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We investigate the possibility that the dark matter candidate is from a pure non-abelian gauge
theory of the hidden sector, motivated in large part by its elegance and simplicity. The dark matter
is the lightest bound state made of the confined gauge fields, the hidden glueball. We point out
this simple setup is capable of providing rich and novel phenomena in the dark sector, especially
in the parameter space of large N . They include self-interacting and warm dark matter scenarios,
Bose-Einstein condensation leading to massive dark stars possibly millions of times heavier than our
sun giving rise to gravitational lensing effects, and indirect detections through higher dimensional
operators as well as interesting collider signatures.

Introduction. An outstanding issue of fundamental im-
portance in particle physics is the nature of the dark mat-
ter (DM). This question is particularly intriguing and
perplexing, given the preponderance of DM over visible
matter and its profound gravitational effects throughout
the evolution of the universe.

In this work, we like to investigate the viability of
the dark matter candidate from the hidden sector with
a non-abelian gauge symmetry, a minimal theory with
non-trivial mass scale. The gauge group is chosen to
be SU(N), and, for simplicity, neither fermions nor any
other particle is introduced in that sector. The dark mat-
ter is the lightest hidden glueball state, which is likely a
scalar field, and a non-perturbative bound state made
of a pair of confined gauge fields. This is a very simple
setup with only a handful of parameters, which are the
intrinsic scale Λ, the number of colors N , and θ— for the
T and P-odd θ-term in the hidden sector. They control
the mass and all the couplings of the hidden glueball dark
matter (GDM), named φ hereafter.

In spite of the simplicity of this setup, we will show that
the hidden glueball indeed satisfies all the conditions for
a dark matter candidate. Moreover, such a dark mat-
ter could be both self-interacting and warm, thus safely
evading all the potential problems of the usual collision-
less cold dark matter. The scalar GDM could have the
novel feature of Bose-Einstein condensation into compact
objects thus plausibly leading to interesting gravitational
effects such as microlensing. It could also be tested in
particle physics experiments if there exist interactions of
it with standard model particles via higher dimensional
operators. We will elaborate on these points in order in
the following sections.

In passing, we want to briefly say that we are aware
of several other works which include a non-abelian dark
sector in their over all setup. The hidden glueball as
dark matter was first mentioned in [1], but at that time
the cosmological observation data were very preliminary.
There are more recent works which involve in addition
rather elaborate other features with significantly differ-
ent phenomenology from this study; see, e.g, [2–5]. We
emphasize that to the best of our knowledge, no existing

work in the literature is devoted to the possibility of DM
simply being in a pure SU(N) gauge theory, which is
what we are studying here. In our following discussions,
we point out the impact of the number-of-color param-
eter N , and use the recent results on bullet cluster and
Lyman-α forest observations to set important constraint
on the GDM parameter space.

Hidden Glueball as Dark Matter. In this work, we
consider dark matter candidate from a very simple setup,
a hidden sector non-abelian gauge symmetry with only
gauge fields and without fermions. The Lagrangian of
the model is

L = −1

4
Ha
µνH

aµν . (1)

where Ha
µν is the gauge field strength of the group

SU(N), with an unspecified value of N to be determined
later. As is well known the gauge coupling gh becomes
large at low energy scale and dimensional transmutation
generates a scale Λ for the theory, similar to the emer-
gence of the QCD scale. Around the scale Λ, the physical
degrees of freedom turn into a tower of hidden glueballs.
From the knowledge based on existing calculations, the
lowest lying glueball states when θ = 0 carry quantum
numbers JPC = 0++, or 0−+ [6, 7]. Their masses depend
on the two parameters of the theory, Λ and N . Also from
lattice calculations [8, 9], the lightest glueball masses ap-
proach a constant at large N , and can be parametrized
as m = (α + β/N2)Λ where α, β are order one param-
eters. In general, we could also introduce the θ-term in
the above Lagrangian, which is C even and P odd. It can
mix the 0++ and 0−+ states and lightest glueball state
is then not an eigenstate under P .

We argue that within this simple setup the lightest
hidden glueball state φ could be a candidate for dark
matter 1. It could be cosmologically long lived. As the

1 If after mixing of the 0++ and 0−+ glueball states, the heavier
mass eigenstate is kinematically forbidden to decay into two φ’s,
it can also be stable and be the dark matter. In this case, we
could have two components of dark matter existing in nature.
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lightest state, there is nothing in the hidden sector that
φ could decay into. It is possible for φ to decay into
two gravitons, and this decay rate can be estimated as
Γφ ∼ m5/M4

pl ∼ τ−1
U (m/107 GeV)5, where τU = 1017 sec

is the age of our universe. The lifetime of φ against grav-
itational decay can be long enough if its mass is less than
107 GeV. Moreover, the hidden glueball φ particles could
have the correct relic density and be (non-)relativistic
enough as will be elaborated in the next section. So far,
we have not written down any interactions between the
hidden sector and the visible sector, which by gauge in-
variance is only possible in the form of higher dimensional
operators. We will explore the resulting experimental
bounds in an example where the hidden GDM φ decays
into photons.

Self-interacting Dark Matter. The effective potential
of a real scalar φ takes the form

V (φ) =
1

2
m2φ2 +

1

3!
λ3φ

3 +
1

4!
λ4φ

4 +
1

5!
λ5φ

5 + · · · ,(2)

where the · · · represent higher power terms. It is useful
to consider the large N behavior of these couplings,

λ3 =
κ3m

N
, λ4 =

κ4

N2
, λ5 =

κ5

mN3
, (3)

where κ3,4,5 are order one parameters to be determined
from non-perturbative calculations. From these interac-
tions, we could obtain the 2 → 2 elastic scattering cross
section of φ as a function of the two model parameters,
m(Λ) and N ,

σ2→2 ∼ 1/(m2N4) . (4)

The self-interacting dark matter scenario has been pro-
posed [10] to reconcile the core/cusp problem in dwarf
galaxy observations and simulations. For this scenario
to work, the elastic scattering cross section of dark mat-
ter must lie in the range 0.1 cm2/gram < σ2→2/m <
10 cm2/gram. This requirement puts a correlated con-
straint on m and N ,

m ∼ 0.1 GeV ·N−4/3 . (5)

This region is shown between the blue curves in Fig. 1.
Below the blue curves in the gray shaded region, the dark
matter has too strong self interaction and is excluded by
the bullet cluster observation [11].

Self Heating and Warm Dark Matter. In addition
to elastic scattering, the effective interactions in (2) also
allow φ to have the inelastic 3 ↔ 2 annihilation, which
changes the φ particle number. The analog of cross sec-
tion could be estimated as

σ3→2 ∼ 1/(m5N6) . (6)

The 3 → 2 reaction rate is given by Γ3→2 = n2
φσ3→2,

where nφ is the φ number density in the universe. This
interaction could play an important role on the velocity
dispersion of dark matter in the early universe, because

after each 3→ 2 reaction the two outgoing φ particles are
relativistic. If this process has a larger reaction rate than
the Hubble expansion, the annihilation will keep heating
up the φ particles until it reaches the balance with the
inverse process where two energetic φ’s annihilate into
three.

Gauge invariance dictates the interactions between the
SM and hidden sector to take the form HµνH

µνOSM .
They will cause the dark matter φ to decay thus are
highly constrained as we show below. This makes the
early universe history of dark matter in our model very
different from the one considered in [12]. Next, we as-
sume that there are no interactions for φ and SM particles
to exchange heat in equilibrium, therefore the entropy of
the φ particles is conserved, d

da [(ρφ + pφ)a3/T ] = 0. For
non-relativistic φ’s, i.e., Tφ � m, one could derive

Tφ(a) ' Tφ(a0)

(
1 +

3Tφ(a0)

m
ln

a

a0

)−1

, (7)

where a is the Hubble radius at given time in the early
universe (a = 1 today), and a0 < a corresponds to an
earlier time. This means the φ particles thermalize to a
temperature which drops more slowly than 1/(ln a) with
the expansion of the universe, as first noted in [1]. In
contrast, the temperature of the photons falls as Tγ ∼
1/a,t leading to the interesting possibility that the hidden
and SM sectors have their own temperatures and evolve
separately.

It is useful to expand the energy density and pressure of
φ to next order in Tφ/m, ρφ = mnφ (1 + 3Tφ/(2m)), pφ =
nφTφ. With this one can obtain the evolution equation
of nφ as a function of a,

d(nφa
3)

da
' − (nφa

3)

a

3Tφ
m

. (8)

The message here is that the number density of φ dilutes
faster than a−3, thus the total number of φ is still de-
creasing while the 3 → 2 annihilation is in equilibrium.
The consumption of φ’s is used to maintain the temper-
ature of the remaining φ particles. The final DM relic
density is given by nφ at the decoupling of 3 → 2 anni-
hilation. In Fig. 2, we show the ratio of the decoupling

temperature Tφdec to the mass of φ that is needed to give
the correct dark matter relic density, for different val-
ues of the photon temperature at this epoch. The initial

conditions that give the desired values of Tφdec and T γdec
might be set by reheating the SM and dark sectors to
different temperatures after the inflation. See, e.g., [13],
or through the freeze in mechanism.

Before the 3→ 2 decoupling, the temperature Tφ stays
roughly one order of magnitude below the mass m. The
strongly coupled φ particles form a fluid with a large
speed of sound cs =

√
2Tφ/(3m) ∼ 0.3c. It allows the

perturbations to the density of φ within one Hubble patch
to be smoothed out efficiently via collisional damping,
thus offering the opportunity for φ to be a warm dark
matter candidate.
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FIG. 1. The parameter space of m versus N where the
lightest hidden glueball could be a self-interacting and/or
warm dark matter candidate. The two blue curves corre-
spond to constant values of DM self interaction cross section,
σ2→2/m = 0.1, 10 cm2/gram, respectively. Self-interacting
DM lives between the blue curves. The red curves correspond
to constant values of damping scale in the power spectrum,
Rcutoff = 0.01, 0.1, 1 Mpc, respectively. Warm DM lives along
the middle red curve. The glueball dark matter can be both
self-interacting and warm at the intersection of the two re-
gions (thick purple curve). In the gray shaded region, the
dark matter either has too strong self interaction and is ex-
cluded by the bullet cluster observation, or is too warm and
excluded by the observation of Lyman-α forest.

To find when the 3→ 2 process decouples, or the cor-
responding temperature of photon T γdec, we first express
3→ 2 rate in terms of the photon temperature,

Γ3→2 = n2
φσ3→2 ' 10−17GeV2 T 6

γ /(m
7N6) . (9)

When it is equal to the Hubble rate, we get the photon
temperature at the decoupling of 3→ 2 reaction

T γdec ' 1 keV [m/(1 keV)]
7/4 [

N/(104)
]3/2

. (10)

The collisional damping length scale (measured today) is
determined by the Hubble radius at the 3→ 2 decoupling

Rcd =
1

H (T γdec)

T γdec
2.7 K

' 0.1 Mpc

(
1 keV

T γdec

)
. (11)

After the 3 → 2 decoupling, the temperature of φ will
drop as 1/a2 such that the velocity redshifts as 1/a. We
calculate the free streaming length of φ particles from
this time, t3→2

dec , to the time of matter-radiation equality,
teq. This corresponds to the collisionless damping scale,

Rfs =

∫ teq

tdec

v(t)

a(t)
dt =

2veqteq
aeq

ln

 aeq
adec

1 +
√

1 + v2
eq

1 +
√

1 + v2
dec

 .
At matter-radiation equality teq = 2 × 1012 sec, aeq =
1/(1 + zeq), zeq ' 3360, and veq = vdecadec/aeq. In
principle, the distance φ travels would be even shorter

Tdec
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FIG. 2. Ratio of temperature Tφ to the mass m of φ particles
at the decoupling of 3 → 2 annihilation that could give the
correct dark matter relic density. The curves correspond to
different photon temperatures (T γdec) at this epoch. Roughly,
Tφ is only one order of magnitude below the mass, and the φ
particles remain heated before the decoupling.

than Rfs, because of the 2 → 2 scatterings which if fre-
quent would make the φ particles diffuse rather than free
stream. In practice, we find that for most of the parame-
ter space of interest to this study, Rfs . Rcd. Therefore,
it is Rcd in (11) that determines the actual damping scale
Rcutoff in the dark matter power spectrum.

For φ to be the warm dark matter which solves the
missing satellite problem, it is required that Rcutoff =
Rcd ∼ 0.1 Mpc [14]. The contours of fixed Rcuroff are
shown by the red curves in Fig. 1. We further find that
for m ∈ (0.1, 10) keV and N ∈ (105, 103) (along the thick
purple curve), the hidden glueball φ dark matter quali-
fies to be both self interacting and warm, thus plausibly
solving all the small scale structure problems. Below the
red curves in the shaded region, the damping scale Rcutoff

beomes too large and is in contradiction with the Lyman-
α forest observation [15].

Moreover, if the dark matter still have non-negligible
velocity and fast 2 → 2 self interactions during the for-
mation of the cosmic microwave background (CMB), it
might leave an imprint in the CMB spectrum. We leave
this interesting possibility for a future detailed study.

Compact Boson Stars. So far, we have not consid-
ered any interactions between the hidden SU(N) sector
and SM particles. In the absence of such interactions,
we would look for the dark matter only through gravita-
tional effects. It has been shown that the dark scalar field
could have Bose-Einstein condensation and form massive
compact objects such as boson stars [16, 17]. This may
result in very dramatic gravitational effects in our uni-
verse today such as microlensing [18, 19].

The mass range of the boson star depends on whether
the self-interaction of φ is repulsive or attractive. The
size of the boson star is typically much larger than the
inverse of the glueball mass. In the hidden glueball model
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Eq. (2), at low momentum transfer the effective coupling
of the φ4 self interaction is

λeff = λ2
3/(2m

2) + λ4 = (κ2
3/2 + κ4)/N2 . (12)

Non-perturbative calculations are needed to reliably de-
termine the size and signs of κ3, κ4, and in turn the fate
of the condensate.

The opportunity to observe the microlensing effect
arises if there is repulsive self interactions for the φ field,
with λeff > 0. In this case, it has been calculated [17]
that the boson star mass from condensation lies in the
range 1−108M�, for the glueball dark matter with mass
from GeV to 0.1 keV scale. In particular, in the inter-
esting window of Fig. 1 where the dark matter is both
self-interacting and warm, the corresponding boson star
mass is between 106 − 108M�.

The sign of the λ4 term is closely related to the scat-
tering length in glueball-glueball scattering, which could
be determined using non-perturbative methods [20]. In
ref. [21], an effective picture is discussed where the in-
trinsic scale of SU(N) theory is connected to the vacuum
expectation of the scalar glueball. In this case, one finds
λ4 > 0, and it suggests λeff to be positive. On the other
hand, if λeff < 0, the boson star mass would be too small
to have an observable effect.

Interactions with the SM Through Higher Dimen-
sional Operators. In general, there may exist inter-
actions between the hidden sector and the SM sector.
This may allow the glueball dark matter to be discovered
through means other than gravitational effects. However,
we do not want to introduce other particles just to fa-
cilitate these interactions, since as explained before, we
want to explore how far our set up with just a simple
pure SU(N) gauge theory can go in addressing the DM
issue. So, without introducing additional particles, gauge
invariance dictates that these interactions may arise via
higher dimensional operators,

Lint = (1/Mn)HµνH
µνOSM , (13)

where M is the cutoff scale. There are many choices for
the OSM part. Here we discuss one representative which
couples the hidden sector directly to photons

Lint =
1

M4
HµνH

µν(FαβF
αβ)→ Nm3

M4
φFαβF

αβ , (14)

where F is the photon field strength. In the second step,
we go to the low scale where φ is the lightest glueball field.
In the following, we choose the value ofN making φ a self-
interacting dark matter, N ' Max

[
(m/0.1 GeV)−3/4, 2

]
.

It is also worth noting that the effective interaction of φ
is proportional to powers of its mass m3.

From Eq. (14), the decay rate of φ into two photons
(see the left diagram in Fig. 3), is,

Γφ→γγ =
N2m9

4πM8
. (15)

FIG. 3. Feynman diagrams for φ decay and production in
stars from Eq. (14). The relation between the decay rate and
cross section is dictated by Eq. (16).

There are experimental searches for monochromatic pho-
ton from decaying dark matter, from cosmic gamma rays
to X rays and even extragalactic background lights [22–
26]. They give the strongest constraints on the scale M
for the dark matter φ mass above ∼ 100 keV. We show
these constraints in Fig. 4.

For lower φ masses, we find the energy loss constraints
of stars place a stronger lower limit. The relevant reac-
tion is the analog of the Primakoff type process e+ γ →
e+φ, as shown by the right diagram of Fig. 3.. The cross
section was calculated in [27],

σv = 64πα
ωΓφ→γγ
m2

(ω2 −m2)1/2(ω −m)

(m2 − 2ωm)2
, (16)

where ω is the energy of the incoming photon and m
is the mass of glueball dark matter. To calculate the
rate of energy loss from the star via φ emission, we first
average the σv · ω over the thermal photon energy dis-
tribution, and then the energy loss rate per unit volume
is given by Φ = nenγ〈σv · ω〉. We consider the energy
loss argument [28] of horizontal branch stars (HB) and
the cooling of type-II supernova (SN). For HB, the core
temperature is 10 keV, the mass density is 104gram/cm3,
and the energy loss rate per unit volume is required to
be Φ < 10−42 MeV5. For SN, the core temperature is
30 MeV, both photon and electrons are thermalized, and
the energy loss rate is required to be Φ < 10−14 MeV5.
Their constraints on M (lower bound) is shown in Fig. 4.
Not-too-much energy loss of HB sets the strongest lower
bound on M for φ mass below ∼ 100 keV. For the model
to be realistic in cosmology, the hidden sector must not
thermalize with the SM sector, at least not since the on-
set of BBN. We find this to be a subdominant constraint
(shown by the blue curve in Fig. 4).

The operators in Eq. (14) not only lead the glue-
ball dark matter particle to decay, but also allows it
to scatter with SM particles by virtue of the expansion
HµνH

µν ∼ Nm3φ+m2φ2 + · · · . Given the above lower
bounds on the cutoff scale M , we find the direct detec-
tion cross section for the glueball dark matter is more
than tens of orders of magnitude below the current LUX
bound [29]. This is consistent with the null results so far
in the direct detections. It also implies that if the future
direct detection experiments discovers the dark matter,
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FIG. 4. Lower bounds on the cutoff scale M . Cosmic ray pho-
ton observations constrains glueball dark matter decay into
photons, and from right to left, the curves correspond to con-
straints from Fermi-LAT, EGRET, COMPTEL, INTEGRAL,
X-ray. The black (brown) solid curve is the lower bound on
M from the energy loss argument of HB (SN). The blue curve
represents the requirement that the hidden sector is not ther-
malized with the SM sector below the BBN temperature.

it cannot originate from our dark matter candidate. 2

From Fig. 4, we find that for the dark matter mass m
in the range keV to MeV, the cutoff M is allowed to be
as low as the weak (or TeV) scale. The effective opera-
tor in Eq. (14) could be generated by integrating out a
heavy particle X in the ultraviolet theory, which carries
both electromagnetic charge and color under the hidden
SU(N) gauge group. If a pair of XX̄ can be produced at
colliders, they would eventually form a heavy X-onium
bound state and annihilate away into the hidden glue-
ball dark matter or photons. The final states will exhibit
exotic signatures like the quirks [30, 31].

Furthermore, if the heavy X particle is a fermion and
also carries color under the SU(3)c of QCD, the effective

Lagrangian will contain an operator (1/M4)(HH̃)(GG̃)
(similar to Eq. (12) of Ref. [32]). In the presence of the

θHH̃ term from the hidden SU(N) theory, it induces

an effective θQCDGG̃ term, with θQCD ∼ (m/M)4θ, and
makes a contribution to the neutron electric dipole mo-
ment (nEDM). The important point we want to make
here is that nEDM bound does not require the θ param-
eter of SU(N) to be unnaturally small, unlike θQCD. The
current experimental upper bound on nEDM of around
10−26 e cm [33] translates, by the arguments of [34], into
θQCD . 10−13. From the above relation between θQCD

2 A positive direct detection signal would imply our hidden glue-
ball dark matter decays too fast and cannot comprise all the
dark matter relic density. There needs to be then some other
components of dark matter too.

and θ, we find that θ is allowed to be order one if
m/M . 10−3, which is always satisfied from Fig. 4.

GDM Decay Inside Dark Star. In the last sec-
tion, we have discussed the photon line searches and
constraints on hidden glueball dark matter decay, which
could most frequently happen at the center of the galaxy.
The other possibility is if the scalar GDM undergoes the
Bose-Einstein condensation and forms the dark stars as
we also discussed, their decays could contribute to new
(point-like) sources of cosmic ray emissions.

Here we consider the decay of GDM inside a dark star
into SM neutrinos, and use the Super-Kamiokande (SK)
results to constrain the distance of the dark star from
us as a function of GDM mass and lifetime. The ef-
fective operator for GDM decay could be of the form
(HµνDρH

µν)(L̄γρ(a + biγ5)L)/M4, where L is the SM
lepton doublet. The SK experiment has taken data for
1679.6 days with an effective area of 103 m2, and set an
upper limit on the number of high energy neutrinos above
a GeV beyond the atmospheric neutrino background,
which is around ∼ 10 [35, 36]. We will consider the GDM
mass above a few GeV scale. From the discussion of [17],
the largest allowed dark star mass as a function of the
GDM mass is

MDS ' 0.01M�

(
10 GeV

m

)5/4

. (17)

If the GDM particle has a lifetime τ , and the dark star
is of distance d away from the earth, then number of
neutrinos from all the GDM decay within a time interval
∆t ≈ 108 sec, and reaches the detector with effective area
A, is

Nν
SK ' 1045

(
1018 sec

τ

)(
10 GeV

m

)9/4
A

4πd2
. (18)

The weak interaction cross section for high energy neu-
trinos to interact with nucleons inside the SK detec-
tor is σ ∼ 10−38Eν cm2/GeV [37], thus the proba-
bly for each neutrino to react to produce a signal is,
P ∼ 10−13(m/10 GeV), where we have traded the neu-
trino energy for the dark matter mass. The SK bound on
the number of events then requires Nν

SKP . 10, which
translates into

d & 10−3 kpc

(
1018 sec

τ

)1/2(
10 GeV

m

)5/8

. (19)

Note that the distance of the galactic center to the earth
is around 8 kpc, so the dark star is allowed to be much
closer and well within our galaxy.

Summary. In this paper, we investigate the physics of
SU(N) glueball dark matter from a pure gauge theory
non-abelian hidden sector. In spite of the simple setup,
with few parameters, there are quite a few novel features
of this dark matter candidate. We have discussed the
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conditions for it to be self-interacting and/or warm dark
matter. The glueball dark matter could also condense
into more compact objects like boson stars and be ob-
served by gravitational lensing effects. Therefore, our
model can naturally accommodate the fact that there is
only gravitational evidence for dark matter so far [38, 39].
It could also interact with the standard model sector via
higher dimensional operators and subject to traditional
direct searches for light scalar dark particles. The di-
rect detection cross section of the glueball dark matter is
constrained to be well below the experimental sensitivity,

now as well as for the foreseeable future. We also com-
ment on the possible UV origin of the higher dimensional
operators leading to interesting collider signatures.
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