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Abstract

We non-perturbatively determine the renormalization factor of the axial vector current in
lattice QCD with Nf = 3 flavors of Wilson-clover fermions and the tree-level Symanzik-
improved gauge action. The (by now standard) renormalization condition is derived from
the massive axial Ward identity and it is imposed among Schrödinger functional states with
large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to
reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for
simulations at lattice spacings of≈ 0.09 fm and below. An interpolation formula for ZA(g20),
smoothly connecting the non-perturbative values to the 1-loop expression, is provided
together with our final results.
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1 Introduction

It is well known that chiral symmetry is explicitly broken in the Wilson lattice regulariza-
tion of QCD [1]. As a consequence of that, the isovector axial current does not satisfy the
continuum Ward-Takahashi identities. These can be restored up to cutoff effects by a fi-
nite renormalization of the axial vector current [2]. Previous computations by the ALPHA
Collaboration in the quenched [3] and in the two-flavor dynamical cases [4, 5] have shown
that at the lattice spacings a typically simulated (0.04 fm . a . 0.1 fm), this renormal-
ization factor ZA differs significantly from its (1-loop) perturbative estimate. Since it is
required for the computation of pseudoscalar decay constants and thus, e.g., in the scale
setting procedure (through Fπ or FK, as done in [6] for Nf = 2 and launched in [7] for
Nf = 2 + 1), as well as in the computation of light [6,8] and heavy [9,10] quark masses, it
is of paramount importance to determine ZA non-perturbatively.

Here we report about a non-perturbative determination of ZA in lattice QCD with
Nf = 3 mass-degenerate flavors of Wilson-clover fermions and the tree-level Symanzik-
improved gauge action [11]. For a calculation in the three-flavor theory with stout-smeared
quarks and RG-improved Iwasaki gluon action, see Ref. [12].

The improvement coefficient csw of lattice QCD with Nf = 3 O(a) improved Wilson
fermions and tree-level Symanzik-improved gauge action has been non-perturbatively tuned
in [13]. Our computation of ZA, a preliminary account of which was already given in [14], is
performed with Schrödinger functional boundary conditions, and we use the same method
adopted in [5] for the Nf = 2 case. In particular, the normalization condition exploits the
full, massive axial Ward identity in order to reduce finite quark mass uncertainties in the
evaluation of ZA. Correlators are built using optimized boundary wave-functions such that
cutoff effects due to excited state contributions are suppressed. The setup in the present
work concerning the simulation parameters and the choice of boundary interpolating fields
(wave-functions) is the same as the one recently employed for the computation of the
improvement coefficient cA [15].

We discuss the relevant equations for the normalization condition in Section 2 and
provide some simulation details in Section 3. Numerical results and the final interpolation
formula are presented in Section 4, together with a discussion of residual systematic effects.
Section 5 contains our summary.

2 Renormalization condition

The condition that we choose in order to normalize the axial current has been originally
introduced for the case of two dynamical fermions in [4]. In this section we give a short
account of its derivation. More details can be found in the quoted paper.

The Partially Conserved Axial Current (PCAC) relations are the set of (infinite)
Ward identities derived performing a chiral rotation of the quark fields. By restricting the
transformation to a region R, one can derive different operator relations depending on the
particular choice of composite fields inserted internally and externally w.r.t. the region R.
If the axial current Abν(y) is chosen as internal operator, the resultant identities can be
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cast in the integrated form [16]∫
∂R

dσµ(x)
〈
Aaµ(x)Abν(y)Oext

〉
− 2m

∫
R

d4x
〈
P a(x)Abν(y)Oext

〉
= iεabc 〈V c

ν (y)Oext〉 ,

(2.1)
where a, b and c are flavor indices in a SU(2) sub-group of the chiral group SU(3). In
the equation above, R (containing y) is still arbitrary and Oext is an operator built from
fields outside R. V c

ν is the isovector vector current. Further specifying R as the spacetime
volume between two space-like hyperplanes and setting ν = 0, after contracting the flavor
indices a and b with εabc, one arrives at∫

d3x d3y εabc
〈
Aa0(x)Ab0(y)Oext

〉
− 2m

∫
d3x d3y

∫ x0

y0

dx0 ε
abc
〈
P a(x)Ab0(y)Oext

〉
= i

∫
d3y 〈V c

0 (y)Oext〉 (2.2)

with x0 > y0 defining the hyperplanes. It is clear that the above relation, once considered
at the renormalized level, relates the normalization of the axial current to that of the vector
current. A condition for the latter will be implicitly given below.

We evaluate the identity in eq. (2.2) on the lattice with Schrödinger functional bound-
ary conditions (periodic in space, Dirichlet in time) [17, 18] with vanishing background
field. The source operator Oext is expressed in terms of the quark fields ζ and ζ ′ at the
boundaries x0 = 0 and x0 = T as

Oext = − 1

6L6
εcdeO ′dOe (2.3)

with

Oe = a6
∑
u,v

ζ(u) γ5
τ e

2
ω(u−v) ζ(v) and O ′d = a6

∑
u,v

ζ ′(u) γ5
τd

2
ω(u−v) ζ ′(v) . (2.4)

The wave-function ω is optimized in order to excite states with a large projection on the
pseudoscalar ground state. Its construction is detailed in [15]. The free index c in eq. (2.3)
is contracted with the free index in eq. (2.2). In this case, the term on the right-hand
side involving the isospin charge density can be simplified to the boundary-to-boundary
correlator

F1 = − 1

3L6
〈O ′aOa〉 (2.5)

up to O(a2), as it has been shown in [3, 4] by using isospin symmetry.
After replacing all terms by their improved and renormalized lattice counterparts, the

Ward identity can be written as

Z2
A (1 + bA amq)2

[
F I
AA(x0, y0)− 2m · F̃ I

PA(x0, y0)
]

= F1, (2.6)
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Figure 1: The six non-vanishing Wick contractions contributing to the correlation functions FXY

with sources Oext on the boundaries and two insertions of the operators X and Y in the bulk, see
eq. (2.9), taken from [4].

with the improved correlation functions

F I
AA(x0, y0) = FAA(x0, y0) + acA

[
∂̃x0FPA(x0, y0) + ∂̃y0FAP(x0, y0)

]
+ a2c2A ∂̃x0 ∂̃y0FPP(x0, y0), (2.7)

and F̃ I
PA(x0, y0) = a

x0∑
x′0=y0

w(x′0) [FPA(x0, y0) + acA ∂y0FPP(x0, y0)] , (2.8)

where ∂̃ denotes the central difference operator and FXY (x0, y0) with X,Y ∈ {A0, P} reads

FXY (x0, y0) = − a6

6L6

∑
x,y

εabcεcde
〈
O ′dXa(x)Y b(y)Oe

〉
, (2.9)

and

w(x′0) =

{
1/2 if x′0 = y0 or x′0 = x0

1 if y0 < x′0 < x0
(2.10)

implements the trapezoidal rule. In eq. (2.6) the bare quark mass m is defined through
the PCAC relation, while mq is the bare subtracted quark mass. The mass-dependent
improvement term proportional to bA will be neglected from here on, since we will impose
the renormalization condition at vanishing mass. Any mistuning will result in O(am)

effects, as effects of O(ΛQCDm) are explicitly removed by using the massive Ward identity.
Our final renormalization condition thus reads

ZA = lim
m→0

[
F1

F I
AA(x0, y0)− 2m · F̃ I

PA(x0, y0)

] 1
2

. (2.11)

In order to maximize the distance between the insertion points and to keep this distance
physical (once L is fixed), we choose x0 = 2

3T and y0 = 1
3T .

Except for F1, only correlators of the form given in eq. (2.9) appear in eq. (2.11).
After working out the Wick contractions, one finds that only six diagrams contribute to
those. They are depicted in figure 1. Two of them are disconnected, and as showed
in Appendix A of Ref. [4], they only give rise to O(a2) contributions and vanish in the
massless continuum limit. By omitting them and taking only the connected contractions,
one obtains an alternative renormalization condition. The corresponding renormalization
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factor is denoted by Zcon
A in the following. Although our preferred definition remains the

one including all quark-contractions, Zcon
A offers the possibility to further check the smooth

dependence of ZA on the gauge coupling, as a consequence of the constant physics setup,
as well as the smooth O(a2) convergence of different renormalization conditions from the
explored non-perturbative region to the perturbative regime.

An alternative renormalization condition, using the Schrödinger functional with chi-
rally rotated boundary conditions, has been recently proposed and tested in perturbation
theory [19] and non-perturbatively in the quenched and in the Nf = 2 cases [20, 21]. The
main advantage of the approach being that it entails automatic O(a) improvement, it seems
very promising and, in two-flavor QCD, turned out to yield more precise results than with
standard Schrödinger functional boundary conditions [21].

3 Simulation details

The ensembles used in this study coincide with those considered in [15], and algorithmic
details can be found there. In a few cases the number of configurations has actually been
enlarged, and in addition we generated a new ensemble (at L/a = 14) with the purpose of
better constraining the final parameterization of the renormalization constant in the region
where the dependence on the gauge coupling is strongest.

Our three-flavor lattice QCD simulations with Schrödinger functional boundary con-
ditions used the openQCD code1 of Ref. [22]. In order to ensure a smooth dependence of
the renormalization constant ZA on the bare gauge coupling, we have approximately fixed
a constant physics condition by setting L ≈ 1.2 fm. That is achieved by beginning with
a particular pair of g20 and L/a (β = 6/g20 = 3.3 at L/a = 12 here) and then choosing
the bare couplings for subsequent smaller lattice spacings according to the universal 2-
loop β-function. In this way we cover lattice spacings in the range from a ≈ 0.09 fm to
a ≈ 0.045 fm. At each bare coupling we have tuned the bare quark mass so that the PCAC
mass is close to zero. We could check at several lattice spacings that our determination of
ZA is insensitive to variations of the (small) quark mass. Information about our ensembles,
consisting in most cases of several replica per parameter set, are summarized in Tab. 1.
For practical reasons discussed in the openQCD documentation, our lattices have temporal
extents T = 3L/2 − a.2 Since we use an O(a) improved setup, this offset is expected to
influence the determination of ZA at O(a3) only. In the context of our earlier computa-
tion of cA [15], we already estimated the deviation from the, perturbatively implemented,
constant L condition, which is also imposed here, by measuring the scale-dependent renor-
malized coupling ḡ2GF, defined in Ref. [23]. The results for this coupling apply here, too,
and can be found in Tab. 2 of Ref. [15]. Finally, we also test the dependence of ZA on L
in physical units directly by simulating an additional bare coupling at L/a = 16.

4 Results

We measure the correlation functions defined in Section 2 on each fourth trajectory of
length τ = 2 MDU so that the spacing between the measurements is 8 MDU. Only on the

1 http://luscher.web.cern.ch/luscher/openQCD/
2 For this work we employ openQCD version 1.2. This issue has been corrected in the latest version (1.4).
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L3 × T/a4 β κ #REP #MDU ID

123 × 17 3.3 0.13652 10 10240 A1k1

0.13660 10 12620 A1k2

143 × 21 3.414 0.13690 32 10360 E1k1

0.13695 48 13984 E1k2

163 × 23 3.512 0.13700 2 20480 B1k1

0.13703 1 8192 B1k2

0.13710 3 24560 B1k3

163 × 23 3.47 0.13700 3 29584 B2k1

203 × 29 3.676 0.13700 4 15232 C1k2

0.13719 4 15472 C1k3

243 × 35 3.810 0.13712 5 10240 D1k1

Table 1: Summary of simulation parameters, number of replica and total number of molecular
dynamics units of our gauge configuration ensembles labeled by ‘ID’, used for the determination of
the renormalization factor ZA. Compared to the data basis underlying our earlier computation of
cA in [15], the analysis presented here includes the additional L/a = 14 lattice ensembles {E1k1,
E1k2}. Also note that the statistics of ensemble B2k1 have been increased by more than a factor
of three.

A1k2 ensemble, we use a measurement separation of 2τ = 4 MDU. The total statistics for
the different ensembles are given in Tab. 1.

For diagnostic purposes, we also compute ‘smoothed’ gauge field observables obtained
from the Wilson (gradient) flow [24]. We fix the flow time t by setting

√
8t/L = c with

c = 0.35. The smoothed gauge fields provide a renormalized definition of the topological
charge Q, which we use to monitor the topology freezing; in addition, even at lattice
spacings where topology freezing does not occur, the smoothed topological charge and
action typically possess the largest observed autocorrelation times. Finally, the coupling
ḡ2GF of Ref. [23], defined through the Wilson flow, may be used to monitor the deviation
from the constant physics condition, as it depends only on the physical lattice size up to
cutoff effects. For results on this coupling we refer again to Tab. 2 in [15], where one
can see that ḡ2GF,0(L) (i.e., the gradient flow coupling within the zero topology sector,
see below) varies between 14 and 18 on our ensembles. That roughly corresponds to a
20% variation in L. As discussed in [15], for all simulations and all observables, we find
that integrated autocorrelation times are bounded by τmax . 200 − 250 MDU, except for
our L/a = 24 simulations where the charge is frozen. Since we are practically unable
to sufficiently sample all topological sectors at this finest lattice spacing, we everywhere
define observables restricted to the trivial, i.e., Q = 0 sector. Note that the same strategy
was followed in our non-perturbative determination of cA in [15]. As shown in Tab. 2, the
projection to the Q = 0 sector does not induce a noticeable difference in the final numbers
for ZA, which is expected since the Ward identities, being operator relations, are valid in
each topological sector.
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ID amPCAC amPCAC,0 ZA ZA,0 Zcon
A Zcon

A,0

A1k1 −0.00234(85) −0.00367(92) 0.641(13) 0.636(16) 0.809(11) 0.811(12)

A1k2 −0.01085(71) −0.01206(81) 0.6432(98) 0.638(11) 0.833(11) 0.835(16)

0.0 0.0 0.6424(78) 0 .6374 (91 ) 0.8210(78) 0.8196(96)

E1k1 0.00275(38) 0.00262(49) 0.7148(99) 0.727(14) 0.7705(91) 0.7743(98)

E1k2 0.00004(33) −0.00072(41) 0.7151(93) 0.702(13) 0.7892(98) 0.773(18)

0.0 0.0 0.7150(68) 0 .7136 (95 ) 0.7792(67) 0.7740(86)

B1k1 0.00565(16) 0.00554(23) 0.7666(47) 0.7602(72) 0.7743(24) 0.7744(43)

B1k2 0.00494(25) 0.00423(36) 0.7676(71) 0.766(10) 0.7759(44) 0.7779(63)

B1k3 0.00160(18) 0.00109(21) 0.7521(39) 0.7515(52) 0.7806(30) 0.7757(41)

0.0 0.0 0.7595(28) 0 .7562 (39 ) 0.7766(17) 0.7756(27)

B2k1 0.00349(17) 0.00306(23) 0.7456(44) 0.7434(59) 0.7778(27) 0.7793(35)

C1k2 0.00618(14) 0.00610(25) 0.7875(92) 0.789(17) 0.7904(22) 0.7840(40)

C1k3 −0.00082(12) −0.00099(13) 0.7771(29) 0.7779(31) 0.7833(27) 0.7841(29)

0.0 0.0 0.7780(28) 0 .7783 (30 ) 0.7876(17) 0.7841(23)

D1k1 n.q. −0.002909(72) n.q. 0 .7897 (19 ) n.q. 0.8009(35)

Table 2: Summary of results for ZA. The (unrenormalized) PCAC quark mass amPCAC is com-
puted from the correlation functions projected to the approximate ground state, using the non-
perturbative result for cA(g20) from [15] and averaging the local mass over the central four timeslices.
Here, quantities with the explicit subscript label ‘0’ refer to results from the analysis restricted to
the sector of vanishing topological charge, whereas in the text we loosely suppress the ‘0’. Numbers
for ensemble D1k1 (L/a = 24) are not quoted (‘n.q.’) for the case of including all charge sectors in
the partition sum, because owing to an insufficient sampling of all the sectors by our simulations a
reliable error estimation is not possible. For those ensembles, where simulations at several quark
masses were performed, the renormalization constant has been extrapolated to the chiral limit
(amPCAC, amPCAC,0 → 0) taking a weighted average (i.e., fitting to a constant). Results in italics
enter into the final interpolation formula for ZA(g20), eq. (4.1).
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Statistical errors are estimated by applying a full autocorrelation analysis according
to Ref. [25].

For the wave-functions ω in eq. (2.4), we use the same approach adopted in [15]
and solve for the two largest eigenvectors of the matrix F1(ω

′
i, ωj). These normalized

eigenvectors have a well-defined continuum limit along our line of constant physics in
parameter space, as long as the wave-functions depend on physical scales only. Since we
do not observe any significant lattice spacing dependence for them, we fix these eigenvectors
to the values calculated on the B1k2 ensemble (L/a = 16, β = 3.512, κ = 0.13703) and
regard that as part of our choice of the renormalization condition. The effective masses of
the correlation function fP, after taking the inner product with the eigenvectors in wave-
function space, indicate clearly distinct signals, providing evidence that those effectively
maximize the overlap with the ground and first excited states (see Fig. 2 in [15]). Notice
that, as opposed to the case of the computation of the improvement coefficient cA, here we
only need the wave-function projecting onto the ground state.3

In the following, we restrict the discussion of systematic effects to observables projected
to the sector of vanishing topological charge: amPCAC ≡ amPCAC,0, ZA ≡ ZA,0. As
mentioned above, those are the ones entering our final results. In any case, the ‘un-
projected’ quantities, where they can be properly estimated, display the same qualitative
features.

As expected from the discussion in Section 2, for the massive normalization condition
the data exhibit very little dependence on the quark mass, which implies that uncertainties
due to the position of the critical mass do not affect the determination of ZA. We illustrate
the chiral extrapolation amPCAC → 0 at β = 3.512 in Fig. 2. For this normalization
condition, the slope in amPCAC is consistent with zero, whereas the estimate of ZA from
the massless Ward identity (i.e., by setting directly m = 0 in eq. (2.11)) changes by 25% in
the very small mass range displayed. At all the other gauge couplings the situation is very
similar, with ZA from the massive Ward identity definition being mass-independent within
errors, as evinced by Tab. 2. In fact, performing fits to a constant over the considered mass
range yields suitably small χ2- and very reasonable goodness-of-fit-values and, therefore, is
fully consistent with our data. Moreover, the slopes, which would come out of linear fits,
are compatible with zero within one standard deviation for most ensembles (and within
1.5σ for all), and their magnitude is such that we do not expect them to have any relevant
impact on our final results and errors. All this serves as a further justification of this chiral
extrapolation procedure.

Near the continuum, and in the O(a) improved theory, the dependence of renormaliza-
tion factors on the lattice extent is expected to be an O

(
(a/L)2

)
effect, hence deviations

from the line of constant physics should affect our determination of ZA by the same amount.
The B2k1 ensemble has been generated exactly with the purpose of checking these effects,
as it differs from the ensembles in the B1 series by a 6% change in L. The value of ZA

determined there lies within one standard deviation from the chirally extrapolated value
for the B1 series, and we are therefore confident that (small) variations of L do not produce
significant shifts in our estimates of ZA.

Our final results for ZA, after chiral extrapolations via performing fits to a constant
3 Explicit expressions for the basis wave-functions entering in this analysis, as well as for the resultant

eigenvector projecting onto the (approximate) ground state can be found in Ref. [15].
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Figure 2: Chiral extrapolations for ZA = ZA,0 imposing the massive and massless conditions on
ensembles {B1k1, B1k2, B1k3} at L/a = 16, β = 3.512. The data in the massive case, for which a
slope is found to be statistically insignificant, are fitted to a constant.
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Figure 3: Final results and interpolation for ZA(g20) = ZA,0(g20).

at each β as explained before, are shown in Fig. 3 as a function of g20. One can see that
the data lie on a smooth curve, which we describe by performing a Padé fit, producing the
expression:

ZA(g20) = 1− 0.090488 g20 ×
1− 0.29026 g20 − 0.12881 g40

1− 0.53843 g20
. (4.1)

The associated χ2/d.o.f. is 1.71. Notice that the 1-loop perturbative formula ZA(g20) =

1− 0.090488 g20, extracted for our gauge action from the results of the calculation in [26],
is imposed as asymptotic constraint. Errors at the directly simulated β-values decrease in
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Figure 4: Comparison of ZA(g20) and Zcon
A (g20) for 1.3 ≤ g20 ≤ 1.82.

relative size from about 1.4% at the coarsest lattice spacing (corresponding to β = 3.3) to
about 2.4%� at β = 3.81. It is interesting to observe that for β ≤ 5.5 our interpolation
formula results are consistent with those obtained in [27] for ZA with 3 flavors of stout link
non-perturbative clover fermions using a different scheme (RI’-MOM).

In our setup, an alternative definition of ZA can be obtained by dropping the dis-
connected diagrams since, as discussed in Section 2, those are expected to contribute at
O(a2) only. The results for the corresponding Zcon

A are reproduced in Fig. 4, where they
are also put in comparison to the interpolation formula in eq. (4.1) for 1.3 ≤ g20 ≤ 1.9.
The difference between the two definitions amounts to a cutoff effect, and we could indeed
explicitly check that it vanishes even faster than a2. Compared to the Nf = 2 case in [4],
we observe a much smoother, with the exception4 of the point at a ≈ 0.09 fm almost flat,
dependence of Zcon

A on g20 at the lattice spacings considered. We ascribe that to the choice
of the kinematical setup (L ≈ 1.2 fm) and to the approximate isolation of the ground state
in the correlation functions involved, which we adopted following the suggestion put for-
ward in [5] in order to minimize intermediate-distance cutoff effects. Indeed, as depicted in
Fig. 5, we see a rather slow decay in time of the correlation function fP(x0) approximately
projected to the ground state, and very moderate lattice artifacts. The slope corresponds
to an effective mass which is smaller than 0.3 in units of the lattice spacing, and the ap-
proximate linear behavior of the correlators in the plot implies that they are dominated by
a few states (most likely one, except at very short distances), all with energies well below
the cutoff scale. This is in contrast with the quite strong time-dependence observed in [28]
for the correlators entering the definition of ZA. In that case, corresponding to 3 flavors
of non-perturbatively improved Wilson fermions with Iwasaki gauge action, rather small

4 Let us remark in this context that at the coarsest lattice spacing of a ≈ 0.09 fm (β = 3.3) substantial
cutoff effects (e.g., for Wilson flow observables) were also encountered in large-volume (2 + 1)-flavor QCD
simulations [7], with the same setup of non-perturbatively improved Wilson fermions in the sea and the
Lüscher-Weisz action for the gluons as used here.
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tree-level

Figure 5: The correlator fP(x0) projected to the approximate ground state (i.e., by taking the
inner product with the associated eigenvector denoted by η(0) in [15]), for the different values of
the gauge coupling along the chosen line of constant physics. Errors are of the size of the symbols
and hence suppressed for better readability.

volumes and wall-sources (without attempting to project on the ground state) have in fact
been used.

5 Conclusions

In this work we have non-perturbatively determined ZA(g20), the renormalization factor of
the axial vector current matrix elements, in lattice QCD with Nf = 3 flavors of Wilson
quarks, non-perturbative csw [13] and the tree-level Symanzik-improved gauge action. The
renormalization condition is chosen such that the Ward identities are restored up to O(a2)

at finite lattice spacing. The main result is the parameterization of ZA(g20), eq. (4.1), valid
for bare couplings below g20 ≈ 1.8 (or, equivalently, for lattice spacings a . 0.09 fm).

As the range of lattice spacings covered in this work matches those of the large-volume
Nf = 2 + 1 flavor QCD ensembles of gauge field configurations currently being generated
in dynamical simulations with the same lattice action [7], the present calculation (together
with the determination of the improvement coefficient cA in [15]) is a useful ingredient in
the computation of quark masses as well as of pseudoscalar meson decay constants, which
can be used to convert lattice spacings to physical units and are of great phenomenological
interest by their own.
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