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1 Introduction

It is very likely that dark matter (DM) requires degrees of freedom, that are not in the standard model
(SM) for its explanation. As its name implies the electromagnetic interactions of DM must be small. A
convenient way to realize this is to suppose that the DM is not charged under the SM gauge group. A
simple model of this type that doesn’t have any fine tunings, beyond the usual ones to keep the cosmological
constant and Higgs mass small, is to have the DM be a Dirac fermion coupled to a new massive U(1)D
gauge boson (the dark photon). Since the DM couples to a conserved current the new gauge boson can
have a mass term in the Lagrange density. This model adds to the SM seven new dark degrees of freedom:
two spin components for both the DM and anti-DM particles, and the three spin states for the massive
dark photon. The model has three additional parameters, a dark fine structure constant, αD = g2

D/(4π),
the DM mass mD and the dark photon mass mV . In addition there is one dimensionless renormalizable
coupling κ that characterizes the kinetic mixing of the hypercharge U(1)Y and U(1)D kinetic terms. It is
only through gravity and this kinetic mixing that SM degrees of freedom communicate with those in the
dark sector.

In this paper we will assume thermal DM i.e., at early times when the universe is at a very high
temperature the DM sector is in thermal equilibrium, and moreover has the same temperature as the SM.
As the universe evolves it cools and when the temperature drops below the DM mass, DM and anti-DM
particles start to annihilate, eventually freezing out at T ∼ mD/30. In this scenario achieving the correct
the DM density relates the dark fine structure constant to the DM mass, roughly αD ∼ 0.02 (mD/1 TeV).
For DM much heavier than TeV, one needs to take into account of the Sommerfeld effect during freeze
out and αD is somewhat lower than the value predicted by the above relation. For example, αD = 0.2 for
mD = 16.7 TeV.

The light mediator scenario with mD � mV has been studied for a variety of reasons. In the same
region of parameter space there are indirect detection signals that are the topic of study in this paper.
For αDmD/(2mV ) > 0.84, two body DM-anti-DM bound states exist. They are the analog of positronium
bound states in electromagnetism. It is the impact of these darkonium bound states on the rate for
DM-anti-DM annihilation in the galaxy today that we focus on.

The region of parameter space in the mV − mD plane where bound states exist and are potentially
important for DM cosmology is shown in Fig. 1. We assume these darkonium states are non-relativistic
and so we restrict our attention to the region of parameter space where αD < 0.3 or equivalently (for
thermal DM mD < 30 TeV). Very small dark photon masses, mV < 30 MeV are inconsistent with direct
detection, the supernova constraints and the requirement that dark photons decay away before big bang
nucleosynthesis (BBN). The region of Fig. 1 below the green line does not have darkonium states and the
region between the brown and green lines has darkonium states but the mass of the dark photon is too
large for these bound states to be produced with the low kinetic energy for the DM during recombination
or today. Thus, the region of parameter space for our study of the impact of bound states on indirect
detection signals is the triangular region marked as the “Focus of this study” in Fig. 1.

The main finding of our work is that the bound state effects are important for DM indirect detection
when mV /mD . 10−3 and αD & 0.1. The goal of this paper is not to provide a comprehensive list of all
the indirect detection constraints but rather to highlight the important role bound state formation plays
in this region of parameter space. To this end we focus on the photon spectrum resulting from DM near
the center of our galaxy annihilating either directly or through bound states.

In section 2, we derive the general cross section for dark matter bound state formation via radiation
of an on-shell dark photon and its dependence on the dark matter velocity and the dark photon mass. In
section 3, we apply our results to calculate the indirect detection constraints on dark matter annihilation
and discuss the importance of bound state effects. We discuss the bound state effects on dark matter freeze
out and on the cosmic microwave background (CMB) in sections 4 and 5, and conclude in section 6.
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Figure 1: The parameter space relevant to this study (marked by “Focus of this study”), where mD is the dark
matter mass and mV is the dark photon mass. The value of the dark fine structure constant αD = g2

D/(4π)
is chosen to give the correct relic abundance for dark matter. We do not consider αD < 0.3 (above the black
curve) where the next-to-leading order corrections would be large. The grey region at the lower right corner
does not satisfy the light mediator condition, thus we also do not consider it. Dark matter bound states do not
exist below the green curve. Between the brown and green curves, dark matter bound states exist but the dark
photon is too heavy for the bound states to be produced with the low kinetic energy such as in the galaxy today
or during recombination. The region to the left of the blue curve is excluded by direct detection, the supernova
constraints and demanding that dark photons decay before BBN, see also Fig. 4. The yellow region is excluded
by CMB constraints on dark matter annihilation during recombination, see section 5.

2 Bound State Formation Cross Section

The Lagrangian for the dark sector is

L = LSM + χ̄iγµ(∂µ − igDVµ)χ−mDχ̄χ−
1

4
VµνV

µν +
1

2
m2
V VµV

µ − κ

2 cos θw
BµνV

µν , (1)

where Bµν is hyper-charge field strength tensor and θw is the Weinberg angle. Hence κ is the kinetic mixing
between the photon and the vector field V .

The interaction Hamiltonian for radiating one dark photon V can be separated into transverse and
longitudinal mode parts. In the center-of-mass frame, the Hamiltonian for radiating transverse V ’s is

HT
int =

(
gDk

µ

)[
AT

(r
2

)
+ AT

(
−r

2

)]
, (2)

where r is the relative coordinate of χ and χ̄, k is the relative DM momentum and µ = mD/2 is the
DM reduced mass. For the transverse modes, the polarization vectors satisfy ε+i (q)ε+∗j (q) + ε−i (q)ε−∗j (q) =

δij − qiqj/|q|2, and q is the three momentum of the radiated dark photon. For radiating a longitudinal V ,
using current conservation qµJµ = 0, the interaction Hamiltonian can be written as

HL
int =

(
gDmV

|q|

)[
φL

(r
2

)
− φL

(
−r

2

)]
. (3)
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Effectively it is equivalent to radiating a scalar particle.
For bound state formation, |q| ∼ α2

Dµ and |r| ∼ 1/(αDµ), where αD = g2
D/(4π). Thus we use the

dipole approximation and only keep the leading terms in q · r. Then the matrix elements for the free-
bound transitions with transverse and longitudinal V radiation are

MT = gD

∫
d3r Ψ∗f (r)(Ei − Ef )r · εTΨi(r) , ML = −igD

∫
d3r Ψ∗f (r)mV

r · q
|q|

Ψi(r) . (4)

The total cross section for bound state formation from a scattering state with momentum k at infinity
is

(σv)B =
αD
3π

∑
n,`

(
ω2
n` +

1

2
m2
V

)√
ω2
n` −m2

V

[
`

∣∣∣∣∫ drr3Rn`(r)Rk`−1

∣∣∣∣2 + (`+ 1)

∣∣∣∣∫ drr3Rn`(r)Rk`+1

∣∣∣∣2
]
, (5)

where v is the relative velocity and ωn` = En` + k2/(2µ) is the sum of the binding energy of the (n`)’th
bound state level and the kinetic energy of incoming state. For a Yukawa potential, the binding energy in
general depends on both n and `.

A couple of remarks relevent for the evaluation of Eq. (5) are:

• The sum over n, ` includes all the energy level satisfying ωn` > mV . For low velocity DM with
k2/(2µ) � mV , this amounts to En` > mV . As a rough estimate we can use En` ∼ α2

Dµ/(2n
2) for

the binding energy. Then if En` > mV , the ratio of the bound state size to the screening length of
the Yukawa potential, anmV ∼ nmV /(αDµ) is less than αD/(2n) � 1. In other words those bound
states, that are deep enough to emit an on-shell V , in their formation, are all much smaller than
1/mV . Therefore, from now on, we will approximate the relevant bound states as Coulomb bound
states, with energies En` = En, ωn` = ωn, that are ` independent.

• The bound and scattering wavefuctions that solve the Schrödinger equation are written as

ψn(r) =
∑
`m

Rn`(r)Y`m(r̂), ψk(r) =
∑
`m

Rk`(r)Y`m(r̂)Y ∗`m(k̂) . (6)

Using the above approximation, the radial Coulomb wavefuctions for bound states are

Rn`(r) =
2

n`+2(2`+ 1)!

√
(n+ `)!

(n− `− 1)!

(2r)`

a`+3
0

e−(r/na0)F1

(
1 + `− n, 2 + 2`,

2r

na0

)
, (7)

where a0 = 1/(αDµ) is the Bohr radius.

For the scattering state radial wave functions, we numerically solve the Schrödinger equation with
a Yukawa potential and energy eigenvalue E = k2/(2µ) using the “shooting method”. For the `’th
partial wave, define Rk`(r) = r`−1φ(r), the Schrödinger equation for φ(r) is

φ′′(r) +
2`

r
φ′(r) +

(
k2 +

2αµe−mV r

r
− 2`

r2

)
φ(r) = 0 . (8)

The boundary condition at r = 0 is φ(0) = 0 and φ′(0) = c. Because Eq. (8) is a linear equation,
the overall normalization of R is proportional to the parameter c, and we fix it by requiring that Rk`
matches to the `-th partial of a plane wave as r →∞, i.e.,

rRk`(r →∞) ∼ (4π)

k
i` cos

(
kr − (`+ 1)

π

2
+ δk`

)
. (9)
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Figure 2: Dark photon mass dependence in the bound state formation cross section in today’s galaxy (thick red
curve), calculated from the general formula, Eq. (5). We have fixed the other parameters to be mD = 16.7 TeV,
αD = 0.2 and the velocity v = 10−3. The solid black curve is obtained from the modified Kramers formula
Eq. (13), which does not capture the resonance effects. The horizontal dotted line is the original Kramers
formula in the Coulomb limit (mV → 0), Eq. (11), and the dashed line corresponds to only ground state
formation with massless dark photon with n = 1.

In the mV → 0 limit, Rk` is given by the Coulomb scattering wave function,

Rk`(r) =
4πe

π
2ka0

∣∣∣Γ(1 + `− i
ka0

)
∣∣∣

(2`+ 1)!
(2kr)`e−ikr1F1

(
1 + `+

i

ka0
, 2 + 2`, 2ikr

)
. (10)

We first discuss the mV dependence of the bound state formation cross section in Eq. (5). In the Coulomb
limit mV → 0, it is the Kramers formula for the recombination cross section [1]. For αD � k/µ ≡ v, the
leading terms of the Kramers formula for the cross section are [2]

σB =
32π

3
√

3

α3
D

µ2v2

[
ln
(αD
v

)
+ 0.16 +O(v/α)

]
. (11)

The logarithmic factor arises from the sum over n in Eq. (5). For given level n� 1 [3],

(σB)n '
32π

3
√

3

αD
µ2

E2
0

(µv2/2) (µv2/2 + E0/n2)n3
. (12)

Recall E0 is the binding energy of the Coulomb bound state, E0 = α2
Dµ/2. The condition αD > v implies

E0 > µv2/2. It is important to note that σn ∼ 1/n for small n and σn ∼ 1/n3 for large n. The transition
between these two behavious occurs around ntrans ∼ αD/v. The sum of σn from n = 1 to ntrans results in
the logarithmic factor ln(αD/v) in Eq. (11). §

For mV 6= 0 the situation is more complicated. For non-zero mediator mass mV , we solved for the cross
section numerically using the approach described above. As mV grows, the first effect it has is to change

§We have verified the Kramers formulae (11) and (12) numerically. The calculations taking into account only the capture
into ground state [4–7] would miss the logarithmic factor and underestimate the cross section, for the cases αD � v and/or
αD �

√
mV /mD. We also note that Refs. [8,9] tried to sum over all the energy levels (n ≥ 1) but concluded it yields a factor

of π2/6 compared to the ground state case. However, they used the recombination cross section Eq. (75.6) in [3] that only
applies for n = 1 and also underestimated the enhancement. Moreover, these previous works have assumed massless dark
photon limit which would neglect the nontrivial mV dependence as shown in Fig. 2.
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Figure 3: Dark matter bound state formation cross section for various dark matter velocities (thick red curve),
calculated from the general formula, Eq. (5). We have fixed the other parameters, mD = 16.7 TeV, αD = 0.2
and mV = 10 GeV. For comparison, we also show the direct annihilation cross section in the Born approximation
(dashed black) and the one with Sommerfeld enhancement (thick blue curve). The bound state formation cross
section plays the most important role for dark matter indirect detection, if mV /mD < v < αD.

the upper limit of the sum over n. The largest nmax corresponds to the highest energy level that has a
large enough binding energy that allows V to be produced on-shell. When we are still within the Coulomb

limit, nmax = αD
√

µ
2mV

. When nmax < ntrans, the Kramers cross section is modified to

σB '
32π

3
√

3

α3
D

µ2v2
ln

(
αD

√
µ

2mV

)
. (13)

The condition that nmax < ntrans is equivalent to µv2/2 < mV and we find numerically that Eq. (13) is valid
in the range 1

2µv
2 < mV < µv. In the region mV > µv, the cross section is resonantly enhanced when the

kinetic energy of the incoming state is nearly degenerate with a resonance state of the Yukawa potential.
These features are shown in Fig. 2. In the region α2

DmD/4 < mV < α2
DmD/16 only the ground state is

available, which is in s-wave. Therefore, due to the nature of dipole transition, in this region the initial
state must be in p-wave, and the single-peak resonances shown in Fig. 2 correspond to p-wave resonances.
In smaller mV region, more and more bound states become available, one can see multiple-peak resonances.

Next, we discuss the velocity dependence of the bound state formation cross section, and highlight the
comparison with the Sommerfeld enhanced cross section of direct annihilation, often used for computing
DM annihilation in the literature [4, 10–12]. This comparison is shown in Fig. 3 for mD = 16.7 TeV,
αD = 0.2 and mV = 10 GeV. We find that in the region mV /µ < v <

√
2mV /µ the bound state formation

cross section is consistently larger than the direct annihilation cross section with Sommerfeld enhancement
(labelled with subscript A). For this range of relative velocities, the two cross sections can be approximated
as

(σv)B ∼
32πα3

D

3
√

3µ2v
ln

(
αD

√
µ

2mV

)
, (σv)A ∼

π2α3
D

2µ2v
. (14)

The direct annihilation cross section (σv)A is obtained by enhancing the Born level cross section by the
s-wave Sommerfeld factor, defined as |Rk,`=0|2/(4π)2 in our convention.
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The ratio of the two above cross sections is

Bound state formation rate

Direct Annihilation rate
=

(σv)B

(σv)A
=

64

3
√

3π
ln

(
αD

√
µ

2mV

)
. (15)

With the parameters used in Fig. 3, the bound state formation cross section can be larger by more than
one order of magnitude over the Sommerfeld enhanced annihilation cross section.

For v >
√

2mV /µ, the bound state production cross section is given by the Kramers formula in Eq. (11)
and the the logarithmic enhancement factor is suppressed compared with the region of velocity we have
just discussed. This is the region to the right in Fig. 3. Eventually, at v ∼ αD, the argument of the log
factor is ∼ 1 and the Kramers and Sommerfeld cross sections become comparable to each other.

For v < mV /µ, the kinetic energy of the incoming state 1
2µv

2 becomes smaller than the height of
bump of the Yukawa potential barrier Vbarrier ∼ `(`+ 1)m2

V /µ for the ` 6= 0 partial wave, located near
r ∼ 1/mV . As v decreases, it becomes increasingly more difficult for these partial wave states to penetrate
through the barrier to find the bound state wavefunction. In this region, the contributions to bound state
formation cross section from all partial waves with l 6= 0 are suppressed. Eventually, at very tiny v, only
the ks → np, (n ≥ 2) transitions can happen. In this region the bound state formation cross section is
smaller than the Sommerfeld enhanced annihilation cross section.

The above velocity dependence can have important impact on indirect detection of DM annihilation
in the Milky way galaxy, where the DM velocity is ∼ 10−3. We find for mV /µ < 10−3 and αD > 0.1
(corresponding to multi-TeV scale thermal DM), it is much more likely for two DM particles to form a
bound state than directly annihilate.

After a bound state is formed, it could either annihilate decaying to dark photon V ’s or de-excite to a
lower state. The annihilation decay rate for the n` bound state goes as,

Γn,s,`→V ′s ∼
(αD
n

)2`+3
α

(5−C)/2
D µ , (16)

where s = 0, 1 is the total spin angular momentum of the bound state, n is the principal quantum number,
` is the orbital angular momentum, and C = (−1)`+S is the charge conjugation. For C = 1, the bound
state decays into 2V ’s, while for C = −1, it decays into 3V ’s due to the Furry’s theorem in the dark sector.
The ` dependence arises because the annihilation decay amplitude is proportional to the `-th derivative
of the zero point wavefunction at the origin, (d`/dr`)Rn`(0). Each derivative yields a power of αD. For
smaller n (and hence `) the time scale for darkonium annihilation to dark gauge bosons is extremely short
compared with the the age of our galaxy which in units of inverse GeV is, τg ∼ 0.62 × 1042 GeV−1. But
for larger principal quantum numbers n and values of ` that is not the case. As an explicit example, we
consider the parameters mD = 16.7 TeV, αD = 0.2 and mV = 1 GeV. For these parameters nmax = 12
and for this value of the principal quantum number, ` = nmax − 1 = 11 and C = −1 the bound state
annihilation decay has a lifetime associated with it that is about one order of magnitude larger than the
age of our galaxy.

Darkonium states with larger n and ` produced in our galaxy do disappear but the route is through
de-excitation to lower values of n and ` and then annihilation to energetic V ’s with EV ' mD/2. For
simplicity we consider the case where the transition is dark electric dipole to either a real or if that is
kinematically not allowed virtual V . When this can occur via a real dark V the rate is very rapid. For
de-excitation through a virtual V we estimate the rate for the bound state transition n, `→ n− 1, `± 1 to
be

Γn→n−1 ∼
κ2αα13

D

n19

µ5

4π2m4
V

. (17)
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Figure 4: Constraints on the mV − κ parameter space for fixed mD = 16.7 TeV and αD = 0.2. The blue
region is excluded by the LUX result in dark matter direct detection [16]. The gray region is excluded from
the supernova cooling argument [13–15]. In the green region, the dark photon lives longer than a second and
would threaten the success of BBN assuming the dark and SM sectors had similar temperatures [17,18]. In the
allowed (white) region, all possible dark matter bound states have lifetime shorter than the age of the Milky
Way galaxy.

It is convenient to introduce the “partial lifetimes”, τn→n−1 = 1/Γn→n−1. Assuming the transition to the
ground state occurs changing n by one unit at a time the total rate is

Γn→1 ∼

(
1

/
n∑
i=2

τi→i−1

)
∼ 20

κ2αα13
D

n20

µ5

4π2m4
V

. (18)

We find in this case for the allowed values of κ, mD and mV that this de-excitation rate is shorter than
the age of the galaxy. This is illustrated in Fig. 4 using the same parameters as before (i.e., mD = 16.7 TeV,
αD = 0.2, mV = 1GeV and nmax = 12). All the darkonium bound states produced in our galaxy do decay
converting eventually into two or three very energetic V ’s and some softer V ’s which all decay to standard
model particles.

Without loss of generality, we imagine there is just one type of bound state. Then its number density
nB satisfies the rate equation

dnB
dt

= −ΓBnB +
1

4
n2
D(σv)B , (19)

where nD is the unbound DM particle density ¶, ΓB is the decay rate of the dark bound state and (σv)B

is the DM bound state production cross section multiplied by the relative velocity of the DM particles.
In the galaxy, if only a small fraction of DM have formed bound states or annihilated today, the free DM
density nD is constant in time. Solving the rate equation for the number density of dark bound states
using this approximation gives

nB(t) =
1

4ΓB
n2
D(σv)B

(
1− e−ΓBt

)
. (20)

¶nD is the sum of DM and anti-DM particle number densities.
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Taking the time t to be the age of our galaxy τg ∼ 1018 seconds, for ΓBt� 1, the value of nB approaches
an equilibrium value given by, 4nBΓB = nD(σv)B.

The DM today includes both free DM and the ones inside (unstable) bound states n
(tot)
D = nD + 2nB.

The total annihilation rate R relevant for indirect detection signal, including DM annihilation both directly
(∝ (σv)A) and inside the bound states (∝ (σv)B), is

R = 2nBΓB +
1

2
n2
D(σv)A =

1

2
n2
D

[
(σv)A + (σv)B

]
, (21)

where in the second step, we have used the above equilibrium value for nB. Hence the indirect detection
signal discussed in the next section is fully determined by the sum of DM direct annihilation and bound
state formation rates.

3 Indirect Detection

In this section, we quantify the importance of bound state formation on DM indirect detection. The V
particles from the annihilation of DM will further decay into SM charged particles via the kinetic mixing
with the photon and Z boson, and contribute to the cosmic gamma ray spectrum. We will consider the
Fermi constraint on the photon spectrum from DM annihilation at the galactic center [19]. The goal of
this paper is not to provide a comprehensive list of all the constraints but rather to highlight the important
role bound state formation plays in some regions of parameter space.

The gamma ray flux at the earth is obtained from the DM annihilation rate averaged over the galactic
center region via,

dΦγ

dEγ
=

3∑
n=2

1

16πm2
D

dN
(n)
γ

dEγ

∫
dΩ

∫
l.o.s.

dsρ(r(s, θ))2(σv)nV , (22)

where ρ is the DM density profile, s is the distance of the annihilation point to the earth, θ is the
angle between the line of sight and the direction of the galactic center in view of the earth, r(s, θ) =√
r2
� + s2 − 2r�s cos θ, and r� = 8.4 kpc is the distance between the earth (or the sun) and the galactic

center. We use the NFW profile for dark matte mass density distribution in the galaxy,

ρ(r) =
ρ0

(r/R)(1 + r/R)2
, (23)

where GN is the Newton’s constant, R = 20 kpc, and we choose ρ0 = 0.34 GeV/cm3 such that near the
solar system ρ(r�) = 0.4 GeV/cm3. For the gamma ray observation by Fermi-LAT, the Ω integral covers
the 15◦ × 15◦ region around the galactic center [19].

As discussed in the previous section, the annihilation of DM could happen in two ways

χχ̄→ 2V ,

χχ̄→ B → nV (n = 2, 3) .

The first line is the usual direct annihilation with Sommerfeld enhancement, while the second line corre-
sponds to having bound state formation and then DM annihilating within the bound states. The number of
dark photons resulting from this annihilation, n = 2, 3, depends on the C-parity C = (−1)`+S of the bound

state B that decays via DM annihilation. In Eq. (22), the function dN
(n)
γ /dEγ is the photon spectrum at

the source, depending on the number of V ’s in the final state (n = 2, 3). We describe the details of our

calculation of dN
(n=2,3)
γ /dEγ in appendix A.
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The cross sections for n = 2, 3 are related to the ones discussed in the previous section as

(σv)2V = (σv)A + (σv)Bf2 , (24)

(σv)3V = (σv)B(1− f2) . (25)

The factor f2 is the fraction of bound states annihilating into 2V from the state with C = +1. The rest of
the bound states will annihilate to 3V with C = −1. As shown by Fig. 5, we find the 3V channel yields
only a slightly larger (and slightly softer) gamma ray flux than the 2V channel. Thus our numerical results
are insensitive to the value of f2. For convenience, we use f2 = 1 in the following calculations, which yields
the most conservative limits.

3V

2V
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5
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Figure 5: An example of gamma ray fluxes per unit cross section as a function of photon energy for the 2V and
3V channels. Here the dark matter is mD = 16.7 TeV and dark photon mass is mD = 10 GeV.

In general, one has to calculate the cross section (σv)nV within the line of sight integral because the
bound state formation cross section is velocity dependent as discussed in Fig. 3, and the DM velocity near
the galactic center depends on the position r. For simplicity, we neglect the r dependence and assume
Maxwell-Boltzmann velocity distribution of DM with a reasonable root-mean-square value vrms = 150 km/s
throughout the signal region at the galactic center as suggested in [20]. This approximation does not affect
the main point of our work.

We compare the gamma ray spectrum with the one from the galactic center observed by Fermi-LAT [19].
We find that for the multi TeV DM in this study, the resulting gamma ray spectrum is peaked around a
few hundred GeV to a TeV, while in the Fermi data, a spectrum decreasing with energy is provided only in
the window 1-100 GeV. Therefore, the last bin with Eγ ∼ 80 GeV provides the strongest upper limit. As
discussed above, we assume that all DM bound states annihilate decay into 2V . The relevant cross section
is just

(σv)2V = (σv)A + (σv)B . (26)

This quantity as a function of mV is shown in Fig. 6, for mD = 16.7 TeV, αD = 0.2. For mV less than the
typical DM momentum at the galactic center, (σv)2V has similar dependence on mV as Fig. 2, because the
DM annihilation via bound state formation gives the dominant effect for indirect detection. In contrast,
we also show the direct annihilation cross section with Sommerfeld enhancement (often considered in
the literature) in the blue curve, which can be lower than the total effective cross section by an order
of magnitude. The solid black curve is the most conservative upper limit on (σv)eff by assuming zero
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Figure 6: Cross section for dark matter annihilation for indirect detection of gamma rays. We take mD =
16.7 TeV and αD = 0.2. The effect of dark matter bound states is included in the red curve (we choose f2 = 1,
see Eqs. (24) and (25)) but not the blue one. The horizontal black curves correspond to the most conservative
upper limit without including any interstellar emission background models (solid curve), and the the upper limit
with background included (dashed curve). Including the dark matter bound state formations results in a much
stronger bound.

background and requiring the signal from annihilation itself does not exceed the Fermi observation. The
dashed black curve corresponds to taking into account the background using the interstellar emission models
discussed in [19], which sets a more stringent upper limit than the conservative one by a factor of ∼ 4.
Clearly, the effect of bound state formation at the galactic center can make a large difference. Given the
other parameters, the upper limit on the dashed curve already rules out the region mV < 20 GeV, while it
would still be allowed if we only considered the direct annihilation channel with Sommerfeld enhancement.

In Fig. 7, we show the impact of bound state formation on indirect detection in the mV versus mD

parameter space plane. The value of αD is chosen to give the correct thermal relic density for DM (see
also the discussion in the next section). In the plot on the left, we calculate the DM direct annihilation
cross section with Sommerfeld enhancement and show the Fermi gamma ray constraint including the
astrophysical background. The green region is excluded. In the plot on the right, we include the effect
from DM bound state formation and the magenta region is further ruled out. Clearly, bound state effects
can play a very important role and must be included for DM masses above a few TeV. In particular, for
the window mV ∈ (1− 10) GeV, thermal DM with mD & 8 TeV is allowed by the Fermi gamma ray data
if we only consider the Sommerfeld enhanced direct annihilation. However, if we take into account of the
contribution from the annihilation via bound state formation, the region of allowed DM mass increases to,
mD > 30 TeV.

4 Thermal Relic Density

In this section, we discuss the impact of bound state formation on DM thermal freeze out. As shown in
Fig. 3, around the freeze out temperature when the DM velocity is v ∼ 0.3, the bound state formation
cross section is comparable to the direct annihilation one. One might think this would modify the effective
annihilation cross section and in turn the value of αD that gives rise to the observed thermal relic DM
density.
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Figure 7: The importance of dark matter bound states for constraining the parameter space of the dark matter–
dark photon model. Here we zoom in to the region of parameter space marked by “Focus of this study” in
Fig. 1 in the mV −mD plane. The green region shows the exclusion from indirect detection of gamma ray and
includes only dark matter direct annihilation from the galactic center. The magenta region in the plot on the
right shows the (stronger) constraint when dark matter bound state formation effect is taken into account.

However, there is another important process which is bound state dissociation. Because the universe
is hot during the time of freeze out, there is a plasma of the mediator V particles around. For the part of
the parameter space where bound states exist, the freeze out temperature Tf is much larger than mV . The
dissociation process happens when an energetic V particle collides with a bound state and breaks it into
free χ and χ̄ particles. Because αD/v ∼ 1 during freeze out, capture into the first few bound state energy
levels dominate. We will use the S = 0 ground state to compare the dissociation and decay rates. ‖

The decay rate of the ground state which, we call ηD, is approximately

Γ(ηD → 2V ) =
1

2
α5
DmD , (27)

where we neglect the impact of the ηD binding energy on the mass of ηD.
The dissociation rate of ηD is

Γ(V ηD → χχ̄) =

[
3ζ[3]

π2
T 3
f

][
8
√

3

9

(
mD

Tf

)3
] 128πα5

D

9T
1/2
f m

3/2
D (α2

D + 3Tf/mD)

 , (28)

where the first factor is the number density of V particles, the second factor is the ratio of the bound state
dissociation cross section to the formation one obtained in [21] (which applies for both vector and scalar
mediator cases), and the last factor is the bound state formation cross section Eq. (12) for n = 1. We have
also used the condition v '

√
3Tf/mD and the approximation Tf � mD.

Using the usual thermal value of αD that gives the DM relic density, and the typical freeze out tem-
perature Tf ∼ mD/30, we find the ratio

Γ(V ηD → χχ̄)

Γ(ηD → 2V )
> 10 , (29)

‖The s = 1 state decays into 3V at a slower rate, and the n > 1 bound states are shallower and easier to be dissociated.
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for all the parameter space where αD < 0.3. Therefore, the DM bound state is quickly dissociated by a
collision with a V before it has enough time to decay by DM-anti-DM annihilation. After the dark matter
annihilates down to its relic density bound states are rapidly dissociated by the scattering process which
has a rate with one less factor of the dark number density than the bound state formation process. This
dissociation rate is much larger than the Hubble rate at this time and so is effective at removing the bound
states. On the other hand the formation of bound states which involves two factors of the dark matter
number density occurs at a rate less than the Hubble rate and so is ineffective. We conclude that bound
state formation is unimportant during the thermal freeze out of DM.

5 CMB

Dark matter annihilation during recombination injects energy in the universe and could distort the CMB
spectrum. In this era, the DM velocity is very low, v ∼ 10−10 � mV /mD and αD. One cannot take a very
tiny dark photon mass to violate this condition, otherwise it would cause to too strong DM self-interactions
and run into conflict with the bullet cluster observation [22]. We find that the bound state formation only
involves the transition from s-wave scattering state to p-wave bound states, and its cross section is much
lower than the direct annihilation one with the Sommerfeld enhancement (see Fig. 3). Thus the usual
constraint from CMB still applies [23–25]. For such low velocity, we use an approximate Sommerfeld factor
S obtained from the Hulthén potential [26, 27], which is bounded from below, S ≥ 6αDmD/mV . We
presented the CMB excluded region of parameter space in yellow in Fig. 1.

6 Summary and Discussion

One of the simplest and most studied models of dark matter is a SM singlet Dirac fermion that annihilates
down to its relic density through its coupling to a massive dark photon. We have shown that for dark
matter mass in the tens of TeV range and dark photon mass in the GeV range, indirect detection constraints
for dark matter in our galaxy are highly impacted by annihilation through dark-matter-anti-dark-matter
bound states. In the regions where bound state formation is most important, annihilation through all
possible bound states must be taken into account. In this work, we derived the general cross section for
bound state formation with the radiation of a dark photon, and explored its dependence in the dark matter
velocity and the dark photon mass. Our most important results are illustrated by Fig. 7 where the magenta
region shows the additional parameter space ruled out when annihilation through bound states is taken
into account. The effects are strongest for large αD and when the dark photon mass is smaller than the
typical momentum of dark matter in the galaxy. We have also argued that bound state effects are not
important for dark matter annihilation during freeze out and recombination.

For dark matter indirect detection, we have only discussed the Fermi gamma ray constraint. Our goal in
this paper is to point out the importance of bound state formation rather than providing a comprehensive
list of all the constraints. The bound state effects are expected to generic, and a more complete analysis
of the bound state effects on indirect detection via various cosmic ray components will be published
elsewhere [28].

Our results so far are based on the dark matter bound state formation cross section taking into account
the emission of a single dark photon. In the limit of mV → 0, this cross section section is given by the
Kramers formula in Eq. (11). Its ratio to the s-wave geometric cross section σG = 4π/k2 is

σB

σG
∼ α3

D log
(αD
v

)
. (30)

For the parameters of interest in this paper σB/σG � 1, the unitarity bound is satisfied and hence we
expect perturbation theory to be valid.
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Finally, we comment on the case when the light mediator is a real scalar instead of a dark photon,
which has also been considered in the literature. As pointed out in [21], because the operator for radiating
a scalar is the unit operator and the scattering and bound state wave-functions are orthogonal, the leading
order matrix element arises from second order in the multiple expansion. As a result, the bound state
formation cross section would go as α5

D, in contrast to the α3
D for the dark photon model. Thus, the effects

of bound state formation on dark matter indirect detection is weaker in the scalar model. It is worth
mentioning that the scalar force is also attractive for same sign χ’s and could result in bound states with a
large number of DM particles that are stable, and may be cosmological important in the asymmetric dark
matter case [29].
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A Prompt photon spectrum

For V heavier than a few GeV perturbative methods for calculating V decaying to quarks are applicable.
We extrapolate those results into the region of lighter V much of which is already strongly constrained
by the CMB, see Fig. 1. The prompt photons from the products of V decay dominate the source term

dN
(n)
γ /dEγ at large photon energy Eγ , and results in a peak in the spectrum. Other contributions to

gamma ray from bremsstrahlung and inverse Compton scattering by charged particles (electrons) in the
final states are only important for photon energy much lower than the peak energy [30]. We first calculate
the energy spectrum of V from dark matter annihilations. Because the dark matter is non-relativistic in
the galaxy, the energy distribution of 2V final state per reaction is always

dN
(2)
V

dy
(y) = 2δ(y − 1) , (31)

where y = EV /mD. On the other hand, for the 3V final state, the distribution is (for mV � mD) [31]

dN
(3)
V

dy
(y) =

9

4(π2 − 9)y2

[
y(3y − 8) +

(y − 1)(y2 − 6y + 16) ln(1− y)

y − 2

](
1

1−mV /mD − 3m2
V /(4m

2
D)

)
,(32)

and in this case y is between ymin = mV /mD, ymax = 1 − 3m2
V /(4m

2
D). The V ’s will subsequently decay

into charged fermion pairs f , f̄ . It is easy to show that the energy distribution of f in the boosted V frame
is flat,

dNf

dEf
(y) ' 2

ymD

√
1− 4m2

f

m2
V

, (Ef )max
min (y) =

1

2
ymD

1±

√
1−

4m2
f

m2
V

 . (33)

Here we have used the approximation that for mD � mV , in most of the final state phase space EV =
ymD � mV . Therefore, the photon energy spectrum (prompt, from final state radiation) per annihilation
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is given by

dN
(n,f)
γ

dEγ
=

∫ ymax

ymin

dy
dN

(n)
V

dy
(y)

∫ (Ef )max(y)

(Ef )min(y)
dEf

dNf

dEf
(y)

dN0
γ

dEγ
(Ef , Eγ/Ef ) , (34)

where dN0
γ/dEγ is the photon distribution function per each injection of a DM charged particle f , and is

obtained using the code PPPC4 [32]. Finally, the total photon energy spectrum is obtained by summing
over the possible fermion flavors f , weighed by the branching ratio of the decay V → ff̄ ,

dN
(n)
γ

dEγ
=
∑
f

dN
(n,f)
γ

dEγ
Br(V → ff̄) . (35)

We give the decays rates for V → ff̄ in appendix B.
For the 3V channel (n = 3) Eq. (35) can be simplified by interchanging orders of integration. After

some algebra,

dN
(3,f)
γ

dEγ
=

∫ (Ef )max(ymax)

(Ef )min(ymin)
dEf

1

mD

[
F (y+)− F (y−)

] dNγ

dEγ
(Ef , Eγ/Ef ) , (36)

where

F (y) =
−9
[
4y + ln(1− y)(4− 7y + 3y2 − y2 ln(2− y))− y2PolyLog(2, y − 1)

]
2y2(π2 − 9)

(
1−mV /mD − 3m2

V /(4m
2
D)
)√

1− 4m2
f/m

2
V

, (37)

and

y+ = Min

1−
3m2

V

4m2
D

,
2Ef/mD

1−
√

1− 4m2
f

m2
V

 , y− = Max

mV

mD
,

2Ef/mD

1 +

√
1− 4m2

f

m2
V

 . (38)

B Dark photon decay rates

In general, the kinetic mixing between the dark photon and the usual photon originates from the SU(2)×
U(1) gauge invariant operator κ

2 cos θw
BµνV

µν , where Bµ is the gauge field for hypercharge. After the
electroweak symmetry breaking, this operator not only induce the kinetic mixing term κ

2FµνV
µν in Eq.

(1), but also a kinetic mixing between V and the Z boson, −κ tan θw
2 ZµνV

µν . Therefore, the branching
ratios of V is not simply like those of a massive photon. The kinetic mixing between V and Z can play an
important role for mV �GeV.

V

f

f
_

V

f

f
_

* Z*

W

Figure 8: Feynman diagrams for the dark photon V decaying to fermions, via off-shell photon or Z-boson.
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The Feynman diagrams for V decaying to fermion pairs via off-shell photon and Z-boson are shown in
Fig. 8. The effective coupling of an on-shell V to the left- (right-)handed fermion current is

gL = κg sin θw

[
Qf −

m2
V

m2
V −m2

Z

1

cos2 θw
(T f3 −Qf sin2 θw)

]
,

gR = κg sin θw

[
Qf −

m2
V

m2
V −m2

Z

1

cos2 θw
(−Qf sin2 θw)

]
. (39)

The decay rates are then [33]

ΓV→ff̄ =
Nf
c mV

24π
(1− 4rf )1/2

[
g2
L(2− 2rf ) + g2

R(2− 2rf )− 12gLgRrf
]
, (40)

where rf = m2
f/m

2
V , and Nf

c = 3 for quarks and 1 for charged leptons and neutrinos. For the parameter
space of interest to this study, mV lies between ∼ GeV and the weak scale. We obtain the total decay rate
by summing over all possible quark and lepton flavors that are kinematically allowed for V to decay into.
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