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Abstract

The rare kaon decays K → πνν̄ are strongly suppressed in the standard model and widely

regarded as processes in which new phenomena, not predicted by the standard model, may be

observed. Recognizing such new phenomena requires precise standard model prediction for the

braching ratio of K → πνν̄ with controlled uncertainty for both short-distance and long-distance

contributions. In this work we demonstrate the feasibility of lattice QCD calculation of the long-

distance contribution to rare kaon decays with the emphasis on K+ → π+νν̄. Our methodology

covers the calculation of both W -W and Z-exchange diagrams. We discuss the estimation of the

power-law, finite-volume corrections and two methods to consistently combine the long distance

contribution determined by the lattice methods outlined here with the short distance parts that can

be reliably determined using perturbation theory. It is a subsequent work of our first methodology

paper on K → π`+`−, where the focus was made on the γ-exchange diagrams.
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I. INTRODUCTION

The ultra-rare kaon decays K → πνν̄ have attracted increasing interest in recent decades.

As flavor changing neutral current (FCNC) processes, these decays are highly suppressed in

the standard model (SM) and thus provide ideal probes for the observation of new physics

effects. In addition, the dominant, standard model contribution from the top quark loop to

K → πνν̄ decays makes these processes very sensitive to the Cabibbo-Kobayashi-Maskawa

(CKM) quark mixing matrix elements, Vts and Vtd Therefore these decays can be used to

determine Vtd in particular in a complementary and independent manner to B decays.

Experimentally K → πνν̄ decays represent a very substantial challenge. The first upper

limit on the K+ → π+νν̄ branching ratio was set by the heavy-liquid bubble chamber

experiment in 1969 [1]. It then took almost 30 years to actually observe the first K+ → π+νν̄

event in the E787 experiment at the Brookhaven National Laboratory (BNL) in 1997 [2].

The current value for the branching ratio [3]

Br(K+ → π+νν̄)exp = 1.73+1.15
−1.05 × 10−10 (1)

is a combined result based on the 7 events collected by BNL E787 [2, 4–6] and its successor

E949 [3, 7]. The new experiment, NA62 at CERN [8], aims at an observation ofO(100) events

and a 10%-precision measurement of Br(K+ → π+νν̄). In the coming decades K+ → π+νν̄

decays are therefore likely to lead to precision determinations of the SM parameters and

stringent tests of possible effects of new physics.

The search for the decays KL → π0νν̄, with only neutral particles in the initial and final

states, is even more challenging experimentally. Indeed, KL → π0νν̄ events have never been

observed and currently there is only the upper bound for the branching ratio

Br(KL → π0νν̄) ≤ 2.6× 10−8 at 90% confidence level , (2)

set by the E391a experiment at the 12 GeV proton synchrotron at KEK in 2010 [9]. This

bound is three orders of magnitude larger than a recent SM prediction [10]

Br(KL → π0νν̄)SM = (3.00± 0.30)× 10−11 . (3)

The new KOTO experiment at J-PARC [11] will be sensitive to much lower branching ratios

than that given by the bound in Eq. (2), indeed to ones also below the Grossman-Nir model-

independent upper bound [12], Br(KL → π0νν̄) < 4.4 Br(K+ → π+νν̄) . KOTO will thus

explore much of the parameter space of theories beyond the standard model (BSM).
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On the theoretical side, K → πνν̄ decays are known to be short-distance (SD) dominated.

The required hadronic matrix elements can be obtained from measurements of charged-

current semi-leptonic kaon decays, such as K+ → π0e+ν decays. We will explain in more

detail in the next section that the long-distance (LD) contributions, i.e. contributions from

distances on the order of, or larger than, the inverse of the mass of the charm quark, are

safely neglected in KL → π0νν̄ decays and are expected to be small in K+ → π+νν̄ decays.

However, a lattice QCD calculation of these effects may be required to convincingly establish

their size and will become necessary when a precise comparison between the SM prediction

and the NA62 or future measurements is required. The purpose of this paper is to set out

the framework necessary for the lattice computation of long-distance effects in K+ → π+νν̄

decays.

In our earlier paper [13] we had proposed a method for the computation of K → π`+`−

decay amplitudes (where ` is a charged lepton) using lattice QCD and focussing on the

dominant γ-exchange diagrams. In this work we extend the discussion to K → πνν̄ decays

which requires us to include the W -W and Z-exchange diagrams. In addition to Ref. [13],

our work builds on several other earlier studies. In Ref. [14] it had been first proposed to

use lattice QCD to calculate the LD contributions to rare kaon decay amplitudes, including

those for K → πνν̄ decays. That paper focussed on the ultraviolet divergences which appear

in the integral over the separation of the two operators (two weak operators in the case of

K → πνν̄ decays) as the two operators approach each other. For the γ-exchange diagrams

which give the dominant contribution to K → π`+`− decays, the authors stressed the

importance of using the conserved electromagnetic current to reduce the degree of divergence

and to control this short-distance divergence. For the axial current, necessarily present when

calculating K → πνν̄ decay amplitudes, this is a more involved problem, particularly with

the use of Wilson fermions considered in Ref. [14]. Below we explain how to deal with

the corresponding SD divergences when using domain wall fermions, a formulation which

respects chiral symmetry to good precision. We have also benefited from the methods

developed by the RBC-UKQCD collaboration in their computations of long-distance effects

in second-order electroweak processes [15, 16]; methods which have been successfully applied

to the lattice calculation of the KL-KS mass difference [17, 18] and are currently being

applied to the evaluation of the long-distance contribution to the indirect CP-violating

parameter εK [19].
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The paper is organized as follows: We first introduce the phenomenological background

for K → πνν̄ decay with an emphasis on the LD contributions in Section II. Then, in

Section III, we describe the detailed methodology proposed to calculate this long-distance

part using lattice QCD, specifically for the case of K+ → π+νν̄. The technical issue of how

to use the standard, perturbative, short-distance result for K+ → π+νν̄ to determine the

new low energy constant that appears in the second-order effective theory used in our lattice

calculation is described in Section IV. In Section V we discuss the power-law, finite-volume

effects which must be subtracted in order to obtain the physical, infinite volume result

with sufficient precision. A summary and conclusions are presented in Section VI. Finally

Appendixes A, B, C and D describe the relation between the Minkowski- and Euclidean-space

ampliutdes used in this paper, the conventions adopted for the mesonic and lepontic states,

the extraction of the scalar amplitude FWW (pK , pν , pν̄) characterizing the W -W exchange

diagrams and the method used to remove the unphysical contribution of intermediate states

with energy below MK , respectively.

II. PHENOMENOLOGICAL BACKGROUND

In the SM K → πνν̄ decays are second-order electroweak processes, involving W -W

exchange diagrams (diagrams which contain two W -boson exchanges) and Z-exchange di-

agrams (diagrams which contain a W - and Z-boson or a W -W -Z vertex). As explained

below, the dominant contribution comes from diagrams in which a top quark propagator

explicitly appears. The corresponding contribution from the propagation of the charm quark

is suppressed by a factor of (mc/MW )2 through the Glashow-Iliopoulos-Maiani (GIM) mech-

anism but is enhanced by a factor of logMW/mc. Here mc and MW are the masses of the

charm quark and W -boson respectively. In the CP-violating decay KL → π0νν̄, the am-

plitude depends on the imaginary parts of the CKM matrix elements and this provides a

further suppression of the charm-quark contribution. As a result of the strong suppression

of the charm quark contribution, this decay is completely SD dominated and is one of the

theoretically cleanest places to search for the effects of new physics. The absence of LD

contributions implies that a lattice QCD calculation of KL → π0νν̄ decays is unnecessary.

The situation is different however, for the CP-conserving decays KS → π0νν̄ and K+ →

π+νν̄. For these decays the real parts of the CKM matrix elements enhance the charm
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quark contribution (estimated to be about ∼ 29% of the total amplitude [20]) and even the

contribution of the up quark is not completely negligible (∼ 3% of the total amplitude [20]).

The decay length of the KS meson is so short that KS → π0νν̄ decays are currently

unobservable experimentally. The CERN NA62 experiment, with its higher energy beam,

could in principle place the detector close enough to the target but studies are still required

to see whether it could withstand the high intensities which would be present 1. KOTO

instead has a low energy beam which results in a decay length which is too short to be

observed. We therefore concentrate our investigation on the K+ → π+νν̄ decays which

are already being studied by the NA62 experiment, with data taking having started in the

summer of 2015 [8].

In contrast to the KL −KS mass difference, where the charm quark contribution has a

large non-perturbative component [17, 18, 21], for K+ → π+νν̄ decays the contribution of

the charm quark is expected to be predominantly perturbative and come from SD effects.

A one-loop perturbative calculation of the electroweak interactions performed by Inami and

Lim [22] shows that the charm quark contribution to the decay amplitude is proportional

to −3
4
xc log xc− 1

4
xc, where xc = m2

c/M
2
W . Here, the logarithmic term xc log xc is the largest

part of the charm contribution, which suggests that the dominant energy scale lies between

MW and mc. However, when the leading-log QCD corrections, which sum those terms of

the form xcα
n
s lnn+1 xc to all orders in αs, are included it is found that the SD, charm-quark

contribution is suppressed by 35% [23–25], relative to the leading-order, Inami-Lim result.

This large suppression has two consequences. First it motivates the work to include the

SD QCD effects to higher orders in perturbation thoery [26–28]. Second it gives increased

importance to the LD QCD contributions coming from energy scales at or below the charm

quark mass. This makes the first-principles, lattice calculation of these LD QCD effects

increasingly necessary for the comparison between SM predictions and future experimental

results for this decay.

A very recent SM prediction for the K+ → π+νν̄ branching ratio is given by [10]

Br(K+ → π+νν̄)SM = (9.11± 0.72)× 10−11 . (4)

To understand the origin of the uncertainty in Eq. (4), we write the branching ratio as in

1 A. Cecucci and C. Lazzeroni, private communication
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Eq. (4.5) of Ref. [29]:

Br(K+ → π+νν̄)SM = κ+(1 + ∆EM) ·

[(
Imλt
λ5

Xt(xt)

)2

+

(
Reλc
λ

Pc +
Reλt
λ5

Xt(xt)

)2
]
. (5)

In Eq. (5), ∆EM is the electromagnetic correction, λ = |Vus| and λq = V ∗qsVqd are CKM (or

products of CKM) matrix elements, Xt(xt) is the top-quark contribution (with xt = m2
t/M

2
W )

and Pc is the total charm quark contribution. More precisely, we have included the up quark

contribution in both Xt and Pc, eliminating λu by using the unitarity relation λu+λc+λt = 0.

We distinguish two contributions to Pc

Pc = P SD
c + δPc,u , (6)

where P SD
c is the SD contribution coming from energy scales above the charm quark mass.

The remaining LD contribution, denoted as δPc,u, includes contributions from both the

charm and up quark loops. The parameter κ+ in Eq. (5) contains the remaining factors,

including the hadronic matrix element from semi-leptonic K+ decay.

The dominant uncertainty in Eq. (4) arises from the SM input parameters, especially

the CKM matrix elements. Because of the dominance of the top quark contribution Xt(xt),

the CKM matrix elements in λt associated with the top quark have a large impact on the

branching ratio. In order to make a more precise SM prediction it is therefore necessary

to know these CKM matrix elements more accurately. On the other hand, as a result

of higher-order perturbative calculations, especially the NLO QCD [30, 31] and the two-

loop electroweak corrections [29] to the top quark contribution Xt(xt), as well as the NNLO

QCD [27, 28] and the NLO electroweak corrections [32] to the charm quark contribution P SD
c ,

the omitted, higher-order perturbative effects in the top and SD charm quark contributions

are no longer the main source of theoretical uncertainty.

Although the size of the LD contribution is estimated to be small, it now contributes a

significant, if still sub-dominant, source for the SM uncertainty. Ref. [33] gives a phenomeno-

logical estimate of this LD effect based on chiral perturbation theory and the operator pro-

duction expansion. The resulting estimate of the LD contribution, δPc,u = 0.04 ± 0.02,

enhances the branching ratio Br(K+ → π+νν̄)SM by 6%, which is comparable to the 8%

total SM parametric error given in Eq. (4). Here the quoted ±0.02 error is necessarily a

rough estimate which cannot easily be systematically improved. This quoted error translates

into a 3% uncertainty for the branching ratio, but it is possible that the LD contribution
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might be somewhat larger or even much smaller than this estimate. We do not have a clear

answer at present and this provides the motivation for the development of lattice techniques

to compute these LD contributions.

Lattice QCD can provide a first-principles determination of the LD contribution with

controlled errors. Therefore it was proposed in Ref. [14] and endorsed in Ref. [28] to perform

a direct lattice QCD calculation of the LD contribution to K+ → π+νν̄ decay amplitudes.

Recognizing that the SM predictions will be confronted with new NA62 measurements in

the near future, it is timely to have a lattice QCD calculation of these LD effects.

III. METHOD

Since the dominant contribution to the K+ → π+νν̄ amplitude comes from the top quark

loop and the sub-leading charm quark contribution is also SD dominated, it is natural to

write these contributions in terms of the matrix element of a low-energy effective Hamiltonian

A0(K+ → π+νν̄) = 〈π+νν̄|Heff,0|K+〉, (7)

whereHeff,0 is given in terms of the dimension-six local operator Q0 = (s̄d)V−A (ν̄`ν`)V−A [26,

30]:

Heff,0 =
GF√

2

α

2π sin2 θW

∑
`=e,µ,τ

[
λtXt(xt) + λcX

`
c(xc)

]
Q0, (8)

and xq = m2
q/M

2
W . Here GF is the Fermi constant, α is the fine-structure constant and

θW is the Weinberg weak mixing angle. The Inami-Lim functions Xt(xt) and X`
c(xc) are

the Wilson coefficients, representing the contributions of the internal top quark and charm

quark to the operator Q0. They were first calculated by Inami and Lim in 1980 at one-loop

order [22]. As in Section II, we eliminate λu by using the unitarity relation λu = −λc−λt and

absorbing the contribution from the u-quark in Xt and X`
c , in which we set xu = 0. In Eq. (8)

the top and charm quark degrees of freedom have both been integrated out. The remaining

hadronic effects are contained in the matrix element 〈π+|(s̄d)V−A|K+〉, which, in the isospin-

symmetric limit, is the same matrix element as that containing the non-perturbative QCD

effects in K`3 decays.

The X`
c in Eq. (8) are related to P SD

c in Eq. (6) by

P SD
c =

1

λ4

Xe
c (xc) +Xµ

c (xc) +Xτ
c (xc)

3
, (9)
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where the factor of 3 in the denominator performs the conventional average of X`
c over the

three lepton flavours. The subscript ` on Xt is not included since the lepton mass dependence

is suppressed by a factor of (m`/mt)
2 which can be neglected even for the τ -lepton. For the

charm quark contribution the lepton mass dependence cannot be neglected, particularly for

the τ -lepton, and hence the superscript ` is introduced for this case.

The contribution A0(K+ → π+νν̄) in Eq. (7), obtained using the local effective Hamil-

tonian Heff,0 in Eq. (8), accurately reproduces the contribution from the top quark and the

SD component of the charm quark contribution. Of course it does not contain the LD com-

ponent of the charm quark contribution which is intrinsically bilocal. The evaluation of this

long distance contribution is the main subject of this paper and we now begin our discussion

of this.

To explore the bilocal structure of the up- and charm-quark contributions, we begin

with the first-order effective field theory, where the W and Z bosons have been integrated

out. The bilocal contributions are constructed from two insertions of the first-order effective

Hamiltonian. The four-Fermi, effective weak Hamiltonian relevant for the K+ → π+νν̄

decay amplitudes can be written as [14, 34]

HLO
eff =

GF√
2

∑
q,`

(
V ∗qsO

∆S=1
q` + VqdO

∆S=0
q`

)
+
GF√

2

∑
q

λqO
W
q +

GF√
2

∑
`

OZ
` , (10)

where the sums over the quarks q run over q = u, c and those over the leptons ` run over

` = e, µ, τ .

The first term on the right hand side of Eq. (10) results from the W -W diagrams, in

which the W -boson exchanges have been replaced by two effective operators

O∆S=1
q` = CMS

∆S=1(µ) [(s̄q)V−A (ν̄``)V−A]MS (µ),

O∆S=0
q` = CMS

∆S=0(µ)
[
(¯̀ν`)V−A (q̄d)V−A

]MS
(µ), (11)

where for fermion fields fi, (i = 1-4)

(f̄1f2)V−A (f̄3f4)V−A ≡ (f̄1γµ(1− γ5)f2) (f̄3γµ(1− γ5)f4) . (12)

We absorb the Wilson coefficients CMS
∆S=1(µ) and CMS

∆S=0(µ) into the definition of the operators

O∆S=1
q` and O∆S=0

q` . Here and below we will find it convenient to use the letter O to represent

an operator which incorporates a Wilson coefficient and the letter Q for an operator which

does not include such a coefficient. These coefficients account for the contributions from
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SD physics and are conventionally and conveniently calculated in the MS scheme. For the

particular operators appearing in Eq. (11), the Ward-Takahashi identity implies CMS
∆S=1(µ) =

CMS
∆S=0(µ) = 1. The quark current operators renormalized in the MS scheme can be related

to the bare lattice operators by [(q̄q′)V/A]MS = ZV/A[(q̄q′)V/A]lat. Here ZV and ZA are the

renormalization constants for vector and axial-vector currents. They are quark-mass and

renormalization scale independent up to lattice artifacts. If the conserved lattice current

operators are used in a (almost) chirally symmetric formulation of lattice QCD, such as

domain wall fermions, then ZV = ZA = 1. For simplicity in the remainder of the paper we

will neglect the O(a2) effects which distinguish ZA from ZV and replace ZA with ZV , which

will be assumed to be quark mass and scale independent.

The second and third terms on the right-hand side of Eq. (10) are relevant for the Z-

exchange diagrams. Note that these diagrams include the exchanges of both a W - and

Z-boson. The W -boson exchange is described by the four-quark operator OW
q ,

OW
q = CMS

1 (µ)QMS
1,q (µ) + CMS

2 (µ)QMS
2,q (µ), (13)

where QMS
i,q (µ) (i = 1, 2) are conventional current-current operators renormalized in the MS

scheme. They can be related to the bare lattice operators by a matrix of renormalization

constants Z lat→MS
i,j (aµ)

QMS
i,q (µ) =

∑
j

Z lat→MS
i,j (aµ)Qlat

j,q(a), i, j = 1, 2, where (14)

Qlat
1,q = (s̄aqb)V−A (q̄bda)V−A, Qlat

2,q = (s̄aqa)V−A (q̄bdb)V−A (15)

and a, b are color indices. The detailed procedure to compute the renormalization matrix

Z lat→MS
i,j (aµ) can be found in Refs. [17, 35, 36]. Note that the µ-scale dependence in the

Wilson coefficients CMS
i (µ) and the renormalized operators QMS

i,q (µ) cancels, leaving the

operator OW
q scale independent. The exchange of the Z-boson propagator has been replaced

by a two-quark-two-neutrino operator OZ
`

OZ
` = CMS

Z (µ)
[
JZµ ν̄`γ

µ(1− γ5)ν`
]MS

(µ) (16)

where the neutral current JZµ is given by

JZµ =
∑

q=u,c,d,s

(T q3 q̄γµ(1− γ5)q − 2Qem,q sin2 θW q̄γµq). (17)
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The weak isospin T q3 and the electric charge Qem,q take the values +1
2

and +2
3

respectively

for q = u and c and the values −1
2

and −1
3

for q = d and s. As described above, we have

CMS
Z (µ) = 1. The quark current operators renormalized in the MS scheme can be related to

the bare lattice operator by [JZµ ]MS = ZV [JZµ ]lat.

As the next step we work to second order in the standard, non-renormalizable, effective

field theory of the weak interactions and construct the bilocal product of two first-order,

four-fermi effective operators from Eq. (10) as follows:

B(y) =
GF√

2

α

2π sin2 θW

π2

M2
W

λc
∑

`=e,µ,τ

(
BWW (y) + BZ(y)

)
(18)

where

BWW (y) =

∫
d4xT [O∆S=1

u` (x)O∆S=0
u` (y)]− {u→ c} (19)

and

BZ(y) =

∫
d4xT [OW

u (x)OZ
` (y)]− {u→ c}. (20)

For compactness of notation we have suppressed the label ` in BWW (y) and BZ(y), but

the reader should note that there is such a dependence. We should also point out that in

Eq. (19) we have made an arbitrary choice of which of the two operators is integrated over

space-time and which is evaluated at the fixed position y. The bilocal product B(y) has

been separated into two parts, BWW (y) and BZ(y), the first associated with W -W diagrams

and the second with Z-exchange diagrams. The minus sign in Eqs. (19) and (20) comes

from the GIM mechanism under the approximation of λu ≈ −λc. Here the bilocal product

B(y) is defined in Euclidean space to favor a lattice QCD calculation. Its Minkowski-space

definition can be found in Ref. [26].

In infinite-volume calculations of matrix elements, performing an integral over y in

Eqs. (19) and (20) would introduce a four-dimensional, momentum-conserving delta func-

tion. In computations using lattice QCD, which are necessarily performed in a finite volume,

this delta-functions is replaced by a factor of the space-time volume. As will be described

in greater detail below, for the K+ → π+νν decay amplitude discussed in this paper we

propose to integrate y over the full spatial volume and to integrate the times at which each

of the operators are evaluated over a fixed interval [−Ta, Tb], chosen to lie sufficiently far

from the initial kaon and final pion to suppress possible excited hadronic-state contamina-

tion. This follows closely the procedure used earlier in the calculation of the KL−KS mass

difference [17].
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The second-order K+ → π+νν̄ decay amplitude can be obtained by evaluating matrix

elements of the bilocal operators BWW and BZ and a third (local) operator C0Q
MS
0 :

A(K+ → π+νν̄) ∝ 〈π+νν̄|BWW (0) + BZ(0)|K+〉+ 〈π+νν̄|C0Q
MS
0 (0)|K+〉 , (21)

where C0 is a Wilson coefficient and QMS
0 = (s̄d)V−A(ν̄ν)MS

V−A a local operator renormalized

in the MS scheme. Here C0Q
MS
0 is a regulator-dependent counter term which removes the

new ultra-violet singularities in BWW and BZ that arise when two of the dimension-six,

four-fermi operators which appear in the same diagram approach each other. The need for

such added counter terms is a standard feature of a non-renormalizable effective theory and

is discussed at length in Sect. IV.

The presence of this C0Q
MS
0 counter term reflects a new renormalization constant that

must be introduced when the effective theory is evaluated at second order and that must be

determined using some additional physical input. For the case of the weak interactions, this

new renormalization constant C0 must be determined by requiring that the effective theory,

evaluated at second order agrees with the second-order predictions of the underlying SM. A

convenient way to formulate such a requirement is to impose “Rome-Southampton” condi-

tions on the second-order s̄d - ν̄ν Green’s function, which corresponds to the K+ → π+νν̄

decay, demanding that this Green’s function, evaluated at a momentum scale µ0, agrees when

evaluated in both the effective theory and the SM. If infra-red safe, non-exceptional momenta

are chosen when applying the Rome-Southampton condition, as described in Sec. IV, and

the scale µ0 is chosen much larger than the scale of QCD, µ0 � ΛQCD, then the required

SM calculation can be accurately performed using perturbation theory. When the effec-

tive theory is formulated as a lattice theory, the corresponding lattice Green’s function is

most easily evaluated non-perturbatively. In the following we will refer to this procedure as

matching the lattice and SM theories and µ0 as the matching scale.

Before we go into the details of the lattice-SM matching, we start by introducing the lat-

tice methodology used to compute the local and the bilocal matrix elements. The evaluation

of the W -W diagrams will be described in detail as this is a new type of calculation. For

the Z-exchange diagrams, we mainly focus on their difference from the γ-exchange diagrams

which dominate K → π`+`− decays and which have already been discussed in detail in our

previous paper [13].
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A. Evaluation of the matrix element of the local operator Q0

In this subsection we discuss the evaluation of T0 ≡ 〈π+νν̄|QMS
0 (0)|K+〉, i.e. the matrix

element of the local operator Q0. The amplitude T0 can be written as a product of a hadronic

matrix element and neutrino spinor wavefunctions:

T0 = ZV 〈π+|s̄γµ(1− γ5)d(0)|K+〉 [ū(pν)γµ(1− γ5)v(pν̄)] . (22)

The charge-conserving hadronic factor can be related by an isospin rotation to the charge-

changing matrix element 〈π0|s̄γµ(1 − γ5)u|K+〉 which contains the hadronic effects in K`3

decay amplitudes. It can therefore be determined accurately using precise measurements of

K+ → π0`+ν semileptonic decay amplitudes as input. In lattice QCD, the matrix element

〈π+|s̄γµ(1 − γ5)d(0)|K+〉 can be determined by computing a three-point Euclidean corre-

lation function. The matrix element of the axial-vector current vanishes because of parity

symmetry and it is conventional to write the matrix element of the vector current in terms

of two invariant form factors:

ZV 〈π+|s̄γµd(0)|K+〉 = i ·
(
f+(−q2)(pK + pπ)µ + f−(−q2)(pK − pπ)µ

)
, (23)

where q = pK − pπ. For negligible neutrino masses only the f+(−q2) form factor contributes

to T0, so that

T0 = 2i · f+(−q2)
[
ū(pν)/pK(1− γ5)v(pν̄)

]
. (24)

The q2 dependence of the form factor f+(−q2) can either be determined by a lattice QCD

calculation or provided by experimental measurement or indeed a combination of the two.

For a recent lattice study and references to the original literature see Ref. [37].

In lattice calculations, physical quantities are determined from the computation of multi-

local correlation functions in Euclidean space. In this and the following sections of this paper,

we use Euclidean conventions for the γ-matrices and momenta. Thus for an on-shell particle

with mass m, the Euclidean four-momentum p = (p0, ~p) is written as p = (iE, ~p) where

E =
√
m2 + ~p 2. Using this convention, q2 > 0 (q2 < 0) represents a space-like (time-like)

momentum transfer. The physical matrix elements are obtained from those defined using

these Euclidean conventions by multiplying by the appropriate factors of i as explained in

detail in Appendix A. This appendix also contains a full explanation of the notation we use
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uu e, µ, τ

ν

ν̄

K+ π+

Type 1

d̄s̄

uu

ū, c̄
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K+ π+O∆S=1 O∆S=0

Type 2

Figure 1. Quark and lepton contractions for W -W diagrams.

for Euclidean quantities and the relations to the corresponding physical (Minkowski) ones.

The invariant form factors introduced in this paper, such as the f+ and f− introduced in

Eq. (23) will be defined consistently in both Euclidean and Minkowski space conventions.

This requires that minus signs be introduced when their arguments are expressed in terms

of Euclidean four-vector dot products.

B. W -W diagrams

In this subsection we discuss elements of the calculation of the W -W diagrams. We

start in subsection III B 1 by showing that the hadronic effects are contained in an invari-

ant amplitude FWW . In subsection III B 2 we discuss the unphysical terms which increase

exponentially in the length of the time integration range and how to subtract them. Such

terms are generically present when evaluating the matrix elements of bilocal operators in

Euclidean space whenever there are possible intermediate states of lower energy than the

energy of the external states.

1. Extracting the scalar amplitude FWW

The hadronic effects in the contributions from W -W diagrams to the decay amplitude

are contained in the following matrix element of a bilocal operator:

TWW =

∫
d4x 〈π+νν̄|T{O∆S=1

u` (x)O∆S=0
u` (0)}|K+〉 − {u→ c} . (25)

The space-time location of O∆S=0
u` (y) defined in Eq. (19) has been set at y = 0 without loss of

generality. The quark and lepton contractions for TWW are shown in Fig. 1. The contraction

between the two operators O∆S=1
u` and O∆S=0

u` produces an internal lepton propagator and

the neutrino and anti-neutrino are emitted from the two different operators; the neutrino is
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emitted from O∆S=1 at x and the anti-neutrino from O∆S=0 at the origin. A Euclidean-space

quantity such as that shown in Eq. (25) would normally be expressed directly as a Euclidean

path integral. Here we exploit the more compact Hilbert space notation for such a quantity.

It should be kept in mind that the time ordering represented by T{. . .} is required and that

the time dependence of the operators is introduced by conjugation with the Euclidean time

development operator e−Ht as described in Appendix A.

In Appendix C we show that TWW can be written in the form

TWW = i · FWW (pK , pν , pν̄)
[
ū(pν)/pK(1− γ5)v(pν̄)

]
. (26)

where FWW (pK , pν , pν̄) is a scalar amplitude, which depends on three of the independent

external momenta pK , pπ, pν , pν̄ . Since FWW (pK , pν , pν̄) is Lorentz invariant, it can be

written as a function of invariants:

s = −(pK − pπ)2, t = −(pK − pν)2, u = −(pK − pν̄)2, (27)

where s+ t+u = m2
K +m2

π. In a general Kl3 decay, it is convenient to study the differential

decay rate d2Γ/(ds d cos θ) [38], where θ is the angle between pion and one of the neutrinos

in the neutrino-pair rest frame. Following this convention, we choose the two independent

variables as s and ∆ = u− t. The former is the square of the invariant mass of the neutrino

pair and the latter is proportional to cos θ.

To guarantee that the external particles are on shell, s and ∆ must be bounded by [39]

s ≥ 0 and ∆2 ≤ (m2
K +m2

π − s)2 − 4m2
Km

2
π. (28)

The physical range for {∆, s} is shown in the Dalitz plot of Fig. 2. Note that in K → πνν̄

decays it is not practical to measure cos θ experimentally. Therefore a differential decay rate

dΓ/ds is of more interest in phenomenology. Once the ∆ dependence of TWW is determined,

one can integrate ∆ over the physical phase space.

2. Unphysical terms growing exponentially with the Euclidean time integration range

In this subsection we study the terms which grow exponentially as the time integration

range is increased. Such exponentially growing terms are a generic feature in the evaluation

of integrals of matrix elements of bilocal operators over a large, but finite Euclidean time

14
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Figure 2. Dalitz plot for K → πνν̄.

interval. We note that this is the only unphysical consequence of evaluating such a bilocal op-

erator in Euclidean space. Here we consider specifically
∫
d4x 〈f |T [O∆S=1(x)O∆S=0(0)]|K〉.

We insert a complete set of states between the two operators and integrate over the Euclidean

time region −Ta < x0 < Tb, where Ta and Tb are both positive.∫ Tb

−Ta
dx0

∫
d3~x 〈f |T [O∆S=1(x)O∆S=0(0)]|K〉

=
∑

ns

〈f |O∆S=1|ns〉〈ns|O∆S=0|K〉
Ens − Ef

(
1− e(Ef−Ens )Tb

)
−
∑

n

〈f |O∆S=0|n〉〈n|O∆S=1|K〉
EK − En

(
1− e(EK−En)Ta

)
. (29)

The two terms on the right hand side of Eq. (29) come from the region x0 > 0 and x0 < 0

respectively. The states |n〉 and |ns〉 represent non-strange and strangeness S = 1 interme-

diate states respectively and include leptons as illustrated in Fig. 1. For the K+ → π+νν̄

decay, the final state is given by 〈f | = 〈π+νν̄|. Since |ns〉 are strange states, their energies

Ens are larger than Ef = EK . Thus the exponential term e(Ef−Ens )Tb vanishes at large Tb.

However, the second term in Eq. (29) still suffers from an exponentially growing contamina-

tion at large Ta if En < EK . The lowest two intermediate states for |n〉 are given by a purely
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Figure 3. Samples of contractions contributing to Z-exchange diagrams. There are three different

contraction structures: connected, self-loop and disconnected diagrams. For each case we show one

example. A complete set of contractions can be found in our previous publication [13].

leptonic state |`+ν〉 and a semi-leptonic state |π0`+ν〉. As the energies of these intermediate

states are lower than the energy of the initial state, the unphysical exponentially growing

contamination must be removed from the Euclidean lattice calculation. In Appendix D we

give a detailed discussion on the removal of the exponentially growing contamination. The

remaining contamination from other intermediate states, such as |ππ`+ν〉 and |3π`+ν〉 are

significantly suppressed by a phase-space factor as discussed in Sec. V. They can therefore

be neglected.

C. Z-exchange diagrams

In this subsection we discuss the evaluation of the Z-exchange diagrams. For these the

neutrino and antineutrino are emitted from the same vertex and there is no internal lepton

propagator. Examples of such diagrams for the 4-point correlation function are given in

Fig. 3. We write the bilocal matrix element in the form

TZ =

∫
d4x 〈π+νν̄|T [OW

u (x)OZ
` (0)]|K+〉 − {u→ c}

= TZµ [ū(pν)γµ(1− γ5)v(pν̄)] , (30)

where the hadronic part is defined as

TZµ =

∫
d4x 〈π+|T [OW

u (x)JZµ (0)]|K+〉 − {u→ c}. (31)

The weak neutral current JZµ has been defined in Eq. (17). We separate TZµ into two parts:

TZµ = TZ,Vµ +TZ,Aµ , corresponding to the vector (V ) and axial-vector (A) components of JZµ .

The K → πZ∗ form factors are defined by

TZ,iµ = i ·
(
FZ,i

+ (−q2)(pK + pπ)µ + FZ,i
− (−q2)qµ

)
, i = V,A, (32)
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with q = pK − pπ. Because the only possible Lorentz vectors are pK and pπ, the matrix

element TZ,iµ must transform as a vector, not an axial-vector, under parity. This means

that when calculating TZ,iµ , we either keep the vector component of JZµ with the parity-even

component of OW
u or the axial-vector component of JZµ with the parity-odd component of

OW
u . The form factors FZ,i

± (−q2) depend only on a single Lorentz invariant q2.

Since the spinor product ū(pν)/q(1− γ5)v(pν̄) vanishes for massless neutrinos, FZ,V
− (−q2)

and FZ,A
− (−q2) do not contribute to the amplitude. Only the form factors FZ,i

+ (−q2)

are of interest. For the vector current, the Ward-Takahashi identity guarantees (m2
K −

m2
π)FZ,V

+ (−q2) = q2FZ,V
− (−q2), so that there is only one independent form factor. For the

axial-vector current, to separate FZ,A
+ (q2) from TZ,Aµ , we can compute the amplitude TZ,Aµ

for different Lorentz indices µ. This would require that either the kaon in the initial state

or the pion in the final state should carry non-zero spatial momentum.

As in the case of TWW a complete set of intermediate states can be inserted between OW
u

and JZµ in Eq. (31). We need to remove the exponentially growing contamination for those

intermediate states whose energies are lower than that of the initial kaon. A detailed discus-

sion of this subtraction for the case of the insertion of a vector current is given in Ref. [13].

In that case the parity-odd intermediate states |π+〉 and |3π〉 will lead to exponentially

growing contamination which needs to be removed. For the axial-vector current insertion,

the parity-even state |2π〉 will produce an exponentially growing contamination that also

must be removed. Since we are only interested in K+ decay, the intermediate vacuum state

does not contribute and the contribution of the |2π`+ν〉 (K`4) state is suppressed by phase

space.

IV. RENORMALIZATION AND SHORT-DISTANCE CORRECTION

In this section we discuss the renormalization of the ultraviolet divergences which appear

in the calculation of the matrix elements of the bilocal operators introduced in Sec III. This

includes the standard renormalization of local composite operators which is discussed in

the brief subsection IV A. Less standard is the presence of additional SD divergences which

appear when the two local components of the bilocal operator approach each other. These

additional ultra-violet divergences and their subtraction is discussed in detail in subsec-

tion IV B which unsurprisingly makes up most of the section.
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Figure 4. Left: SD divergent loop in W -W diagrams. Right: SD divergent loop in Z-exchange

diagrams.

A. Local operator renormalization

To produce the correct matrix element in the continuum limit, it is necessary (but not

sufficient) for the lattice operators {O∆S=1
q` , O∆S=0

q` } for W -W diagrams and {OW
q , OZ

` } for Z-

exchange diagrams to be renormalized. We start by considering O∆S=1
q` , O∆S=0

q` and OZ
` which

are two-quark-two-lepton operators. The leptonic current does not require renormalization

and so we only need to deal with the hadronic component which consists of vector and

axial-vector currents. In the massless quark limit, if the conserved vector and axial-vector

currents (in case of chiral lattice fermions, i.e. domain wall or overlap fermions) are used,

the Ward-Takahashi identity implies that the renormalization constants ZV and ZA are

equal to 1. If instead, local currents are used then one needs to evaluate ZV and ZA. The

renormalization of the operators Q1,q and Q2,q (as well as OW
q ) has been discussed in our

previous work [13]. A more detailed description of the renormalization procedure can be

found in Refs. [17, 35, 36].

B. Biocal operator renormalization

In addition to the renormalization of the individual operators {O∆S=1
q` , O∆S=0

q` } for W -W

diagrams and {OW
q , OZ

` } for Z-exchange diagrams, we need to consider possible new diver-

gences which arise as the two operators approach each other, as shown in Fig. 4. Dimensional

counting would allow for a potential quadratic divergence. In W -W diagrams, the V − A

structure of the weak current and the GIM mechanism reduce the degree of divergence from

quadratic to logarithmic since the leading divergence is independent of the quark mass. In
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Z-exchange diagrams, we imagine that JZµ carries momentum p = p1 − p2 = p4 − p3 (see

Fig. 4) and recall that it contains both a vector and an axial-vector component. For the

vector current insertion, if a conserved current is used, then the loop diagram is convergent

and no lattice to continuum matching is required. This is explained in Ref. [14] and in our

previous paper [13]. The situation is different for the insertion of the axial-vector current

because the quark masses mu and mc break the chiral symmetry explicitly. As a result, in

addition to terms proportional to the tensors p2δµν and pµpν , there are now terms propor-

tional to m2
qδµν . In all of these terms the degree of divergence is reduced by 2, but now the

remaining logarithmic divergence is not removed by the GIM mechanism since it contains

terms proportional to m2
q. Therefore, even if a conserved axial-vector current is used, the

loop diagram shown in Fig. 4 is still logarithmically divergent. This is the case for chiral

lattice fermions for which the chiral symmetry is protected. For Wilson fermions instead,

where the chiral symmetry is violated by the Wilson term, then the GIM cancellation would

lead to a linear divergence. We therefore propose to perform a lattice calculation of the

K+ → π+νν̄ decay amplitude using domain wall fermions. As discussed above, whether a

conserved or local axial-vector current is used, we will need to deal with the logarithmic

divergence remaining after the GIM cancellation from the SD region where OZ
` and OW

q

approach each other.

In the following subsections we present our proposed treatment of this additional SD

divergence and the introduction of the counter term necessary to subtract it. We start how-

ever, with a description of the conventional approach, based on the perturbative evolution

of the operators in the effective Hamiltonian to momentum scales below the mass of the

charm quark and the non-perturbative evaluation of the matrix element of the remaining

local operator(s). In this subsection we also explain why this is not the procedure which we

propose to employ to determine the amplitudes for rare kaon decays.

1. Perturbation theory calculations in the MS scheme

We start by briefly reviewing perturbation theory calculations of the charm quark con-

tribution to K+ → π+νν̄ decays [26–28]. This is illustrated schematically by the diagram

in Fig. 5. These considerations apply to each of the bilocal operators BWW and BZ given

in Eqs. (19) and (20). We will adopt a slightly generalized notation to allow us to discuss
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Figure 5. Schematic illustration of the steps in the treatment of the SD effects in perturbation

theory.

both cases at the same time. Since the issues of operator renormalization and scale depen-

dence are important, we also wish to explicitly show the Wilson coefficients, including their

renormalization scale and scheme. Thus, we will use the Wilson coefficient operator product

CAQA to represent either the operator O∆S=1
q` (W -W case) or OW

q (Z-exchange case). As is

shown in Eq. (13), for this second case we should actually write the sum of the product of

two Wilson coefficients multiplying two operators. In order to simplify our discussion we will

ignore this familiar 2× 2 operator mixing complication (which is not difficult to treat) and

use a single (coefficient)×(operator) product in both cases. Similarly we will use the product

CBQB to represent either the operator O∆S=0
q` (W -W case) or OZ

` (Z-exchange case). Here

A and B are generic labels for the four-fermion operators as indicated. The label A should

not be confused with the axial current. In both cases the local counter term that must be

introduced involves the same operator Q0. Thus we represent this local counter term by the

product C0Q0, where we should keep in mind that the Wilson coefficient C0 will be different

in the W -W and Z-exchange cases. We now describe each of the four steps in turn.

Step 1: The heavy W and Z bosons are integrated out and the second-order weak

interaction is written in a combination of a bilocal operator
∫
d4x T [QA(x)QB(0)]MS(µ) and

a local operator QMS
0 (µ). Here QA,B are local, four-fermion operators renormalized in the

MS scheme. By setting up matching conditions at µ = O(MW ) and requiring the amplitude

in the effective field theory to be the same as that in the full theory, one determines the

coefficients CMS
A (µ), CMS

B (µ) and CMS
0 (µ) at µ = O(MW ). The local operator QMS

0 (µ) (and

its Wilson coefficient CMS
0 (µ)) can be thought of as serving two closely-related purposes. The
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first and most familiar is to represent phenomena, such as those that involve the top quark,

which appear local below the scale of MW . The second purpose is to act as a counter-term

removing the ultraviolet divergence from the SD region x ≈ 0, where QA(x) and QB(0)

approach each other.

Step 2: As the next step the renormalization group equations are used to evolve

the Wilson coefficients CMS
A (µ), CMS

B (µ) and CMS
0 (µ) from the scale µ = MW to lower

scales. The evolution includes a mixing of the singular part of the bilocal operator∫
d4x T [QA(x)QB(0)]MS(µ) into the local operator QMS

0 (µ). The corresponding renor-

malization group equations are an extension of those which govern the evolution of a set of

local operators and are discussed in detail in Ref. [34]. The specific application to the rare

kaon decays being studied here are described in Sec XI.B of [34].

Step 3: At the scale µ = O(mc) we can perform a second Operator Product Expansion

(OPE) and integrate out the active charm quark field. This can be done by evaluating the

matrix element of the bilocal operator T [QA(x)QB(0)]MS(µ) and relating it to the matrix

element of the local operator 〈QMS
0 (µ)〉∫

d4x 〈T [QA(x)QB(0)]MS(µ)〉 = rMS
AB(µ)〈QMS

0 (x = 0, µ)〉. (33)

Following Refs. [34, 40], we use the term “matrix element” to mean “amputated Green’s

functions of renormalized operators”. Note that the corresponding LD contribution from the

up quarks is suppressed by factors of m2
u/m

2
c (or Λ2

QCD/m
2
c from non-perturbative effects)

relative to the terms that we are examining here at the energy scale O(mc). Of course, we

must neglect such Λ2
QCD/m

2
c terms if Eq. (33) is to reflect an underlying operator identity and

the coefficient rAB to be independent of the “amputated Green’s functions of renormalized

operators” used to determine it.

Step 4: Finally, after integrating out the charm quark fields, the only remaining operator

in the effective Hamiltonian is CMS(µ)QMS
0 (µ), where the Wilson coefficient is given by

CMS(µ) = CMS
A (µ)CMS

B (µ)rMS
AB(µ) + CMS

0 (µ). (34)

At this stage the conventional approach is to calculate the K+ → π+νν matrix element

of the local operator QMS
0 (µ). This can be done by starting with a lattice computation of

the matrix element of Olat(a) and then calculating the renormalization constant ZMS
O (aµ)

to obtain the matrix element of OMS(µ). The renormalization constant ZMS
O (aµ) can either
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be calculated directly in perturbation theory or, as is now standard and generally more

precise, to use non-perturbative renormalization to obtain the operator in a scheme for

which the renormalization conditions can be applied in a lattice calculation [35, 41, 42] and

then performing a continuum, perturbative matching calculation to obtain the operator in

the MS scheme.

In this paper we propose an alternative approach in which steps 3 and 4 described above

are not performed. The motivation for this is two fold. First, we avoid using QCD per-

turbation theory at the charm quark scale where studies of the KL − KS mass difference

suggest poor convergence [21]. Second, we avoid relying on an effective theory in which the

charm quark has been integrated out, which has further difficulties. Once the charm quark

has been integrated out, the higher-order corrections in the OPE are typically suppressed

by powers of µ2/m2
c . At this stage we are squeezed. On the one hand we would like to

evolve to lower values of µ so that these omitted higher-order corrections are negligible and

do not contribute large systematic uncertainties; on the other hand we cannot evolve the

scale µ down to much lower values, e.g. µ = O(ΛQCD), because perturbation theory surely

fails at such low momentum scales. We propose instead, not to perform the second OPE

(i.e. not to integrate out the charm quark) but to calculate directly the matrix elements of

the bilocal operator
∫
d4x T [QA(x)QB(0)]MS(µ) and the local operator QMS

0 (µ) and combine

them together to obtain the physical amplitude.

This is the same approach that we have proposed to compute the LD contribution to the

indirect CP violation parameter εK [17, 19]. In contrast to the KL−KS mass difference, for

both εK and K+ → π+νν the second-order effective theory appropriate at the lattice scale

of a few GeV contains logarithmic, ultra-violet divergences, requiring regulator-dependent

counter terms. In the case where a lattice regulator is to be used, extra steps are needed to

determine these counter terms from those that are conventionally defined in the MS scheme.

In the following subsections, we will give a detailed description of our method in the current

context.

2. The bilocal operator in the RI/SMOM scheme

To determine the matrix elements of bilocal and local operators renormalized in the MS

scheme, we need first to adopt an intermediate scheme, which can be used in both non-
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perturbative lattice QCD calculations as well as in continuum perturbation theory. Here we

choose to use the RI/SMOM scheme. We consider the off-shell Green’s functions with the

four external legs carrying momenta: s̄(p1), d(p2), ν̄(p3) and ν(p4), as shown by Fig. 4. Since

this Green’s function is not a gauge-invariant observable, the quark fields must be fixed in a

particular gauge, e.g. the Landau gauge. The “non-exceptional” external momenta p1,2 are

chosen to satisfy the condition p2
1 = p2

2 = (p1− p2)2 � Λ2
QCD, which substantially suppresses

the infra-red contamination in the computation of the Green’s function and hence improves

the reliability of perturbation theory. A simple choice of {p1, p2} is p1 = (ξ, ξ, 0, 0) and

p2 = (ξ, 0, ξ, 0). We define the RI/SMOM renormalization scale µ0 by µ2
0 ≡ p2

1,2 = 2ξ2. We

emphasize that we have now introduced two distinct renormalization scales: the RI/SMOM

renormalization scale µ0 and the MS scale µ. While we could choose µ0 = µ, for generality

and clarity of presentation we distinguish them here and below.

Although the choice of neutrino momenta p3 and p4 is irrelevant for the suppression of

infra-red effects since no gluons connect to the neutrino lines, it does affect the momentum

ploop flowing into the internal loop (see Fig. 4):

ploop =

 p1 + p3 = p2 + p4, for the W -W diagram,

p1 − p2 = p4 − p3, for the Z-exchange diagram.
(35)

For the Z-exchange diagram p2
loop = µ2

0. For the W -W diagram we can choose p3 =

(0,−ξ, 0,−ξ) and p4 = (0, 0,−ξ,−ξ) which also leads to p2
loop = µ2

0. Other choices of

{p3, p4} are also possible. For example if we interchange the definitions of p3 and p4, then

p2
loop = 2µ2

0. What is required is that the neutrino momenta p3 and p4 are chosen such that

ploop is of the order of (or larger than) the renormalization scale µ0 (p2
loop & µ2

0) so that the

contributions to the momentum integrals
∫
d4p from regions of low momenta (p2 . Λ2

QCD)

are suppressed by one or more powers of Λ2
QCD/p

2
loop. In this way, we ensure SD dominance

of the off-shell Green’s function.

Given the choice of external momenta {pi} described above, we can impose the RI/SMOM

renormalization condition for the local operators QA, QB and Q0. Here we use the operator

QA to illustrate the procedure:

〈QRI
A (µ0)〉p2

i=µ
2
0

= [ZRI
q (µ0)]−

n
2 [Z lat→RI

OA
(aµ0)]〈Qlat

A (a)〉p2
i=µ

2
0

= 〈QA〉(0)

p2
i=µ

2
0
, (36)

where 〈QRI
A 〉 is the amputated Green’s function of the renormalized operator QRI

A (µ0), 〈Qlat
A 〉

is the amputated Green’s function of the bare lattice operator Qlat
A (a) and 〈QA〉(0) is the
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tree-level amputated Green’s function. The subscripts p2
i = µ2

0 in Eq. (36) indicate that

the Green’s functions are evaluated with the choice of momenta described above, i.e. with

p2
1 = p2

2 = (p1 − p2)2 = µ2
0. Zq is the quark’s wave function renormalization constant;

see Ref. [42] for the detailed definitions to be used in the RI-SMOM schemes and n is the

number of external quark lines. For the rare kaon decays being studied here n = 2 and

below we shall simply replace n by 2. The renormalization constant Z lat→RI
QA

(aµ0) relates the

renormalized operator QRI
A (µ0) and the bare operator Qlat

A (a) through the relation QRI
A (µ0) =

Z lat→RI
QA

(aµ0)Qlat
A (a). It can be determined non-perturbatively by evaluating 〈Qlat

A 〉 with the

given external momentum {pi} and imposing the condition in Eq. (36).

As the next step, one can calculate the conversion factor ZRI→MS
QA

(µ/µ0) perturbatively,

relating the renormalized operators in the RI/SMOM and MS schemes through QMS
A (µ) =

ZRI→MS
QA

(µ/µ0)QRI
A (µ0). Using the conversion factor ZRI→MS

QA
(µ/µ0) and the renormalization

constant Z lat→RI
QA

(aµ0), the MS operator can be related to the bare lattice operator through

QMS
A (µ) = ZRI→MS

QA
(µ/µ0)Z lat→RI

QA
(aµ0)Qlat

A (a) ≡ ZMS
QA

(aµ)Qlat
A (a).

Next we extend the RI/SMOM scheme to provide a regularization-independent definition

of the bilocal product of QA and QB. Here will we use the notation:

{QS
AQ

S
B}S

′
(y) =

∫
d4xT

{
QS
A(x)QS

B(y)
}S′

, (37)

where S indicates the scheme used to define the local operators OA and OB while S ′ labels

the method used to define the singularity when x = y. Here the labels S and S ′ can be a

combination of the three choices MS, lat or RI. For simplicity we will usually choose y = 0

and not show this argument explicitly. While the choices S ′ = MS and lat are defined by

standard conventions, the case S ′ = RI is defined by imposing the condition:

〈
{QS

AQ
S
B}RI

µ0

〉
p2
i=µ

2
0

= 0 , (38)

where the subscript p2
i = µ2

0 indicates the amputated, four-Fermi Green’s function evaluated

for the non-exceptional external momenta described above. The subscript µ0 added to the

bilocal operator itself indicates the scale dependence that this RI operator has acquired

because of the condition used to define it.

To relate the bilocal operators {QRI
A Q

RI
B }RI

µ0
and {QRI

A Q
RI
B }lat

a , we can write

{QRI
A Q

RI
B }RI

µ0
= {QRI

A (µ0)QRI
B (µ0)}lat

a −XAB(µ0, a)QRI
0 (µ0) , (39)
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where the last term on the right-hand side is introduced to compensate for the different

treatment of the singularity in the product QA(x)QB(0) as x → 0 in the two different

schemes. Although each of the renormalized local operators QRI
A , QRI

B and QRI
0 individually

are independent of the ultraviolet cut-off a, the additional SD divergence in {QRI
A Q

RI
B }lat is

regulated using the lattice cut-off. The coefficient XAB(µ0, a) therefore has a dependence

on a and is defined by the subtraction condition in Eq. (38):〈
{QRI

A Q
RI
B }RI

µ0

〉
p2
i=µ

2
0

=
〈
{QRI

A Q
RI
B }lat

a

〉
p2
i=µ

2
0
−XAB(µ0, a)

〈
QRI

0 (µ0)〉p2
i=µ

2
0

= 0 . (40)

These Green’s functions are calculated by computing the corresponding Green’s functions

for the bare lattice operators and multiplying by the Z lat→RI renormalization constant for

each of the local operators. Using the renormalization condition (40) we can determine

the coefficient XAB(µ0, a) non-perturbatively and hence can define the RI/SMOM bilocal

operator {QAQB}RI
µ0

through Eq. (40) with no ambiguity and no dependence on a.

Finally we can express the MS bilocal operator in terms of the RI/SMOM bilocal and an

additional local operator by using the analogous equation to Eq. (39),

{QMS
A QMS

B }MS
µ = ZRI→MS

QA
(µ/µ0)ZRI→MS

QB
(µ/µ0){QRI

A Q
RI
B }RI

µ0
+ YAB(µ, µ0)QRI

0 (µ0). (41)

Green’s functions of the bilocal operator {QMS
A QMS

B }MS
µ are evaluated using dimensional reg-

ularization of all the ultraviolet divergences and their subtraction following the standard

procedure to define the MS scheme. The µ-dependence of such Green’s functions has con-

tributions not only from the anomalous dimensions of QA and QB (and reproduced by the

first term on the left-hand side of Eq. (41)) but also from the SD region and contained in

the coefficient YAB(µ, µ0). To determine YAB(µ, µ0) we calculate the amputated Green’s

functions for both sides of Eq. (41) at p2
i = µ2

0 and impose the renormalization condition

Eq. (38) so that:〈
{QMS

A QMS
B }MS

µ

〉
p2
i=µ

2
0

=
ZRI
q (µ0)

ZMS
q (µ)

[
ZRI→MS
QA

(µ/µ0)ZRI→MS
QB

(µ/µ0)
〈
{QRI

A Q
RI
B }RI

µ2
0

〉
p2
i=µ

2
0

+ YAB(µ, µ0)
〈
QRI

0

〉
p2
i=µ

2
0

]
=
ZRI
q (µ0)

ZMS
q (µ)

YAB(µ, µ0)〈Q0〉(0)

p2
i=µ

2
0
, (42)

where the superscript (0) denotes tree-level, and reminds us that the RI/SMOM renormal-

isation condition is 〈QRI
0 〉p2

i=µ
2
0

= 〈Q0〉(0)

p2
i=µ

2
0
. In this way we can determine the coefficient

25



YAB(µ, µ0) and hence, using Eq. (41), express the bilocal operator {QAQB}MS(µ) in terms

of operators that are defined in lattice QCD.

3. Numerical strategy for bilocal operator renormalization

As reviewed in Sect. IV B 1, electroweak and QCD perturbation theory can be used to

determine a combination of bilocal and local operators, defined in the MS scheme at a

scale µ, whose matrix element between K+ and π+νν states will accurately determine the

rare K+ → π+νν decay amplitude, provided the scale µ is sufficiently large that QCD

perturbation is accurate. Following Eq. (21) we can write this second order weak operator,

before the final integral over space time, as the combination:

BMS
WW (y) + BMS

Z (y) + CMS
0 QMS

0 (y). (43)

When the MS scale µ is below the bottom quark mass, one expects that the largest contri-

bution come from the second, CMS
0 QMS

0 term in this operator since it contains a ln(MW/mb)

factor which the bilocal operators BMS
WW (y) and BMS

Z (y) do not. The contribution of this local

term to the K+ → π+νν decay rate can be accurately computed and the achieved accuracy

of this computation underlies the experimental and theoretical interest in this process.

In this paper we wish to augment this capability with a first-principles calculation of

the matrix elements of the bilocal operators in Eq. (43). To the extent that this term is

relatively small, our methods do not need to be as precise as those used to determine the

matrix element of the local operator. For example, we may be able to obtain a useful result if

we employ only leading-order formulae for the perturbative coefficients Y (µ, µ0) which relate

the MS-normalized bilocal operators appearing in Eq. (43) and the RI-normalized bilocal

operators which can be evaluated non-perturbatively using lattice methods. As we increase

the scale µ appearing in Eq. (43), the use of QCD perturbation theory to determine the

Wilson coefficients appearing in that equation will become more reliable. However, this will

also cause the contribution of the bilocal operator to increase, requiring a higher precision

from the lattice calculation if the over-all error is to decrease.

We will make the preceding discussion concrete by writing out an explicit example ex-

pressing the perturbatively-determined operator BMS
Z (y) in terms of operators and coeffi-
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cients that can be determined directly from a lattice QCD calculation:

BMS
Z,A =

{(
C1(µ)MSQMS

1,u + C2(µ)MSQMS
2,u

)(
JAµ νγ

µ(1− γ5)ν
)
− {u→ c}

}MS

µ

=

{( ∑
i,j=1,2

Ci(µ)MSZRI→MS
ij QRI

j,u

)(
JAµ νγ

µ(1− γ5)ν
)
− {u→ c}

}RI

µ0

+
∑
i=1,2

CMS
i (µ)YQi,JA(µ, µ0)QRI

0 (µ0), (44)

where we have considered the case of the operator OW
q defined in Eq. (13) and included the

required operator mixing but examined only the hadronic axial current component of the

current JZµ given in Eq. (17).

V. FINITE-VOLUME EFFECTS

When second-order weak amplitudes that involve multi-particle intermediate states are

computed in finite volume, potentially significant finite-volume corrections can appear. Ref-

erences [15, 43, 44] give detailed formulae which determine the finite-volume (FV) correction

for the case of the two-pion intermediate state that appears in a calculation of the KL-KS

mass difference. The same approach can be used to determine FV effects in rare kaon decay

amplitudes. The finite volume effects discussed in this section and in the above references

are those which fall as powers of the lattice size and arise from the degeneracy between

possible intermediate states and the initial and final states in the process being considered.

Here we do not address the presumably smaller FV effects which fall exponentially as the

volume increases.

As is well-known, power-law, FV corrections are related to the on-shell amplitudes

A(K → {n}), where {n} represents an intermediate state made up of n particles. As

more particles are included in {n}, we expect that the FV correction will be increasingly

suppressed by the resulting reduced phase-space. In Table I we list the relevant braching

ratios of K → {n} from the Particle Data Group [45]. Since the Ke2 decay is helicity

suppressed, we can compare the other entries in Table I with that for Kµ2 to estimate the

effect of this phase-space suppression. As the number of daughter particles increases, the

braching ratios are significantly suppressed. The only exception is seen in the comparison

between the decay modes K+ → π+π0 and K+ → 3π, where the branching ratio is only
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K → {n} Branching ratio relevant diagrams

K+ → µ+νµ 6.355(11)× 10−1

W -W diagram
K+ → 2πµ+νµ 4.254(32)× 10−5

K+ → π0e+νe 3.353(34)× 10−2

W -W diagram
K+ → 3πe+νe < 3.5× 10−6

K+ → π+π0 2.066(8)× 10−1 Z-exchange diagram, JZ,Aµ

K+ → 3π 7.35(5)× 10−2 Z-exchange diagram, JZ,Vµ

K → {n} Decay width [eV] relevant diagrams

KS → 2π 7.343(13)× 10−6 Z-exchange diagram, JZ,Aµ

KL → 3π 4.125(30)× 10−9 Z-exchange diagram, JZ,Vµ

Table I. Branching ratios and decay widths for K → {n} decays. The third column gives the

relevant diagrams to which the K → {n} amplitudes contribute. As n increases, a large suppression

can be observed in the K+ → {n} branching ratio. The only exceptions to this trend (K+ → π+π0

and K+ → 3π decays) can be explained by the ∆I = 1/2 rule. In the neutral kaon decay, we show

the suppression of the decay width from KS → 2π to KL → 3π decay. Here the decay width is

given in units of eV.

3 times smaller in K+ → 3π decay. However, this is because only the I = 2 pion-pion

state contributes to the K+ → π+π0 mode and the corresponding decay amplitude is highly

suppressed because of the ∆I = 1/2 rule as explained in Ref. [46]. If we consider instead

the neutral kaon decays, to which the I = 0 pion-pion state also contributes, and compare

the decay width between KS → 2π and KL → 3π, a large phase-space suppression can be

observed in Table I.

From Table I, we conclude that for the W -W diagrams, we may neglect the FV effects

associated with on-shell K+ → 2π`+ν` and K+ → 3π`+ν` amplitudes, which are highly

phase-space suppressed. We need to consider only the FV corrections related to K+ → `+ν`

and K+ → π0`+ν` amplitudes. Here, the 4-momentum of the intermediate neutrino is

completely determined by the 〈π+νν̄| final state. Therefore, no power-law, FV effects exist

for the |`+ν`〉 intermediate state. For the state |π0`+ν`〉, the corresponding FV correction,
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T FVWW = TWW (L)− TWW (∞), can be expressed as

T FVWW =

 1

L3

∑
~k

∫
dk0

2π
− P

∫
d4k

(2π)4


{
AK

+→π0

α (pK , k)
1

k2 +m2
π

Aπ
0→π+

β (k, pπ)

}
×
{
ū(pν)γ

α(1− γ5)
i(/P − /k) +m¯̀

(P − k)2 +m2
¯̀

γβ(1− γ5)v(pν̄)

}
, (45)

where k is the momentum carried by the intermediate π0 and P = pK − pν is the total

momentum flowing into the π0-`+ loop. The second line of Eq. (45) corresponds to the

sequence of hadronic transitions K+ → π0 → π+. The K+ → π0 and π0 → π+ transition

amplitudes are given by

AK
+→π0

α (pK , k) = ZV 〈π0(k)|s̄γαu(0)|K+(pK)〉,

Aπ
0→π+

β (k, pπ) = ZV 〈π+(pπ)|ūγβd(0)|π0(k)〉. (46)

Though the intermediate π0 can carry an off-shell momentum, only the on-shell K+ →

π0 and π0 → π+ amplitudes can contribute to T FVWW . Therefore in Eq. (46) we simply

define AK
+→π0

α (pK , k) and Aπ
0→π+

β (k, pπ) using the on-shell pion state |π0〉. To estimate the

FV correction, we need to evaluate these transition amplitudes in our lattice calculation.

Once available, these amplitudes can also be used to remove the exponentially growing

contamination since the |π0`+ν〉 state possibly has a lower energy than the initial kaon. The

third line of Eq. (45) gives the leptonic contribution which involves a lepton propagator.

Although the expression in Eq. (45) is complicated, we can write it in a simpler but more

general form as

IFV = I(L)− I(∞) =

 1

L3

∑
~k

∫
dk0

2π
− P

∫
d4k

(2π)4

 f(k0, ~k)

(k2 +m2
1)((P − k)2 +m2

2)
. (47)

For the case ~P = 0, this expression can be evaluated using formulae given in Ref. [44],

simplified by the vanishing of the π0-`+ scattering phase shift, since we are not including

electromagnetic effects. However, for ~P 6= 0 this discussion must be generalized following the

treatment given by Kim, Sachrajda and Sharpe in Ref. [47] for the case m1 = m2, boosting

the system into the center-of-mass frame. For m1 6= m2, a similar result is given in Ref [48].

We conclude that if the hadronic transition amplitudes AK
+→π0

α (pK , k) and Aπ
0→π+

β (k, pπ)

have been determined, one can evaluate the FV correction T FVWW using known methods.

29



For the Z-exchange diagrams, the FV effect resulting from the transition K+ → 3π

is significantly suppressed by a phase-space factor, and that related to K+ → π+π0 is

suppressed by ∆I = 1/2 rule. Therefore, we can choose to neglect both of these sources of

finite volume error in a near-term lattice calculation. If we wish to have a more accurate

understanding of how small these FV corrections may be, we can evaluate the larger FV

piece coming from the π+π0 intermediate state. Since the momenta for three non-interacting

particles in the 〈π+νν̄| final state are assigned explicitly, no power-law, FV effect of the sort

identified by Lellouch and Lüscher [49] is present for this rare kaon decay. We can then treat

〈π+νν̄| as a single-particle state 〈π̃+| and again extend the FV correction formula derived

for the case of the KL − KS mass difference [44] to the rare kaon decay. In this way, we

obtain the FV correction

∑
n

〈π̃+|OZ
` |n〉FV FV 〈n|OW

q |K+〉
mK − En

− P
∫ ∞

2mπ

dE
∑
α

〈π̃+|OZ
` |α,E〉∞∞〈α,E|OW

q |K+〉
mK − E

= cot(φ(E) + δ(E))
d(φ(E) + δ(E))

dE

∣∣∣∣
E=mK

〈π̃+|OZ
` |π+π0,mK〉FV FV 〈π+π0,mK |OW

q |K+〉.

(48)

Here we use the notation of Ref. [44]. Making the replacement 〈π̃+|OZ
` → 〈π+|JZµ in

Eq. (48), we obtain the FV correction formula for TZµ .

VI. CONCLUSION

With the development of new methods [15–18, 43, 44], it is now possible to calculate

the long-distance contributions to second-order weak amplitudes, such as the KL−KS mass

difference ∆MK and εK , directly using lattice QCD. These methods have now been extended

in Ref. [13] to address the long-distance contributions to the rare kaon decay K → π`+`−.

The present paper is a companion to Ref. [13], focusing here on developing lattice methods

that can be used to compute the long-distance corrections to the rare kaon decay K → πνν̄.

In each of these treatments, those contributions which are identified as long-distance and

targeted by the proposed lattice methods include all energy scales at or below an energy

that is conservatively chosen to exceed the charm quark mass. Thus, these methods will

allow calculations in which QCD perturbation theory is used only at energy scales which lie

above the charm quark mass.
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Since the NA62 experiment at CERN is now collecting data for K+ → π+νν̄ and the

KOTO experiment at J-PARC in Japan is designed to search for the KL → π0νν̄ decay, these

two rare kaon decays become important parts of the search for an understanding of physics

beyond the SM. In both channels the decay amplitudes are dominated by SD contributions.

For KL decay, the LD contribution can be safely neglected. For K+ decay, the LD effects

are expected to be of a few percent, assuming that QCD perturbation theory is accurate at

the charm scale. Although possibly small, this long-distance correction is now the dominate

source of theoretical uncertainty in the SM prediction for the K+ → π+νν̄ branching ratio.

It is therefore timely for lattice QCD to provide the LD contribution to K+ → π+νν̄ with

controlled uncertainty.

In this paper we present a method in which lattice QCD can be used to compute the LD

contribution to the K → πνν̄ decay amplitude. As explained in the body of this paper, the

calculation requires the computation of non-standard correlation functions, the control of

SD singularities, the subtraction of unphysical, exponentially growing contributions as the

range of the integration over the time separation of the two weak operators is increased and

control of finite-volume effects. The principal aim of this paper is to demonstrate that all

these challenges can be overcome. The computation of the W -W and Z-exchange diagrams is

discussed in Sect. III. Because of the non-local neutrino structure in the W -W diagrams, we

must include the neutrino and anti-neutrino explicitly in the final state. In addition, we also

need to include a lepton propagator in the lattice calculation. In Sec. III B and Appendix C,

we show in some detail on how to deal with the complicated, non-local neutrino structure.

The procedure needed to remove the exponentially growing contamination that accompanies

the proposed Euclidean-space lattice methods, from the W -W diagrams is discussed in detail

in Appendix D. For both the W -W and Z-exchange diagrams, the lattice amplitudes will

have ultra-violet, logarithmic divergences, which are cut off by the lattice spacing.

We discuss in Sec. IV on how to perform the necessary SD correction using an extension

of the Rome-Southampton method. Power-law, FV corrections are discussed in Sec. V with

an emphasis on their natural phase-space suppression. For the W -W diagram, to evaluate

the FV correction one needs to compute the K+ → π0 and π0 → π+ transition amplitudes.

For the Z-exchange diagram, the FV effects are suppressed significantly either by limited

phase-space or by the ∆I = 1/2 rule. Only after reaching sub-percent precision, might

one need to include the FV corrections from the π+π0 intermediate state. As we show
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above, it is straightforward to extend the FV correction formula needed for the KL-KS mass

difference [44] to the present case of rare kaon decay.

Using the methods developed in Ref. [13] and this paper, it is now possible to undertake

exploratory numerical calculations of the LD contributions to both the K → π`+`− [50]

and K → πνν̄ [51] decay amplitudes. This is important not only for providing needed

LD information to the SM prediction for these rare kaon decays but also for extending our

ability to compute a wider array of important physical observables using the methods of

lattice QCD.
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Appendix A: Connection between Euclidean and Minkowski amplitudes

As the methods of lattice QCD are applied to more complex quantities the issue of the

formalism used to present the results becomes more important. The targets of a lattice

QCD calculation, such as that presented here, are physical amplitudes which can be com-

pared with other experimental and theoretical work and would naturally be presented as

Minkowski space quantities in which the operators involved have a conventional, physical

time dependence and Lorentz symmetry is manifest. However, a lattice QCD calculation

requires the introduction of an unphysical, Euclidean time and a resulting formalism that

has a Euclidean O(4) symmetry.

Both descriptions of relativistic quantum field theory can be viewed as based on the same

Schrödinger quantum mechanics, described by the same quantum mechanical Hilbert space

and the same QCD Hamiltonian. This makes it possible to establish that certain quantities

computed using Euclidean-space lattice methods are identical to those of physical interest

described using Minkowski time dependence. However, a given physical quantity will often
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be expressed using different conventions depending on which approach is adopted, creating

a dilemma for a paper such as this. While we would like to present results in a standard

notation immediately accessible to those familiar with Minkowski field theory, we also wish

to present a record of our calculation without a translation into a second formalism.

As a compromise we have presented the details of our method in the O(4)-invariant,

Euclidean formalism used for the calculation but also give important formulae in a con-

ventional, Minkowski language. In this Appendix we discuss the relation between these

two descriptions so that the reader can interpret our Euclidean-space formulae in terms of

Minkowski quantities. This appendix is divided into two sections. The first, included for

completeness, recalls the standard relationship between time-independent quantities com-

puted using Euclidean and Minkowski conventions. In the second section we specialize these

considerations to the quantities computed in this paper and provide the Minkowski-space

definitions of those quantities.

1. General considerations

Starting with the same Schrödinger operator OS the Minkowski and Euclidean approaches

define two different time-dependent generalizations:

OM(t) = eiHtOSe
−iHt (A1)

OE(x0) = eHx0OSe
−Hx0 (A2)

where H is the QCD Hamiltonian, the subscripts M and E identify Minkowski and Euclidean

operators and we use different variables t and x0 to represent Minkowski and Euclidean time.

When expressed as a Feynman path integral the time-ordered product of N time-

dependent operators, 〈
0
∣∣T(OX1(x1)OX2(x2) . . . OXN (xN)

)∣∣0〉 (A3)

can be written as manifestly Lorentz- or O(4)-invariant quantities when X = M or E,

respectively. While such Green’s functions can be viewed as a single analytic function of the

space time coordinates {x1, x2, . . . , xN}, for numerical work the possibility of performing an

analytic continuation is rarely of direct value. Instead special constructions are employed

for the Euclidean-space lattice QCD calculation to extract quantities with direct physical

meaning. Masses of low-lying states can be obtained from the exponential dependence
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on the time separation of the operators appearing in the Euclidean time-ordered product

in Eq. (A3) for the case N = 2. Likewise the matrix element of a Schrödinger operator

OS between physical, energy eigenstates can be obtained from the time-ordered product

in Eq. (A3) for the case N = 3 where large time separations are used to project onto the

desired energy eigenstates. For the more complex, bilocal operators considered in this paper,

more effort must be expended to extract quantities of physical interest from time integrals

of Euclidean time ordered products of the sort shown in Eq. (A3) for the case N = 4.

However, we do not conventionally work with the underlying Schrödinger operators, which

typically contain conjugate field variables π(x) and the Dirac creation operators ψ†(x). In-

stead, these non-covariant, Hamiltonian quantities are replaced by ∂φ(x)/∂x0 or ∂φ(x)/∂t

and ψ(x) using conventions that differ between the Minkowski- and Euclidean-space for-

malisms. While the treatment of spatial variables should be the same in these two ap-

proaches, our use of a (1,−1,−1,−1) signature for the Minkowski space metric introduces

an additional minus sign discrepancy with Euclidean quantities which use a metric with

the (1, 1, 1, 1) signature. (For Minkowski-space, we follow the conventions of Peskin and

Schroeder [52] and view the combination (t, x1, x2, x3) as a raised-index, Minkowski-space

vector.)

For a scalar operator φX(0, ~x) at x0 = t = 0 there is no difference between the Euclidean

and Minkowski versions which implies that ∇iφM(0, ~x) = ∇iφE(0, ~x), 1 ≤ i ≤ 3. However,

as implied by Eqs. (A1) and (A2), their time derivatives will differ:

∂φM(t, ~x)

∂t

∣∣∣∣
t=0

= i
∂φE(x0, ~x)

∂x0

∣∣∣∣
x0=0

(A4)

For example, if φi(x) is the ith component of the three-component, isovector pion field

operator we can compare the Minkowski and Euclidean space expressions:

∂

∂xµM
〈0|φM,i(t, ~x)|π(j, ~p)〉 = −i

(√
m2
π + ~p 2,−~p

)
Zπδije

−ipM ·xM (A5)

∂

∂xµE
〈0|φE,i(x0, ~x)|π(j, ~p)〉 =

(
−
√
m2
π + ~p 2, i~p

)
Zπδije

ipE ·xE . (A6)

where the state |π(j, ~p)〉 describes a physical pion with isospin index j and three momentum

~p, mπ is the pion mass and Zπ is a normalization factor appropriate for the pion interpolating

operator φi(x). The Minkowski and Euclidean four-momentum assocated with this on-shell,
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pion state are given by:

pµM = (
√
m2
π + ~p 2, ~p) (A7)

pµE = (i
√
m2
π + ~p 2, ~p). (A8)

For fermions a similar translation between ψM and ψE is needed. Recall that in Dirac’s

original notation uses the Hamiltonian operator

HD =

∫
d3x ψ†S(~x)

(
~α · (−i~∇) + βm

)
ψS(~x) (A9)

where the Schrödinger operators ψ(~x) and its hermitian conjugate ψ†(~x) are time-independent

and obey the usual anti-commutation relation, {ψ†(~x), ψ(~y)} = δ3(~x − ~y) while the four,

4× 4, hermitian, Dirac matrices ~α and β are anti-commuting and each have a square which

is the identity matrix.

If the time evolution operator for the Hamiltonian HD in Eq. (A9) is written as a Grass-

mann path integral following the usual textbook derivation [53], one finds

Tr
{
T
[
e−HDTψ(y)ψ‡(z)

]}
(A10)

=

∫
d[χ]d[ψ] exp

{
−
∫
d3x

∫ T

0

dx0 χ
( ∂

∂x0

+ ~α · (−i~∇) + βm
)
ψ

}
ψ(y)χ(z),

where to be concrete we consider the case of a two-point function. The fermion field operators

ψ and ψ‡2 have been replaced by the Grassmann integration variables ψ(x) and χ(x) and

the Minkowski case can be obtained by inserting a factor of i in front of the Hamiltonian on

the left and right-hand sides of Eq. (A10) and replacing the Euclidean time variable x0 by

t. In each case, we redefine auxiliary Grassmann field χ to give the mass term its standard

form and introduce γ matrices chosen to make the underlying Lorentz or O(4) symmetry

manifest.

This can be accomplished by the following choices:

ψM = χβ, γ0
M = β, ~γM = β~α (A11)

ψE = χβ, γ0
E = β, ~γE = −iβ~α. (A12)

2 We have used the operator ψ‡ to represent the Euclidean time evolution of the operator ψ† which must

be distinguished from the hermitian conjugate of the Euclidean time evolution of the operator ψ.
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With these conventions Eq. (A10) and its Minkowski counterpart become

Tr
{
T
[
e−iHDTψM(y)ψ‡M(z)

]}
(A13)

=

∫
d[ψM ]d[ψM ] exp

{
i

∫
d3x

∫ T

0

dx0 ψM

(
γµM

∂

∂xµ
−m

)
ψM

}
ψM(y)ψM(z)β

Tr
{
T
[
e−HDTψE(y)ψ‡E(z)

]}
(A14)

=

∫
d[ψE]d[ψE] exp

{
−
∫
d3x

∫ T

0

dx0 ψE

(
γµE

∂

∂xµ
+m

)
ψE

}
ψE(y)ψE(z)β

Thus, the relation between fermionic quantities expressed in the Euclidean and Minkowski

formalisms is also straight-forward. When evaluated at zero time, the Grassmann spinor vari-

ables ψM(0, ~x)β and ψE(0, ~x)β both correspond to the Schrödinger operator ψ†S(~x), the same

relation which connects ψ(0, ~x)M and ψ(0, ~x)E and ψS(~x). The Euclidean and Minkowski γ

matrices are related by

γ0
E = γ0

M , γiE = −iγiM . (A15)

With these rules we can easily relate operators which are expressed in these two formalisms

as will be done below.

First we examine the isovector current, normalized so that the integral of the time com-

ponent generates isospin transformations. In the case of a scalar field we have:

(
~V 0
M , ~V

i
M

)
=

1

i

(
∂

∂t
~φ× ~φ,− ∂

∂xi
~φ× ~φ

)
(A16)

(
~V 0
E ,
~V i
E

)
=

(
∂

∂x0

~φ× ~φ,
∂

∂xi
~φ× ~φ

)
(A17)

where the explicit vector arrows represents the isospin degree freedom. Thus, the Minkowski

and Euclidean current operators are related by

~V 0
M = ~V 0

E ,
~V i
M = i~V i

E. (A18)

We find the same relation if we consider the vector current constructed from fermions which

are assumed to form an isodoublet:

~V µ
X = ψXγ

µ
X~τψX (A19)

for X = M or E and ~τ is a vector formed from the standard Pauli matrices τ i. That the

relation in Eq. (A19) holds in this case as well as can be deduced from the relation between
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the Euclidean and Minkowski gamma matrices given in Eq. (A15). The same relation will

connect the Euclidean and Minkowski axial currents since in both cases we use the same γ5

Dirac matrix: γ5 = iγ0
Mγ

1
Mγ

2
Mγ

3
M .

Finally we consider the relation between the four-fermion operators expressed in Eu-

clidean or Minkowski notation. This is particularly simple because these have the form

ψXΓiXψXψXΓjXψC
ij
X where X = M or E, the ΓX are combinations of spinor and flavor

matrices and the coefficients Cij
X are chosen so that the resulting operator is a scalar under

the proper Lorentz group or O(4). Such a quantity is the same for either Minkowski or

Euclidean conventions because the four-vector indices of all internal gamma matrices must

be contracted in pairs of the form γµX · · · γXµ, a combination which is the same for X = E

or X = M .

2. Minkowski-space definitions

Using the above results we will now discuss some specific matrix elements and invariant

functions used in this paper and the form in which they appear in both the Euclidean and

Minkowski space formalisms. We use the usual relativistic normalization for single-particle

energy eigenstates |~p〉 with mass m carrying momentum ~p

〈~p ′|~p〉 = 2
√
~p2 +m2(2π)3δ3(~p ′ − ~p). (A20)

For spin-1/2 particles, we will introduce the usual positive and negative energy spinor eigen-

states of the free Dirac Hamiltonian ~α ·~p+βm, u(~p, s) and v(−~p, s) corresponding to particle

and anti-particle states with spin s, normalized so that the projection operators P± onto

states of both spins with positive or negative energy take the form:

P+ =
∑
s=± 1

2

u(~p)u(~p)† = ~α · ~p+ βm+ E =
(
γµMpMµ +m

)
β =

(
−iγµEpEµ +m

)
β (A21)

P− =
∑
s=± 1

2

v(~p)v(~p)† = ~α · ~p− βm+ E =
(
γµMpMµ −m

)
β =

(
−iγµEpEµ −m

)
β (A22)

where E =
√
~p2 +m2. These same two 4 × 4 projection operators can be used to com-

pute polarization sums from products of matrix elements that were computed using either

Minkowski or Euclidean conventions. Of course, the covariant Euclidean and Minkowski

expressions in these equations require that the appropriate on-shell momentum given in

Eqs. (A8) and (A7) be used.
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The most familiar matrix element to describe is that defining the pseudoscalar decay

constant fπ for which we can write both Euclidean- and Minkowski-space expressions as

dictated by Eq. (A19):

〈0|[d̄γµγ5u]M(xM)|π+(~p)〉 = ipM
µfπe

−i(Eπt−~p·~x) (A23)

〈0|[d̄γµγ5u]E(xE)|π+(~p)〉 = pE
µfπe

−Eπx0+i~p·~x. (A24)

A second example is the matrix element of the vector current between charged kaon and

pion states:

〈π+(~pπ)|s̄γµMd(0)|K+(~pK)〉 = −
(
f+(q2

M)(pK + pπ)µM + f−(q2
M)(pK − pπ)µM

)
(A25)

〈π+(~pπ)|s̄γµEd(0)|K+(~pK)〉 = i
(
f+(−q2

E)(pK + pπ)µE + f−(−q2
E)(pK − pπ)µE

)
. (A26)

Here the minus signs in the arguments of f±(q2) in the Euclidean expression ensure that

precisely the same form factors enter both expressions, compensating for the different signs

in the inner product that result when equivalent momenta are used in our Euclidean and

Minkowski conventions.

Finally we examine the matrix elements of the bilinear operators which are the primary

topic of this paper. In such four-point correlation functions, the individual four-fermion op-

erators {O,O′} = {O∆S=1
q` , O∆S=0

q` } for the W -W diagram and {OW
q , OZ

` } for the Z-exchange

diagram are all scalar operators and hence the same in both Euclidean and Minkowski con-

ventions. In Ref. [26], the Minkowski expression for the bilocal operator product has been

defined as

BM = i

∫
d4xM T [OM(xM)O′M(0)]− {u→ c}. (A27)

The physical, Minkowski-space transition amplitude AM = 〈f |BM |i〉 with initial state |i〉

and final state |f〉 can be written as

AM = i

∫ ∞
0

dt
∑
n

〈f |OM |n〉〈n|O′M |i〉ei(Ef−En)t

+ i

∫ 0

−∞
dt
∑
k

〈f |O′M |m〉〈m|OM |i〉ei(Em−Ei)t − {u→ c}

= −
∑
n

〈f |OM |n〉〈n|O′M |i〉
Ef − En + iε

+
∑
m

〈f |O′M |m〉〈m|OM |i〉
Em − Ei − iε

− {u→ c} (A28)
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The corresponding Euclidean expression is given by

BE =

∫
d4xE T [OE(xE)O′E(0)]− {u→ c}

=

∫ Tb

−Ta
dx0

∫
d3xT [OE(xE)O′E(0)]− {u→ c}. (A29)

The transition amplitude AE = 〈f |BE|i〉 is then given by

AE = −
∑
n

〈f |OE|n〉〈n|O′E|i〉
Ef − En

(
1− e(Ef−En)Tb

)
+
∑
m

〈f |O′E|m〉〈m|OE|i〉
Em − Ei

(
1− e(Ei−Em)Ta

)
− {u→ c} (A30)

The equality of the matrix elements 〈f |OE|n〉 and 〈f |OM |n〉 then guarantees that AE is

equal to AM once we have removed the exponentially growing contamination in AE.

Appendix B: Mesonic and leptonic states

The mesonic states used in this paper are defined as the lowest energy component of

the state that results from applying the following combinations of quark and anti-quark

operators to the QCD vacuum state. (Here we are only concerned with the flavor and sign

conventions so detailed questions of the spatial structure of the combination of quark and

anti-quark operators are not addressed.)

|π+〉 = iūγ5d|0〉, |π−〉 = −id̄γ5u|0〉, |π0〉 =
i√
2

(ūγ5u− d̄γ5d)|0〉

|K+〉 = iūγ5s|0〉, |K−〉 = −is̄γ5u|0〉, |K0〉 = id̄γ5s|0〉, |K0〉 = −is̄γ5d|0〉.

(B1)

In an analogous fashion, leptonic states can be annihilated by the corresponding leptonic

field operators, leaving the usual Dirac plane-wave spinors

ν(x)|ν(pν)〉 = u(pν)e
ipνx|0〉, ν̄(x)|ν̄(pν̄)〉 = v̄(pν̄)e

ipν̄x|0〉

`(x)|`(p`)〉 = u(p`)e
ip`x|0〉, ¯̀(x)|¯̀(p¯̀)〉 = v̄(p¯̀)eip¯̀x|0〉, (B2)

where the spinors u(p) and v(p) are the conventional positive- and negative-energy eigen-

vectors of the Dirac Hamiltonian introduced in Appendix A. Note the spinor u in Eq. (B2)

should not be confused with the up quark operator appearing in Eq. (B1). For simplicity

we have not shown the spin index.
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Appendix C: Extraction of the scalar amplitude from W -W diagrams

We write the integrand in the bilocal matrix element TWW defined in Eq. (25) in terms

of two factors:

TWW =

∫
d4xHαβ(x) [ū(pν)Γαβ(x)v(pν̄)] . (C1)

The hadronic factor Hαβ(x) and the leptonic factor ū(pν)Γαβ(x)v(pν̄) are defined by

Hαβ(x) = Z2
V 〈π+(pπ)|T [s̄γα(1− γ5)u(x) ūγβ(1− γ5)d(0)]|K+(pK)〉 − {u→ c}

Γαβ(x) = γα(1− γ5)S`(x, 0)γβ(1− γ5)e−ipνx. (C2)

Here S`(x, 0) =
∫

d4q
(2π)4

−i/q+m`
q2+m2

`
eiqx is a free Euclidean lepton propagator.

The left-handed nature of neutrinos allows us to write TWW in the form

TWW = Tµ ū(pν)γµ(1− γ5)v(pν̄) , (C3)

where with three independent momenta pK , pν and pν̄ , Tµ can be written as

Tµ = pKµG1 + pνµG2 + pν̄µG3 + εµαβρpKαpνβpν̄ ρG4. (C4)

Neglecting the masses of the neutrinos, the terms proportional to pνµ and pν̄µ vanish because

of the Dirac equation obeyed by the neutrino wave function.

We now consider the term proportional to G4 in Eq. (C4). Using the identity γαγβγρ =

δαβγρ + δβργα − δαργβ + εµαβργµγ5 we can write

εµαβρpKαpνβpν̄ ργµ(1− γ5) = −
[
/pK/pν/pν̄ − (pK · pν)/pν̄ − (pν · pν̄)/pK + (pK · pν̄)/pν

]
(1− γ5).

(C5)

Since the right-hand side of Eq. (C5) is sandwiched between the neutrino spinors ū(pν) and

v(pν̄) in Eq. (C3), only the third term in Eq. (C5) survives. Thus, when Tµ is combined with

the product of neutrino spinors in Eq. (C3), the term proportional to G4 in Eq. (C4) is also

effectively proportional to pKµ . Therefore, we can write TWW in terms of a single invariant

amplitude FWW :∫
d4xHαβ(x) [ū(pν)Γαβ(x)v(pν̄)] = i · FWW (pK , pν , pν̄)

[
ū(pν)/pK(1− γ5)v(pν̄)

]
. (C6)

We now derive an expression for the scalar amplitude FWW (pK , pν , pν̄). This might be

most naturally done by following the steps that are taken when evaluating the K+ → π+νν̄
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decay rate. Thus, we multiply both sides of Eq. (C6) by the 2× 2 spin matrix v̄/pK(1− γ5)u

and perform the spin sums in order to project out FWW obtaining

FWW (pK , pν , pν̄) =
−i
∫
d4xHαβ(x) Tr[Γαβ(x)/pν̄/pK(1− γ5)/pν ]

Tr[/pK(1− γ5)/pν̄/pK(1− γ5)/pν ]
. (C7)

For lattice calculations it is useful to simplify the expression on the right-hand side of

Eq. (C7). The gamma matrix factor /pν̄/pK(1−γ5)/pν , which appears in both the traces in the

numerator and the denominator, can be rewritten in the form

/pν̄/pK(1− γ5)/pν =
∑
µ

bµγµ(1 + γ5), (C8)

where the coefficient bµ given by

bµ =
1

4
Tr[γµ/pν̄/pK(1− γ5)/pν ]

= pν̄µ(pK · pν) + pνµ(pK · pν̄)− pKµ(pν · pν̄) + εµαβρpναpν̄βpKρ. (C9)

This allows us to rewrite FWW (pK , pν , pν̄) in the form

FWW (pK , pν , pν̄) = −i
∫
d4xHαβ(x)

∑
µ

cµTr [Γαβ(x)γµ(1 + γ5)] , (C10)

where the four-vector cµ is given by

cµ =
1

8

bµ
b · pK

. (C11)

Given the momenta pK , pν and pν̄ , the coefficients cµ can readily be evaluated so we need

to compute only the four integrals
∫
d4xHαβ(x) Tr[Γαβ(x)γµ(1 + γ5)] for µ =0, 1, 2 and 3.

In a lattice calculation, the hadronic matrix element Hαβ(x) can be calculated by evalu-

ating a 4-point correlation function. The leptonic propagator S`(x, 0) in Γαβ(x) can be im-

plemented using a free-field lattice fermion formulation, e.g. domain wall or overlap fermion.

Following the steps described above one can determine the scalar amplitude FWW (pK , pν , pν̄).

Appendix D: Low-lying intermediate states for W -W diagrams

As indicated in Sec. III B 2, if the energy of a given intermediate state is smaller than

the energy of initial/final state, then in Euclidean space-time, the non-local matrix element∫
dt 〈π+νν̄|T [O∆S=1

u` (t)O∆S=0
u` (0)]|K+〉 will include an exponentially growing contamination.
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Here we study what we expect will be the largest exponentially growing contamination from

the low-lying intermediate states.

For t � 0, the non-local matrix element is dominated by the intermediate ground state

|¯̀ν〉. Its time dependence can be written as

〈π+νν̄|O∆S=0
u` (0)|¯̀ν〉 1

2E¯̀

1

2Eν
〈¯̀ν|O∆S=1

u` (t)|K+〉

= ZV 〈π+|ūγµ(1− γ5)d(0)|0〉ZV 〈0|s̄γν(1− γ5)u(0)|K+〉

×ū(pν)γν(1− γ5)
i/p¯̀ +m¯̀

2E¯̀
γµ(1− γ5)v(pν̄) · e(E¯̀+Eν−EK)t

= −2fKfπū(pν)/pK
i/p¯̀

2E¯̀
/pπ(1− γ5)v(pν̄) · e(E¯̀+Eν−EK)t

≡ ct<0 · e(E¯̀+Eν−EK)t, (D1)

where fK and fπ are the kaon and pion decay constants. Here we have used the definition

ZV 〈0|s̄γµγ5u(0)|K+〉 = pKµfK and ZV 〈π+|ūγµγ5d(0)|0〉 = −pπµfπ. The 4-momenta for

initial-, intermediate- and final-state particles are given by

pi = (iEi, ~pi), Ei =
√
m2
i + ~p 2

i , i = K, π, ν, ν̄, ¯̀. (D2)

Three-momenta conservation requires ~p¯̀ = ~pK − ~pν = ~pπ + ~pν̄ . (See Fig. 1.)

For t � 0, due to the exchange of the operators O∆S=1
u` and O∆S=0

u` , the leptonic part of

the intermediate state is now given by `ν̄. To guarantee the flavor and charge conservation,

the hadronic part must be a strange state with electric charge Qe = +2. In this case,

the lowest energy intermediate state is given by |K+π+`ν̄〉. This four-particle state has an

energy larger than that of the kaon and hence will not contribute a growing exponential term.

Note that for this intermediate state, only the 3-momentum of ν̄ is fixed. For the purposes

of this analytic treatment we will include the special case in which this intermediate state

contains a K+ and π+ which do not scatter and carry the same 3-momenta as those of the

initial-state kaon and final-state pion respectively. (Examining this case allow us to show

how the non-scattering part of the K+π+ intermediate state contributes to give the usual

covariant charged lepton propagator when the two time orderings are combined.) Including
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this component of the intermediate K+-π+, we have

〈π+νν̄|O∆S=1
u` (t)|K+π+`ν̄〉 1

2EK

1

2Eπ

1

2E`

1

2Eν̄
〈K+π+`ν̄|O∆S=0

u` (0)|K+〉

= ZV 〈0|s̄γµ(1− γ5)u(0)|K+〉ZV 〈π+|ūγν(1− γ5)d(0)|0〉

×ū(pν)γµ(1− γ5)
−i/p` +m`

2E`
γν(1− γ5)v(pν̄) · e(Eν−E`−EK)t

= −2fKfπū(pν)/pK
−i/p`
2E`

/pπ(1− γ5)v(pν̄) · e(Eν−E`−EK)t

≡ ct>0 · e(Eν−E`−EK)t, (D3)

where p` = (iE`, ~p`), ~p` = −(~pK − ~pν) and E` =
√
m2
` + ~p2

` .

Combining the contributions given by Eqs. (D1) and (D3) and performing the time inte-

gral in a window [−Ta, Tb], we have∫ 0

−Ta
dt ct<0 · e(E¯̀+Eν−EK)t +

∫ Tb

0

dt ct>0 · e(Eν−E`−EK)t

=
ct<0

E¯̀ + Eν − EK
(
1− e−(E¯̀+Eν−EK)Ta

)
− ct>0

Eν − E` − EK
(
1− e(Eν−E`−EK)Tb

)
(D4)

= −2fKfπū(pν)/pK
i/q

q2 +m2
`
/pπ(1− γ5)v(pν̄) (D5)

− ct<0

E¯̀ + Eν − EK
e−(E¯̀+Eν−EK)Ta +

ct>0

Eν − E` − EK
e(Eν−E`−EK)Tb ,

with the 4-momentum q = pK − pν . The top term on the right hand side of Eq. (D5)

corresponds to the simplest graph contributing to diagrams of type 1, where the process of

kaon leptonic decay and (inverse) pion leptonic decay are joined by a lepton propagator.

(See Fig. 1.) The expression in this term can be further simplified to

(−i) fKfπ
2q2

q2 +m2
`

· ū(pν)/pK(1− γ5)v(pν̄). (D6)

The left term in the lowest line of Eq. (D5) gives the exponentially growing contamination,

which can be removed once we evaluate the coefficient ct<0 defined in Eq. (D1). The right

term in the lowest line of Eq. (D5) vanishes exponentially because Eν < E` + EK and thus

requires no special treatment.

Next, let us look at the second lowest intermediate state. For t� 0, it is given by |π0 ¯̀ν〉

and we have∫
d3~pπ0

(2π)3
〈π+νν̄|O∆S=0

u` (0)|π0 ¯̀ν〉 1

2Eπ0

1

2E¯̀

1

2Eν
〈π0 ¯̀ν|O∆S=1

u` (t)|K+〉

=

∫
d3~pπ0

(2π)3
ZV 〈π+|ūγµ(1− γ5)d(0)|π0〉 1

2Eπ0

ZV 〈π0|s̄γν(1− γ5)u(0)|K+〉

·ū(pν)γν(1− γ5)
i/p¯̀ +m¯̀

2E¯̀
γµ(1− γ5)v(pν̄) · e(E¯̀+Eπ0+Eν−EK)t, (D7)
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where ~pπ0 is the 3-momentum of the intermediate neutral pion. Momentum conservation

implies that the anti-lepton carries the 3-momentum ~p¯̀ = ~pK − ~pν − ~pπ0 . Exponentially

growing contamination is then associated with those intermediate states whose energies

satisfy E¯̀ + Eπ0 + Eν < EK . This constraint results in a phase-space suppression, which

substantially reduces the exponential contamination.

In a lattice QCD calculation with a finite volume L3, the 3-momentum integral in Eq. (D7)

is replaced by a sum ∫
d3~pπ0

(2π)3
→ 1

L3

∑
~pπ0

. (D8)

The scale of a typical lattice momentum is around 2π/L ∼ 2π/(4/mπ) ∼ 220 MeV. There-

fore, in the kaon rest frame, the energies of only a few |π0 ¯̀ν〉 states will lie below the

energy EK = mK . For each such state, one can evaluate the hadronic matrix elements

〈π+|ūγµd(0)|π0〉 and 〈π0|s̄γνu(0)|K+〉. Thus, the exponentially growing contamination for

type 2 diagrams can be removed if observed.

It is possible that higher energy intermediate states such as |ππ ¯̀ν〉 and |3π ¯̀ν〉 may

have energies below EK . However, because of an even more suppressed phase space, the

exponentially growing contamination from these states will be negligibly small. We therefore

do not discuss these states in detail.
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