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Abstract

Numerical approaches to higher-order calculations often employ subtraction terms, both for

the real emission and the virtual corrections. These subtraction terms have to be added back.

In this paper we show that at NLO the real subtraction terms, the virtual subtraction terms, the

integral representations of the field renormalisation constants and – in the case of initial-state

partons – the integral representation for the collinear counterterm can be grouped together

to give finite integrals, which can be evaluated numerically. This is useful for an extension

towards NNLO.

1



1 Introduction

Numerical methods are a promising path to higher-order corrections. The higher-order corrections

are required for precision calculations in high energy physics. Within the numerical approach one

subtracts suitable approximation terms from the real emission contribution and the virtual contri-

bution. The subtraction terms for the real emission contribution at next-to-leading order (NLO)

are well established [1–20]. More recently, it has become possible to use the subtraction method

for the virtual part at NLO as well [21–30]. The subtracted real emission contribution and the

subtracted virtual contribution can be evaluated separately by numerical methods. The subtracted

approximation terms have to be added back and give a finite contribution to the final result. Due to

the universality of the singular limits, the approximation terms can be chosen as a sum of process-

independent building blocks. When adding the approximation terms back, the integrations over the

virtual loop momentum (for the virtual approximation terms) and the unresolved phase space (for

the real approximation terms) are independent of the process-dependent kinematics. At NLO the

corresponding integrals are rather simple and the integration over the loop momentum/unresolved

phase space can be performed analytically once and for all.

The situation changes at NNLO: An analytic integration of local subtraction terms is highly

non-trivial [31–37]. It is therefore a natural question to ask, if the integration over the loop momen-

tum/unresolved phase space can be done numerically. The computational costs for the numerical

integration of the subtraction terms will be small against the costs for the numerical integration of

the subtracted real emission contribution or the subtracted virtual contribution. In this paper we

will study the issue at NLO. Let us stress that our motivation is to lay the foundations for an ex-

tension towards NNLO. If analytically integrated results for the approximation terms are available

(as they are for NLO) it is more efficient to use these in actual NLO computations. Our focus is

therefore more on the principles and practicalities of the cancellations of singularities. We will

soon see that due to some subtleties it is worth the effort to study these issues at NLO.

Taken separately, the integrations over the virtual approximation terms and the real approxima-

tions terms are divergent in four-dimensional space-time. When manipulating divergent integrals,

we will always use dimensional regularisation with D = 4−2ε space-time dimensions. Our final

expressions will be finite and the limit ε → 0 can be taken safely. Integrating the approxima-

tion terms numerically will therefore require a map between the D-dimensional loop momentum

space and the (D−1)-dimensional unresolved phase space. The loop-tree duality method [38–43]

provides a technique to handle this situation.

In the past there have been attempts to combine directly the virtual corrections with the real

corrections [44–47]. This has the disadvantage that one deals at all stages with kinematics of

an 2 → n process. Our approach first subtracts one set of approximation terms from the virtual

corrections and a different set from the real emission. We only combine the virtual approximation

terms with the real approximation terms. The approximation terms have a much simpler kinematic

structure. At NLO this limits us to one-loop three-point functions (in the virtual case) and three

external momenta (in the real emission case), independently of the number of hard particles in the

scattering process.

Let us now discuss the subtleties of combining the virtual approximation terms with the real
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approximation terms. Our main interest is higher-order corrections in QCD. Therefore we deal

with massless gauge bosons and massless or massive fermions. Now let us consider a collinear

singularity from the real emission contribution. The two collinear particles will have transverse

polarisations. On the other hand, for a collinear singularity in the virtual part one of the involved

particles will have a longitudinal polarisation. These two pieces will not match. A second mani-

festation of the same problem is obtained by considering the g → qq̄ splitting. In the collinear limit

this gives a singular contribution in the real emission part, however the corresponding limit in the

virtual part is finite. The solution to both problems is to take the field renormalisation constants

into account in the form of un-integrated expressions. For massless fields, the αs-contributions to

the field renormalisation constants are zero, however this zero comes from a cancellation between

ultraviolet and infrared regions. Effectively, the field renormalisation constants reshuffle ultravi-

olet with infrared transverse/longitudinal singularities and are needed for a local cancellation of

singularities at the integrand level. We will explain these mechanisms in detail.

If initial-state partons are present a further subtlety arises: The region for the collinear singu-

larity from the virtual part does not match with the region for the collinear singularity from the

real part. The solution comes in the form of the collinear counterterm, which has to be included.

In integrated form this counterterm has to parts: An x-dependent piece, leading to a convolution in

x, and an end-point contribution, proportional to δ(1− x). We derive an integral representation for

both parts, such that on the one hand the integrand corresponding to the convolution part combines

with the real part and on the other hand the integrand corresponding to the end-point contribution

combines with the virtual part. In this way we achieve a local cancellation of singularities.

This paper is organised as follows: In section 2 we introduce the setup and the notation and

review known results. Sections 3-6 give the integral representations of all required ingredients: We

start in section 3 with the real approximation terms, followed by the virtual subtraction terms in

section 4. Section 5 is devoted to the integral representation of the renormalisation constants. Sec-

tion 6 discusses the collinear counterterm for initial-state partons. Having defined all ingredients,

we show in section 7 that the ingredients can be grouped together to give locally integrable expres-

sions. However, local integrability does not mean that all contributions can be integrated along

the real axes. In the virtual approximation terms there can be thresholds, which are avoided by a

deformation into the complex plane. Section 8 discusses therefore contour deformation. Finally,

our conclusions are given in section 9. Various technical details are collected in the appendix.

2 Notation and review of known results

2.1 Setup

Let us consider a 2 → n process. The contributions at leading and next-to-leading order are written

in a condensed notation as

〈O〉LO =

∫

n

OndσB, 〈O〉NLO =

∫

n+1

On+1dσR +

∫

n+loop

OndσV +

∫

n

OndσC. (1)
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Here, dσB denotes the Born contribution, whose matrix elements are given by the square of the

Born amplitudes with (n+ 2) partons |A(0)
n+2|2, summed over spins and colours. Similarly, dσR

denotes the real emission contribution, whose matrix elements are given by the square of the Born

amplitudes with (n+ 3) partons |A(0)
n+3|2. The term dσV gives the virtual contribution, whose

matrix elements are given by the interference term of the renormalised one-loop amplitude A
(1)
n+2,

with (n+ 2) partons, with the corresponding Born amplitude A
(0)
n+2. The renormalised one-loop

amplitude is given as the sum of the bare one-loop amplitude and the ultraviolet counterterm. We

write

dσV = dσV
bare +dσV

CT. (2)

Finally, dσC denotes a collinear counterterm, which subtracts the initial state collinear singularities.

Taken separately, the individual contributions at next-to-leading order are divergent and only their

sum is finite. Within the numerical approach, one adds and subtracts suitably chosen pieces to be

able to perform the phase space integrations and the loop integration by Monte Carlo methods:

〈O〉NLO =
∫

n+1

(

On+1dσR −OndσA
R

)

+
∫

n+loop

(

OndσV
bare −OndσA

V

)

+

∫

n



OndσC +On

∫

1

dσA
R +On

∫

loop

dσA
V +OndσV

CT



 . (3)

The approximation term for the real emission part is denoted by dσA
R , the approximation term for

the virtual part by dσA
V. By construction, the expressions

∫

n+1

(

On+1dσR −OndσA
R

)

and

∫

n+loop

(

OndσV
bare −OndσA

V

)

(4)

are numerically integrable. In this paper we are interested in the third term

〈O〉NLO
I+L =

∫

n



OndσC +On

∫

1

dσA
R +On

∫

loop

dσA
V +OndσV

CT



 . (5)

In particular we show that this term can be integrated numerically as well. We will separate this

term into an ultraviolet part and an infrared part. The numerical integration of the former part is un-

problematic and our focus lies on the numerical integration of the latter part. As already indicated

by the notation, the integration over the phase space of n hard particles will be common to all

terms in eq. (5). However, dσA
V involves an integration over the D-dimensional loop momentum

space, whereas dσA
R involves an extra integration over the (D−1)-dimensional unresolved phase

space. As these two terms are individually divergent, this requires a mapping between the loop
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momentum space and the unresolved phase space, such that non-integrable singularities cancel

locally in the combination.

Let us now go into more details: We denote the phase space measure for n final-state particles

by

dφn(pa + pb → p1, ..., pn) = (2π)DδD

(

pa + pb −
n

∑
i=1

pi

)

n

∏
i=1

dD pi

(2π)D−1
θ(p0

i )δ(p2
i −m2

i ). (6)

We have

dσB =
∣

∣

∣
A

(0)
n+2

∣

∣

∣

2

dφn. (7)

In order to keep the notation simple, we use the convention that the integral symbol includes the

flux factor, the averaging factors for the spin and colour degrees of freedom of the initial-state

particles, the symmetry factor for final-state particles and (in hadronic collisions) the integration

over the parton distribution functions. With this convention we have for example for hadronic

collisions∫

n

OndσB = ∑
a,b

∫
dx1 fa(x1)

∫
dx2 fb(x2)

1

2ŝns(1)ns(2)nc(1)nc(2)

1

S

∫
dφnOn

∣

∣

∣
A

(0)
n+2

∣

∣

∣

2

. (8)

The symmetry factor S is given by a product of factors (n j!), where n j denotes the number of

identical particles of type j in the final state. The number of colour degrees of freedom of a

particle a is denoted by nc(a). We have

nc(q) = nc(q̄) = 3, nc(g) = 8. (9)

The number of spin degrees of freedom of a particle a is denoted by ns(a). In D= 4−2ε space-time

dimensions we have within conventional dimensional regularisation

ns(q) = ns(q̄) = 2, ns(g) = D−2. (10)

As long as we are dealing with finite quantities we may take the limit D → 4, yielding two spin

degrees of freedom for a gluon in four space-time dimensions. We may write the phase space

measure for the real emission part as

dφn+1 = dφn dφunresolved. (11)

There is some freedom in defining the real approximation terms. In this paper we consider for

concreteness dipole subtraction terms [3–7,18–20], although our results can easily be translated to

all other local real subtraction schemes. In this case, dσA
R is given as a sum over dipoles:

dσA
R = (12)
(

∑
(i′, j′)

∑
k′ 6=i′, j′

Di′ j′,k′ + ∑
(i′, j′)

∑
a′

Da′
i′ j′ + ∑

(a′, j′)
∑

k′ 6= j′
Da′ j′

k′ + ∑
(a′, j′)

∑
b′ 6=a′

Da′ j′,b′
)

dφn dφunresolved.
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In this paper we use the convention that particles corresponding to a real emission event are de-

noted with primes. The requirement of local subtraction terms implies that in general the dipole

subtraction terms are matrices in spin and colour space. This is due to the fact that in the factori-

sation of the matrix elements squared spin correlations survive in the collinear limit, while colour

correlations survive in the soft limit. At NLO, the integration over the unresolved one-particle

phase space is easily performed analytically in (D− 1) dimensions. In a compact notation the

result of this integration is often written as

dσC +

∫

1

dσA
R = I⊗dσB +K⊗dσB +P⊗dσB. (13)

After integration all spin-correlations average out, but colour correlations still remain, indicated

by the notation ⊗. The terms with the insertion operators K and P do not have any poles in

the dimensional regularisation parameter ε. All explicit poles in the dimensional regularisation

parameter are contained in the term I⊗dσB.

Let us now turn our attention to the virtual part. dσV is given by

dσV = 2 Re
(

A(0) ∗ A(1)
)

dφn. (14)

A(1) denotes the renormalised one-loop amplitude. It is related to the bare amplitude by

A(1) = A
(1)
bare +A

(1)
CT . (15)

A
(1)
CT denotes the ultraviolet counterterm from renormalisation. The bare one-loop amplitude in-

volves the loop integration

A
(1)
bare =

∫
dDk

(2π)D
G

(1)
bare, (16)

where G
(1)
bare denotes the integrand of the bare one-loop amplitude. Within the numerical approach

also the one-loop amplitude A(1) can be calculated numerically. In order to avoid singularities in

the integrand, the subtraction method is used again:

A
(1)
bare +A

(1)
CT =

(

A
(1)
bare −A

(1)
soft −A

(1)
coll −A

(1)
UV

)

+
(

A
(1)
CT +A

(1)
soft +A

(1)
coll +A

(1)
UV

)

. (17)

The subtraction terms A
(1)
soft, A

(1)
coll and A

(1)
UV are chosen such that they match locally the singular

behaviour of the integrand of A
(1)
bare in D dimensions. The term A

(1)
soft approximates the soft singular-

ities, A
(1)
coll approximates the collinear singularities and the term A

(1)
UV approximates the ultraviolet

singularities. These subtraction terms have a local form similar to eq. (16):

A
(1)
soft =

∫
dDk

(2π)D
G

(1)
soft, A

(1)
coll =

∫
dDk

(2π)D
G

(1)
coll, A

(1)
UV =

∫
dDk

(2π)D
G

(1)
UV. (18)
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Again, there is some freedom in defining these approximation terms. We use the approximation

terms given in [23–27]. The approximation term dσA
V is given by

dσA
V =

dDk

(2π)D
2 Re

[

A(0) ∗
(

G
(1)
soft +G

(1)
coll +G

(1)
UV

)]

dφn. (19)

At NLO the loop integration for the approximation term dσA
V is easily performed analytically in D

dimensions. One obtains

dσV
CT +

∫

loop

dσA
V = L⊗dσB. (20)

The operator L contains, as does the operator I, colour correlations due to soft gluons. In addi-

tion, the insertion operator L contains explicit poles in the dimensional regularisation parameter ε
related to the infrared singularities of the one-loop amplitude. These poles cancel when combined

with the insertion operator I:

(I+L)⊗dσB = finite. (21)

Eq. (21) is a statement on the cancellation of singularities after the integration over the unresolved

phase space and the loop momentum space, respectively. In this paper we would like to achieve a

cancellation of singularities before these integrations.

2.2 Colour

The amplitudes are vectors in colour space. It is convenient to define colour charge operators acting

on the colour indices of the amplitudes as follows: The colour charge operators Ti for the emission

of a gluon from a quark, gluon or antiquark in the final state are defined by

quark : Tq→qgA
(

...q j...
)

=
(

T a
i j

)

A
(

...q j...
)

,

gluon : Tg→ggA
(

...gb...
)

=
(

i f cab
)

A
(

...gb...
)

,

antiquark : Tq̄→q̄gA
(

...q̄ j...
)

=
(

−T a
ji

)

A
(

...q̄ j...
)

. (22)

The minus sign for the antiquark has its origin in the fact that for an outgoing antiquark the (outgo-

ing) momentum flow is opposite to the flow of the fermion line. The corresponding colour charge

operators for the emission of a gluon from a quark, gluon or antiquark in the initial state are

quark : Tq̄→q̄gA
(

...q̄ j...
)

=
(

−T a
ji

)

A
(

...q̄ j...
)

,

gluon : Tg→ggA
(

...gb...
)

=
(

i f cab
)

A
(

...gb...
)

,

antiquark : Tq→qgA
(

...q j...
)

=
(

T a
i j

)

A
(

...q j...
)

. (23)
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In the amplitude an incoming quark is denoted as an outgoing antiquark and vice versa. For the

squares of the colour charge operators one has

T2
q→qg =CF , T2

g→gg =CA. (24)

We also define the colour charge operator for the emission of a quark-antiquark pair from a gluon

by

Tg→qq̄A
(

...gb...
)

=
(

T b
i j

)

A
(

...gb...
)

(25)

and

T2
g→qq̄ = TR. (26)

CA, CF and TR are the usual SU(Nc) colour factors, given by

CA = Nc, CF =
N2

c −1

2Nc
, TR =

1

2
. (27)

In squaring an amplitude we obtain terms proportional to Ti ·Tk (with k 6= i) and terms proportional

to T2
i . We may re-express T2

i as a combination of terms involving only Ti ·Tk with k 6= i. This can

be done using colour conservation. We write for i ∈ {q,g, q̄}

T2
i = −∑

k 6=i

Ti ·Tk, (28)

where the sum runs over all external coloured partons k excluding parton i. For the splitting g→ qq̄

we write

T2
g→qq̄ = −∑

k 6=i

T2
g→qq̄

T2
i

Ti ·Tk. (29)

We further denote by β0 the first coefficient of the QCD β-function,

β0 =
11

3
CA −

4

3
TRN f , (30)

and introduce for later convenience the constants

γq = γq̄ =
3

2
CF , γg =

1

2
β0. (31)

In the real emission part there can be approximation terms corresponding to initial-state singulari-

ties with a flavour transition q→ g or g→ q. The averaging factor for the number of colour degrees

of freedom for the initial-state particle a′ is determined from the real emission matrix element with

(n+3) particles. When adding the real approximation terms back, it is within the dipole formal-

ism common practice to take as averaging factor the number of colour degrees of freedom for the
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particle a in the Born amplitude with (n+ 2) particles. This introduces a compensation factor in

the integrated approximation terms. We have

nc(q)

nc(g)
CF = TR,

nc(g)

nc(q)
TR = CF . (32)

In this paper we will not use this convention. We are interested in the local cancellation of singu-

larities at the integrand level. It is therefore natural to work in the phase space of (n+1)-final state

particles and we simply keep the averaging factor corresponding to a′.

2.3 Spin

The amplitudes are vectors in spin space as well. It is advantageous to set-up the subtraction

method locally in spin space. This allows the use of optimisation techniques like helicity sampling

[18, 19]. In QCD, both quarks and gluons have two independent spin states, which we can label

by “+” and “−”. The polarisations of an external gluon are described by two polarisation vectors

ε±µ , the polarisations of an outgoing quark are described by the two spinors ū±α , the ones of an

incoming quark by u±α . The polarisations of an outgoing antiquark are described by v±α , the ones of

an incoming antiquark by v̄±α . For the convenience of the reader we have listed explicit expressions

for all polarisation vectors and polarisation spinors in appendix A.

Let us further denote by Aξ(..., i, ...) the amplitude, where the polarisation vector of particle i

has been removed. If particle i is a gluon, ξ is a Lorentz index, while in the case where particle i is

a quark ξ corresponds to a Dirac index.

2.4 The loop-tree duality method

Let us consider a one-loop integral with n external momenta {p1, ..., pn}. In this sub-section it will

be convenient to take all particles as outgoing. Then, the momenta of the incoming particles will

have negative energy components. We further assume without loss of generality that the cyclic

order of the external momenta is p1, p2, ..., pn. If this is not the case, a simple re-labelling of the

momenta will achieve this. With the notation as in fig. (1) we define

k j = k−q j, q j =
j

∑
l=1

pl. (33)

A generic one-loop integral can be written as

In =

∫
dDk

(2π)D

P(k)
n

∏
j=1

(

k2
j −m2

j + iδ
)
. (34)

P(k) is a polynomial in the loop momentum k. The +iδ-prescription in the propagators indicates

into which direction the poles of the propagators should be avoided. The loop-tree duality tech-

nique allows us to replace the integration over the D-dimensional loop momentum space by n
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p1

p2

...

pn−1

pn

kn

k1

k2

kn−1

Figure 1: The labelling of the momenta for a generic one-loop integral. The arrows denote the

momentum flow.

integrations over the (D−1)-dimensional forward hyperboloids [38]:

In = −i
n

∑
i=1

∫
dD−1k

(2π)D−1 2ki,0

P(k)
n

∏
j=1

j 6=i

[

k2
j −m2

j − iδη
(

k j − ki

)

]

∣

∣

∣

∣

∣

∣

ki,0=
√

~k2
i +m2

i

, (35)

where η is a vector with η0 > 0 and η2 ≥ 0. Alternatively, we may integrate over the backward

hyperboloids:

In = i
n

∑
i=1

∫
dD−1k

(2π)D−1 2ki,0

P(k)
n

∏
j=1

j 6=i

[

k2
j −m2

j + iδη
(

k j − ki

)

]

∣

∣

∣

∣

∣

∣

ki,0=−
√

~k2
i +m2

i

. (36)

Note the sign change in the iδη(k j − ki)-term.

Typical ultraviolet subtraction terms are of the form

IUV
r =

∫
dDk

(2π)D

P
(

k̄
)

(

k̄2 −µ2
UV + iδ

)r , (37)

with k̄ = k−Q and µUV an arbitrary mass. Q is an arbitrary four-vector independent of the loop

momentum k. The quantity P(k̄) is again a polynomial in k̄. In eq. (37) there is only a single

propagator, but this propagator may be raised to the power r. Again, we may use the residue

theorem to replace the integration over the D-dimensional loop momentum space by an integration
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over the (D−1)-dimensional forward hyperboloid [39]:

IUV
r = −i

∫
dD−1k

(2π)D−1

1

(r−1)!

(

d

dk̄0

)r−1 P
(

k̄
)

(

k̄0 +

√

~̄k+µ2
UV

)r

∣

∣

∣

∣

∣

∣

k̄0=

√

~̄k+µ2
UV

. (38)

There are only a finite number of ultraviolet subtraction terms. The differentiations with respect to

k̄0 in eq. (38) may be carried analytically once and for all. Note that we may take in eq. (38) the

parameter µ2
UV to be complex. Alternatively, we may integrate over the backward hyperboloid:

IUV
r = i

∫
dD−1k

(2π)D−1

1

(r−1)!

(

d

dk̄0

)r−1 P
(

k̄
)

(

k̄0 −
√

~̄k+µ2
UV

)r

∣

∣

∣

∣

∣

∣

k̄0=−
√

~̄k+µ2
UV

. (39)

2.5 Phase space generation

We recapitulate some basic facts about phase space generation. Let us start from an n-parton

configuration. In hadron collisions we have an integral of the form

1∫

0

dz1

1∫

0

dz2

∫
dφn (z1Pa + z2Pb → p1 + ...pn)

fa (z1)

z1

fb (z2)

z2
Mn ({p}) , (40)

where we suppressed all factors not relevant to the discussion here. We denote by Pa and Pb the

momenta of the incoming hadrons, the set {p} is given by {z1Pa,z2Pb, p1, ..., pn}. Given Pa and Pb,

we first generate the momentum fractions z1 and z2 and then the final state momenta {p1, ..., pn}.

Now let us look at an (n+1)-parton configuration:

1∫

0

dz1

1∫

0

dz2

∫
dφn+1

(

z1Pa + z2Pb → p′1 + ...p′n+1

) fa (z1)

z1

fb (z2)

z2
Mn+1

({

p′
})

, (41)

with {p′}= {z1Pa,z2Pb, p′1, ..., p′n+1}. We would like to re-write this integral as an n-parton phase

space integral plus some additional integrations. Using the phase space factorisation for final-state

particles this can be done:

1∫

0

dz1

1∫

0

dz2

∫
dφn (z1Pa + z2Pb → p1 + ...pn)

∫
dφunres

fa (z1)

z1

fb (z2)

z2
Mn+1

({

p′
})

. (42)

Thus we first generate the momentum fractions z1 and z2, then n final-state momenta {p1, ..., pn}.

Finally, using (D−1) additional variables, we construct from the set {p1, ..., pn} and the additional

variables the final-state momenta {p′1, ..., p′n+1}.
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Now let us consider the case, where we use phase space factorisation with initial-state particles.

In this case we obtain a convolution in one variable, which we denote by x. We write

dφunres = dx dφred
unres, (43)

where dφred
unres is the measure for the remaining (D−2) variables. We now have

1∫

0

dz1

1∫

0

dz2

1∫

0

dx

∫
dφred

unres

∫
dφn (xz1Pa + z2Pb → p1 + ...pn)

fa (z1)

z1

fb (z2)

z2
Mn+1

({

p′
})

. (44)

According to this expression, we would first generate the momentum fractions z1 and z2, then the

variables of dφunres (including x), then the intermediate momenta {p} = {xz1Pa,z2Pb, p1, ..., pn}
and finally the momenta {p′} = {z1Pa,z2Pb, p′1, ..., p′n+1}. We would like to switch the order and

generate dφn before dφunres. We make the change of variables z1 = z′1/x and obtain

1∫

0

dz′1

1∫

0

dz2

∫
dφn

(

z′1Pa + z2Pb → p1 + ...pn

)

(45)

×
1∫

0

dx

∫
dφred

unresθ
(

x− z′1
)

fa

(

z′1
x

)

z′1

fb (z2)

z2
Mn+1

({

p′
})

.

This allows us to generate dφn before dφunres. Consider now the case, where Mn+1 factorises as

Mn+1

({

p′
})

= Sing
({

p′
})

Mn ({p}) , (46)

where Mn depends only on {p}. We are in particular interested in the case, where the singular

function Sing({p′}) is of the form

Sing
({

p′
})

= A(x)−δ(1− x)

1∫

0

dy B(y) . (47)

Plugging this in gives

1∫

0

dz′1
z′1

1∫

0

dz2

z2

∫
dφn

(

z′1Pa + z2Pb → p1 + ...pn

)

fb (z2)Mn ({p}) (48)

×
1∫

0

dx

∫
dφred

unres

[

θ
(

x− z′1
)

fa

(

z′1
x

)

A(x)− fa

(

z′1
)

B(x)

]

.

Eq. (48) defines how to implement functions of the form of eq. (47). In particular this applies to

the cases, where A(x) and B(x) contain the same singular terms 1/(1− x):

A(x) =
c

1− x
+finite terms,

B(x) =
c

1− x
+other finite terms. (49)
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3 The real approximation terms

In this section we define the real subtraction terms

dσA
R = (50)
(

∑
(i′, j′)

∑
k′ 6=i′, j′

Di′ j′,k′ + ∑
(i′, j′)

∑
a′

Da′
i′ j′ + ∑

(a′, j′)
∑

k′ 6= j′
Da′ j′

k′ + ∑
(a′, j′)

∑
b′ 6=a′

Da′ j′,b′
)

dφn dφunresolved.

The definition given here differs – when summed over the spins of the unobserved particles – from

the original dipole subtraction terms [3] by finite terms. This is un-problematic as long as we add

and subtract exactly the same quantity. The essential property of the subtraction terms is that they

have the same singular behaviour as the matrix elements squared which they approximate. If an

analytic integration of the subtraction terms is envisaged one may in a second step modify the

approximation terms by finite terms in order to simplify the analytic integration. However, within

the approach based on numerical integration discussed in this paper the second step is not neces-

sary. The real approximation terms defined below have the additional pedagocial advantage that

they show manifestly, that all unresolved particles in the real approximation terms have transverse

polarisations. This will be important for the cancellation of singularities.

The real approximation terms are obtained from the singular limits of the real emission matrix

element squared. We have to consider soft and collinear limits. Let us start with the collinear limit.

We consider a splitting i → i′+ j′. The collinear limit occurs only in massless case. However, if

the masses of the particles are small against other invariants of the process, it is advantageous to

include approximation terms for the quasi-collinear limit [7, 18]. In the quasi-collinear limit we

parametrise the momenta of the two quasi-collinear final-state partons i′ and j′ as

p′i = zp+ k⊥− k2
⊥+ z2m2

i −m′
i
2

z

n

2p ·n ,

p′j = (1− z)p− k⊥−
k2
⊥+(1− z)2m2

i −m′
j
2

1− z

n

2p ·n . (51)

Here n is a massless four-vector and the transverse component k⊥ satisfies 2pk⊥ = 2nk⊥ = 0. The

four-vectors p, p′i and p′j are on-shell:

p2 = m2
i , p′i

2 = m′
i
2, p′j

2 = m′
j
2. (52)

In the quasi-collinear limit we take terms of the order O(k⊥), O(mi), O(m′
i) and O(m′

j) to be of

the same order. The collinear limit is a special case of the quasi-collinear limit, obtained by setting

mi = m′
i = m′

j = 0. If the emitting particle is in the initial state, the collinear limit is defined as

p′a = p,

p′j = (1− x) p+ k⊥− k2
⊥

1− x

n

2p ·n ,

pa = xp− k⊥− k2
⊥
x

n

2p ·n . (53)
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Here, all particles are massless. In this paper we restrict ourselves to massless incoming partons,

therefore we do not have to consider the generalisation to the massive quasi-collinear case for

initial-state partons.

In the quasi-collinear limit we have to consider terms of order O(k−2
⊥ ). In this limit the Born

amplitude factorises according to

lim
p′i||p′j

A
(0)
n+1

(

..., p′i, ..., p′j, ...
)

=

gµεS
− 1

2
ε ∑

λi

Split
λi

i→i′+ j′(pi, p′i, p′j,λ
′
i,λ

′
j) Ti→i′+ j′ A

(0)
n (..., pi,λi, ...) . (54)

where the sum is over all polarisations of the intermediate particle. The quantity

Sε = (4π)ε
e−εγE (55)

is the typical phase space volume factor in D = 4−2ε dimensions and γE is Euler’s constant. The

variables λ′
i and λ′

j denote the polarisations of the particles i′ and j′, respectively. The splitting

functions Split are given by

Splitλi
q→qg

(

pi, p′i, p′j,λ
′
i,λ

′
j

)

=
1

(p′i + p′j)
2 −m2

i

ūλ′
i(p′i)ε/

λ′
j(p′j)u

λi(pi),

Splitλi
g→gg

(

pi, p′i, p′j,λ
′
i,λ

′
j

)

=
2

2p′i · p′j

[

ελ′
i(p′i) · ελ′

j(p′j) p′i · ελi(pi)
∗

+ελ′
j(p′j) · ελi(pi)

∗
p′j · ελ′

i(p′i)− ελ′
i(p′i) · ελi(pi)

∗
p′i · ελ′

j(p′j)
]

,

Split
λi
g→qq̄

(

pi, p′i, p′j,λ
′
i,λ

′
j

)

=
1

2p′i · p′j
ūλ′

i(p′i) ε/λi(pi)
∗

v
λ′

j(p′j). (56)

Here we used the notation ε/λ(p)
∗
= ελ

µ(p)∗ γµ, i.e. complex conjugation is only with respect to

the polarisation vector. We define the squares of the splitting amplitudes by

[

Pi→i′+ j′
(

pi, p′i, p′j,λ
′
i,λ

′
j

)]

αβ
= ∑

λ,λ′
uλ

α(pi) Splitλ
∗

Splitλ
′
ūλ′

β (pi) for quarks,

[

Pi→i′+ j′
(

pi, p′i, p′j,λ
′
i,λ

′
j

)]

µν
= ∑

λ,λ′
ελ

µ(pi)
∗

Splitλ
∗

Splitλ
′
ελ′

ν (pi) for gluons. (57)

The squared amplitude factorises in the (quasi-) collinear limit as

lim
p′i||p′j

∣

∣

∣
A

(0)
n+1

∣

∣

∣

2

= 4παsS
−1
ε µ2εA

ξ (0)
n

∗
T2

i→i′+ j′
[

Pi→i′+ j′
(

pi, p′i, p′j,λ
′
i,λ

′
j

)]

ξξ′
A

ξ′ (0)
n . (58)

Let us now consider the soft limit. We consider the case where particle j′ becomes soft. In the soft

limit we parametrise the momentum of the soft parton p′j as

p′j = λq (59)
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and consider contributions to |A(0)
n+1|2 of the order λ−2. Contributions to |A(0)

n+1|2 which are less

singular than λ−2 are integrable in the soft limit. In the soft limit a Born amplitude A
(0)
n+1 with

(n+1) partons behaves as

lim
p′j→0

A
(0)
n+1 = gS

− 1
2

ε µεεµ(p′j)J
µA

(0)
n . (60)

The eikonal current is given by

Jµ = ∑
i 6= j

Ti
p′i

µ

p′i · p′j
. (61)

The sum is over the remaining n hard momenta p′i. The quasi-collinear splittings q → qg and

g → gg have non-vanishing soft limits and a part of the soft limit is already approximated by

these terms. In addition we will need the terms which are singular in the soft limit, but not in the

(quasi)-collinear limit. To this aim we set

[

Sq→qg

(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)]

αβ
= −

(

p′i · ε′j∗
)(

p′k · ε′j
)

+
(

p′k · ε′j∗
)(

p′i · ε′j
)

(

p′i · p′j
)(

p′i · p′j + p′j · p′k

) u
λ′

i
α (p′i)ū

λ′
i

β
(p′i),

[

Sg→gg

(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)]

µν
= −

(

p′i · ε′j∗
)(

p′k · ε′j
)

+
(

p′k · ε′j∗
)(

p′i · ε′j
)

(

p′i · p′j
)(

p′i · p′j + p′j · p′k

) ε
λ′

i
µ (p′i)

∗
ε

λ′
i

ν (p′i)

−

(

p′j · ε′i∗
)

(

p′k · ε′i
)

+
(

p′k · ε′i∗
)

(

p′j · ε′i
)

(

p′i · p′j
)(

p′i · p′j + p′i · p′k

) ε
λ′

j
µ (p′j)

∗
ε

λ′
j

ν (p′j),

(62)

where we used the abbreviation ε′l = ελ′
l(p′l) for l = i, j. In connection with crossing symmetry it

is useful to define the following operation

Ci : εi ↔ ε∗i ,

ūi ↔ v̄i,

ui ↔ vi, (63)

which adjusts the polarisation vector or spinor of the i-th particle from the final to the initial state

and vice versa. We may now list the dipole subtraction terms.
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3.1 Final-state emitter and final-state spectator

If both the emitter and the spectator are in the final state, the dipole approximation terms are given

by

Di′ j′,k′ =−4παsS
−1
ε µ2ε (64)

Aξ (0) (..., pi, ..., pk, ...)
∗ Ti ·Tk

T2
i

[

Vi′ j′,k′
(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)]

ξξ′
Aξ′ (0) (..., pi, ..., pk, ...) .

The functions Vi′ j′,k′ are given for the various splittings by

Vi′q j′g,k′
(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)

= CF

[

Pq→qg

(

pi, p′i, p′j,λ
′
i,λ

′
j

)

+Sq→qg

(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)]

,

Vi′g j′g,k′
(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)

= CA

[

Pg→gg

(

pi, p′i, p′j,λ
′
i,λ

′
j

)

+Sg→gg

(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)]

,

Vi′q j′q̄,k′
(

pi, p′i, p′j, p′k,λ
′
i,λ

′
j

)

= TR

[

Pg→qq̄

(

pi, p′i, p′j,λ
′
i,λ

′
j

)]

. (65)

The mapped momenta pi and pk are defined in the massless case by

pi = p′i + p′j −
y

1− y
p′k, pk =

1

1− y
p′k, y =

p′i · p′j
p′i · p′j + p′i · p′k + p′j · p′k

. (66)

In the massive case we use

pk =

√

λ(Q2,m2
i ,m

2
k)

√

λ(Q2,(p′i + p′j)
2,m2

k)

(

p′k −
Q · p′k

Q2
Q

)

+
Q2 +m2

k −m2
i

2Q2
Q,

pi = Q− pk, (67)

where Q = p′i + p′j + p′k and λ is the Källen function

λ(x,y,z) = x2 + y2 + z2 −2xy−2yz−2zx. (68)

Note that the particle type of the spectator is not changed and therefore m′
k = mk. Eq. (67) reduces

in the massless limit to eq. (66).

3.2 Final-state emitter and initial-state spectator

If the emitter is in the final state and the spectator in the initial state, the dipole approximation

terms are given by

Da′
i′ j′ =−4παsS

−1
ε µ2ε (69)

Aξ (0) (..., pi, ..., pa, ...)
∗ Ti ·Ta

T2
i

[

V a′
i′ j′
(

pi, p′i, p′j, p′a,λ
′
i,λ

′
j

)

]

ξξ′
Aξ′ (0) (..., pi, ..., pa, ...) .
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The dipole splitting function is related by crossing to the final-final case:

V a′
i′ j′
(

pi, p′i, p′j, p′a,λ
′
i,λ

′
j

)

= Vi′ j′,a′
(

pi, p′i, p′j,−p′a,λ
′
i,λ

′
j

)

. (70)

The mapped momenta pi and pa are defined by

pi = p′i + p′j − (1− x)p′a, pa = xp′a. (71)

The variable x is given by

x =
p′i · p′a + p′j · p′a − p′i · p′j +

1
2

(

m2
i −m′

i
2 −m′

j
2
)

p′i · p′a + p′j · p′a
. (72)

In the massless case and in the case where m′
i = mi and m′

j = 0 this reduces to

x =
p′i · p′a + p′j · p′a − p′i · p′j

p′i · p′a + p′j · p′a
. (73)

3.3 Initial-state emitter and final-state spectator

If the emitter is in the initial state and the spectator in the final state, the dipole approximation

terms are given by

Da′ j′

k′ =−4παsS
−1
ε µ2ε (74)

Aξ (0) (..., pa, ..., pk, ...)
∗ Ta ·Tk

T2
a

[

V
a′ j′

k′
(

pa, p′a, p′j, p′k,λ
′
a,λ

′
j

)

]

ξξ′
Aξ′ (0) (..., pa, ..., pk, ...) .

The dipole splitting function is related by crossing to the final-final case:

V
a′ j′

k′
(

pa, p′a, p′j, p′k,λ
′
a,λ

′
j

)

= C(a′,a)Va′ j′,k′
(

−pa,−p′a, p′j, p′k,λ
′
a,λ

′
j

)

. (75)

The operation C is defined in eq. (63). The mapped momenta pa and pk are defined by

pa = xp′a, pk = p′k + p′j − (1− x)p′a, x =
p′k · p′a + p′j · p′a − p′j · p′k

p′k · p′a + p′j · p′a
. (76)

Note that we restrict ourselves to massless initial-state particles. This implies that the masses of

the particles a, a′ and j′ are zero.
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3.4 Initial-state emitter and initial-state spectator

If both the emitter and the spectator are in the initial state, the dipole approximation terms are given

by

Da′ j′,b′ =−4παsS
−1
ε µ2ε (77)

Aξ (0) (..., pa, ..., pb, ...)
∗ Ta ·Tb

T2
a

[

V a′ j′,b′ (pa, p′a, p′j, p′b,λ
′
a,λ

′
j

)

]

ξξ′
Aξ′ (0) (..., pa, ..., pb, ...) .

The dipole splitting function is related by crossing to the final-final case:

V a′ j′,b′ (pa, p′a, p′j, p′b,λ
′
a,λ

′
j

)

= C(a′,a)Va′ j′,b′
(

−pa,−p′a, p′j,−p′b,λ
′
a,λ

′
j

)

. (78)

In this case the mapped momenta are defined as follows:

pa = xp′a, pb = p′b, x =
p′a · p′b − p′j · p′a − p′j · p′b

p′a · p′b
, (79)

and all final state momenta are transformed as

pl = Λp′l, (80)

where Λ is a Lorentz transformation defined by

Λ
µ
ν = g

µ
ν −2

(

Kµ + K̃µ
)(

Kν + K̃ν

)

(

K + K̃
)2

+2
K̃µKν

K2
,

K = p′a + p′b − p′j, K̃ = pa + pb. (81)

Again we consider only the case of massless initial-state particles. Therefore the masses of the

particles a, a′, b′ and j′ are zero.

4 The virtual approximation terms

In this section we give the virtual subtraction terms, which we split into an infrared part and an

ultraviolet part:

dσA
V = dσA

V,IR +dσA
V,UV, (82)

with

dσA
V,IR =

dDk

(2π)D
2 Re

[

A(0) ∗
(

G
(1)
soft +G

(1)
coll

)]

dφn,

dσA
V,UV =

dDk

(2π)D
2 Re

[

A(0) ∗ G
(1)
UV

]

dφn. (83)

The approximation terms are not unique and may be modified by adding finite terms. This freedom

is advantageous and can be used to improve the numerical stability when integrating over the

subtracted virtual part [27]. In this paper our focus lies on the basic principles of the cancellation of

singularities. In order to keep all formulae to a minimal length we quote the original approximation

terms from [25]. In this section we use the convention to take all particles as outgoing.
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emitter pi

spectator pk

ki−1

ki

ki+1

Figure 2: The momentum flow for the virtual infrared approximation terms. The kinematics is

specified by the three momenta pi, pk and ki.

4.1 The virtual infrared approximation terms

We may write the virtual infrared approximation terms as

dσA
V,IR =

(

∑
i

∑
k 6=i

Ei,k

)

dDk

(2π)D
dφn, (84)

with

Ei,k = −4παsS
−1
ε µ2ε 2 Re A(0) (..., pi, ..., pk, ...)

∗ Ti ·Tk

T2
i

Wi (pi, pk,ki) A(0) (..., pi, ..., pk, ...)

(85)

and

Wi (pi, pk,ki) = (86)

2i T2
i







pi · pk
[

(ki + pi)
2 −m2

i

]

k2
i

[

(ki − pk)
2 −m2

k

] − Si
[

(ki + pi)
2 −m2

i

]

k2
i

+
Si

(

k̄2 −µ2
UV

)2







.

mi and mk are the masses of the external particles i and k, respectively. Furthermore, Si = 1 if the

external line i corresponds to a quark and Si = 1/2 if it corresponds to a gluon. The first term

in eq. (86) approximates a soft singularity, the second term a (quasi-) collinear singularity. The

third term ensures that the expression is ultraviolet finite. Note that the loop integrals in the virtual

infrared approximation terms are three-point functions at most. The kinematic configuration is

illustrated in fig. (2), with ki−1 = ki + pi and ki+1 = ki − pk.

Dimensionally regulated scalar loop integrals are invariant under Lorentz transformations and

a shift of the loop momentum. This applies to the integral over the virtual infrared approximation

terms. For the subtracted one-loop amplitude the loop momenta in the approximation terms has to

match the appropriate loop momenta in the one-loop amplitude. This is best achieved by decom-

posing the one-loop amplitude into primitive one-loop amplitudes with a definite cyclic ordering of

the external legs and by matching the loop momenta in the approximation terms for each primitive

amplitude [48–53]. In adding the approximation terms back, we are in principle free to shift the
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loop momentum or to do a Lorentz transformation. Thus, we may choose the relation between ki

and k to be

k
µ
i = Λ

µ
νkν +aµ. (87)

We may use this freedom for a cancellation of the divergences with the real emission part.

4.2 The virtual ultraviolet approximation terms

We briefly comment on the virtual ultraviolet approximation terms:

dσA
V,UV =

dDk

(2π)D
2 Re

[

A(0) ∗G
(1)
UV

]

dφn. (88)

The function G
(1)
UV can be obtained from the Feynman diagrams for A(0) by replacing in a Feynman

diagram exactly one vertex or one propagator by the corresponding one-loop ultraviolet approxi-

mation term, summing over all replacement possibilities and over all Feynman diagrams. The basic

approximation terms for vertices and propagators can be found in [25,27]. In practice, it is advan-

tageous to compute G
(1)
UV not from Feynman diagrams, but to use recurrence relations [25, 27, 54].

The virtual ultraviolet approximation terms are of the form

IUV
r =

∫
dDk

(2π)D

P
(

k̄
)

(

k̄2 −µ2
UV + iδ

)r , (89)

with k̄ = k−Q, Q an arbitrary vector and µUV an arbitrary mass. The quantity P(k̄) is a polynomial

in k̄. Note that the integration in eq. (89) corresponds to a simple tadpole integral.

5 Renormalisation

In the MS-scheme the relation between the bare coupling gbare and the renormalised coupling g is

given by

gbare = ZgS
− 1

2
ε µεg. (90)

The renormalisation constant Zg is given by

Zg = 1+
αs

4π

(

−β0

2

)

1

ε
+O(α2

s ), (91)

where αs = g2/(4π). The scattering amplitudes are calculated from amputated Green functions.

Let us first consider in massless QCD an amplitude with nq external quarks, nq̄ external anti-quarks
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and ng external gluons. We set n= nq+nq̄+ng. Amplitudes with massive quarks will be discussed

later. The relation between the renormalised and the bare amplitude is given by

A(p1, ..., pn,g) =
(

Z
1/2
2

)nq+nq̄
(

Z
1/2
3

)ng

Abare(p1, ..., pn,gbare). (92)

Z2 is the quark field renormalisation constant and Z3 is the gluon field renormalisation constant.

The Lehmann-Symanzik-Zimmermann (LSZ) reduction formula instructs us to take for the field

renormalisation constants the residue of the propagators at the pole. In dimensional regularisa-

tion and for massless particles this residue is 1 and in an analytic calculation it is sufficient to

renormalise the coupling:

A(p1, ..., pn,g) = Abare

(

p1, ..., pn,ZgS
− 1

2
ε µεg

)

. (93)

However Z2 = Z3 = 1 is due to a cancellation between ultraviolet and infrared divergences. Keep-

ing track of the ultraviolet or infrared origin of the 1/ε-poles one finds in Feynman gauge

Z2 = 1+
αs

4π
CF

(

1

εIR
− 1

εUV

)

+O(α2
s ),

Z3 = 1+
αs

4π
(2CA −β0)

(

1

εIR
− 1

εUV

)

+O(α2
s ). (94)

In order to unify the notation we will write in the following Z i for the field renormalisation con-

stants, with the convention that Z i = Z2 if particle i is a massless quark and Z i = Z3 if particle i is

a gluon. We further write Z
(1)
i for the O(αs)-term:

Z i = 1+Z
(1)
i +O(α2

s ). (95)

Thus

Z
(1)
q =

αs

4π
CF

(

1

εIR
− 1

εUV

)

, Z
(1)
g =

αs

4π
(2CA −β0)

(

1

εIR
− 1

εUV

)

. (96)

In massless QCD we may write the ultraviolet counterterm as

A
(1)
CT =

[

−αs

4π

(n−2)

2

β0

εUV
− 1

2
∑

i
∑
k 6=i

Ti ·Tk

T2
i

Z
(1)
i

]

A(0), (97)

where we used colour conservation in the terms involving Z
(1)
i .

Let us now turn to the massive case. It is sufficient to consider the case of QCD amplitudes

with one heavy flavour, the generalisation to several heavy flavours is straightforward. There are

a few modifications. We have to take into account the heavy quark field renormalisation constant,

which is given in conventional dimensional regularisation by

Z2,Q = 1+
αs

4π
CF

(

− 1

εUV
− 2

εIR
−4+3ln

m2

µ2

)

+O
(

α2
s

)

. (98)
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We write Z i = Z2,Q if particle i is a massive quark. In this case we also set

Z
(1)
i =

αs

4π
CF

(

− 1

εUV
− 2

εIR
−4+3ln

m2

µ2

)

. (99)

Secondly, the mass of the heavy quark is renormalised. For the heavy quark mass we have to

choose a renormalisation scheme. In the on-shell scheme the mass renormalisation constant is

given in conventional dimensional regularisation by

Zm,on−shell = 1+
αs

4π
CF

(

− 3

εUV
−4+3ln

m2

µ2

)

+O
(

α2
s

)

. (100)

In the MS-scheme the mass renormalisation constant is simply given by

Zm,MS = 1+
αs

4π
CF

(

− 3

εUV

)

+O
(

α2
s

)

. (101)

Again, we write Z
(1)
m,scheme for the O(αs)-term of the mass renormalisation constant. In order to

present the generalisation of eq. (97) to the massive case it is convenient to define the quantity

B(0)(p1, ..., pn,g,m) through

A(0) (p1, ..., pn,g,m+δm) = A(0) (p1, ..., pn,g,m)+
δm

m
B(0) (p1, ..., pn,g,m)+O

(

(δm)2
)

.

Then

A
(1)
CT =

[

−αs

4π

(n−2)

2

β0

εUV
− 1

2
∑

i
∑
k 6=i

Ti ·Tk

T2
i

Z
(1)
i

]

A(0)+Z
(1)
m,schemeB(0). (102)

We may group the renormalisation constants into two groups, depending on whether or not they

contain in addition to ultraviolet divergences also infrared divergences. The field renormalisation

constants belong to the first group, these contain infrared divergences. The mass renormalisation

constants and coupling renormalisation constants belong to the second group, these do not contain

infrared divergences.

We now introduce an integral representation for the counterterm from renormalisation. It is

convenient to separate dσV
CT into two parts:

dσV
CT =

∫

loop

(

dσV
CT,IR +dσV

CT,UV

)

. (103)

This separation is done as follows: dσV
CT,UV contains for all renormalisation constants (field renor-

malisation, coupling renormalisation and mass renormalisation) the terms, which lead exactly to

the 1/εUV divergences. In addition, dσV
CT,UV contains finite terms from coupling renormalisation
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and mass renormalisation, if for these parameters a renormalisation scheme different from the MS-

scheme is used. On the other hand, dσV
CT,IR contains for the field renormalisation constants the

terms, which lead to the 1/εIR divergences or finite terms. The splitting of the finite terms is of

course arbitrary, but a convenient choice. We may re-write dσV
CT,IR as

dσV
CT,IR =

(

∑
i

∑
k 6=i

Fi,k

)

dD−1k

(2π)D−1
dφn, (104)

with

Fi,k =−4παsS
−1
ε µ2ε (105)

Re Aξ (0) (..., pi, ..., pk, ...)
∗ Ti ·Tk

T2
i

[Xi (pi,ki)]ξξ′ Aξ′ (0) (..., pi, ..., pk, ...) .

The quantities [Xi(pi,ki)]ξξ′ are derived from the self-energy corrections on the external legs. How-

ever, there is a technical complication: The self-energy on an external leg is attached through a

propagator with momentum pi to the Born amplitude. This propagator is exactly on-shell, leading

to an 1/0-singularity. In order to circumvent this problem we follow refs. [44, 55] and we use a

dispersion relation for the self-energy corrections on the external legs. The technical details are

presented in appendix B.

The term dσV
CT,UV contains all terms which lead to ultraviolet divergences. An integral repre-

sentation for these terms can be found in ref. [25]. In addition, dσV
CT,UV contains by definition finite

terms from coupling renormalisation and mass renormalisation, if for these parameters a renormal-

isation scheme different from the MS-scheme is used. The most relevant application would be the

case of a massive quark, where the mass is renormalised in the on-shell scheme. We discuss the

implementation of the finite terms in more detail in section (7.2).

6 Factorisation

In the MS-scheme the collinear subtraction term is given by

dσC =
αs

4π

eεγE

Γ(1− ε) ∑
a′ initial

∑
a∈{q,g,q̄}

1∫

0

dxa
2

ε

(

µ2
F

µ2

)−ε

Pa′a (xa)dσB
(

...,xap′a, ...
)

. (106)
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The splitting functions Pa′a(x) are given by

Pgq =
nc(q)

nc(g)
CF

[

x2 +(1− x)2
]

,

Pqg =
nc(g)

nc(q)
TR

[

1+(1− x)2

x

]

,

Pqq = CF

[

2

1− x

∣

∣

∣

∣

+

− (1+ x)

]

+
3

2
CFδ(1− x) ,

Pgg = 2CA

[

1

1− x

∣

∣

∣

∣

+

+
1− x

x
−1+ x(1− x)

]

+
β0

2
δ(1− x) . (107)

The splitting functions for anti-quarks are identical to the ones for quarks. The splitting functions

in eq. (107) are the spin-averaged splitting functions. We now look for an integral representation of

the collinear subtraction term. The sought after integral representation has to fulfill two conditions:

Firstly, it should match locally the singularities of the other contributions. Secondly, it should

integrate to produce exactly the same finite parts implied by eq. (106):

dσC =
αs

4π ∑
a′ initial

∑
a∈{q,g,q̄}

1∫

0

dxa

[

1

ε
− ln

(

µ2
F

µ2

)]

2Pa′a (xa)dσB
(

...,xap′a, ...
)

+O (ε) . (108)

Let us discuss the first point in more detail: The singularities have to match the corresponding

singularities of the real approximation term and the counterterm from field renormalisation. The

spin-averaged case in eq. (107) gives us some guidance: The x-dependent terms in the square

brackets will match with the real approximation terms, while the end-point contributions propor-

tional to γq = 3CF/2 in Pqq and γg = β0/2 in Pgg will match with the counterterm from field

renormalisation. Thus we write

dσC = dσC
R +dσC

CT, (109)

where dσC
R matches with the real approximation term and dσC

CT matches with the counterterm from

field renormalisation. Between dσC
R and dσA

R the collinear singularities cancel, the soft singular-

ity in dσA
R cancels with the virtual part dσA

V, the soft 1/(1− x)-singularities in dσC
R are softened

by the plus-distribution. Between dσC
CT and dσV

CT there is a cancellation of collinear singulari-

ties, where both collinear particles have transverse polarisations. The self-energies contributing to

dσV
CT lead also to collinear singularities, where one particle has a longitudinal polarisation. These

singularities cancel with the virtual approximation term.

For dσC
R we make the ansatz

dσC =

(

∑
(a′, j′)

∑
k′ 6= j′

H a′ j′

k′ + ∑
(a′, j′)

∑
b′ 6=a′

H a′ j′,b′
)

dφn dφunresolved. (110)
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As we would like to match locally the singularities we have to work with the spin-dependent

splitting functions (as opposed to the spin-averaged splitting functions appearing in eq. (106)). We

may however sum over the polarisations of the unobserved particles a′ and j′. In the following

we drop the adjustment factors nc(g)/nc(q) and nc(q)/nc(g) appearing in eq. (107) and adhere

to the convention that the averaging for the colour degrees of freedom is performed with respect

to a′. The same applies to the averaging with respect to the number of spin degrees of freedom

for initial-state particles. When integrating eq. (110), a factor 1/x from the unresolved measure

is absorbed by the flux factor to produce the correct flux factor for the event with n final-state

particles. The integral representation for H a′ j′

k′ is given in section (6.1), the one for H a′ j′,b′ is given

in section (6.2).

For dσC
CT we write

dσC
CT =

(

∑
i initial

∑
k 6=i

Ki,k

)

dD−1ki

(2π)D−12k0
i

dφn, (111)

with

Ki,k =−4παsS
−1
ε µ2ε (112)

Re Aξ (0) (..., pi, ..., pk, ...)
∗ Ti ·Tk

T2
i

[Zi (pi,ki, pk)]ξξ′ Aξ′ (0) (..., pi, ..., pk, ...) .

The integral representation for Zi (pi,ki, pk) is given in section (6.3).

6.1 Initial-state emitter and final-state spectator

We first consider the case of an initial-state emitter and a final-state spectator. The spectator may

be massive (mk = m′
k), all other particles are massless. We use the variables P = p′k + p′j − p′a and

x =
2p′ap′j +2p′a p′k −2p′j p

′
k

2p′ap′j +2p′a p′k
, u =

2p′ap′j
2p′a p′j +2p′ap′k

, w =
2p′a p′j

(

2p′j p
′
k +m2

k

)

2p′j p
′
k

(

2p′a p′j +2p′a p′k

) . (113)

If we further set

x0 =
P2

P2 −m2
k

, (114)

then the variables u and w are related by

u =
1− x

1− x0x
w. (115)
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We write

H a′ j′

k′ =−4παsS
−1
ε µ2ε (116)

{

Aξ (0) (pa, ..., pk, ...)
∗ Ta ·Tk

T2
a

[

Y
a′ j′

k′ (x,w)
]

ξξ′
Aξ′ (0) (pa, ..., pk, ...)

−δ(1− x)

1∫

0

dy Aξ (0) (pa, ..., pk, ...)
∗ Ta ·Tk

T2
a

[

Y
a′ j′

k′,end
(y,w)

]

ξξ′
Aξ′ (0) (pa, ..., pk, ...)







.

The relation between the set of momenta {p′a, p′j, p′k} and the set {pa, pk} is as in section (3.3),

in particular we have pa = xp′a. The expression in eq. (116) is of the form as in eq. (47) and can

be implemented as in eq. (48). In order to present the functions Y
a′ j′

k′ we factor out some common

prefactors and we write

Y
a′ j′

k′ = −2T2
a→a′ j′

1

(−P2)

x0 (1− x0x)

(1− x)

1

w
Ỹ

a′ j′

k′ . (117)

Then

Ỹ
a′g j′q̄
k′ = p/a

{

[1− ε−2x(1− x)]

[

1−w ln

(

(

−P2
)

(1− x)2

µ2
Fxx0 (1− x0x)

)]

−w

}

,

Ỹ
a′q j′q
k′ =

[

−gµνx+4
(1− x)

x

u(1−u)

2p′j p
′
k
♭

Sµν

][

1−w ln

(

(

−P2
)

(1− x)2

µ2
Fxx0 (1− x0x)

)]

−2gµν 1− x

x
w,

Ỹ
a′q j′g
k′ = p/a

{

[

2

1− x
− (1+ x)− ε(1− x)

]

[

1−w ln

(

(

−P2
)

(1− x)2

µ2
Fxx0 (1− x0x)

)]

− (1− x)w

}

,

Ỹ
a′g j′g
k′ = 2

[

−gµν

(

1

1− x
−1+ x(1− x)

)

+2(1− ε)
(1− x)

x

u(1−u)

2p′j p
′
k
♭

Sµν

]

×
[

1−w ln

(

(

−P2
)

(1− x)2

µ2
Fxx0 (1− x0x)

)]

. (118)

Here p′k
♭ is a light-like vector defined by

p′k
♭ = p′k −

m2
k

2p′a p′k
p′a. (119)

The spin correlation tensor is given by

Sµν =

(

1

u
p′j

µ − 1

1−u
p′k

♭µ

)(

1

u
p′j

ν − 1

1−u
p′k

♭ν

)

. (120)
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The terms proportional to w ensure that the finite part is exactly as in eq. (108). Factorisation

schemes different from the MS-scheme can be implemented by a suitable modification of the finite

terms.

The end-point contributions Y
a′ j′

k′,end
are rather simple. They are zero for flavour off-diagonal

splittings:

Y
a′g j′q̄
k′,end

= 0, Y
a′q j′q
k′,end

= 0. (121)

For flavour conserving splittings we write in analogy with eq. (117)

Y
a′ j′

k′,end
= −2T2

a→a′ j′
1

(−P2)

x0 (1− x0x)

(1− x)

1

w
Ỹ

a′ j′

k′,end
. (122)

Then we have

Ỹ
a′q j′g
k′,end

= p/a
2

1− x

[

1−w ln

(

(

−P2
)

(1− x)2

µ2
Fxx0 (1− x0x)

)]

,

Ỹ
a′g j′g
k′,end

= (−gµν)
2

1− x

[

1−w ln

(

(

−P2
)

(1− x)2

µ2
Fxx0 (1− x0x)

)]

. (123)

6.2 Initial-state emitter and initial-state spectator

We now consider the case of an initial-state emitter and an initial-state spectator. We use the

variables

x =
2p′a p′b −2p′ap′j −2p′bp′j

2p′a p′b
, v =

2p′ap′j
2p′ap′b

, w =
2p′a p′j

2p′ap′j +2p′b p′j
. (124)

The variables v and w are related by

v = (1− x)w. (125)

We write

H a′ j′,b′ =−4παsS
−1
ε µ2ε

{

Aξ (0) (pa, pb, ...)
∗ Ta ·Tk

T2
a

[

Y a′ j′,b′ (x,w)
]

ξξ′
Aξ′ (0) (pa, pb, ...)

−δ(1− x)

1∫

0

dy Aξ (0) (pa, pb, ...)
∗ Ta ·Tk

T2
a

[

Y
a′ j′,b′

end (x,y)
]

ξξ′
Aξ′ (0) (pa, pb, ...)







.

The relation between the set of momenta {p′a, p′b, p′j} and the set {pa, pb} is as in section (3.4), in

particular we have pa = xp′a and pb = p′b. The expression in eq. (126) is of the form as in eq. (47)

27



and can be implemented as in eq. (48). In order to present the functions Y a′ j′,b′ we factor out some

common prefactors and we write

Y a′ j′,b′ = −2T2
a→a′ j′

1

2pa pb

1

(1− x)

1

w
Ỹ a′ j′,b′ . (126)

Then

Ỹ a′g j′q̄,b
′

= p/a

{

[1− ε−2x(1− x)]

[

1−w ln

(

2pa pb (1− x)2

µ2
Fx

)]

−w

}

,

Ỹ a′q j′q,b
′

=

[

−gµνx+4
(1− x)

x

2p′ap′b
2p′j p

′
a 2p′j p

′
b

Sµν

][

1−w ln

(

2pa pb (1− x)2

µ2
Fx

)]

−2gµν 1− x

x
w,

Ỹ a′q j′g,b
′

= p/a

{

[

2

1− x
− (1+ x)− ε(1− x)

]

[

1−w ln

(

2papb (1− x)2

µ2
Fx

)]

− (1− x)w

}

,

Ỹ a′g j′g,b
′

= 2

[

−gµν

(

1

1− x
−1+ x(1− x)

)

+2(1− ε)
(1− x)

x

2p′a p′b
2p′j p

′
a 2p′j p

′
b

Sµν

]

×
[

1−w ln

(

2papb (1− x)2

µ2
Fx

)]

. (127)

The spin correlation tensor is given by

Sµν =

(

p′j
µ −

2p′j p
′
a

2p′a p′b
p′b

µ

)(

p′j
ν −

2p′j p
′
a

2p′a p′b
p′b

ν

)

. (128)

The terms proportional to w ensure that the finite part is exactly as in eq. (108). Factorisation

schemes different from the MS-scheme can be implemented by a suitable modification of the finite

terms.

The end-point contributions Y
a′ j′,b′

end are again rather simple.

Y
a′g j′q̄,b

′

end = 0, Y
a′q j′q,b

′

end = 0. (129)

For flavour conserving splittings we write in analogy with eq. (126)

Y
a′ j′,b′

end = −2T2
a→a′ j′

1

2pa pb

1

(1− x)

1

w
Ỹ

a′ j′,b′

end . (130)

Then

Ỹ
a′q j′g,b

′

end = p/a
2

1− x

[

1−w ln

(

2papb (1− x)2

µ2
Fx

)]

,

Ỹ
a′g j′g,b

′

end = (−gµν)
2

1− x

[

1−w ln

(

2pa pb (1− x)2

µ2
Fx

)]

. (131)
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lk

pa = −pi

l′j = ki

l′i = −ki−1

Figure 3: The kinematics for self-energy corrections for initial-state particles. In the collinear limit

the momenta l′i and l′j are on-shell. The momenta l′i , l′j and lk have positive energy.

6.3 The virtual end-point contributions

We now consider dσC
CT, which we write as

dσC
CT =

(

∑
i initial

∑
k 6=i

Ki,k

)

dD−1ki

(2π)D−12k0
i

dφn, (132)

with

Ki,k =−4παsS
−1
ε µ2ε (133)

Re Aξ (0) (..., pi, ..., pk, ...)
∗ Ti ·Tk

T2
i

[Zi (pi,ki, pk)]ξξ′ Aξ′ (0) (..., pi, ..., pk, ...) .

The particle i is an initial-state particle and we write pa = −pi such that pa has positive energy.

Particle k is the spectator. The spectator can either be in the final-state (in which case it can be

massive or massless) or in the initial-state (in which case it is assumed to be always massless). We

will treat all cases simultaneously. To this aim we first set

p♭k = pk −
p2

k

2pk pa
pa. (134)

p♭k is always a massless momentum. We further define lk = p♭k, if particle k is in the final state, and

lk = −p♭k = −pk = pb if particle k is in the inital-state. The definition is such that lk is always a

massless momentum with positiv energy. dσC
CT has to match the collinear singularities of the self-

energy corrections. These occur when the two propagators in the self-energy loop are on-shell.

We define l′i and l′j as the on-shell momenta in the self-energy loop flowing in the direction of the

hard-scattering process. In the singular collinear limit both l′i and l′j have positive energies. The

kinematical situation is shown in fig. (3). Given pa, lk and ki we define l′i , l′j and l′k by

l′i = pa − ki + ylk,

l′j = ki,

l′k = (1− y) lk, (135)
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with

y = − (pa − ki)
2

2lk (pa − ki)
. (136)

We will encounter the mapping in eq. (135) again in section (7.1.1), where it will be used to relate

in the final-final case the virtual approximation terms to the real approximation terms. With the

definition li = pa, the inverse mapping {l′i , l
′
j, l

′
k} → {li, lk,ki} is just – when restricted to {li, lk}

– the standard Catani-Seymour projection of eq. (66). The reason why this mapping is useful

for the self-energies related to initial-state particles is as follows: For a collinear singularity the

energy flow across the cut of the self-energy diagrams has to be in the same direction for both

cut propagators. The momentum l′k will only be used to define the way the collinear singularity is

approached. Given l′i , l′j and l′k we set

y =
2l′i l

′
j

2l′il
′
j +2l′i l

′
k +2l′jl

′
k

, z =
2l′il

′
k

2l′il
′
k +2l′jl

′
k

. (137)

It is easily checked that the two expressions for the variable y in eq. (136) and eq. (137) are com-

patible. We further set P = l′i + l′j + l′k = pa + lk. If the initial-state particle is a quark we have

Zi (pi,ki, pk)αβ = (138)

=
2CF p/a

yzP2

{

[−(1+ z)− ε(1− z)]

[

1− y ln

(

P2z(1− z)

µ2
F

)]

− (1− z)y

}

θ
(

E ′
i

)

θ
(

E ′
k

)

,

in the case where the initial-state particle is a gluon we have

Zi (pi,ki, pk)µν = (139)

=
2CA

yzP2

[

2gµν +
2(1− ε)Sµν

2l′il
′
j

]

[

1− y ln

(

P2z(1− z)

µ2
F

)]

θ
(

E ′
i

)

θ
(

E ′
k

)

+
2TRN f

yzP2

{[

−gµν −
4Sµν

2l′il
′
j

]

[

1− y ln

(

P2z(1− z)

µ2
F

)]

+2gµνz(1− z)y

}

θ
(

E ′
i

)

θ
(

E ′
k

)

,

where the spin correlation tensor is given by

Sµν =
(

zl′i
µ − (1− z) l′j

µ
)(

zl′i
ν − (1− z) l′j

ν
)

.

It is easily checked that the integrated expression gives

∫
dD−1ki

(2π)D−12k0
i

Ki,k = (140)

−αs

4π

2

ε

(

µ2
F

µ2

)−ε

γi Aξ (0) (..., pi, ..., pk, ...)
∗ Ti ·Tk

T2
i

Aξ′ (0) (..., pi, ..., pk, ...)+O (ε) .
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7 Locally integrable combinations

Our aim is to combine the approximation terms such that they are locally integrable. In order to

achieve this, it is essential to take the field renormalisation constants into account. The local can-

cellation of singularities occurs separately for infrared and ultraviolet divergences. For massless

particles the αs-contribution of the field renormalisation constants is zero after the loop integra-

tion. This does not imply that the integrand is identical to zero, it only implies that the integrand

is a function with possibly ultraviolet and infrared singularities, which integrates to zero within

dimensional regularisation.

Other manifestations, that the contribution from the field renormalisation constants are needed

are:

- The real approximation terms contain a divergent contribution from the splitting g → qq̄

of a gluon into massless quarks. The virtual approximation terms have no such contribution. The

divergent part from the real approximation terms cancels with the contribution from the field renor-

malisation constants.

- In the collinear part of the real approximation terms all unresolved particles have transverse

polarisations. In the collinear part of the virtual approximation terms one of the two collinear parti-

cles has a longitudinal polarisation. These two contributions do not match. Again, the cancellation

occurs through the contribution from the field renormalisation constants: The longitudinal part

from the virtual approximation terms cancels with the longitudinal part from the field renormali-

sation constants, the transverse part from the real approximation terms cancels with the transverse

part from the field renormalisation constants.

- It is instructive to look at the explicit poles in ε of infrared origin in massless QCD. After

integration one has for the various contributions

dσA
R = 2 Re

{

A(0) ∗ αs

4π ∑
i

∑
k 6=i

TiTk

[

− 1

ε2
IR

( |2pi pk|
µ2

)−ε

− γi

T2
i

1

εIR

]

A(0)

}

dφn + ...,

dσA
V,IR = 2 Re

{

A(0) ∗ αs

4π ∑
i

∑
k 6=i

TiTk

[

1

ε2
IR

(−2pi pk

µ2

)−ε

+
2Si

εIR

]

A(0)

}

dφn + ...,

dσV
CT,IR = 2 Re

{

A(0) ∗ αs

4π ∑
i

∑
k 6=i

TiTk

[(

−2Si +
γi

T2
i

)

1

εIR

]

A(0)

}

dφn + ..., (141)

where the dots denote ultraviolet poles and terms of order O(ε0). The infrared poles cancel in the

sum of the three contributions. However, there is not a complete cancellation between dσA
R and

dσA
V,IR alone.

We would like to evaluate numerically the expression of eq. (5):

〈O〉NLO
I+L =

∫

n



OndσC +On

∫

1

dσA
R +On

∫

loop

dσA
V +OndσV

CT



 . (142)
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We split this expression into two parts

〈O〉NLO
I+L = 〈O〉NLO

I+L,IR+ 〈O〉NLO
I+L,UV, (143)

with

〈O〉NLO
I+L,IR =

∫

n

On



dσC +

∫

1

dσA
R +

∫

loop

dσA
V,IR +

∫

loop

dσV
CT,IR



 ,

〈O〉NLO
I+L,UV =

∫

n

On

∫

loop

(

dσA
V,UV+dσV

CT,UV

)

. (144)

The two contributions in eq. (144) are separately numerically integrable. We may break up the

term 〈O〉NLO
I+L,IR into even smaller pieces, where an individual piece corresponds to an antenna and

is separately numerically integrable. This is discussed in section (7.1). The term 〈O〉NLO
I+L,UV is

discussed in section (7.2).

7.1 The antenna structure

In this sub-section we consider

〈O〉NLO
I+L,IR. (145)

All terms contributing to eq. (145) can be written as colour dipoles, i.e. they are of the form

−∑
i

∑
k 6=i

TiTk..., (146)

where i denotes the emitter and k denotes the spectator. We combine the colour dipole with emitter

i and spectator k with the colour dipole with emitter k and spectator i. This forms a colour antenna

with the hard particles i and k [11–14] and we may write eq. (145) as

〈O〉NLO
I+L,IR = −∑

i<k

TiTk 〈O〉NLO,i,k
I+L,IR . (147)

Each antenna contribution is separately numerically integrable. We have to consider three types of

antenna structures. The two hard particles can either be both in the final-state, of mixed type (one

in the final-state and the other in the initial-state) or both in the initial-state.

Let us consider the contribution of dσA
V,IR to a given antenna, i.e. a contribution of the form

Ei,k +Ek,i =−4παsS
−1
ε µ2ε (148)

2 Re A(0) (..., pi, ..., pk, ...)
∗

Ti ·Tk

[

Wi (pi, pk,ki)

T2
i

+
Wk (pk, pi,kk)

T2
k

]

A(0) (..., pi, ..., pk, ...) .
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emitter pk

spectator pi

kk−1

kk

kk+1

=

spectator pi

emitter pk

−kk+1

−kk

−kk−1

Figure 4: The momentum flow for the virtual infrared approximation terms with emitter pk and

spectator pi. A comparison with fig. (2) shows ki−1 =−kk+1, ki =−kk and ki+1 =−kk−1.

The loop integrals are three-point functions (where lower-point functions are considered as three-

point functions with appropriate inverse propagators in the numerator). The momenta flowing

through the loop propagators are given for Ei,k by

ki−1 = ki + pi, ki+1 = ki − pk. (149)

and shown in fig. (2). For Ek,i the momenta are given by

kk−1 = kk + pk, kk+1 = kk − pi (150)

and shown in fig. (4). We may use the freedom of Poincaré-invariance of the loop integrals of

eq. (87) and set

ki = −kk. (151)

This implies

ki−1 = −kk+1, ki+1 = −kk−1. (152)

Eq. (151) defines how Ei,k and Ek,i are integrated together.

Our general strategy is as follows: We will write all integrals as integrals over the spatial

components of a momentum:

∫
dD−1k

(2π)D−1
.... (153)

For the virtual integrals this can be done using the loop-tree duality method. The loop-tree duality

method will put one of the loop propagators on-shell. The task is to find suitable mappings between

the various contributions, such that all singularities cancel locally in~k-space and the limit D →
4 can be taken. This will leave us with a three-dimensional integral, which can be performed

numerically. We will also need the associated Jacobian factors for the various mappings. The

essential ingredient is a mapping between the virtual and real configurations. Let us denote by
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{p} a set of (n+2) external momenta (including the two initial-state momenta), by {k} the single-

element set of the on-shell loop momentum and by {p′} a set of (n+3) external momenta. In the

next sub-section we will define an invertible mapping

φ : {p}×{k} →
{

p′
}

, (154)

such that the inverse mapping, when restricted to

πφ−1 :
{

p′
}

→ {p} (155)

agrees with the Catani-Seymour projections given in section (3), relating the (n+1)-particle phase

space to the n-particle phase space. We will use this mapping on the pre-image φ−1({p′}) to

associate a real configuration {p′} to a virtual configuration specified by {p} and k. Note that

there are points in {p}×{k}, which do not map to physical points {p′}. A typical example would

be a loop momentum k in the ultraviolet region, leading to a configuration {p̃′} with final-state

particles of negative energy. This explains the restriction on the pre-image φ−1({p′}). In practice,

the correct physical region will be implemented by theta-functions.

We will discuss the mappings for the three cases corresponding to a final-final antenna, a final-

initial antenna and an initial-initial antenny separately in the next three sub-sections.

7.1.1 Final-final antenna

We consider the case, where pi and pk are final-state momenta, e.g. have positive energy com-

ponents. Let us first consider the dipole with emitter i and spectator k. With the kinematics as in

fig. (2) we would like to have that in the collinear limit the momentum (−ki) has positive energy

as well. Turned around this means that the momentum ki has negative energy in the collinear limit.

Thus, we use the loop-tree duality formula for the backward hyperboloids of eq. (36) to convert

the loop integrals into phase space integrals. This gives three backward hyperboloids with origins

at qi−1 = qi − pi, qi and qi+1 = qi + pk, plus an extra backward hyperboloid with origin at Q cor-

responding to ultraviolet subtraction terms. The latter is free of infrared singularities. In order to

combine the real approximation terms with the virtual approximation terms we define a mapping

between the set of momenta {pi, pk,ki} and {p′i, p′j, p′k}. In the massless case we use

p′i = pi + ki + ypk,

p′j = −ki,

p′k = (1− y) pk, (156)

with

y = − (ki + pi)
2

2pk (ki + pi)
= −

k2
i−1

2pkki−1
. (157)

Note that the inverse mapping {p′i, p′j, p′k} → {pi, pk,ki} coincides with the mapping in eq. (66)

when restricted to {p′i, p′j, p′k}→ {pi, pk}.
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−pk
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Figure 5: The integration regions for a final-final antenna. The upper picture corresponds to the

dipole with emitter i and spectator k, the lower picture corresponds to the dipole with emitter k and

spectator i.
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In the massive case we use

p′k = α

(

pk −
Q · pk

Q2
Q

)

+βQ,

p′j = −ki,

p′i = Q+ ki − p′k, (158)

with Q = pi + pk. The constants α and β are given in appendix C. Again, this mapping can

be considered to be the inverse of eq. (67) together with supplementary information p′j = −ki.

Eq. (158), which includes in the massless limit eq. (156), defines how the contributions Ei,k and

Di′ j′,k′ are integrated together.

Writing the measure for the unresolved phase space as an integration over ~ki (or the forward

mass hyperboloid for particle j′) introduces a Jacobian factor:

dφunres =
dD−1ki

(2π)D−1 (−2ki,0)
J, (159)

with

J =

[

λ
(

Q2,m2
i ,m

2
k

)]
3−D

2

[

λ

(

Q2,
(

p′i + p′j
)2

,m′
k

2

)]
D−1

2

2p′i p
′
k

(

2p′i p
′
k +2p′j p

′
k

)

−2m′
k

2
(

2p′i p
′
j +2m′

i
2
) θ

(

E ′
i

)

θ
(

E ′
k

)

. (160)

Let us now consider the dipole with emitter k and spectator i. With the kinematics as in fig. (4)

we would like to have that in the collinear limit the momentum (−kk) has positive energy. Since

ki =−kk this implies that the momentum ki has positive energy in the collinear limit. Thus, we use

the loop-tree duality formula for the forward hyperboloids of eq. (35) to convert the loop integrals

into phase space integrals. In the next step we have to relate the real emission integrals to the virtual

integrals. This is straightforward. We may use the same mappings as in eq. (158) and eq. (156)

with the roles of i and k exchanged. Thus, the integrations for Ek,i and Dk′ j′,i′ are related in the

same way as the integrations for Ei,k and Di′ j′,k′ . Taking into account the relation between Ei,k and

Ek,i in eq. (151), we may relate the integration for Dk′ j′,i′ to Ei,k and obtain in the massless case

p′i = (1− y) pi,

p′j = ki,

p′k = pk − ki + ypi, (161)

with

y =
k2

i+1

2piki+1
. (162)

The geometric situation for the integration over the on-shell hyperboloids is sketched in fig. (5).

The upper picture shows the contribution from the virtual approximation terms with emitter i and
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spectator k in the massless case. The integration is over three backward light-cones with origins at

qi−1, qi and qi+1. The soft singularity resides in the integration over the backward light-cone with

origin at qi at the origin qi and is indicated by a red dot. The collinear singularities occur on the

lines between qi−1 and qi (collinear singularity of i) and between qi and qi+1 (collinear singularity

of k). The collinear regions are indicated in blue. There is a cancellation of singularities within the

virtual dual contributions in the regions where two propagators are on-shell and have the same sign

in the energy component. These regions are indicated in green. There is a threshold singularity

(indicated by an orange dot) at ~qth. The threshold singularity is avoided by contour deformation.

The integration region for the real approximation term is the backward light-cone with origin at

qi. The collinear singular region for the real approximation term with emitter i is the line segment

between qi−1 and qi.

The lower picture shows the corresponding integration regions, where the roles of emitter and

spectator are exchanged, i.e. emitter k and spectator i. Note that the soft and collinear singularities

occur in the same regions of D-dimensional loop momentum space. The integration region for the

real approximation term is the forward light-cone with origin at qi. The collinear singular region

for the real approximation term with emitter k is the line segment between qi and qi+1.

7.1.2 Final-initial antenna

Let us now consider a final-initial antenna. Without loss of generality we assume that pi is a final-

state momentum (i.e. a outgoing momentum with positive energy) and that pk corresponds to an

initial-state momentum. With our conventions pk is an outgoing momentum with negative energy.

In order to match the notation of section 3 we set pa = −pk. Thus pa is an incoming momentum

with positive energy. Let us start with the virtual dipole with emitter i and spectator k. As before

we would like that in the collinear limit the momentum (−ki) has positive energy. Therefore we

use the loop-tree duality formula for the backward hyperboloids of eq. (36) to convert the loop

integrals into phase space integrals. Next, we relate the integration for the real dipole Da′
i′ j′ to the

integration for the virtual dipole Ei,k. We recall that we use the notation pk =−pa and p′k =−p′a.

We define the mapping between the set of momenta {pi, pk,ki} and {p′i, p′j, p′a} by

p′i = pi + ki −
1− x

x
pk,

p′j = −ki,

p′a = −1

x
pk, (163)

with

x =
2pi pk +2pkki

2pi pk +2piki +2pkki +m2
i −m′

i
2 +m′

j
2
. (164)

Again, the inverse mapping {p′i, p′j, p′a} → {pi, pk,ki} coincides with the mapping defined in

eq.( 71), when restricted to {p′i, p′j, p′a}→ {pi, pk}.
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Figure 6: The integration regions for a final-initial antenna for the case where particle i is in the

final state and particle k is in the initial state. The upper picture corresponds to the dipole with

emitter i and spectator k, the lower picture corresponds to the dipole with emitter k and spectator i.
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Expressing the measure for the unresolved phase space as an integration over~ki we find

dφunres =
dD−1ki

(2π)D−1 (−2ki,0)
J, (165)

with

J =
2papi

2p′ap′i
θ
(

E ′
i

)

θ(x)θ(1− x) . (166)

Let us now turn to the dipole Ek,i with emitter k and spectator i. In the collinear limit we require

that the momentum ki has positive energy. Thus, we use the loop-tree duality formula for the

forward hyperboloids of eq. (35) to convert the loop integrals into phase space integrals. We then

relate the real emission integrals to the virtual integrals. Following the same procedure as in the

final-final case we find

p′i = pi − ki −
1− x

x
pk,

p′j = ki,

p′a = −1

x
pk, (167)

with

x =
2pi pk −2pkki

2pi pk −2piki −2pkki +m′
j
2
. (168)

Note that in this case particle i is the spectator and we have m′
i = mi.

The geometric situation for the integration over the on-shell hyperboloids for a final-initial

antenna for the case where particle i is in the final state and particle k is in the initial state is sketched

in fig. (6). The upper picture shows the contribution from the virtual approximation terms with

emitter i and spectator k in the massless case. The integration is over three backward light-cones

with origins at qi−1, qi and qi+1. The soft singularity resides in the integration over the backward

light-cone with origin at qi at the origin qi and is indicated by a red dot. The collinear singularities

in the virtual terms occur on the lines between qi−1 and qi (collinear singularity of i) and between

qi and qi+1 (collinear singularity of k). The virtual collinear regions are indicated in blue. There

is a cancellation of singularities within the virtual dual contributions in the regions where two

propagators are on-shell and have the same sign in the energy component. These regions are

indicated in green. There is also a cancellation of singularities within the virtual dual contributions

at the point qc. The integration region for the real approximation term is the backward light-cone

with origin at qi. The collinear singular region for the real approximation term with emitter i is

the line segment between qi−1 and qi and matches with the corresponding line segment from the

virtual term.

The lower picture shows the corresponding integration regions, where the roles of emitter and

spectator are exchanged, i.e. emitter k and spectator i. Note that the soft and the virtual collinear
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singularities occur in the same regions of D-dimensional loop momentum space. The integration

region for the real approximation term is the forward light-cone with origin at qi. The collinear

singular region for the real approximation term with emitter k is now the line segment indicated

in purple. Note that the real collinear singular region (purple line) does not match with the virtual

collinear singular region (blue line segment between qi and qi+1). This mismatch is compensated

by the collinear counterterm for initial-state partons.

7.1.3 Initial-initial antenna

We now consider an initial-initial antenna. The momenta pi and pk are outgoing momenta with

negative energies. In order to match the notation of section 3 we set pa = −pi and pb = −pk.

Thus pa and pb have positive energies. Let us look at the virtual dipole Ei,k. In the collinear limit

we require that the momentum (−ki) has positive energy. Therefore we use the loop-tree duality

formula for the backward hyperboloids of eq. (36) to convert the loop integrals into phase space

integrals. Next, we relate the integration for the real dipole Da′ j′,b′ to the integration for the virtual

dipole Ei,k. We recall that we use the notation pi =−pa, p′i =−p′a, pk =−pb and p′k =−p′b. We

set

p′a = −1

x
pi,

p′j = −ki,

p′b = −pk, (169)

with

x =
2pi pk −2piki

2pi pk +2pkki

. (170)

All final state momenta are transformed as

p′l = Λ−1 pl, (171)

where Λ−1 is the inverse Lorentz transformation to eq. (81). Explicitly we have
(

Λ−1
)µ

ν
= g

µ
ν +a1

(

Kµ + K̃µ
)(

Kν + K̃ν

)

+a2

(

Kµ + K̃µ
)

Kν +a3Kµ
(

Kν + K̃ν

)

+a4KµKν. (172)

The momenta K and K̃ are given by

K = p′a + p′b − p′j, K̃ = pa + pb. (173)

The coefficients are

a1 = 2
K2

(

K̃2 −K2
)2 − K̃2

(

K + K̃
)2
, a2 = 2

K̃2 −K2

(

K̃2 −K2
)2 − K̃2

(

K + K̃
)2
,

a3 = 2
K̃2 −K2 −

(

K + K̃
)2

(

K̃2 −K2
)2 − K̃2

(

K + K̃
)2
, a4 = 2

(

K+ K̃
)2

(

K̃2 −K2
)2 − K̃2

(

K + K̃
)2
. (174)
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Figure 7: The integration regions for an initial-initial antenna. The upper picture corresponds to

the dipole with emitter i and spectator k, the lower picture corresponds to the dipole with emitter k

and spectator i.
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Expressing the measure for the unresolved phase space as an integration over~ki we have

dφunres =
dD−1ki

(2π)D−1 (−2ki,0)
J, (175)

with

J = θ(x)θ(1− x) . (176)

Let us now turn to the dipole Ek,i with emitter k and spectator i. In the collinear limit we require that

the momentum ki has positive energy. Thus, we use the loop-tree duality formula for the forward

hyperboloids of eq. (35) to convert the loop integrals into phase space integrals. In relating the real

emission integrals to the virtual integrals we set now

p′a = −pi,

p′j = ki,

p′b = −1

x
pk, (177)

with

x =
2pi pk +2pkki

2pi pk −2piki

. (178)

All final state momenta are transformed as

p′l = Λ−1 pl. (179)

The geometric situation for the integration over the on-shell hyperboloids for an initial-initial an-

tenna is sketched in fig. (7). The upper picture shows the contribution from the virtual approx-

imation terms with emitter i and spectator k in the massless case. The integration is over three

backward light-cones with origins at qi−1, qi and qi+1. The soft singularity resides in the integra-

tion over the backward light-cone with origin at qi at the origin qi and is indicated by a red dot.

The collinear singularities in the virtual terms occur on the lines between qi−1 and qi (collinear

singularity of i) and between qi and qi+1 (collinear singularity of k). The virtual collinear regions

are indicated in blue. There is a cancellation of singularities within the virtual dual contributions in

the regions where two propagators are on-shell and have the same sign in the energy component.

These regions are indicated in green and purple. There is a threshold singularity (indicated by an

orange dot) at ~qth. The threshold singularity is avoided by contour deformation. The integration

region for the real approximation term is the backward light-cone with origin at qi. The collinear

singular region for the real approximation term with emitter i is the line segment indicated in

purple. Note that the real collinear singular region (purple line) does not match with the virtual

collinear singular region (blue line segment between qi−1 and qi). This mismatch is compensated

by the collinear counterterm for initial-state partons.
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dσA
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soft

collinear, longitudinal collinear, transversal

Figure 8: The cancellation of infrared singularities within an antenna involving only final-state

particles.

The lower picture shows the corresponding integration regions, where the roles of emitter and

spectator are exchanged, i.e. emitter k and spectator i. Note that the soft and the virtual collinear

singularities occur in the same regions of D-dimensional loop momentum space. The integration

region for the real approximation term is the forward light-cone with origin at qi. The collinear

singular region for the real approximation term with emitter k is the line segment indicated in

purple. Note that the real collinear singular region (purple line) does not match with the virtual

collinear singular region (blue line segment between qi and qi+1). This mismatch is compensated

by the collinear counterterm for initial-state partons.

7.1.4 Summary on the cancellation within an antenna

It is worth to summarise how infrared singularities cancel within an antenna. Let us first con-

sider an antenna involving only final-state particles. In this case we have contributions from three

terms: The virtual approximation term dσA
V,IR, the real approximation term dσA

R and the infrared

part from the field renormalisation constants, given by dσV
CT,IR. The soft singularity of the antenna

cancels between the virtual part dσA
V,IR and the real part dσA

R . The contribution from the field renor-

malisation constants does not contain any soft singularity. The real part has in addition collinear

singularities, where the two particles in the collinear splitting have transverse polarisations. These

collinear singularities cancel with corresponding singularities from the field renormalisation con-

stants. On the other hand, the virtual part has collinear singularities, where one of the two particles

in the collinear splitting has a longitudinal polarisation. These singularities cancel as well with cor-

responding singularities from the field renormalisation constants. This mechanism is summarised

in fig. (8).

Let us now consider an antenna with initial-state particles. We have contributions from four

terms: As before, there are contributions from the virtual approximation term dσA
V,IR, the real

approximation term dσA
R and the infrared part from the field renormalisation constants, given by
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Figure 9: The cancellation of infrared singularities within an antenna involving initial-state parti-

cles.

dσV
CT,IR. In addition we have a contribution from the collinear subtraction term dσC, which splits

into an x-dependent convolution part dσC
R and an end-point part dσC

CT. As before, the soft singu-

larity of the antenna cancels between the virtual part dσA
V,IR and the real part dσA

R . However the

mechanism for initial-state collinear singularities is different: The collinear singularity with two

transverse polarisations from the real part dσA
R cancels with the corresponding singularity from the

x-dependent convolution part dσC
R. The collinear singularity with two transverse polarisations from

the end-point contribution dσC
CT cancels with the corresponding singularity from the field renor-

malisation constants in dσV
CT,IR, and finally the collinear singularity, where one of the two particles

in the collinear splitting has a longitudinal polarisation cancels between dσV
CT,IR and dσA

V,IR. This

is summarised in fig. (9).

7.2 The pure ultraviolet contribution

In this sub-section we consider the pure ultraviolet contribution

〈O〉NLO
I+L,UV. =

∫

n

On

∫

loop

(

dσA
V,UV +dσV

CT,UV

)

. (180)

The term dσA
V,UV contains the ultraviolet approximation terms for the vertices and the propagators.

To give an example, let us consider the ultraviolet approximation term for the quark-gluon vertex.

This vertex has a leading colour contribution and a subleading colour contribution. The subtraction

term for the leading colour contribution is given by [25]

V
V,UV
qqg,lc

(

µ2,µ2
UV

)

= iS−1
ε µ2ε

∫
dDk

(2π)Di

[

2γµ

(

k̄2 −µ2
UV

)2
+

4(1− ε) k̄/ k̄µ −2µ2
UVγµ

(

k̄2 −µ2
UV

)3

]

. (181)
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The quantity µUV is an arbitrary mass. For the subleading colour contribution we have

V V,UV
qqg,sc

(

µ2,µ2
UV

)

= iS−1
ε µ2ε

∫
dDk

(2π)Di

[

2(1− ε) k̄/γµk̄/+4µ2
UVγµ

(

k̄2 −µ2
UV

)3

]

. (182)

A complete set of ultraviolet approximation terms can be found in ref. [25]. The terms proportional

to µ2
UV in the numerator are not divergent, but ensure that the finite part of the integrated expression

is proportional to the pole part. For the quark-gluon vertex approximation term this implies

V
V,UV
qqg,lc = i

1

(4π)2
γµ (3)

(

1

ε
− ln

µ2
UV

µ2

)

+O(ε),

V V,UV
qqg,sc = i

1

(4π)2
γµ (−1)

(

1

ε
− ln

µ2
UV

µ2

)

+O(ε). (183)

Now let us turn to dσV
CT,UV. By construction, dσV

CT,UV contains for all renormalisation constants

(field renormalisation, coupling renormalisation and mass renormalisation) the terms, which lead

exactly to the 1/εUV divergences. In addition, dσV
CT,UV contains finite terms from coupling renor-

malisation and mass renormalisation. Let us first focus on the ultraviolet divergent terms. Note that

we may obtain these terms from the renormalisation counterterms for all vertices and propagators.

The set of vertices and propagators for dσV
CT,UV will correspond exactly to the set of vertices and

propagators for dσA
V,UV. This makes it easy to find an integral representation for dσV

CT,UV. We may

use the integral representation for the ultraviolet approximation terms, substitute µUV → µ and add

a minus sign to obtain the integral representation for the contributions to dσV
CT,UV. For example

V
CT,UV
qqg,lc

(

µ2
)

= −V
V,UV
qqg,lc

(

µ2,µ2
)

,

V CT,UV
qqg,sc

(

µ2
)

= −V V,UV
qqg,sc

(

µ2,µ2
)

. (184)

Choosing µUV = µ ensures, that the counterterms just subtract out the 1/ε-pole. This can easily be

seen from eq. (183), yielding

V
CT,UV
qqg,lc = i

1

(4π)2
γµ (−3)

ε
+O(ε),

V CT,UV
qqg,sc = i

1

(4π)2
γµ 1

ε
+O(ε). (185)

The terms dσA
V,UV and dσV

CT,UV contain as far as divergent contributions are concerned only ul-

traviolet divergences. Moreover, the singular behaviour in the ultraviolet is up to a sign exactly

equal. Therefore, the sum of dσA
V,UV and dσV

CT,UV is integrable in the ultraviolet region and hence

integrable everywhere.

Let us now turn our attention to finite terms from renormalisation of the masses or couplings.

In the MS-scheme these finite terms are absent. Therefore, if we take the strong coupling g and
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the quark masses m in the MS-scheme nothing needs to be done. For the strong coupling the MS-

scheme is the conventional choice. However, for the quark masses the use of the on-shell scheme

is an alternative to the MS-scheme. We now discuss how to implement the on-shell scheme for

quark masses in our framework. This will require only minor modifications. We start with the

ultraviolet approximation term for a massive quark propagator:

−iΣV,UV
(

µ2,µ2
UV

)

=

−iS−1
ε µ2ε

∫
dDk

(2π)Di

[

−2(1− ε)
(

Q/+ k̄/
)

+4
(

1− 1
2
ε
)

m
(

k̄2 −µ2
UV

)2
−4(1− ε)

k̄ · (p−2Q) k̄/
(

k̄2 −µ2
UV

)3

+
2µ2

UV (p/−2m)
(

k̄2 −µ2
UV

)3

]

. (186)

This approximation term integrates to

−iΣV,UV = −i
1

(4π)2
(−p/+4m)

(

1

ε
− ln

µ2
UV

µ2

)

+O(ε). (187)

In order to find ΣCT,UV corresponding to a mass definition in the on-shell scheme one proceeds as

before (i.e. adding an extra minus sign and substituting µUV → µ) and one adds an additional finite

term, using the fact that

S−1
ε µ2ε

∫
dDk

(2π)Di

−2µ2
UV

(

k̄2 −µ2
UV

)3
=

1

(4π)2
eεγE Γ(1+ ε)

(

µ2
UV

µ2

)−ε

=
1

(4π)2
[1+O (ε)] . (188)

The required finite term is easily found by recalling that the counter-term leads to the Feynman

rule

= i
[

(p/−m)Z
(1)
2 −mZ

(1)
m,on−shell

]

, (189)

with Z
(1)
m,on−shell given in eq. (100). Thus

−iΣCT,UV
(

µ2
)

=

−iS−1
ε µ2ε

∫
dDk

(2π)Di

[

2(1− ε)
(

Q/+ k̄/
)

−4
(

1− 1
2
ε
)

m
(

k̄2 −µ2
)2

+4(1− ε)
k̄ · (p−2Q) k̄/
(

k̄2 −µ2
)3

−2µ2 (p/−2m)
(

k̄2 −µ2
)3

− 2µ2m
(

k̄2 −µ2
)3

(

−4+3ln
m2

µ2

)

]

(190)

integrates to

−iΣCT,UV = −i
1

(4π)2

[

(p/−4m)
1

ε
+m

(

−4+3ln
m2

µ2

)]

+O(ε) (191)

and implements the on-shell scheme for the quark mass.
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8 Contour deformation

Up to now we have defined integral representations for all contributions and maps between different

contributions such that the combination can be written as a single integral over

∫
dD−1k

(2π)D−1
.... (192)

We have achieved that all singularities, which would produce poles in the dimensional regularisa-

tion parameter ε cancel locally at the integrand level. Therefore we may take the limit D → 4 and

we arrive at a three-dimensional integral

∫
d3k

(2π)3
.... (193)

However, this does not yet imply that we can simply or safely integrate each of the three com-

ponents of the loop momentum~k from minus infinity to plus infinity along the real axis. In the

virtual part there is still the possibility that some of the loop propagators go on-shell for real values

of the loop momentum. We have seen examples of these threshold singularities in the case of a

final-final antenna in fig. (5) or in the case of an initial-initial antenna in fig. (7). In the case of

a final-initial antenna we have cancellation between the various dual integrands. The threshold

singularities are avoided by a deformation of the integration contour into the complex plane. For

the loop three-momentum we write

~k = ~̃k+ i~κ
(

~̃k
)

, (194)

where ~̃k is real and ~κ(~̃k) defines the deformation. This introduces a Jacobian in integral over the

virtual approximation terms:

∫
d3k

(2π)3
f
(

~k
)

=
∫

d3k̃

(2π)3

∣

∣

∣

∣

∂ki

∂k̃ j

∣

∣

∣

∣

f
(

~k
(

~̃k
))

. (195)

The deformation has to satisfy three requirements:

1. The deformation has to match the iδ-prescription of the dual propagators in eq. (35) and

eq. (36).

2. The deformation has to respect the ultraviolet power counting.

3. The deformation has to vanish for soft and collinear singularities in order not to spoil the

local cancellation of these singularities.

Algorithms for the contour deformation can be found in the literature [22, 27–29, 42].
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9 Conclusions

In this paper we considered NLO calculations within a numerical approach. The numerical ap-

proach employs subtraction terms both for the real emission contribution and the virtual contribu-

tion, such that the subtracted real emission contribution and the subtracted virtual contribution can

be integrated numerically. The subtraction terms have to be added back. In this paper we showed

that the various subtraction terms can be combined to give an integrable function, which again

can be integrated numerically. Our motivation is not to improve NLO calculations. At NLO, all

subtraction terms are easily integrated analytically and in practical calculations it is more efficient

to use those. However, the situation is different at NNLO and beyond: There the task of finding

local subtraction terms is manageable, while the analytic integration of the local subtraction terms

is highly non-trivial. It is therefore desirable to have at NNLO and beyond a method, which in-

tegrates the subtraction terms numerically. In order to achieve this, the subtraction terms have to

be combined in the right way with appropriate mappings between them. There are some subtleties

related to field renormalisation and initial-state collinear singularities. In this paper we studied

these subtleties at NLO and obtained a clear picture how all singularities cancel at the integrand

level.

At a more technical level the new results of this paper include a mapping between virtual

configurations and real configurations for all relevent cases, including initial-state particles and

final-state massive particles. In addition we derived an integral representation for the collinear

subtraction term for initial-state particles, which matches locally with the singularities of the other

contributions. Furthermore we presented a method on how to implement a mass definition in the

on-shell scheme within the numerical approach.

With the results of this paper we can now split a NLO calculation into three parts, the sub-

tracted virtual part, the subtracted real part and the combined subtraction terms. All three parts

can now be evaluated numerically. Does this eliminate the need of any analytic calculation of an

integral? Not quite. While it is true that infrared singularities cancel between the real and the vir-

tual contributions at the integrand level and no integral needs to be computed analytically for this

to happen, there are singularities, which are absorbed into a redefinition of the parameters. These

are the ultraviolet divergences, treated by renormalisation, and initial-state collinear singularities,

treated by a redefinition of the parton distribution functions. This introduces a scheme-dependence

and each scheme has a well-defined prescription which finite terms are absorbed in a redefinition

of the parameters and which not. The numerical approach has to reproduce the correct finite terms.

This requires to add certain finite terms to the integral representations of some quantities in order

to reproduce the correct finite terms of a given scheme. In order to find the correct finite terms for

the integral representations we have to perform some simple integrals analytically. The required

integrals are tadpole integrals

∫
dDk

(2π)D

1

(k2 −m)
ν , (196)
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for the virtual case and Euler beta-function type integrals

1∫

0

dx xν−ε (1− x)−ε
(197)

in the real case. These two integrals are significantly simpler than the integrals required to integrate

all subtraction terms analytically and we might expect that this remains true at NNLO and beyond.
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A Polarisation vectors and polarisation spinors

We define the light-cone coordinates of a four-vector pµ as

p+ = p0 + p3, p− = p0 − p3, p⊥ = p1 + ip2, p⊥∗ = p1 − ip2. (198)

In terms of the light-cone components of a light-like four-vector, the corresponding massless

spinors 〈p±| and |p±〉 can be chosen as

|p+〉= e−i
φ
2

√

|p+|

(

−p⊥∗

p+

)

, |p−〉 = e−i
φ
2

√

|p+|

(

p+
p⊥

)

,

〈p+| = e−i
φ
2

√

|p+|
(−p⊥, p+) , 〈p−| = e−i

φ
2

√

|p+|
(p+, p⊥∗) , (199)

where the phase φ is given by

p+ = |p+|eiφ, 0 ≤ φ < 2π. (200)

If the Cartesian coordinates p0, p1, p2 and p3 are real numbers, we have

|p±〉† = eiφ 〈p±| , 〈p±|† = eiφ |p±〉 , eiφ =±1. (201)

Spinor products are denoted as

〈pq〉= 〈p−|q+〉, [qp] = 〈q+ |p−〉. (202)

Let q be a light-like four-vector. We define polarisation vectors for the gluons by

ε+µ =
〈q−|σµ|p−〉√

2〈qp〉
, ε−µ =

〈q+ |σ̄µ|p+〉√
2[pq]

, (203)
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with σµ = (1,~σ) and σ̄µ = (1,−~σ), where~σ = (σ1,σ2,σ3) are the Pauli matrices. The dependence

on the reference four-vector q drops out in gauge invariant quantities. Under complex conjugation

we have

(

ε+µ
)∗

= ε−µ ,
(

ε−µ
)∗

= ε+µ . (204)

For the spin sum we have

∑
λ

(

ελ
µ

)∗
ελ

ν = −gµν +
pµqν +qµpν

p ·q . (205)

The reference four-vector q can be used to project any not necessarily light-like four-vector P on a

light-like four-vector P♭:

P♭ = P− P2

2P ·qq. (206)

The four-vector P♭ satisfies (P♭)2 = 0. Let P be a four-vector satisfying P2 = m2. We define the

spinors associated to massive fermions by

u± =
1

〈P♭±|q∓〉 (P/+m) |q∓〉, ū± =
1

〈q∓|P♭±〉〈q∓|(P/+m) ,

v∓ =
1

〈P♭±|q∓〉 (P/−m) |q∓〉, v̄∓ =
1

〈q∓|P♭±〉〈q∓|(P/−m) . (207)

These spinors satisfy the Dirac equations

(p/−m)uλ = 0, ūλ (p/−m) = 0,

(p/+m)vλ = 0, v̄λ (p/+m) = 0, (208)

the orthogonality relations

ūλ̄uλ = 2mδλ̄λ, v̄λ̄vλ =−2mδλ̄λ, (209)

and the completeness relation

∑
λ

uλūλ = p/+m, ∑
λ

vλv̄λ = p/−m. (210)

We further have

ūλ̄γµuλ = 2pµδλ̄λ,

v̄λ̄γµvλ = 2pµδλ̄λ. (211)

In the massless limit the definition reduces to

ū± = v̄∓ = 〈p±|, u± = v∓ = |p±〉. (212)
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B Self-energies and field renormalisation

B.1 The gluon self-energy

We first consider the gluon self-energy. With the notation k1 = k+ p/2, k2 = k− p/2 we find

−iΠµν
(

p,µ2
)

=−ig2S−1
ε µ4−D

∫
dDk

(2π)Di

1

k2
1k2

2

{

2CA

[

−p2gµν + pµ pν −2(1− ε)kµkν

+
1

2
(1− ε)gµν

(

k2
1 + k2

2

)

]

+2TRN f

[

p2gµν − pµ pν +4kµkν −gµν
(

k2
1 + k2

2

)]

}

. (213)

The self-energy may be written as

−iΠµν = −i
(

−p2gµν + pµ pν
)

Π
(

p2
)

. (214)

An analytic calculation of Π(p2) gives

Π
(

p2
)

= g2

[

β0 −2CA +

(

CA

9
+

4

9
TRN f

)

ε

1− 2
3
ε

]

B0

(

p2,0,0
)

, (215)

where B0(p2,0,0) is the scalar two-point function with masses m1 = 0 and m2 = 0, given for p2 6= 0

by

B0

(

p2,0,0
)

=
1

(4π)2
eεγE

Γ(ε)Γ(1− ε)2

Γ(2−2ε)

(−p2

µ2

)−ε

. (216)

For p2 = 0 one has

B0 (0,0,0) = 0. (217)

The one-loop contribution to the field renormalisation constant Z g is given by

Z
(1)
g = Π(0) . (218)

In dimensional regularisation this contribution is zero, due to a cancellation between ultraviolet

and infrared parts. Keeping track of the divergent ultraviolet and infrared parts we may write this

zero as

Z
(1)
g =

αs

4π
(2CA −β0)

(

1

εIR
− 1

εUV

)

. (219)

Let us denote by Π
µν
UV(p,µ2,µ2

UV) an ultraviolet approximation term to the one-loop self-energy.

Π
µν
UV has the integral representation

−iΠ
µν
UV

(

p,µ2,µ2
UV

)

= −ig2S−1
ε µ4−D

∫
dDk

(2π)Di

P
µν
UV

(

k̄, p,µ2
UV

)

(

k̄2 −µ2
UV

)4
, (220)
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where P
µν
UV is a polynomial in k̄ and p. The explicit expression can be found in ref. [25]. Here, we

will only need the fact that with the choice µUV = µ the ultraviolet subtraction term integrates to

−iΠ
µν
UV

(

p,µ2,µ2
)

= −i
(

−p2gµν + pµ pν
)

Z
(1)
g,UV +O (ε) , (221)

with

Z
(1)
g,UV =

αs

4π
(2CA −β0)

(

− 1

εUV

)

. (222)

Let us now define the quantity Π̂µν(p0,~p)

Π̂µν

(

p0,~p
)

=

(

−gµρ +
pµqρ+qµ pρ

p ·q − p2

(pq)2
qµqρ

)

(

−iΠρσ + iΠ
ρσ
UV

)

(−igσν

p2

)

. (223)

Here, q is a light-like reference vector (q2 = 0). On the other hand, we do not require that p is

light-like. The loop integration inherent in (Πρσ −Π
ρσ
UV) is by definition of Π

ρσ
UV ultraviolet finite.

Thus Π̂µν is finite for ε < 0. It is also finite for ε = 0, provided p2 6= 0. For ε = 0 and p2 = 0

we have an infrared singularity from the loop integration and in addition an explicit 1/p2-pole

from the definition in eq. (223). The former infrared singularity we would like to combine with

corresponding singularities from other terms in dσNLO
I+L,IR, the latter pole requires special treatment.

If we sandwich the analytic expression for Π̂µν(p0,~p) between two amplitudes, where the

polarisation vector of the gluon has been amputated, we find for ε < 0 and in the limit p2 → 0

Re
(

Aµ (0) ∗ Π̂µν

(

p0,~p
)

Aν (0)
)

=
(

Z
(1)
g −Z

(1)
g,UV

)
∣

∣

∣
A(0)

∣

∣

∣

2

+O (ε) . (224)

Thus, this expression contains exactly the terms from the field renormalisation constants, which

lead to the 1/εIR divergences or finite terms. This is the contribution which we would like to

include in dσV
CT,IR. Note that the 1/p2-pole cancels after the (analytic) loop integration. However,

we would like to have an expression, where we can take the limit p2 → 0 in the integrand before the

loop integration. The expression on the right-hand side of eq. (223) is not suited for a numerical

evaluation, due to the 1/p2-singularity from the propagator. In order to arrive at an expression

suitable for numerical evaluation we will use a dispersion relation in the variable p0 for Π̂µν [44,

55]. Two properties of Π̂µν are relevant: First, for |p0| < |~p| the function Π̂µν(p0,~p) is analytic in

p0. Secondly, for large |p0| the quantity Π̂µν behaves like a constant up to logarithmic corrections.

Therefore we will use a dispersion relation with a subtraction. The starting point is Cauchy’s

theorem:

Π̂µν

(

p0,~p
)

p2 −µ2
DI

=
1

2πi

∮
d p̃0 Π̂µν

(

p̃0,~p
)

(p̃0 − p0)
(

p̃2 −µ2
DI

) , (225)

with p̃ = (p̃0,~p) and where the contour is a small counter-clockwise circle around p0. The factor

1/(p2 −µ2
DI) improves the large |p0|-behaviour. µ2

DI is an arbitrary parameter, which may be com-

plex. Ignoring the 1/(p ·q)-terms, which will vanish when contracted into the amplitude, we may

deform the contour as in fig. 10 and obtain
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Rep̃0

Imp̃0

|~p|−|~p|

Figure 10: The integration contour for the dispersion relation. The two small circles enclose the

poles of 1/(p̃2 −µ2
DI).

Π̂µν

(

p0,~p
)

=
p2 −µ2

DI

2πi

∞∫

|~p|

d p̃0

[

Disc Π̂µν

(

p̃0,~p
)

(p̃0 − p0)
(

p̃2 −µ2
DI

) +
Disc Π̂µν

(

−p̃0,~p
)

(−p̃0 − p0)
(

p̃2 −µ2
DI

)

]

(226)

−
(

p2 −µ2
DI

)

Π̂µν

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=
√

|~p|2+µ2
DI

−
(

p2 −µ2
DI

)

Π̂µν

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=−
√

|~p|2+µ2
DI

.

The last two terms subtract the residues at p̃0 = ±
√

|~p|2 +µ2
DI. The factor 1/(p2 − µ2

DI) ensures

that the half-circles at infinity give a vanishing contribution. Let us now consider the discontinu-

ity Disc Π̂µν. We first note, that the ultraviolet approximation term Π
ρσ
UV does not contribute to

Disc Π̂µν. The ultraviolet approximation term Π
ρσ
UV contains only tadpole integrals, which are in-

dependent of p2. Let us further denote by Pµν(k, p,µ2) the numerator of the integrand of the gluon

self-energy, i.e.

−iΠµν
(

p,µ2
)

=
∫

dDk

(2π)Di

Pµν
(

k, p,µ2
)

k2
1k2

2

, (227)

Pµν
(

k, p,µ2
)

=−ig2S−1
ε µ4−D

{

2CA

[

−p2gµν + pµ pν −2(1− ε)kµkν

+
1

2
(1− ε)gµν

(

k2
1 + k2

2

)

]

+2TRN f

[

p2gµν − pµ pν +4kµkν −gµν
(

k2
1 + k2

2

)]

}

,

and define N̂µν(p,k,q) in analogy with eq. (223):

N̂µν (p,k,q) =

(

−gµρ +
pµqρ +qµpρ

p ·q − p2

(pq)2
qµqρ

)

Pρσ
(

k, p,µ2
)

(−igσν

p2

)

. (228)
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Working out the discontinuity gives us then an expression which we can evaluate at p2 = 0:

Π̂µν

(

p0,~p
)
∣

∣

p2=0
= (229)

1

(2π)D−1

∫
dDk1

∫
dDk2δ+

(

k2
1

)

δ−
(

k2
2

)

δD−1
(

~p−~k1 +~k2

) N̂µν (p̃,k,q)

(p̃0 − p0)
(

1− p̃2

µ2
DI

)

+
1

(2π)D−1

∫
dDk1

∫
dDk2δ−

(

k2
1

)

δ+
(

k2
2

)

δD−1
(

~p−~k1 +~k2

) N̂µν (p̃,k,q)

(p̃0 − p0)
(

1− p̃2

µ2
DI

)

+
µ2

DIΠ̂µν

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=
√

|~p|2+µ2
DI

+
µ2

DIΠ̂µν

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=−
√

|~p|2+µ2
DI

,

with p̃ = (k0
1 − k0

2,~p) and k = 1/2 (k1 + k2). Note that the ultraviolet approximation term Π
ρσ
UV

enters in Π̂µν, but not N̂µν. Further note that in the last two terms in eq. (229) the UV-subtracted

self-energy is evaluated at p̃2 = µ2
DI. These two terms give a finite contribution. The infrared

singularity is contained in the first two terms of eq. (229), for p0 > 0 in the first term, for p0 < 0 in

the second term.

Finally, using the loop-tree duality for the loop integrals in the last two terms, we may re-write

all terms as an integration over dD−1k2 (or alternatively dD−1k):

Π̂µν

(

p0,~p
)
∣

∣

p2=0
= g2S−1

ε µ2ε
∫

dD−1k2

(2π)D−1
[Xg (p,k2)]µν . (230)

This defines [Xg(p,k2)]µν. The explicit expression is rather long and not reproduced here. However,

it can be extracted in a straightforward way from eq. (229).

B.2 The massless quark self-energy

The self-energy for a massless quark is given by

−iΣαβ = −ig2CFS−1
ε µ4−D

∫
dDk

(2π)Di

[

−2(1− ε)k/
αβ
1

]

k2
1k2

2

. (231)

We may write

−iΣαβ = −ip/αβΣ′ (p2
)

. (232)

An analytic calculation of Σ′(p2) gives

Σ′ (p2
)

= −αs

4π
CF (1− ε)B0

(

p2,0,0
)

. (233)

54



The one-loop contribution to the field renormalisation constant Z q for massless quarks is given by

Z
(1)
q = Σ′ (0) . (234)

Again, this contribution is zero in dimensional regularisation due to a cancellation between ultra-

violet and infrared parts. Keeping track only of divergent ultraviolet and infrared parts one finds

Z
(1)
q =

αs

4π
CF

(

1

εIR
− 1

εUV

)

. (235)

Let us denote by Σ
αβ
UV(p,µ2,µ2

UV) an ultraviolet approximation term to the one-loop self-energy.

Σ
αβ
UV has the integral representation

−iΣ
αβ
UV

(

p,µ2,µ2
UV

)

= −ig2S−1
ε µ4−D

∫
dDk

(2π)Di

P
αβ
UV

(

k̄, p,µ2
UV

)

(

k̄2 −µ2
UV

)3
, (236)

where P
αβ
UV is a polynomial in k̄ and p. The explicit expression can be found in ref. [25]. With the

choice µUV = µ the ultraviolet subtraction term integrates to

−iΣ
αβ
UV

(

p,µ2,µ2
)

= −ip/αβZ
(1)
q,UV +O (ε) , (237)

with

Z
(1)
q,UV =

αs

4π
CF

(

− 1

εUV

)

. (238)

In analogy with the gluon self-energy let us consider the quantity

Σ̂αβ

(

p0,~p
)

= p/αγ

(

−iΣγδ + iΣ
γδ
UV

) ip/δβ

p2
. (239)

For p2 = 0 we have

Re
(

Aα (0) ∗ Σ̂αβ

(

p0,~p
)

Aβ (0)
)

=
(

Z
(1)
q −Z

(1)
q,UV

)
∣

∣

∣
A(0)

∣

∣

∣

2

+O (ε) . (240)

For large |p0| the quantity Σ̂αβ grows (up to logarithminc corrections) linearly with |p0|. As in the

gluon case we will therefore use a dispersion relation with a subtraction. Let us further denote by

Pαβ(k, p,µ2) the numerator of the integrand of the quark self-energy, i.e.

−iΣαβ =

∫
dDk

(2π)Di

Pαβ
(

k, p,µ2
)

k2
1k2

2

,

Pαβ
(

k, p,µ2
)

= −ig2CFS−1
ε µ4−D

[

−2(1− ε)k/
αβ
1

]

. (241)
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and define N̂αβ(p,k) in analogy with eq. (239):

N̂αβ (p,k) = p/αγP
γδ
(

k, p,µ2
) ip/δβ

p2
. (242)

With the help of a dispersion relation we may re-write Σ̂αβ as an expression which we may evaluate

at p2 = 0:

Σ̂αβ

(

p0,~p
)
∣

∣

p2=0
= (243)

1

(2π)D−1

∫
dDk1

∫
dDk2δ+

(

k2
1

)

δ−
(

k2
2

)

δD−1
(

~p−~k1 +~k2

) N̂αβ (p̃,k)

(p̃0 − p0)
(

1− p̃2

µ2
DI

)

+
1

(2π)D−1

∫
dDk1

∫
dDk2δ−

(

k2
1

)

δ+
(

k2
2

)

δD−1
(

~p−~k1 +~k2

) N̂αβ (p̃,k)

(p̃0 − p0)
(

1− p̃2

µ2
DI

)

+
µ2

DIΣ̂αβ

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=
√

|~p|2+µ2
DI

+
µ2

DIΣ̂αβ

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=−
√

|~p|2+µ2
DI

,

with p̃ = (k0
1 − k0

2,~p) and k = 1/2 (k1 + k2).
Finally, using the loop-tree duality for the loop integrals in the last two terms, we may re-write

all terms as an integration over dD−1k2:

Σ̂αβ

(

p0,~p
)
∣

∣

p2=0
= g2S−1

ε µ2ε
∫

dD−1k2

(2π)D−1

[

Xq (p,k2)
]

αβ
. (244)

This defines [Xq(p,k2)]αβ.

B.3 The massive quark self-energy

The self-energy for a massive quark is given by

−iΣαβ = −ig2CFS−1
ε µ4−D

∫
dDk

(2π)Di

[

−2(1− ε)k/
αβ
1 +4

(

1− 1
2
ε
)

mδαβ
]

(

k2
1 −m2

)

k2
2

. (245)

One expands the self-energy around p2 = m2:

−iΣαβ = −i
[

δαβΣ(m)+
(

p/αβ −mδαβ
)

Σ′ (m)+ ...
]

. (246)

Then

Z
(1)
m,on−shell = − 1

m
Σ(m) , Z

(1)
Q = Σ′ (m) , (247)
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and one finds

Z
(1)
m,on−shell =

αs

4π
CF

(

− 3

εUV
−4+3ln

m2

µ2

)

,

Z
(1)
Q =

αs

4π
CF

(

− 1

εUV
− 2

εIR
−4+3ln

m2

µ2

)

. (248)

Let us denote by Σ
αβ
UV(p,µ2,µ2

UV) an ultraviolet approximation term to the one-loop self-energy.

Σ
αβ
UV has the integral representation

−iΣ
αβ
UV

(

p,µ2,µ2
UV

)

= −ig2S−1
ε µ4−D

∫
dDk

(2π)Di

P
αβ
UV

(

k̄, p,µ2
UV

)

(

k̄2 −µ2
UV

)3
, (249)

where P
αβ
UV is a polynomial in k̄ and p. With the choice µUV = µ and by adding a suitable chosen

finite term we can ensure that Σ
αβ
UV takes into account the ultraviolet divergence and the finite part

due to the on-shell mass renormalisation. The explicit expression is

−iΣ
αβ
UV

(

p,µ2,µ2
)

= ig2CFΣCT,UV,αβ
(

µ2
)

, (250)

where ΣCT,UV is given in eq. (190). The ultraviolet subtraction term integrates to

−iΣ
αβ
UV

(

p,µ2,µ2
)

= −i
[

Z
(1)
Q,UVp/−

(

Z
(1)
Q,UV+Z

(1)
m,on−shell

)

m
]

, (251)

with

Z
(1)
Q,UV =

αs

4π
CF

(

− 1

εUV

)

,

Z
(1)
m,on−shell =

αs

4π
CF

(

− 3

εUV
−4+3ln

m2

µ2

)

. (252)

Let us consider the quantity

Σ̂αβ

(

p0,~p
)

=
(

p/αγ +mδαγ

)

(

−iΣγδ + iΣ
γδ
UV

) i
(

p/δβ +mδδβ

)

p2 −m2
. (253)

For p2 = m2 we have

Re
(

Aα (0) ∗ Σ̂αβ

(

p0,~p
)

Aβ (0)
)

=
(

Z
(1)
Q −Z

(1)
Q,UV

)
∣

∣

∣
A(0)

∣

∣

∣

2

+O (ε) . (254)

Let us further denote by Pαβ(k, p,µ2) the numerator of the integrand of the quark self-energy, i.e.

−iΣαβ =

∫
dDk

(2π)Di

Pαβ
(

k, p,µ2
)

k2
1k2

2

,

Pαβ
(

k, p,µ2
)

= −ig2CFS−1
ε µ4−D

[

−2(1− ε)k/
αβ
1 +4

(

1− 1

2
ε

)

mδαβ

]

. (255)
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and define N̂αβ(p,k) in analogy with eq. (253):

N̂αβ (p,k) =
(

p/αγ +mδαγ

)

Pγδ
(

k, p,µ2
) i
(

p/δβ+mδδβ

)

p2 −m2
. (256)

With the help of a dispersion relation we may re-write Σ̂αβ as an expression which we may evaluate

at p2 = m2:

Σ̂αβ

(

p0,~p
)
∣

∣

p2=m2 = (257)

1

(2π)D−1

∫
dDk1

∫
dDk2δ+

(

k2
1 −m2

)

δ−
(

k2
2

)

δD−1
(

~p−~k1 +~k2

) N̂αβ (p̃,k)

(p̃0 − p0)
(

1− p̃2

µ2
DI

)

+
1

(2π)D−1

∫
dDk1

∫
dDk2δ−

(

k2
1 −m2

)

δ+
(

k2
2

)

δD−1
(

~p−~k1 +~k2

) N̂αβ (p̃,k)

(p̃0 − p0)
(

1− p̃2

µ2
DI

)

+
µ2

DIΣ̂αβ

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=
√

|~p|2+µ2
DI

+
µ2

DIΣ̂αβ

(

p̃0,~p
)

2p̃0 (p̃0 − p0)

∣

∣

∣

∣

∣

p̃0=−
√

|~p|2+µ2
DI

,

with p̃ = (k0
1 − k0

2,~p) and k = 1/2 (k1 + k2).
Finally, using the loop-tree duality for the loop integrals in the last two terms, we may re-write

all terms as an integration over dD−1k2:

Σ̂αβ

(

p0,~p
)
∣

∣

p2=m2 = g2S−1
ε µ2ε

∫
dD−1k2

(2π)D−1
[XQ (p,k2)]αβ . (258)

This defines [XQ(p,k2)]αβ.

C The momenta mapping from the virtual to the real space

In this appendix we determine the constants α and β in the mapping of eq. (158):

p′k = α

(

pk −
Q · pk

Q2
Q

)

+βQ,

p′j = −ki,

p′i = Q+ ki − p′k, (259)

with Q = pi + pk. We require that

p′i
2 = m′

i
2, p′k

2 = m′
k

2 = m2
k. (260)

We may use the first equation to eliminate α, doing so gives us a quadratic equation for β:

aβ2 +bβ+ c = 0, (261)
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with

a = 4Q4
{

4m2
kQ4 +

[

4m2
k (2kiQ)+(2ki pk)

2 − (2pkQ)2
]

Q2

+2kiQ
[

m2
k (2kiQ)− (2pkQ)2 − (2pkQ)(2ki pk)

]}

,

b = 2Q2
[

2Q2 +2kiQ
)

[

(2pkQ)2 −4m2
kQ2
]

[

Q2 +2kiQ−m′
i
2 +m′

j
2 +m2

k

]

,

c = 4m2
kQ4

[

(

Q2 +2kiQ−m′
i
2 +m′

j
2 +m2

k

)2 − (2ki pk)
2
]

+4m2
kQ2 (2ki pk)(2kiQ)(2pkQ)

−
{

Q6 +2
[

2kiQ−m′
i
2 +m′

j
2 +m2

k

]

Q4 −
[

2kiQ−m′
i
2 +m′

j
2 +m2

k

]2
Q2 +m2

k (2kiQ)2
}

×(2pkQ)2 . (262)

We thus have

β = −b+
√

b2 −4ac

2a
, (263)

where the sign of the root is fixed by matching on the massless limit. The constant α is then given

by

α = 2Q2

[

Q2 +2kiQ−m′
i
2 +m′

j
2 +m2

k −
(

2Q2 +2kiQ
)

β
]

2Q2 (2ki pk)− (2pkQ)(2kiQ)
. (264)
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