The
D–A system is now identical to the D–B system above, so we may diagonalize using the
transformation in Eq. (A.7),

D =
1√

1− ε2c2
W

D1 A = A1 +
εcW√

1− ε2c2
W

D1 Z = Z1. (A.9)

This diagonalizes and canonically normalizes the D–A system, but also changes the kinetic
mixing between the D and Z:

−εsW
2
ZµνD

µν = −1

2

εsW√
1− ε2c2

W

Z1µνD
µν
1 = −εs

2
Z1µνD

µν
1 . (A.10)

In the above equation we have defined for convenience a new D–Z mixing parameter εs

εs ≡
εsW√

1− ε2c2
W

. (A.11)

This kinetic mixing is removed with a π/4 rotation and canonical normalization is restored
with a subsequent rescaling analogous to Eqs. (A.2,A.4):

D1 =
D2 − Z2√

2
Z1 =

D2 + Z2√
2

(A.12)

D2 =
D3√
1 + εs

Z2 =
Z3√

1− εs
. (A.13)

Unlike the previous case of a mixing between a massive and massless state, the D–Z system
is a mixing between two massive states. The mass matrix is diagonal in the (D, A, Z)
basis where D is a gauge eigenstate and A and Z are mass eigenstates with respect to the
electroweak symmetry-breaking mass terms. Note that the A has now decoupled completely
and it is sufficient to consider the D–Z system independently. For convenience, we perform
a −π/4 rotation, which captures most of the rotation in Eq. (A.5):

D3 =
D4 + Z4√

2
Z3 =

Z4 −D4√
2

. (A.14)
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The original D and Z fields may now be written as

D = a (∆D4 + δZ4) Z = ∆Z4 + δD4 , (A.15)

where we define convenient shorthand,

a =
1√

1− ε2c2
W

= 1 +
1

2
ε2c2

W +O(ε3) (A.16)

∆ =
1

2

(
1√

1 + εs
+

1√
1− εs

)
= 1 +

3

8
ε2
s +O(ε3) (A.17)

δ =
1

2

(
1√

1 + εs
− 1√

1− εs

)
= −1

2
εs +O(ε4) . (A.18)

The mass term is then

1

2

(
D Z

)(m2
D

M2
Z

)(
D
Z

)
=

1

2

(
D4 Z4

)(M2
11 M2

12

M2
12 M2

22

)(
D4

Z4

)
, (A.19)

where the elements on the right-hand side are, writing m̄2
D ≡ a2m2

D,

M2
11 = ∆2m̄2

D + δ2M2
Z ∼ m2

D +O(ε2) (A.20)

M2
22 = ∆2M2

Z + δ2m̄2
D ∼ M2

Z +O(ε2) (A.21)

2M2
12 = 2δ∆(m̄2

D +M2
Z) ∼ −εs(m2

D +M2
Z) +O(ε3) , (A.22)

One may now perform a final rotation to go the the mass eigenstates of the system. Observe
that the off-diagonal element of the mass matrix is proportional to ε, so that the rotation is
small in the small ε limit. Writing c = cos θ and s = sin θ, the rotation is given by

D4 = cD5 + sZ5 Z4 = cZ5 − sD5 tan 2θ =
2M2

12

M2
22 −M2

11

, (A.23)

where c and s are written to O(ε2) as

c = 1 +O(ε2) s = −εs
2

m2
D +M2

Z

M2
Z −m2

D

+O(ε3) . (A.24)

Plugging in the sequence of rotations in Eqs. (A.9, A.12, A.13, A.14, A.23), the electroweak
basis and mass basis are related by

D =
∆c− δs√
1− ε2c2

W

D5 +
∆s+ δc√
1− ε2c2

W

Z5 Z = (∆c+ δs)Z5 + (δc−∆s)D5 (A.25)

= D5 −
εsM

2
Z

M2
Z − m̄2

D

Z5 +O(ε2) = Z5 +
εsm̄

2
D

M2
Z − m̄2

D

D5 +O(ε2) (A.26)

= D5 − εsZ5 +O(ε2,
m2
D

M2
Z

) = Z5 + εs
m2
D

M2
Z

D5 +O(ε2,
m2
D

M2
Z

) . (A.27)

From this we observe that D5 couples to the weak neutral current suppressed by εsm
2
D/M

2
Z ,

so that in the mD � mZ limit the Standard Model couplings are effectively vector-like
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coming from the mixing with the photon. In this limit one may disregard the D–Z mixing
relative to the D–A mixing.
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