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A search for a Higgs boson with suppressed couplings to fermions, hf , assumed to be the neutral,
lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such
a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could
be produced via pp̄→H±hf→W ∗hfhf→4γ+X, where H± is a charged Higgs boson. This analysis
uses all events with at least three photons in the final state from proton-antiproton collisions at a
center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to
an integrated luminosity of 9.2 fb−1. No evidence of a signal is observed in the data. Values of
Higgs-boson masses between 10 and 100 GeV/c2 are excluded at 95% Bayesian credibility.

PACS numbers: 12.60.Fr, 13.85.Rm, 14.80.Ec, 14.80.Fd

In the standard model (SM) of particle physics, the
masses of elementary particles are generated by the spon-
taneous breaking of the electroweak gauge symmetry [1],
which predicts the existence of the Higgs boson. In
2012, the ATLAS and CMS experiments at CERN’s
Large Hadron Collider (LHC) discovered a scalar bo-
son with mass of approximately 125 GeV/c2 and prop-
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erties consistent with those expected for the SM Higgs
boson [2, 3]. Some evidence for such a boson had also
been presented by the Tevatron experiments [4]. The
detailed phenomenology of the Higgs boson is, however,
yet to be investigated. The possibility that the recently
observed Higgs boson is part of an extended Higgs sec-
tor is attractive because it would address some relevant
open questions about the SM such as the generation of
matter-antimatter asymmetry in the Universe [5] and it
is not ruled out experimentally.

A minimal extension, the “two-Higgs-doublet model”
(2HDM) [6], assumes two doublets of Higgs fields. The
resulting particle spectrum for the CP-conserving case
consists of three electrically neutral Higgs bosons, h0, H0

and A0, and two charged Higgs-bosons, H+, H−, where
h0 is less massive than H0. The acronym CP represents
the combined operations of charge-conjugation and par-
ity transformation. An important parameter for predic-
tions from the model is the ratio tanβ of the two vacuum-
expectation values for the neutral components of the two
Higgs doublets. Assuming that the boson discovered re-
cently at the LHC is the h0, searches for additional, more-
massive neutral Higgs bosons were performed [7, 8], yield-
ing exclusion limits on production cross sections.

In this Letter, we consider an alternative case in which
the newly-discovered boson corresponds to the high-mass
H0 and the lower-mass h0 is yet to be observed. This
scenario is poorly constrained experimentally if tanβ is
large and h0 has suppressed couplings to fermions at
leading order. The h0 is referred to as the fermiophobic
Higgs boson (hf ). Searches performed at various exper-
iments [9–11] have set lower bounds of its mass, mhf

,

at 100–150 GeV/c2. These mass limits, however, were
obtained assuming simplified models in which the cou-
plings between the hf and electroweak-gauge bosons are
of the same strength as those in the SM, which is not
necessarily true in the 2HDM, as they may be strongly
suppressed when tanβ is large [12], by a factor of approx-
imately 10−2 when tanβ = 10, for example. A low-mass
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hf (mhf
. 100 GeV/c2), therefore, could have eluded

the previous searches if tanβ is large. To fill this gap
in exploring the Higgs sector, we focus on the process
qq̄′ →W ∗ → hfH

±, followed by the decay H± → hfW
∗,

where q and q̄′ are quarks and antiquarks in the colliding
protons and antiprotons taking part in the hard interac-
tion, and W ∗ represents a virtual W boson. This pro-
cess, involving H±, has enhanced production rates for
large tanβ [13]. By assuming no couplings to fermions,
the branching fraction (B) of hf decays to two photons,
hf → γγ , is near 100% for mhf

. 95 GeV/c2 [13, 14].
The production of two hf particles could result in a
distinctive multiphoton topology with small background
rates. The couplings of the H0 to SM particles in this sce-
nario are similar to those of the SM Higgs boson [13] and
we perform the analysis assuming that its mass, mH0 ,
is 125 GeV/c2. The decay of H0→hfhf , when it is
kinematically allowed and when the coupling is sizable,
can also lead to multiphoton final states. We conserva-
tively neglect this contribution to the expected signal.
We also assume the A0 mass, mA0 , to be 350 GeV/c2,
large enough so as not to contribute to H± decays – the
specific choice of mA0 has little effect on the final result,
and we take tanβ = 10. The expected production cross
section multiplied by the appropriate branching fractions
ranges approximately from 100 pb to 10 fb for the ex-
plored mhf

and the H± mass (mH±) values, from 10 to

105 GeV/c2 and from 30 to 300 GeV/c2, respectively.

This analysis is based on the entire data set of
proton-antiproton collisions at a center-of-mass energy of
1.96 TeV collected with the Collider Detector at Fermilab
(CDF II) between February 2002 and September 2011,
corresponding to an integrated luminosity of 9.2 fb−1.
We select events with multiple photon candidates by ap-
plying criteria optimized for achieving the best sensitiv-
ity. We compare the observed event yields with back-
ground expectations, which are evaluated using a combi-
nation of Monte Carlo (MC) simulation and experimen-
tal data. A challenge is to estimate the contribution from
background events containing clusters of particles (jets)
misidentified as photons.

CDF II is a general-purpose detector consisting of
tracking devices in a 1.4 T axial magnetic field, sur-
rounded by calorimeters with a projective-tower geom-
etry, and muon detectors surrounding the calorimeters.
Gas proportional wire chambers with cathode strips
(shower-maximum strip detectors) are located at a depth
approximately corresponding to the maximum develop-
ment of typical electromagnetic (EM) showers to measure
precisely their centroid position and shape in the plane
transverse to the shower development. Detailed descrip-
tions of the CDF II detector are in Ref. [15].

The initial data sample is obtained using a real-time
event-selection system (trigger) that requires either two
EM-energy clusters in the calorimeter, each with ET ≡
E sin θ > 12 GeV, or three clusters, each with ET >
10 GeV, where E is the cluster energy measured with
the calorimeter, θ is the polar angle, and ET is the trans-

verse energy [16]. In the analysis, we select events with
at least three EM-energy clusters with ET > 15 GeV.
They must be located in the central detector (pseudora-
pidity magnitude |η| < 1.1) [16], where reliable tracking
of charged particles is available [17]. The photons are also
required to be isolated: additional calorimeter ET in a
cone of angular radius R =

√
(∆η)2 + (∆φ)2 = 0.4 [16]

around the photon candidate must be less than 2 GeV,
and the scalar sum of transverse momenta of charged
particles in the same cone must be less than 2 GeV/c.
We then apply photon-identification criteria based on the
EM-shower profile, which must be consistent with the ex-
pectation for an isolated photon [18]. For photons with
ET > 15 GeV in a fiducial region of the central detector,
the probability to pass all selections is 80–90%.

We estimate the reconstruction efficiency for signal
events as a function of mhf

and mH± using pythia
(version 6.4) MC simulation [19]. The generated events
are passed through the full detector simulation based on
geant [20]. The simulation of the EM response of the
detector is calibrated by matching the observed energies
in samples of Z→e+e− events in the data and the MC
simulation [18]. The fractions of generated signal events
to pass all event selections are in the range 1–10% de-
pending on mhf

and mH± .

Direct triphoton production is a major source of back-
ground events. We predict the kinematic distributions
from simulated data generated with MadGraph (ver-
sion 5) interfaced with MadEvent [21] and combined
with parton showering from pythia. MadGraph pro-
vides direct triphoton production with up to two addi-
tional jets. The renormalization and factorization scales
are set to the sum of the squares of the photons’ trans-
verse momenta. The generated events are passed through
the full detector simulation and we apply the same pho-
ton selection as that used for data.

Another source of background is the production of
events with jets misidentified as photons. This back-
ground includes photons produced in the fragmentation
process of quarks or gluons to hadrons. For estimat-
ing this contribution, we introduce a loose photon selec-
tion which simply collects EM-energy clusters without
any associated tracks. In a sample of three-photon can-
didates selected with the loose selection, there are eight
possible combinations of ET -ordered photons and EM-
like jets, γγγ, γγj, · · · , where j represents an EM-like
jet. The numbers of these events are unknown and we
express them by a vector n∗ of event counts (n∗γγγ , n∗γγj ,
· · · ). By applying the full set of criteria for the photon
selection, we categorize the events in eight classes de-
pending on whether each of the photon candidates in a
given event passes (p) or fails (f) the full photon selection
(nppp, nppf , · · · ), denoted by n. The components of n∗

are obtained by solving eight linear equations n = En∗,
where E is an 8×8 matrix, the elements of which are cal-
culated from the probability for a genuine photon or jet
that meets the loose selection to also meet the full photon
selection. Once n∗ is obtained by inverting the matrix
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E, we estimate the misidentified-jet contribution to nppp
using E and the calculated elements of n∗ except n∗γγγ .
Statistical uncertainties are propagated to n∗. The pho-
ton efficiencies are measured with the pythia MC and
detector simulation, with a final calibration derived by
comparing unbiased electrons in Z→e+e− events in the
data and the MC simulation. We estimate the probabil-
ity for misidentifying jets as photons as a function of ET
using isolated jets in data samples collected with inclu-
sive jet triggers. We correct for contributions of genuine
photons to the set of objects passing the photon selection
in the jet samples based on the differences in the expected
distributions of isolation and shower shape variables [18].
Genuine photons tend to be isolated and to have good χ2

values for the comparison of the observed and expected
shower shapes, while misidentified jets show broad distri-
butions in both quantities. These differences enable us to
extrapolate the amount of misidentified jets from regions
of larger isolation and χ2 values to the region selected by
the photon identification. The fraction of misidentified
jets is then estimated to be approximately 30% using the
calorimetry-based isolation. The misidentification prob-
ability varies from a few percent to 25% depending on
the ET .

A third source of background events arises from
electroweak processes containing Z(→ee)γ, W (→eν)γ,
Z(→ττ)γ, or W (→τν)γ decays with additional misiden-
tified jets or other photon-like particles that result in
the γγγ signature. We predict these backgrounds using
pythia MC and detector simulation, after normalizing
the cross sections to observed W and Z yields in the
data.

The total expected number of background events at
this stage is 10.3±0.2, where the uncertainty is statistical.
We observe 10 events in the data, which is consistent with
the background expectation. None of the observed events
contains four or more photons.

In order to further improve the search sensitivity, we
apply an additional criterion on the summed ET of the
two highest-ET photons, Eγ1T + Eγ2T . To quantify the
search sensitivity, we calculate Bayesian [22] expected
limits on the product of the cross section and the branch-
ing fraction

σ(pp̄→ hfH
±)× B(H± → hfW

∗)× [B(hf → γγ)]
2
,

with respect to theoretical predictions by integrating pos-
terior probability density functions based on predicted
number of background events. We assume a uniform
prior probability density for the signal rate. The theo-
retical cross sections at leading order are computed using
pythia with an enhancement factor of 1.4 to approx-
imate higher-order contributions. This factor is taken
to be the ratio of the W boson production cross section
measured by CDF [17] to the corresponding prediction
by pythia. This is similar to a calculation of the ratio of
the next-to-leading-order prediction to the leading-order
prediction of 1.3 ± 0.3 for Higgs boson pair production
in Drell-Yan-like processes at the LHC [23], and we note
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FIG. 1. Distribution of Eγ1T + Eγ2T in events containing three
or more photons for data, SM background prediction, and hy-
pothetical signal for a signal point having mhf = 75 GeV/c2

and mH± = 120 GeV/c2.

that the central values, which are expected to be simi-
lar, are within the theoretical uncertainty on the Higgs
boson pair production prediction, which is much larger
than the experimental uncertainty on the W boson en-
hancement factor. Because the hf signal production pro-
cess under study begins with W boson production, we
use the measured W boson production enhancement fac-
tor, but we use the uncertainty on the theoretical pre-
diction, ±0.3, as an estimate of the uncertainty in ex-
trapolating the enhancement factor from one process to
the other. The branching fractions are calculated with
the 2hdmc program (version 1.6.5) [24]. The expected
limit is the median in a large set of simulated experi-
ments based on the Poisson fluctuation of the background
events. We choose Eγ1T + Eγ2T > 90 GeV as the final re-
quirement because it provides the best expected limit.
Figure 1 shows the predicted and observed distributions
of Eγ1T + Eγ2T and includes the requirement defining the
signal region. We compare the background distribution
and the expected signal distribution for a signal point
having mhf

= 75 GeV/c2 and mH± = 120 GeV/c2.

The main systematic uncertainty on the signal effi-
ciency comes from that on the estimation of the iden-
tification efficiency for three photons, which is 8% of
the total efficiency based on studies comparing Z→e+e−
in data and simulation [18] by assuming full correlation
among three photons. Other sources of systematic un-
certainties include those on the parton momentum dis-
tributions in the colliding hadrons, the initial- and final-
state radiation of a gluon, and the renormalization scale,
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TABLE I. Expected number of background events compared
to the observed number of events after the final event selec-
tion. The first contribution to the uncertainty is statistical
and the second is systematic.

Events in signal region

(Eγ1T + Eγ2T > 90 GeV)

Direct triphoton 2.60 ± 0.04 ± 0.93

Misidentified jets 0.32 ± 0.07 ± 0.17

Electroweak 0.04 ± 0.01 ± 0.03

Total 2.96 ± 0.08 ± 0.94

Data 5

which are each found to contribute less than 3% of the
total efficiency [18].

We compare the MadGraph cross section with
mcfm [25] calculations that take into account different
higher-order contributions and take the resulting differ-
ence of 0.83 events as a systematic uncertainty on the
yield of direct triphoton events. The systematic un-
certainty from the renormalization scale, that from the
initial- and final-state radiation, and that from the lumi-
nosity measurement [26] range from 0.16 to 0.21 events.
We estimate the total systematic uncertainty on the ex-
pected yield of events with misidentified jets to be 0.17
events, which includes the contribution from the mea-
surement of the misidentified-jet probability and that
from the possible difference of the probabilities between
jets originating from quarks and gluons. The dominant
uncertainty on the electroweak contribution originates
from the limited size of the simulated event samples used
to estimate the small probability to find an extra photon-
like particle in the W (→eν)γ events.

Table I shows the expected number of background
events and the number of events found in data after the
final selection. We find 5 candidate events in data, which
is consistent with the expected number of background
events.

We check the background predictions using
background-rich control samples. In events con-
taining one lower-quality photon candidate that passes
the loose selection but fails the full selection, the pre-
dicted and observed numbers of events are 372± 68 and
370, respectively. In events with Eγ1T + Eγ2T < 90 GeV,
6.6 ± 1.7 events are predicted and 5 events observed.
The observed agreement supports the reliability of the
background estimation.

We perform a Bayesian limit calculation restricted
to events observed in the signal region, Eγ1T + Eγ2T >
90 GeV, as a function of mhf

, ranging from 10 to

105 GeV/c2, and mH± , ranging from 30 to 300 GeV/c2.
We include systematic uncertainties due to the signal ef-
ficiency, the predicted number of background events, and
the luminosity, as well as the theoretical uncertainty of
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FIG. 2. Upper limit at 95% credibility on the cross-section
ratio with respect to theory predictions, calculated for the
final selection, including the Eγ1T + Eγ2T > 90 GeV require-
ment. The solid line is the obtained limit, the dashed line is
the expected limit, and the shaded regions cover the 68% and
95% of possible variations of expected limit values based on
the Poisson statistics of the expected number of background
events.

20% on the cross section of Higgs boson production [23].
Figure 2 shows the expected and the observed cross sec-
tion limits at 95% credibility for a particular choice of
mhf

and mH± , with possible variations of the expected
limits obtained by assuming 68% or 95% of Poisson fluc-
tuations of the number of background events. From
Fig. 2, the mhf

region betwen 14 and 62 GeV/c2 is ex-

cluded for mH± = 75 GeV/c2. Connecting the boundary
regions of the excluded mhf

region for various values of
mH± in the mhf

vs. mH± plane, we form contours of
the excluded mass regions and present them in Fig. 3.
The region of parameters given by mhf

between 10 and

100 GeV/c2 and mH± between 30 and 170 GeV/c2 is
excluded. The result does not change significantly if we
repeat the analysis by assuming tanβ = 30, while the
excluded region shrinks by approximately 20 GeV/c2 for
both of mhf

and mH± for tanβ = 3.

In conclusion, we report on a search for the fermiopho-
bic Higgs boson in the two-Higgs-doublet model using
events with at least three photons in the final state, re-
sulting from the hypothetical process pp→hfH± followed
by H±→hfW ∗ and hf→γγ. The observed number of
signal candidate events in data is consistent with the ex-
pected number of background events. We calculate the
upper limit on the product of the cross section and the
branching fraction at 95% Bayesian credibility for mhf
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FIG. 3. Excluded mass region at a 95% credibility, calculated
for the final selection. The solid curve is the contour enclosing
the exclusion region, the dashed line encloses the median ex-
pected exclusion region, and the shaded regions cover the 68%
and 95% of possible variations of expected contours based on
the Poisson statistics of the expected number of background
events.

values ranging from 10 to 105 GeV/c2 and for mH± val-

ues ranging from 30 to 300 GeV/c2, and then translate
these limits into an excluded region in the mhf

vs. mH±

plane, shown in Fig. 3. The region of parameters given
by mhf

between 10 and 100 GeV/c2 and mH± between

30 and 170 GeV/c2 is excluded for tanβ = 10. This is
the first search for a fermiophobic neutral Higgs boson
with mass smaller than the boson discovered at the LHC
in the two-Higgs-doublet model.
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