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We explain the recent excess seen by ATLAS and CMS experiments at around 750 GeV in the
di-photon invariant mass as a narrow width sneutrino decaying to di-photons via a stau loop in
R−parity violating Supersymmetry. The stau mass is predicted to be somewhere between half the
resonant sneutrino mass and half the sneutrino mass plus 14 GeV. The scenario also predicts further
signal channels at an invariant mass of 750 GeV, the most promising being into di-jets and WW .
We also predict a left handed charged slepton decaying into WZ and Wγ at a mass 750-754 GeV.

I. INTRODUCTION

The ATLAS and CMS collaborations have recently presented the results of di-photon resonance searches in early
Run II of

√
s = 13 TeV data [1–4]. For a spin-0 hypothesis, ATLAS observed an excess of 3.9 σ local significance (2.0

σ global) at a di-photon invariant mass of around 750 GeV with 3.2 fb−1 integrated luminosity. CMS also observed
a 2.9 σ excess locally (1.2 σ globally) at a similar mass of 760 GeV in 3.3 fb−1 of data. The ATLAS excess prefers a
large width ∼ 45 GeV, but only at a very mild level (the local significance increases by 0.3σ above the narrow width
approximation [3]), whereas the CMS fit prefers a much narrower width [4]. Together, these excesses are consistent
with a new narrow-width resonance decaying into two photons with a cross-section of σ(pp → γγ) ≈ 5.3 ± 2.4 fb
(unfolding efficiency and acceptance as in Ref. [5]1). The possibility of a new 750 GeV resonance decaying into di-
photons has stimulated a lot of interesting ideas and speculations in the theory community recently; for an incomplete
list, see Refs. [5–91]. Many of the interpretations rely on heavy Higgs or other scalar bosons with additional charged
particles that enhance the di-photon branching ratio and the total width.

In this work we interpret the observed di-photon excess within the Minimal Supersymmetric Standard Model
(MSSM) framework as a 750 GeV scalar neutrino (sneutrino) resonance, dd̄→ ν̃i, produced via the R-parity violating
(RPV) interaction

WLV = λ′i11LiQ1D̄1 , (1)

where i is the family index of the sneutrino. The sneutrino may decay into two photons through a stau loop with a
left-right stau mixing via the RPV soft supersymmetry (SUSY) breaking term

Lsoft
LV = Ai33

˜̀
i
˜̀
3τ̃

+
R + (H.c.) , (2)

where the SU(2)L indices of ˜̀
i and ˜̀

3 are anti-symmetrically contracted implicitly, which forbids i to be 3, so the
750 GeV sneutrino has to be of electron or muon type in our scenario. There are two kinds of stau loops, as shown
in Fig. 1, that will contribute to the di-photon signal and may explain the excesses observed in the ATLAS and CMS
data, as shown below. Assuming that the resonance is a heavy neutral Higgs boson of the MSSM, the production cross
section prediction is too small [9] unless additional non-MSSM states are added.2 Thus, our interpretation in terms
of one of the only other viable neutral scalars in the MSSM, namely a sneutrino, should serve as a well-motivated and
minimal solution.

The rest of the paper is organised as follows. In Sec. II we consider the decay of the sneutrino and discuss the
constraints on our scenario. In Sec. III we show our results and discuss the value of the sneutrino width that one

1 This assumes efficiency times acceptance of 0.65 for ATLAS and 0.48 for CMS. These numbers were calculated assuming gluon fusion
production, which will not be our case. However, to the accuracy with which we work, the approximation should be sufficiently good.

2 However, neutral Higgs bosons in the NMSSM could explain the di-photon excess [92–94]. Another interesting possibility in spontaneously
broken SUSY models is the sgoldstino [19, 21, 31, 95–97].
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In this note we review the role of the Higgs boson in preserving unitarity of the scattering
amplitudes in the Standard Model (SM). We will look at the processes �e + �e � W�

L + W +
L ,
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L +W +

L � W�
L +W +

L and e� + e+ � W�
L +W +

L for longitudinally polarized gauge bosons. Spe-
cial emphasis will be put in using algebraic methods to evaluate the amplitudes and cross sections.

I. INTRODUCTION

As we will be talking about cancellations, the conventions for the vertices of the SM are very important. So we
will collect here all the necessary couplings for our purposes. We will also discuss the polarization vectors of the
gauge bosons, particularly the longitudinal polarization vector and the implications of unitarity on the growth of the
amplitudes with

p
s.

A. Gauge Boson Self-Couplings
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Figure 1: Gauge boson self-couplings
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= �ig�W���µ(p, k, q) = igZ
W���µ(p, k, q)

2

where we have defined, for future convenience,

���µ(p, k, q) ⌘ [g��(p � k)µ + g�µ(k � q)� + gµ�(q � p)� ] (1)

with the convention for the momenta and charge of the particle, given in the figure.
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D. Polarization Vectors

In many problems with massive gauge bosons we do not measure their polarization, and therefore we sum over all
polarizations using the well known result,

�

�

�µ(k, �)���(k, �) = �gµ� +
kµk�

M2
W

(6)

where we used the W boson as an example. As we will be considering the case of longitudinal polarized gauge bosons,
we have to review the expressions for the polarization vectors. Let us start with the case of longitudinal polarization.
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The virtuality of the final state gauge boson allows to kinematically open this type of decay

channels in some other cases where they were forbidden at the two–body level

H ! AZ� ! A(H)f f̄ , H ! H±W ±� ! H±f f̄ 0 , H± ! AW ±� ! Aff̄ 0

A ! HZ� ! Hff̄ , A ! H±W ±� ! H±f f̄ 0 , H± ! HW ±� ! Hff̄ 0 (2.22)

At low tan � values, the branching ratio for some of these decays, in particular H± ! AW �,

can be sizable enough to be observable.

Finally, let us note that the direct radiative corrections to the H± ! AW decays have

been calculated in Ref. [215]. They are in general small, not exceeding the 10% level, except

when the tree–level partial widths are strongly suppressed; however, the total tree–level plus

one–loop contribution in this case, is extremely small and the channels are not competitive.

The same features should in principle apply in the case of H± ! hW and A ! hZ decays.

2.1.3 Loop induced Higgs decays

The �� and �Z couplings of the neutral Higgs bosons in the MSSM are mediated by charged

heavy particle loops built up by W bosons, standard fermions f and charged Higgs bosons

H± in the case of the CP–even � = h, H bosons and only standard fermions in the case of

the pseudoscalar Higgs boson; Fig. 2.8. If SUSY particles are light, additional contributions

will be provided by chargino �±
i and sfermion f̃ loops in the case of the CP–even Higgs

particles and chargino loops in the case of the pseudoscalar Higgs boson.

•
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Figure 2.8: Decays of the h, H, A bosons into two photons or a photon and a Z boson.

In the case of the gluonic decays, only heavy quark loops contribute, with additional

contributions due to light squarks in the case of the CP–even Higgs bosons h and H ; Fig. 2.9.
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Figure 2.9: Loop induced decays of the neutral MSSM Higgs bosons into two gluons.

In this subsection, we will discuss only the contributions of the SM and H± particles,

postponing those of the SUSY particles, which are assumed to be heavy, to the next section.
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Figure 1. Example Feynman diagram for resonant sneutrino production via the LiQ1D̄1 operator

in Eq. (1.1) and its decay to two photons through the triangle stau loop via the soft term ˜̀i ˜̀3⌧̃+
R in

Eq. (1.2). The cross in the stau propagator represents the left-right mixing in the stau sector. There

are other diagrams with ⌧̃L⌧̃⇤
L�� or ⌧̃R⌧̃⇤

R�� vertices which are not shown, but must be included in

the calculation to cancel the divergences.Show this to facilitate WW discussion.

where the SU(2)L indices of ˜̀i and ˜̀3 are anti-symmetrically contracted implicitly, which

forbids i to be 3, so the 750 GeV sneutrino has to be of electron or muon type in our

scenario. The process shown in Fig. 1 will contribute to the di-photon signal and may

explain the excesses observed in the ATLAS and CMS data, as shown below. Since any of

the heavy neutral Higgs bosons in the MSSM cannot explain the di-photon excess due to

their too small cross section [9], our interpretation in terms of the only other viable neutral

scalar in the model, namely, sneutrino, should serve as a well-motivated minimal solution.

The rest of the paper is organised as follows. In Sec. 2 we consider the decay of the

sneutrino and discuss the constraints on our scenario. In Sec. 3 we show our results and

discuss the value of the sneutrino width that one can obtain in our scenario. Sec. 4 discusses

how one might tweak the model in order to increase the width of the sneutrino in the event

that it is unambiguously measured by the experiments to be a wide resonance. Sec. 5 is

devoted to conclusions.

2 Sneutrino decay

Given the interaction terms in Eq. (1.1), the sneutrino ⌫̃i of mass m⌫̃i may decay into dd̄

with the following partial width:

�dd̄ ⌘ �(⌫̃i ! dd̄) =
3

16⇡ |�0
i11|

2
m⌫̃i . (2.1)

This decay is unavoidable because it is the inverse process to the production, and is con-

strained by the di-jet resonance searches [92, 93].

With the interaction terms in Eq. (1.2), the sneutrino may also decay into a pair of

staus if 2m⌧̃1  m⌫̃i , where ⌧̃1 is the lighter mass-eigenstate of the staus, with partial width

�⌧̃ ⌧̃ ⌘ �(⌫̃i ! ⌧̃
+
1 ⌧̃�

1 ) = |Ai33|2
16⇡m⌫̃i

 
1 �

4m2
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m2
⌫̃i

!1/2

, (2.2)

where m⌧̃1 is the mass of the lightest stau. In this case, the branching ratio to the loop-

induced di-photon decay mode shown in Fig. 1 will be hugely suppressed, thus disfavouring
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The virtuality of the final state gauge boson allows to kinematically open this type of decay

channels in some other cases where they were forbidden at the two–body level
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At low tan � values, the branching ratio for some of these decays, in particular H± ! AW �,

can be sizable enough to be observable.

Finally, let us note that the direct radiative corrections to the H± ! AW decays have

been calculated in Ref. [215]. They are in general small, not exceeding the 10% level, except

when the tree–level partial widths are strongly suppressed; however, the total tree–level plus

one–loop contribution in this case, is extremely small and the channels are not competitive.

The same features should in principle apply in the case of H± ! hW and A ! hZ decays.
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The �� and �Z couplings of the neutral Higgs bosons in the MSSM are mediated by charged

heavy particle loops built up by W bosons, standard fermions f and charged Higgs bosons

H± in the case of the CP–even � = h, H bosons and only standard fermions in the case of

the pseudoscalar Higgs boson; Fig. 2.8. If SUSY particles are light, additional contributions

will be provided by chargino �±
i and sfermion f̃ loops in the case of the CP–even Higgs

particles and chargino loops in the case of the pseudoscalar Higgs boson.
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Figure 2.8: Decays of the h, H, A bosons into two photons or a photon and a Z boson.

In the case of the gluonic decays, only heavy quark loops contribute, with additional

contributions due to light squarks in the case of the CP–even Higgs bosons h and H ; Fig. 2.9.
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In this note we review the role of the Higgs boson in preserving unitarity of the scattering
amplitudes in the Standard Model (SM). We will look at the processes �e + �e � W�

L + W +
L ,

W�
L +W +

L � W�
L +W +

L and e� + e+ � W�
L +W +

L for longitudinally polarized gauge bosons. Spe-
cial emphasis will be put in using algebraic methods to evaluate the amplitudes and cross sections.

I. INTRODUCTION

As we will be talking about cancellations, the conventions for the vertices of the SM are very important. So we
will collect here all the necessary couplings for our purposes. We will also discuss the polarization vectors of the
gauge bosons, particularly the longitudinal polarization vector and the implications of unitarity on the growth of the
amplitudes with
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where we have defined, for future convenience,
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with the convention for the momenta and charge of the particle, given in the figure.

B. Gauge Couplings to Fermions

�d,u

�u,d �f

�f

�f

�f

W ±
µ

Zµ Aµ

i
g�
2
�µ

1 � �5

2
i

g

cos �W
�µ

�
gf

V � gf
A�5

�
�ieQf�µ

Figure 2: Gauge couplings to fermions

where

gf
V =

1

2
T f

3 � Qf sin2 �W , gf
A =

1

2
T f

3 (2)
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D. Polarization Vectors

In many problems with massive gauge bosons we do not measure their polarization, and therefore we sum over all
polarizations using the well known result,

�

�

�µ(k, �)���(k, �) = �gµ� +
kµk�

M2
W

(6)

where we used the W boson as an example. As we will be considering the case of longitudinal polarized gauge bosons,
we have to review the expressions for the polarization vectors. Let us start with the case of longitudinal polarization.
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The virtuality of the final state gauge boson allows to kinematically open this type of decay

channels in some other cases where they were forbidden at the two–body level

H ! AZ� ! A(H)f f̄ , H ! H±W ±� ! H±f f̄ 0 , H± ! AW ±� ! Aff̄ 0

A ! HZ� ! Hff̄ , A ! H±W ±� ! H±f f̄ 0 , H± ! HW ±� ! Hff̄ 0 (2.22)

At low tan � values, the branching ratio for some of these decays, in particular H± ! AW �,

can be sizable enough to be observable.

Finally, let us note that the direct radiative corrections to the H± ! AW decays have

been calculated in Ref. [215]. They are in general small, not exceeding the 10% level, except

when the tree–level partial widths are strongly suppressed; however, the total tree–level plus

one–loop contribution in this case, is extremely small and the channels are not competitive.

The same features should in principle apply in the case of H± ! hW and A ! hZ decays.

2.1.3 Loop induced Higgs decays

The �� and �Z couplings of the neutral Higgs bosons in the MSSM are mediated by charged

heavy particle loops built up by W bosons, standard fermions f and charged Higgs bosons

H± in the case of the CP–even � = h, H bosons and only standard fermions in the case of

the pseudoscalar Higgs boson; Fig. 2.8. If SUSY particles are light, additional contributions

will be provided by chargino �±
i and sfermion f̃ loops in the case of the CP–even Higgs

particles and chargino loops in the case of the pseudoscalar Higgs boson.

•
h, H

W

�(Z)

�

• f, �±
i

h, H, A
�(Z)

�

•
h, H

f̃ , H±

�(Z)

�

Figure 2.8: Decays of the h, H, A bosons into two photons or a photon and a Z boson.

In the case of the gluonic decays, only heavy quark loops contribute, with additional

contributions due to light squarks in the case of the CP–even Higgs bosons h and H ; Fig. 2.9.
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Figure 2.9: Loop induced decays of the neutral MSSM Higgs bosons into two gluons.

In this subsection, we will discuss only the contributions of the SM and H± particles,

postponing those of the SUSY particles, which are assumed to be heavy, to the next section.
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Figure 1. Example Feynman diagram for resonant sneutrino production via the LiQ1D̄1 operator

in Eq. (1.1) and its decay to two photons through the triangle stau loop via the soft term ˜̀i ˜̀3⌧̃+
R in

Eq. (1.2). The cross in the stau propagator represents the left-right mixing in the stau sector. There

are other diagrams with ⌧̃L⌧̃⇤
L�� or ⌧̃R⌧̃⇤

R�� vertices which are not shown, but must be included in

the calculation to cancel the divergences.Show this to facilitate WW discussion.

where the SU(2)L indices of ˜̀i and ˜̀3 are anti-symmetrically contracted implicitly, which

forbids i to be 3, so the 750 GeV sneutrino has to be of electron or muon type in our

scenario. The process shown in Fig. 1 will contribute to the di-photon signal and may

explain the excesses observed in the ATLAS and CMS data, as shown below. Since any of

the heavy neutral Higgs bosons in the MSSM cannot explain the di-photon excess due to

their too small cross section [9], our interpretation in terms of the only other viable neutral

scalar in the model, namely, sneutrino, should serve as a well-motivated minimal solution.

The rest of the paper is organised as follows. In Sec. 2 we consider the decay of the

sneutrino and discuss the constraints on our scenario. In Sec. 3 we show our results and

discuss the value of the sneutrino width that one can obtain in our scenario. Sec. 4 discusses

how one might tweak the model in order to increase the width of the sneutrino in the event

that it is unambiguously measured by the experiments to be a wide resonance. Sec. 5 is

devoted to conclusions.

2 Sneutrino decay

Given the interaction terms in Eq. (1.1), the sneutrino ⌫̃i of mass m⌫̃i may decay into dd̄

with the following partial width:

�dd̄ ⌘ �(⌫̃i ! dd̄) =
3

16⇡ |�0
i11|

2
m⌫̃i . (2.1)

This decay is unavoidable because it is the inverse process to the production, and is con-

strained by the di-jet resonance searches [92, 93].

With the interaction terms in Eq. (1.2), the sneutrino may also decay into a pair of

staus if 2m⌧̃1  m⌫̃i , where ⌧̃1 is the lighter mass-eigenstate of the staus, with partial width

�⌧̃ ⌧̃ ⌘ �(⌫̃i ! ⌧̃
+
1 ⌧̃�

1 ) = |Ai33|2
16⇡m⌫̃i

 
1 �

4m2
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⌫̃i

!1/2

, (2.2)

where m⌧̃1 is the mass of the lightest stau. In this case, the branching ratio to the loop-

induced di-photon decay mode shown in Fig. 1 will be hugely suppressed, thus disfavouring

– 2 –
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jet
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At low tan � values, the branching ratio for some of these decays, in particular H± ! AW �,

can be sizable enough to be observable.

Finally, let us note that the direct radiative corrections to the H± ! AW decays have

been calculated in Ref. [215]. They are in general small, not exceeding the 10% level, except

when the tree–level partial widths are strongly suppressed; however, the total tree–level plus

one–loop contribution in this case, is extremely small and the channels are not competitive.

The same features should in principle apply in the case of H± ! hW and A ! hZ decays.

2.1.3 Loop induced Higgs decays

The �� and �Z couplings of the neutral Higgs bosons in the MSSM are mediated by charged

heavy particle loops built up by W bosons, standard fermions f and charged Higgs bosons

H± in the case of the CP–even � = h, H bosons and only standard fermions in the case of

the pseudoscalar Higgs boson; Fig. 2.8. If SUSY particles are light, additional contributions

will be provided by chargino �±
i and sfermion f̃ loops in the case of the CP–even Higgs

particles and chargino loops in the case of the pseudoscalar Higgs boson.
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Figure 2.8: Decays of the h, H, A bosons into two photons or a photon and a Z boson.

In the case of the gluonic decays, only heavy quark loops contribute, with additional

contributions due to light squarks in the case of the CP–even Higgs bosons h and H ; Fig. 2.9.
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postponing those of the SUSY particles, which are assumed to be heavy, to the next section.
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⇤
L�� or ⌧̃R⌧̃

⇤
R�� vertices which are not shown, but must be included in

the calculation to cancel the divergences.Show this to facilitate WW discussion.

where the SU(2)L indices of ˜̀
i and ˜̀

3 are anti-symmetrically contracted implicitly, which

forbids i to be 3, so the 750 GeV sneutrino has to be of electron or muon type in our

scenario. The process shown in Fig. 1 will contribute to the di-photon signal and may

explain the excesses observed in the ATLAS and CMS data, as shown below. Since any of

the heavy neutral Higgs bosons in the MSSM cannot explain the di-photon excess due to

their too small cross section [9], our interpretation in terms of the only other viable neutral

scalar in the model, namely, sneutrino, should serve as a well-motivated minimal solution.

The rest of the paper is organised as follows. In Sec. 2 we consider the decay of the

sneutrino and discuss the constraints on our scenario. In Sec. 3 we show our results and

discuss the value of the sneutrino width that one can obtain in our scenario. Sec. 4 discusses

how one might tweak the model in order to increase the width of the sneutrino in the event

that it is unambiguously measured by the experiments to be a wide resonance. Sec. 5 is

devoted to conclusions.

2 Sneutrino decay

Given the interaction terms in Eq. (1.1), the sneutrino ⌫̃i of mass m⌫̃i may decay into dd̄

with the following partial width:

�dd̄ ⌘ �(⌫̃i ! dd̄) =
3

16⇡
|�0

i11|2m⌫̃i . (2.1)

This decay is unavoidable because it is the inverse process to the production, and is con-

strained by the di-jet resonance searches [92, 93].

With the interaction terms in Eq. (1.2), the sneutrino may also decay into a pair of

staus if 2m⌧̃1  m⌫̃i , where ⌧̃1 is the lighter mass-eigenstate of the staus, with partial width

�⌧̃ ⌧̃ ⌘ �(⌫̃i ! ⌧̃+
1 ⌧̃�1 ) =

|Ai33|2
16⇡m⌫̃i

 
1 �

4m2
⌧̃1

m2
⌫̃i

!1/2

, (2.2)

where m⌧̃1 is the mass of the lightest stau. In this case, the branching ratio to the loop-

induced di-photon decay mode shown in Fig. 1 will be hugely suppressed, thus disfavouring

– 2 –

q

q̄

ν̃i

τ̃L

τ̃R

γ

γ

q

q̄

ν̃i

γ

γ

τ̃L/R

τ̃R/L

FIG. 1: Example Feynman diagrams for resonant sneutrino production via the LiQ1D̄1 operator in Eq. (1) and its decay to two

photons via the soft term ˜̀
i
˜̀
3τ̃

+
R in Eq. (2). There are two kinds of diagrams: (left) through the triangle stau loop, and (right)

through the τ̃R/Lτ̃
∗
L/Rγγ vertex, which must be included in the calculation to cancel the divergences in the loop integrals. The

cross in the stau propagators represents the left-right mixing in the stau sector, which must be non-zero to have a di-photon
signal.

can obtain in our scenario. In Sec. IV we show that all the relevant low-energy constraints can be satisfied for the
di-photon favoured region in this model. Sec. V discusses how one might tweak the model in order to increase the
width of the sneutrino in the event that it is unambiguously measured by the experiments to be a wide resonance.
Sec. VI is devoted to conclusions.

II. SNEUTRINO DECAY

Given the interaction terms in Eq. (1), the sneutrino ν̃i of mass mν̃i may decay into dd̄ with the following partial
width:

Γdd̄ ≡ Γ(ν̃i → dd̄) =
3

16π
|λ′i11|2mν̃i . (3)

This decay is unavoidable because it is the inverse process to the production, and is constrained by the di-jet resonance
searches [98, 99]. With the interaction terms in Eq. (2), the sneutrino may also decay into a pair of staus if 2mτ̃1 ≤ mν̃i ,
where τ̃1 is the lighter mass-eigenstate of the staus, with partial width

Γτ̃ τ̃ ≡ Γ(ν̃i → τ̃+
1 τ̃
−
1 ) =

|Ai33|2
16πmν̃i

(
1− 4m2

τ̃1

m2
ν̃i

)1/2

, (4)

where mτ̃1 is the mass of the lightest stau. In this case, the branching ratio to the loop-induced di-photon decay
mode shown in Fig. 1 will be hugely suppressed, thus disfavouring the di-photon signal. However, if the decay to
on-shell staus is kinematically impossible (2mτ̃1 > mν̃i) and the hadronic decay in Eq. (3) is suppressed (|λ′i11| � 1),
the sneutrino can decay with an appreciable branching ratio into neutral gauge bosons γγ, γZ, ZZ via the one-loop
diagram of the staus shown in Fig. 1. Neglecting the contribution from the heavier state τ̃2, the partial widths are
given by

Γγγ ≡ Γ(ν̃i → γγ) =
α2m3

ν̃i

256π3

|Āi33|2
m4
τ̃1

|A0(ττ̃ )|2 , (5)

ΓγZ ≡ Γ(ν̃i → γZ) =
α2m3

ν̃i

128π3

|Āi33|2
m4
τ̃1

(
1− m2

Z

m2
ν̃i

)3 ∣∣λZτ̃1τ̃1A0Z(τ−1
τ̃ , τ−1

Z )
∣∣2 , (6)

ΓZZ ≡ Γ(ν̃i → ZZ) =
α2m3

ν̃i

256π3

|Āi33|2
m4
τ̃1

(
1− 4m2

Z

m2
ν̃i

)3 ∣∣λ2
Zτ̃1τ̃1A0Z(τ−1

τ̃ , τ−1
Z )
∣∣2 , (7)

where Āi33 ≡ Ai33 cos θ sin θ, λZτ̃1τ̃1 ≡ a− b cos 2θ, with a ≡ (3 tan θw − cot θw)/4, b ≡ (tan θw + cot θw)/4, θw being
the weak mixing angle and θ being the left-right mixing angle of the stau sector: i.e. τ̃R/L = τ̃1/2 cos θ ± τ̃2/1 sin θ.

Also, ττ̃ ≡ m2
ν̃i
/4m2

τ̃1
, τZ ≡ m2

Z/4m
2
τ̃ and the scalar loop functions A0 and A0Z are defined by

A0(x) = −x− f(x)

x2
, (8)

A0Z(x1, x2) =
x1x2

2(x1 − x2)
+

x2
1x

2
2

2(x1 − x2)2

[
f(x−1

1 )− f(x−1
2 )
]

+
x2

1x2

(x1 − x2)2

[
(g(x−1

1 )− g(x−1
2 )
]
, (9)
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where the functions f and g are

f(x) =





arcsin2(
√
x) if x ≤ 1

− 1
4

[
log

(
1+
√

1−1/x

1−
√

1−1/x

)
− iπ

]2

if x > 1 ,
(10)

g(x) =





√
1−1/x

2

[
log

(
1+
√

1−1/x

1−
√

1−1/x

)
− iπ

]
if x < 1

√
1/x− 1 arcsin(

√
x) if x ≥ 1 .

(11)

One can see that these partial widths are proportional to sin 2θ through Āi33, meaning that a large left-right mixing is
required to obtain a large di-photon branching ratio. This can also be understood diagramatically due to the presence
of the cross on the stau propagator in Fig. 1.3 If the stau sector has a large left-right mixing, one tends to have a
large mass hierarchy, mτ̃2 � mτ̃1 . We can therefore neglect the τ̃2 contribution in the loop. On the other hand, the ν̃τ
contribution relevant for the ν̃i →W+W− decay mode through the τ̃L − τ̃R − ν̃τ triangle loop need not be negligible
in the large mixing limit. To be precise, the WW partial width in the limit mτ̃2 � mτ̃1 is given by

ΓWW ≡ Γ(ν̃i →W+W−) =
α2
wm

3
ν̃i

1024π3

|Āi33|2
m4
τ̃1

sin4 θ

(
1− 4m2

W

m2
ν̃i

)1/2

×
[ |F |2

16τ2
τ̃

(
12− 4m2

ν̃i

m2
W

+
m4
ν̃i

m4
W

)
− |F ·G|

2ττ̃

(
8− 6m2

ν̃i

m2
W

+
m4
ν̃i

m4
W

)
+ |G|2

(
16− 8m2

ν̃i

m2
W

+
m4
ν̃i

m4
W

)]
, (12)

where αw ≡ g2
w/4π, gw is the SU(2)L gauge coupling, and

F (m2
ν̃i ,m

2
τ̃1 ,m

2
ν̃τ ,m

2
W ) = 2C00(m2

ν̃i ,m
2
W ,m

2
W ,m

2
τ̃1 ,m

2
τ̃1 ,m

2
ν̃τ )− 1

2
B0(m2

ν̃i ,m
2
τ̃1 ,m

2
τ̃1), (13)

G(m2
ν̃i ,m

2
τ̃1 ,m

2
ν̃τ ,m

2
W ) = m2

τ̃1

[
C11(m2

ν̃i ,m
2
W ,m

2
W ,m

2
τ̃1 ,m

2
τ̃1 ,m

2
ν̃τ )

+ C12(m2
ν̃i ,m

2
W ,m

2
W ,m

2
τ̃1 ,m

2
τ̃1 ,m

2
ν̃τ )

+ C1(m2
ν̃i ,m

2
W ,m

2
W ,m

2
τ̃1 ,m

2
τ̃1 ,m

2
ν̃τ )
]

(14)

with B0, C1, C00,11,12 being the usual scalar two- and three-point Passarino-Veltman functions [100] in the conventions
of Ref. [101], which we evaluate numerically using LoopTools [102]. From Eqs. (5) and (12), we find that the WW
partial width can be suppressed with respect to the di-photon width by a suitable choice of the mass and mixing
parameters in the stau sector.

The total decay width Γtot of the sneutrino in our scenario is thus given by

Γtot ' Γdd̄ + Γτ̃ τ̃ + Γγγ + ΓγZ + ΓZZ + ΓWW + ΓX , (15)

where the partial widths are given in Eqs. (3)-(7) and (12), and ΓX is the contribution from any other possible decay
channels not explicitly mentioned here but that could potentially have an appreciable partial width (by changing
model parameters and making other super partners non-decoupled).

For a numerical illustration, we choose the following benchmark values for the stau sector:

m̃2
L3

= m˜̀
3

+m2
τ +m2

Z cos 2β(−1

2
+ sin2 θw) = (425 GeV)2,

m̃2
R3

= m2
τ̃R +m2

τ −m2
Z cos 2β sin2 θw = (445 GeV)2,

Xτ = mτ (Aτ − µ tanβ) = −43 GeV2,

tanβ = 20. (16)

The stau mass-squared matrix in the gauge eigenbasis (τ̃L, τ̃R) is given by

M2
τ̃ =

(
m̃2
L3

Xτ

Xτ m̃2
R3

)
, (17)

3 In principle, one can also allow for a large mixing in the selectron or smuon sector with a large µ-term and/or large tanβ, albeit with
some tuning of the parameters to avoid tachyonic states. Our subsequent analysis is equally applicable to these cases, but we stick to
staus for definiteness.
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FIG. 2: The branching ratios of the sneutrino decay to dd̄, γγ, γZ, ZZ and WW . Here we have chosen the benchmark values
given in Eq. (18), in addition to setting mν̃i = 750 GeV and Ai33 = 14mτ̃1 .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

sin
2θ

m
ν~

τ
/m

τ~

1

WW excluded

WW excluded

0.1

1

10

1

10

γγ favoured

FIG. 3: The contours of BRWW /BRγγ (dotted curves) as a function of the stau mixing angle θ and the mass ratio mν̃τ /mτ̃1 for
fixed values of mτ̃1 = 380 GeV, mν̃i = 750 GeV and Ai33 = 14mτ̃1 . The red-shaded regions enclosed by the red solid (dashed)
curves are the 95% CL exclusion regions for |λ′i11| = 0.08 (0.02) from the

√
s = 8 TeV LHC WW data. The green-shaded

regions enclosed by the green solid (dashed) curves are the 1σ favoured regions for |λ′i11| = 0.08 (0.02) to explain the
√
s = 13

TeV LHC di-photon excess.

with the left-right stau mixing given by tan 2θ = 2Xτ/(m̃
2
L3
− m̃2

R3
). The tau sneutrino mass is given by m2

ν̃τ
=

m2
˜̀
3

+ (1/2)m2
Z cos 2β. Thus, Eqs. (16) lead to the following mass and mixing values:

mτ̃1 = 382 GeV, mτ̃2 = 483 GeV, mν̃τ = 416 GeV, sin2 θ = 0.4. (18)

We now compute the branching ratios of the sneutrino decay to di-jet, di-photon, γZ, ZZ and WW channels using
Eq. (18). This is shown in Fig. 2 for a suitable choice of parameters mν̃i = 750 GeV and Ai33 = 14 mτ̃1 . From
Fig. 2, we find that the di-photon branching ratio is sizable for small λ′i11, which however cannot be made arbitrarily
small, since the sneutrino production cross section is proportional to |λ′i11|2. We also note that the partial widths for
ν̃i → γZ and ν̃i → ZZ are respectively ∼ 10−2 and ∼ 10−4 of Γγγ .

On the other hand, the WW partial width can be comparable to or larger than the di-photon width, depending on
the stau mixing and tau sneutrino mass, as depicted in Fig. 3. In particular, for smaller stau mixing, the WW rate is
suppressed with respect to the γγ due to the additional sin4 θ dependence in Eq. (12), but we cannot take the mixing
to be arbitrarily small, as it would also suppress the γγ rate with respect to the di-jet rate. We find that θ must be
between π/7 and π/3 to have a di-photon favoured region consistent with other constraints (see Section III). Similarly,
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FIG. 4: The di-photon signal cross section times branching ratio as a function of the stau mass for different values of the RPV
coupling λ′i11.

if the tau sneutrino mass is close to the stau mass, the ratio BRWW /BRγγ is small, giving a larger parameter space
for the di-photon signal. In Fig. 3, the red-shaded regions enclosed by the red solid (dashed) curves are the 95%
CL exclusion regions for |λ′i11| = 0.08 (0.02) from the

√
s = 8 TeV LHC WW data [103, 104]. The green-shaded

regions enclosed by the green solid (dashed) curves are the 1σ favoured regions for |λ′i11| = 0.08 (0.02) to explain the√
s = 13 TeV LHC di-photon excess [3, 4]. Here, we cannot take a larger value of |λ′i11|, otherwise it will be in conflict

with the
√
s = 8 TeV di-jet constraints [98, 99] (see Fig. 5). A smaller value of |λ′i11| will give a smaller di-photon

favoured region. We see from the figure that there is ample room in parameter space where a resonant sneutrino fits
the di-photon excess whilst simultaneously satisfying constraints on resonant WW production.

III. RESULTS

We compute the signal cross section at
√
s = 13 TeV LHC using the RPV model implementation in FeynRules [105]

and the parton-level event generation in MadGraph5 [106] with NNPDF2.3 leading order parton distribution func-
tions [107]. We find

σ(pp→ ν̃i → γγ)13TeV = σ13TeV
0 |λ′i11|2 · BRγγ , (19)

where σ13TeV
0 = 156 pb for mν̃i = 750 GeV with λ′i11 = 1. We require that the signal cross section be within the 1σ

region of the observed value, i.e. 5.3± 2.4 fb [5]. Fig. 4 shows predictions for the signal cross section times branching
ratio as a function of the lightest stau mass for different values of λ′i11. When the stau mass is smaller than half
the resonant sneutrino mass at the left-hand side of the plot, the branching ratio to the di-photon channel is highly
suppressed and consequently the signal cross section is much too small. It is clear from the figure that when the stau
mass is half (or just over half) the resonant sneutrino mass, the cross section fits the di-photon excess measurements.
Here, on-shell stau production is kinematically disfavoured, boosting the γγ branching ratio, but as the stau mass
further increases, the loop diagram depicted in Fig. 1 becomes increasingly mass suppressed and the signal cross
section dies off.

There exist constraints on the di-boson decay modes from the 8 TeV LHC data [14]. For the benchmark point
shown in Figure 2a, all these constraints are satisfied, except that there is a small 2σ level tension in the γγ channel
between the Run-I and Run-II data sets for the production mode through dd̄ annihilation, as considered here.

On the other hand, the ν̃i → dd̄ channel is constrained by the di-jet resonance searches [98, 99]. The most stringent
constraint comes from the

√
s = 8 TeV LHC data [108]4:

σ(pp→ ν̃i → dd̄)8TeV ' σ8TeV
0 |λ′i11|2 · BRdd̄

<∼ 0.9 pb, (20)

where σ8TeV
0 = 57 pb is the

√
s = 8 TeV production cross section for pp → ν̃i with λ′i11 = 1 and BRdd̄ = Γdd̄/Γtot is

the branching ratio of the di-jet decay mode.

4 Note that the reported results from the early Run II LHC di-jet resonance searches [109, 110] do not cover the region at di-jet invariant
masses of 750 GeV at all.
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assuming there is no other decay channel than dd̄, γγ, γZ, ZZ and WW . The dashed contours show the total decay width of
the sneutrino in GeV.

Let us first consider the ΓX = 0 case. Since the upper limit of the di-jet cross section (0.9 pb) is much larger than
the preferred di-photon cross section (8 fb), we have Γdd̄ � Γγγ in the most of the interesting parameter region. In
this regime the total width of the sneutrino can be approximated by Γdd̄ ∝∼ |λ′i11|2 and we have

σ(pp→ ν̃i → γγ) ∝∼ |λ′i11|2 ·
(

Γγγ
|λ′i11|2

)
∝ Γγγ , (21)

σ(pp→ ν̃i → dd̄) ∝∼ |λ′i11|2 ·
(

Γdd̄
|λ′i11|2

)
∝ |λ′i11|2. (22)

Thus, the γγ signal rate is approximately independent of λ′i11 as Fig. 4 shows in the region mτ̃1 > mν̃i/2.
The di-jet signal cross section also receives a contribution from charged slepton production:

σ(pp→ ẽ−Li → ūd) = σ8 TeV
− |λ′i11|2BR(ẽ−Li → ūd), (23)

σ(pp→ ẽ+
Li
→ ud̄) = σ8 TeV

+ |λ′i11|2BR(ẽ+
Li
→ ud̄). (24)

In the following discussion, we assume BR(ẽ±Li → ud̄/ūd) = 1 for simplicity. This leads to an conservative upper limit

on |λ′i11| from the di-jet constraint, which could be somewhat relaxed for BR(ẽ±Li → ud̄/ūd) < 1. We also assume

that the LR mixing in the ẽ±i sector is negligible. This is justified since the LR mixing is proportional to the fermion
mass, which is negligible for first two generations. At tree level, we have m2

ẽLi
= m2

ν̃i
−M2

W cos 2β; thus in the range

of β ∈ [π/4, π/2] considered, 750 < mẽi/ GeV < 754 for mν̃i = 750 GeV. This means that the sum of Eqs. (22),
(23) and (24) is constrained by the di-jet bound: we have included each in the calculation of the bound in Fig. 5. We
obtain σ8 TeV

− = 23 pb and σ8 TeV
+ = 57 pb for a 750 GeV charged slepton. The charged slepton has decays into Wγ

or WZ via a loop of stau/stau-sneutrino, with expected partial widths of the same order as the WW and γγ partial
width of the sneutrino. These channels therefore bring additional verification possibilities.

Fig. 5 shows our numerical result for the ΓX = 0 case. Throughout this section, we take the near-maximal left-right
mixing with sin2 θ = 0.4 and Ai33 = 14mτ̃1 so that the signal rate is enhanced without too much fine-tuning.5 In the

5 The signal rate is maximized for θ = π/4 and mν̃τ = mτ̃1 which is possible, but requires a large fine-tuning with m̃2
L3

= m̃2
R3

in

Eq. (17). Also note that the chosen value of Ai33 is roughly at the upper limit from perturbativity arguments [111]: larger values of
Ai33 generate a large |˜̀i|4 operator via a one-loop box diagram involving a loop of τ̃1 [111]. There have been arguments proposed
(see e.g. [112]) to the effect that such a large trilinear coupling may destabilise the potential at large field values of τ̃1. In this case,
additional (non-MSSM) heavy states would be required to modify the high energy behaviour of the potential such that the stability of
the vacuum is restored, even with the large value of Ai33 chosen here. Another resolution of the stability would be to lower Ai33 and
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green shaded region, the di-photon signal rate is within the 1 σ band of the observed value, whereas the red shaded
region is excluded by the di-jet resonance searches. As discussed above, the signal rate depends almost exclusively
on mτ̃1 unless |λ′i11| � 1. As can be seen, in order to explain the di-photon excess the lightest stau mass must be

within the narrow window 375 GeV ≤ mτ̃1
<∼ 389 GeV. The lower mass limit is required to forbid the two-body decay

mode, ν̃i → τ̃+
1 τ̃
−
1 . Above this kinematical threshold, one observes gradual suppression with stau mass due to gradual

decoupling. For a smaller value of Ai33 or θ, the upper limit on the stau mass becomes stronger and the green-shaded
region in Fig. 5 shrinks, until we have no allowed region left for Ai33 < 10 mτ̃1 or for θ < π/7. Contrary to the
di-photon rate, the di-jet constraint is sensitive to |λ′i11| and excludes the region where |λ′i11| > 0.08.

The dashed contours in Fig. 5 show the total decay width of the sneutrino in GeV. As we discussed previously, the
total width is dominated by the ν̃i → dd̄ mode and depends only on |λ′i11| unless |λ′i11| � 1. As can be seen, Γtot > 300
MeV is excluded by the di-jet constraint in the region favoured by the di-photon excess. This is a prediction of the
model in its minimal version: if the signal persists and the resonance is better resolved, it should have a narrow width.

IV. LOW-ENERGY CONSTRAINTS

We must make sure that the di-photon favoured range of λ′i11 in Fig. 5 is consistent with other low-energy constraints,
such as electroweak precision observables and lepton flavour violating processes [113].6 For instance, the constraint
from charged current universality in lepton and quark sectors implies [116, 117]

λ′11k ≤ 0.02
( md̃kR

100 GeV

)
. (25)

Similar limits on λ′11k are also obtained from atomic parity violation in133Cs [113]. From neutrino-lepton elastic
scattering mediated by neutral currents, we get [113]

λ′21k ≤ 0.15
( md̃kR

100 GeV

)
, λ′2j1 ≤ 0.18

(
md̃jL

100 GeV

)
. (26)

Large λ′i11 interactions can also induce sizable lepton flavour violating radiative decays of charged leptons [118].
Using the most stringent constraint from MEG on BR(µ→ eγ) < 5.7× 10−13 at 90% C.L. [119], we obtain

|λ′2jkλ′∗1jk| . 1.6× 10−5
( md̃kR

100 GeV

)2

. (27)

Limits on |λ′i11| were also set from the electric dipole moment (EDM) constraints [120]. Using the current best
upper limit on electron EDM, |de| < 8.7×10−29e.cm at 90% C.L. [121], we get |λ′111| ≤ 9.3×10−6, whereas from muon
EDM, we get a much weaker constraint: |λ′211| ≤ 0.5, assuming all the relevant squark and slepton masses in the loop
to be 100 GeV. These limits can however be completely evaded by a suitable choice of phases in the squark mixing
matrix or at least siginificantly weakened by making the squarks heavier: already if they are placed at 1 TeV, the
above constraints leave plenty of room for the values of λ′i11 < 0.1 that we require to explain the di-photon resonance.

For i = 1, the λ′111 coupling is also constrained by neutrinoless double beta decay (0νββ) [122, 123]. Using the
current 90% CL combined limit on the 0νββ half-life for 76Ge isotope from GERDA phase-I: T 0ν

1/2 > 3.0×1025 yr [124],

we find [125, 126]

|λ′111| . 4.5× 10−4
( mẽL

100 GeV

)2
(

mχ̃0
1

100 GeV

)1/2

' 0.025

(
mχ̃0

1

100 GeV

)1/2

(28)

enhance the signal rate by using additional sneutrino states in the loop. For instance, if mν̃e ' mν̃µ ' 750 GeV, one can obtain an

enhancement factor of 22 = 4, although in this case the mass splitting between the sneutrinos would need to be smaller than their O(1
GeV) widths. One could also have additional enhancement from a smuon contribution in the loop, where non-zero Ai22 as well as a
light µ̃1 with a large mixing between left and right handed smuons would be required. Yet another possibility is to produce ν̃i from
a cascade decay of e±Li as pp → ẽ±Li → W±ν̃i. This requires large LR mixing in the light-flavour slepton sectors in order to have a

large enough mass splitting between ẽ±i and ν̃i to allow this decay. Since the current di-photon excess has only ∼ 20 events, having this
sub-leading contribution with an extra W boson is still consistent with data. In this case, the di-jet constraint is also relaxed because
BR(ẽ±Li → ud̄/ūd) < 1.

6 For detailed discussions of the indirect constraints on the scalar di-photon resonance, see Refs. [114, 115].
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for a selectron mass of 750 GeV. Comparing this with the di-photon favoured region in Fig. 5, we find that the 0νββ
constraint still allows some parameter space for the i = 1 case as long as the the lightest neutralino is heavier than
about 50 GeV. We also note that our scenario satisfies the constraints from S and T parameters measured at LEP,
since the sleptons are heavier than 375 GeV. For details, see Fig. 3 of Ref. [127].

To summarize, the low-energy constraints depend on additional sparticle masses not involved in the di-photon
explanation, and are easily satisfied by making the sparticles appropriately heavy enough, without affecting the
di-photon signal.

V. MODEL TWEAKS

One way to increase Γtot would be to allow the sneutrino to have other decay modes, X. If ΓX were as large as or
larger than Γdd̄, the cross sections would scale as

σ(pp→ ν̃i → γγ) ∝∼ |λ′i11|2
( Γγγ
c|λ′i11|2 + ΓX

)
,

σ(pp→ ν̃i → dd̄) ∝∼ |λ′i11|2
(c|λ′i11|2 + δ1nΓX

c|λ′i11|2 + ΓX

)
,

σ(pp→ ν̃i → X) ∝∼ |λ′i11|2
( ΓX
c|λ′i11|2 + ΓX

)
, (29)

where c is some constant. A few remarks can be made. First of all, all processes depend on ΓX . Second, the di-photon
rate now also depends on λ′i11. Therefore, for ΓX > 0, to compensate for the suppression in the di-photon rate, a
larger value of |λ′i11| will be preferred. The suffix n of the Kronecker delta is 0 except for X = dkd̄l with dk being one
of d, s, b (and d̄l being one one of d̄, s̄, b̄) excluding X = dd̄. These decay modes can be opened up by introducing a
non-zero λ′ikl coupling for the LiQkD̄l operator in the superpotential in Eq. (1). For n = 1, the di-jet cross section is
independent of ΓX , whereas it is suppressed with ΓX > 0 for the n = 0 case.

Appropriate constraints on σ(pp→ ν̃i → X) should be taken into account7. For example, if some of the neutralinos
and charginos are lighter than ν̃i, one can consider ν̃i → νχ̃0

j and ν̃i → `±χ̃∓j . In RPV scenarios, the χ0
j and χ±j

subsequently decay into jets and leptons via RPV interactions and these processes may be observed as multi-jet and/or
multi-lepton with or without large missing transverse momentum final states. Constraints on these processes depend
on the details of the final state particles and the masses of χ0

j and χ±j , but are typically more stringent than the di-jet

constraint. Another possibility is X = bb̄ or bs̄ (sb̄). The upper bound on the bb̄ signal cross-section is about 1 pb
from the di-bottom resonance search [129], whilst the latter does not have any other constraint apart from the di-jet
constraint previously covered.

Additionally, one could tweak the model to explain a wider peak by having multiple sneutrino resonances, e.g. ν̃e
and ν̃µ, with slightly different masses, ∆m ∼ O(10) GeV: at present, statistics are such that one cannot resolve these
two different masses with the ATLAS data presented, however this tweak predicts that in the future, the double-peak
structure would be resolved (the di-photon invariant mass resolution is around 1% i.e. ∼ 7 GeV).

A comparison by ATLAS with the 8 TeV di-photon data and their interpretation in terms of a 750 GeV resonance
implies that production by dd̄ is disfavored at the 2.1σ level [130]. If this tendency in the data persists, we should
include the contributions from strange or bottom quarks, either of which is more compatible with the 8 TeV inferred
rate. Thus, instead of assuming a non-zero λ′i11 only, we would also be considering non-zero λ′ijk where j and/or k
are greater than 1. Strange or bottom quarks, being non-valence, have lower parton distribution functions to produce
a 750 GeV sneutrino than down quarks and so an increase in the value of λ′ijk as compared to λ′i11 would be required
in order to fit the data.

VI. CONCLUSION AND DISCUSSION

One can explain the di-photon excess via resonant sneutrino production whilst remaining on the allowed side of
other collider constraints. The model contains a stau of mass anywhere from 375 to 389 GeV and a 750 GeV sneutrino.

7 For a comprehensive list of LHC probes on hidden sector, see e.g. Ref. [128].
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It is interesting to note that resonant left-handed slepton production has been used to simultaneously explain the
ATLAS di-boson excess at 2 TeV in LHC Run I and the anomalous magnetic moment of the muon [111]. It remains to
be seen whether the R−parity violating MSSM has enough freedom to simultaneously fit these measurements (which
are also discrepant with SM predictions) and the di-photon excess addressed here. We leave the investigation of this
issue to a future paper.

The most pressing concern resulting from this and other works is: will the 750 GeV γγ excess persist in future Run
II data? If the answer is ‘yes’, there are some ways to discriminate our proposal from the other many new physics
scenarios that have explained the excess. Firstly, the largest possible width we can get in this scenario is 0.3 GeV
and so our base-line model predicts that the mild preference in the ATLAS data for a width of 45 GeV will not
persist. With larger statistics, we predict that the angular distributions for the γγ final state should agree more with
a spin zero resonance produced by qq̄ initial state (as opposed to gg). Unfortunately, the γZ and ZZ signal rates are
probably too small to be seen at the LHC, given that they are all suppressed by a factor of 104 or more compared
to the γγ signal. However, the signal rates for di-jets or WW are non-negligible and while backgrounds are large,
these channels remain a hope to verify the model. Charged slepton signals producing Wγ and WZ are an additional
prediction of the model, at a mass very close to 750 GeV.

Note Added

In the final stages of preparation of this manuscript, Ref. [54] appeared, presenting an explanation for the di-photon
excess using the sneutrino and R−parity violating supersymmetry, finding that light staus and smuons in the range
375-480 GeV are favored, and we note some overlap with our paper. However, they have not included the WW decay
mode of the sneutrinos and have assumed a much larger soft SUSY-breaking term Ai33 = 10 TeV, which is potentially
dangerous for vacuum stability.
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